Research Seminar

Subspace Identification of Hammerstein and Wiener Models

Speaker

Juan C. Gómez

Laboratory for System Dynamics and Signal Processing FCEIA, Universidad Nacional de Rosario ARGENTINA

jcgomez@fceia.unr.edu.ar

LSD - September 2005

Outline

- □ Introduction: Motivation, New results
- □ A (very) brief review on Subspace State-Space System IDentification Methods
- Block-oriented Nonlinear Models
- □ Subspace Identification of Hammerstein Models
- □ Subspace Identification of Wiener Models
- □ Simulation Examples
- □ Conclusions

Motivation for Nonlinear (Subspace) Identification

- Most physical processes have a nonlinear behaviour, except in a limited range where they can be considered linear.
- The performance of controllers designed from a linear approximation is strongly influenced by a change in the operating point of the system.
- Nonlinear models are able to describe more accurately the global behaviour of the system, independently of the operating point.
- Many dynamical systems can be represented by the interconnection of static nonlinearities and LTI systems. These models are called **block-oriented** nonlinear models.

- Subspace Methods have been very successful for the identification of LTI models in many practical applications.
- Although there is a well developed theory for Subspace Identification methods for LTI systems, this is not the case for nonlinear systems. Some recent contributions in this area are: (Verhaegen & Westwick, 1996) in Subspace Identification of Hammersterin and Wiener models, and (Chen & Maciejowski, 2000) and (Favoreel *et al.*, 1999) in Subspace Identification of bilinear systems.

The new results (Gomez & Baeyens, 2005)

- New subspace algorithms for the simultaneous identification of the linear and nonlinear parts of **multivariable Hammerstein** and **Wiener** models are presented.
- The proposed algorithms consist basically of two steps:

Step 1: a standard (linear) subspace algorithm applied to an equivalent linear system whose inputs (outputs) are filtered (by the basis functions describing the static nonlinearities) versions of the original inputs (outputs).

Step 2: a 2-norm minimization problem which is solved via an SVD.

• Provided the conditions for the consistency of the linear subspace algorithm used in Step 1 are satisfied, **consistency** of the estimates can be guaranteed.

LSD - September 2005

References

- 1. Gómez, J.C. and Baeyens, E.. Subspace Identification of Multivariable Hammerstein and Wiener Models, *European Journal of Control*, Vol. 11, No. 2, 2005.
- Gómez, J.C., Jutan, A. and Baeyens, E.. Wiener Model Identification and Predictive Control of a pH Neutralization Process. *IEE Proceedings on Control Theory and Applications*, Vol. 151, No. 3, pp. 329-338, May 2004.

Subspace State-Space System IDentification

4SID Methods

Properties

- They combine tools of System Theory, Numerical Linear Algebra and Geometry (projections).
- □ They have their origin in **Realization Theory** as developed in the 60/70s (Ho & Kalman, 1966).
- They provide reliable state-space models of multivariable LTI systems directly from input-output data.
- □ They don't require iterative optimization procedures → no problems with local minima, convergence and initialization.

LSD - September 2005

- □ They don't require a particular (canonical) state-space realization → numerical conditioning improves.
- □ They require a modest computational load in comparison to traditional identification methods like PEM.
- □ The algorithms can be (they have been) efficiently implemented in software like Matlab.
- □ Main computational tools are QR and SVD.
- □ All subspace methods compute at some stage the **subspace** spanned by the columns of the extended observability matrix.
- □ The various algorithms (*e.g.*, N4SID, MOESP, CVA) differ in the way the extended observability matrix is estimated and also in the way it is used to compute the system matrices.

□ The system model

$$x_{k+1} = Ax_k + Bu_k + Ke_k$$
$$y_k = Cx_k + Du_k + e_k$$

State-space model in innovation form

□ The identification problem

To estimate the system matrices (A, B, C, D) and K, and the model order n, from an $(N+\alpha-1)$ -point data set of input and output measurements

