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• Most physical processes have a nonlinear behaviour, except in a 
limited range where they can be considered linear.

• The performance of controllers designed from a linear approxi-
mation is strongly influenced by a change in the operating point
of the system.

• Nonlinear models are able to describe more accurately the global
behaviour of the system, independently of the operating point.

• Many dynamical systems can be represented by the inter-
connection of static nonlinearities and LTI systems. These models 

are called blockblock--orientedoriented nonlinear models.

IntroductionIntroductionIntroduction

Motivation for Nonlinear (Subspace) IdentificationMotivation for Nonlinear (Subspace) IdentificationMotivation for Nonlinear (Subspace) Identification
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• Subspace Methods have been very successful for the identification of 
LTI models in many practical applications.

• Although there is a well developed theory for Subspace Identification 
methods for LTI systems, this is not the case for nonlinear systems. 
Some recent contributions in this area are: (Verhaegen & Westwick, 
1996) in Subspace Identification of Hammersterin and Wiener models, 
and (Chen & Maciejowski, 2000) and (Favoreel et al., 1999) in 
Subspace Identification of bilinear systems. 
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• New subspace algorithms for the simultaneous identification of the 
linear and nonlinear parts of multivariable Hammersteinmultivariable Hammerstein and WienerWiener
models are presented.

• The proposed algorithms consist basically of two steps: 

Step 1: Step 1: a standard (linear) subspace algorithm applied to an 
equivalent linear system whose inputs (outputs) are filtered (by 
the basis functions describing the static nonlinearities) 
versions of the original inputs (outputs).

Step 2:Step 2: a 2-norm minimization problem which is solved via 
an SVD.  

• Provided the conditions for the consistency of the linear subspace 
algorithm used in Step 1 are satisfied, consistencyconsistency of the estimates can 
be guaranteed.

The new results  (Gomez & Baeyens, 2005)The new results  The new results  (Gomez & Baeyens, 2005)
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Subspace State-Space System IDentificationSSubspace ubspace SStatetate--SSpace pace SSystem ystem IDIDentificationentification

They combine tools of System TheorySystem Theory, Numerical Linear AlgebraNumerical Linear Algebra
and GeometryGeometry (projections).

They have their origin in Realization TheoryRealization Theory as developed in the 
60/70s (Ho & Kalman, 1966).

They provide reliable state-space models of multivariablemultivariable LTI 
systems directlydirectly from input-output data.

They don’t require iterative optimization procedures no problems 
with local minima, convergence and initialization.

4SID  Methods4SID  Methods

PropertiesProperties
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They don’t require a particular (canonical) state-space realization 
numerical conditioning improves.

They require a modest computational load in comparison to tradi-
tional identification methods like PEM. 

The algorithms can be (they have been) efficiently implemented in 
software like MatlabMatlab.

Main computational tools are QR and SVD.

All subspace methods compute at some stage the subspacesubspace spanned 
by the columns of the extended observability matrix.

The various algorithms (e.g., N4SID, MOESP, CVA) differ in the 
way the extended observability matrix is estimated and also in the way 
it is used to compute the system matrices. 
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The system modelThe system model
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The identification problemThe identification problem
To estimate the system matrices (A, B, C, D) and K , and the model 
order n, from an (N+α-1)-point data set of input and output 
measurements
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RealizationRealization--based 4SID Methodsbased 4SID Methods
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For a LTI system, a minimalminimal state-space realization (A, B, C, D)
completely defines the input-output properties of the system through

where the impulse response coefficients          are related to the system 
matrices by

convolution sumconvolution sum
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An estimate of the extended observability matrix can be computed by a 
full rankfull rank factorization of the impulse response Hankel matrix. This 
factorization is provided by the SVD of matrix Hij.

Extended Extended 
Observability Observability 

MatrixMatrix
((i>n)i>n)

Extended Extended 
Controlability Controlability 

MatrixMatrix
(j>n)(j>n)
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In the absence of noise, Hij will be a rank n matrix, and Σ1 will contain 
the n non-zero singular values   →→ model order is computed. model order is computed. In the 
presence of noise, Hij will have full rank and a rank reduction stage will 
be required for the model order determination.

rank reductionrank reduction

Problems:Problems: it is necessary to measure or to estimate (for example, via 
correlation analysis)  the impulse response of the system →→ not goodnot good
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Direct 4SID MethodsDirect 4SID Methods
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The main idea of Direct 4SID methodsThe main idea of Direct 4SID methods
In the absence of noise (Nα = 0), eq. (1) becomes

and the part of the output which does not emanate from the state can 
be removed by multiplying (from the right) both sides of eq. (2) by the 
orthogonal projection onto the null space of Uα, i.e. by 

αααα UXY H+Γ= (2)
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( ) ⊥
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I=⊥
ααUU

This yields

⊥⊥ Γ= αααα XUUY

Note Note that the matrix on the left depends exclusively on the input-output 
data. Then, a full rank factorizationfull rank factorization of this matrix will provide an 
estimate      of the extended observability matrix. Estimates of the 
corresponding system matrices can be obtained by resorting to the shift shift 
invariance property invariance property of the extended observability matrix, and by solving 
a system of linear equations in the least squares sense.

(3)

αΓ̂

such that
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The factorization is provided by the SVD of the matrix on the left side
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(In the absence of noise Σ2 = 0)

Weighting MatricesWeighting Matrices

Row and column weighting matrices can be introduced in (4) before 
performing the SVD of the matrix in the left hand side. Any choice of 
positive-definite weighting matrices Wr and  Wc will result in consistent 
estimates of the extended observability matrix.

(4)
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change of coordinates in statechange of coordinates in state--spacespace

Existing algorithms employ the following choices for matrices Wr and Wc ,

• MOESP (Verhaegen, 1994):  

• CVA (Larimore, 1990):

• N4SID (Van Overschee and de Moor, 1994):
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Computation of the system matricesComputation of the system matrices

Given an estimate          of the extended observability matrix, estimates 
of the system matrices can be computed as: 

αΓ̂

• : first row block of

• : solving in the least squares sense 

Ĉ αΓ̂

Â

Âαα Γ=Γ shiftshift--invariance propertyinvariance property

• solving a system of linear equations :ˆ   and  ˆ DB
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In the presence of noise

ααααα NUXY ++Γ= H

⊥⊥ +Γ= ααααα UNXUY
and

noise term needs to be noise term needs to be 
removedremoved

The noise term can be removed by correlating it awaycorrelating it away with a suitable 
matrix. This can be interpreted as an oblique projection.oblique projection.

Presence of noisePresence of noise
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Block-oriented Nonlinear ModelsBlockBlock--oriented Nonlinear Modelsoriented Nonlinear Models

Fig. 4: Hammerstein-Wiener Model (LNL)
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Fig. 2: Wiener Model (LN)
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Fig. 3: Hammerstein-Wiener Model (NLN)
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Fig. 1: Hammerstein Model (NL)
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Hammerstein Model IdentificationHammerstein Model IdentificationHammerstein Model Identification

Nonlinear subsystemNonlinear subsystem

m
k

n
k

pn
k

m
k vxy

ℜ∈ℜ∈

ℜ∈ℜ∈ℜ∈

υω   , 

  ,  , k

( ) ( )∑
=

==
r

i
kiikk uguNv

1

α

( ) ( )rig pp
i ,,1 , : L=ℜ→ℜ•

Problem FormulationProblem FormulationProblem Formulation

ωk

N(.)
DC

BA ykuk

υk

vk

Fig. 5: Hammerstein model
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Identification problem: to estimate the unknown parameter matrices 

, and  A, B, C, and D characterizing the nonlinear and the linear 

parts, respectively, and the model order n, from an N-point data set                     of 

observed input-output measurements.

Identification problem:Identification problem: to estimate the unknown parameter matrices 

, and  A, B, C, and D characterizing the nonlinear and the linear 

parts, respectively, and the model order n, from an N-point data set                     of 

observed input-output measurements.
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Let                               have rank s>p, and let its economy size SVD be 
partitioned as
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Identification AlgorithmIdentification AlgorithmIdentification Algorithm

The subspace algorithm can be summarized as follows.
Step 1:Step 1: Compute estimates of the system matrices                      , and the 
model order n,  using any available (linear) subspace algorithm, such as 
N4SID, MOESP, CVA.     

Step 2:Step 2: Based on the estimates                     compute an estimate  of 

matrix           .

Step 3:Step 3: Compute the SVD of             and its partition as in (4).

Step 4:Step 4: Compute the estimates of the parameter matrices B, D, and α as

BDΘ̂

BDΘ
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Result 2: Consistency AnalysisResult 2: Consistency AnalysisResult 2: Consistency Analysis

∞→N

Under some assumptions on persistency of excitationpersistency of excitation of the inputs, which 

depend on the particular subspace method used in Step 1 Step 1 of the algorithm, 

the estimates                         are consistentconsistent in the sense that they converge 

to the true values when the number of data points               .

The consistency of                   , implies that of B, D, and α .
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Wiener Model IdentificationWiener Model IdentificationWiener Model Identification

Nonlinear subsystemNonlinear subsystem
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Identification problem: to estimate the unknown parameter matrices 

, and  A, B, C, and D characterizing the nonlinear and the 

linear parts, respectively, and the model order n, from an N-point data set                     

of observed input-output measurements.

Identification problem:Identification problem: to estimate the unknown parameter matrices 

, and  A, B, C, and D characterizing the nonlinear and the 

linear parts, respectively, and the model order n, from an N-point data set                     

of observed input-output measurements.
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The problemproblem is how to compute estimates of matrices C, D,  and α+

from the estimates of  the matrices  
~
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Similarly to what was done for the Hammerstein model the closest, in the 
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Let                                  have rank s>m, and let its economy size SVD 
be partitioned as
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Identification AlgorithmIdentification AlgorithmIdentification Algorithm

The subspace algorithm can be summarized as follows.
Step 1:Step 1: Compute estimates of the system matrices                      , and the 
model order n,  using any available (linear) subspace algorithm, such as 
N4SID, MOESP, CVA.     

Step 2:Step 2: Compute the SVD of                 and its partition as in (8).

Step 3:Step 3: Compute the estimates of the parameter matrices C, D, and α+ as

respectively.
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Simulation ExamplesSimulation ExamplesSimulation Examples

The True SystemThe True System
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Example 1: Hammerstein Model ID (“academic”)Example 1: Hammerstein Model ID (Example 1: Hammerstein Model ID (“academic”“academic”))
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The Estimated Nonlinear SubsystemThe Estimated Nonlinear Subsystem

( ) 432  0260.0 5113.0 0142.0 8589.0ˆ
kkkkk uuuuuN −−+= Estimated nonlinear subsystem

Fig.9: True (blue) and Estimated (green) 
nonlinear characteristic.

The Estimated Linear SubsystemThe Estimated Linear Subsystem
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Validation resultsValidation results

Fig. 10: True (green) and Estimated (blue) Output.
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Example 2: Hammerstein Model ID (Binary Distillation Column)Example 2: Hammerstein Model ID (Example 2: Hammerstein Model ID (Binary Distillation ColumnBinary Distillation Column))

Fig. 11: Schematic representation of the 
distillation column

(Weischedel & McAvoy, 1980)

Input:Input: reflux ratio (u)

Outputs:Outputs: overhead flow rate (y1)

overhead methanol concentration (y2)

bottom flow rate (y3)

bottom methanol concentration (y4)
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Fig. 12: Left Plot: Estimation (first 1000 points), and validation (remaining
1000 points) Input Data. Right Plot: Estimation (first 1000 points) and 
Validation (remaining 1000 points) Output Data. 
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Fig. 13: True (blue) and Estimated (red) Outputs (validation data)
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The Estimated Linear SubsystemThe Estimated Linear Subsystem

Third order model with eigenvalues at { }9726.0 , 9557.0 ,4916.0

The Estimated Nonlinear SubsystemThe Estimated Nonlinear Subsystem

Third order polynomial

Fig. 14: Estimated Nonlinear 
Characteristic
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Example 3: Wiener Model ID (pH Neutralization Process)Example 3: Wiener Model ID (Example 3: Wiener Model ID (pH Neutralization ProcesspH Neutralization Process))

Fig. 15: Schematic representation of the pH 
Neutralization Process

(Henson & Seborg, 92, 94, 97)

•• base:base: NaOH   acid:acid: HNO3

buffer: buffer: NaHCO3

effluent solution

•• Manipulated variable:Manipulated variable: base 
flow rate (u1)

•• Disturbances: Disturbances: buffer flow rate 
(u2) and acid flow rate (u3)

•• Output: Output: pH of the effluent 
solution (y)

(u3)
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Simulation ModelSimulation Model based on first principlesfirst principles (introducing two reaction 
invariants for each inlet stream)
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Fig. 16: Estimation (first 1000 points) and validation 
(remaining 600 points) input-output data.

Estimation and Validation dataEstimation and Validation data
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The Estimated Linear SubsystemThe Estimated Linear Subsystem

Third order model  ( )
9474.08940.29466.2

006.00122.00062.0ˆ
23

2
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=
zzz

zz
zG

Third order polynomial

kkkk yyyyN 9989.00358.00319.0)(ˆ 231 ++=−

The Estimated Nonlinear SubsystemThe Estimated Nonlinear Subsystem

Fig. 17: Estimated Nonlinear Characteristic.
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Validation resultsValidation results

Fig. 18: True (blue) and estimated (red) Output (Estimation/Validation data).
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ConclusionsConclusionsConclusions

• New subspace methods for the simultaneous identification of the 
linear and nonlinear parts of multivariable Hammerstein and multivariable Hammerstein and 
Wiener modelsWiener models have been presented.

• The proposed methods make use of a standard (linear) subspace 
method followed by a 2-norm minimization problem which is 
solved via an SVD.

• The proposed methods generalizegeneralize all the families of linear 
subspace methods to this class of nonlinear models. 

• The method provides consistent estimatesconsistent estimates under the same 
conditions on persistency of excitation required by the (linear)
subspace method used as the first step of the algorithm.

• The estimated models are in a format which is suitable for their
use in standard (linear) Model Predictive Control schemes.
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Subspace Identification of 
Hammerstein and Wiener Models

Subspace Identification of Subspace Identification of 
Hammerstein and Wiener ModelsHammerstein and Wiener Models
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