$$\{u_k, y_k\}_{k=1}^{N+\alpha-1}$$

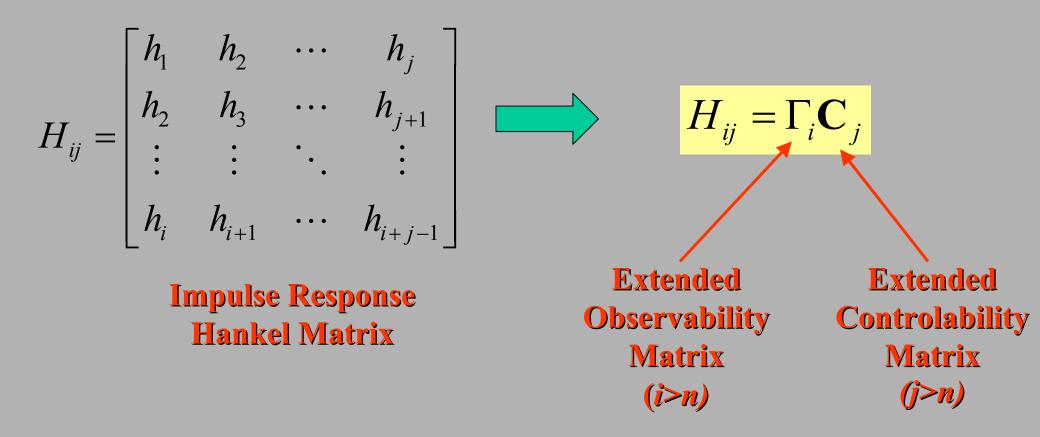
Realization-based 4SID Methods

For a LTI system, a **minimal** state-space realization (*A*, *B*, *C*, *D*) completely defines the input-output properties of the system through

$$y_k = \sum_{\ell=0}^{\infty} h_\ell u_{k-\ell}$$
 convolution sum

where the impulse response coefficients h_{ℓ} are related to the system matrices by

$$h_{\ell} = egin{cases} D & , \quad \ell = 0 \ CA^{\ell-1}B & , \quad \ell > 0 \end{cases}$$



An estimate of the extended observability matrix can be computed by a **full rank** factorization of the impulse response Hankel matrix. This factorization is provided by the SVD of matrix H_{ii} .

$$H_{ij} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \approx U_1 \Sigma_1 V_1^T = \underbrace{\left(U_1 \Sigma_1^{1/2} \right) \left(\Sigma_1^{1/2} V_1^T \right)}_{\hat{\Gamma}_i} \underbrace{\hat{C}_j}_{\hat{C}_j}$$

rank reduction

In the absence of noise, H_{ij} will be a rank *n* matrix, and Σ_1 will contain the *n* non-zero singular values \rightarrow model order is computed. In the presence of noise, H_{ij} will have full rank and a rank reduction stage will be required for the model order determination.

<u>Problems</u>: it is necessary to measure or to estimate (for example, via correlation analysis) the impulse response of the system \rightarrow **not good**

Direct 4SID Methods

$$\mathbf{Y}_{\alpha} = \Gamma_{\alpha} \mathbf{X} + H_{\alpha} \mathbf{U}_{\alpha} + \mathbf{N}_{\alpha}$$

 $\mathbf{Y}_{\alpha} = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \\ y_2 & y_3 & \cdots & y_{N+1} \\ \vdots & \vdots & \vdots & \vdots \\ y_{\alpha-1} & y_{\alpha} & \cdots & y_{N+\alpha-1} \end{bmatrix}$

fundamental equation (1)

Output block Hankel matrix

(In a similar way are defined the Input block Hankel matrix U_{α} and the Noise block Hankel matrix N_{α} .)

$$\Gamma_{\alpha} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{\alpha-1} \end{bmatrix}$$
 Extended $(\alpha > n)$
Observability Matrix

$$\mathbf{X} = \begin{bmatrix} x_1, x_2, \cdots, x_N \end{bmatrix}$$

State Sequence Matrix

$$H_{\alpha} = \begin{bmatrix} D & 0 & 0 & \cdots & 0 \\ CB & D & 0 & \cdots & 0 \\ CAB & CB & D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ CA^{\alpha-2}B & CA^{\alpha-3}B & CA^{\alpha-4}B & \cdots & D \end{bmatrix}$$

LowertriangularblockToeplitzmatrix of impulseresponses (unknown).

The main idea of Direct 4SID methods

In the absence of noise $(N_{\alpha} = 0)$, eq. (1) becomes

$$\mathbf{Y}_{\alpha} = \Gamma_{\alpha} \mathbf{X} + H_{\alpha} \mathbf{U}_{\alpha}$$
(2)

and the part of the output which does not emanate from the state can be removed by multiplying (from the right) both sides of eq. (2) by the **orthogonal projection onto the null space of U**_a, *i.e.* by

$$\Pi_{\mathbf{U}_{\alpha}^{T}}^{\perp} \stackrel{\Delta}{=} I - \mathbf{U}_{\alpha}^{T} \left(\mathbf{U}_{\alpha} \mathbf{U}_{\alpha}^{T} \right)^{-1} \mathbf{U}_{\alpha} \stackrel{\Delta}{=} \mathbf{U}_{\alpha}^{\perp}$$

orthogonal projectionsuch that $\mathbf{U}_{\alpha}\mathbf{U}_{\alpha}^{\perp} = I$

This yields

$$\mathbf{Y}_{\alpha}\mathbf{U}_{\alpha}^{\perp} = \Gamma_{\alpha}\mathbf{X}\mathbf{U}_{\alpha}^{\perp}$$
(3)

Note that the matrix on the left depends exclusively on the input-output data. Then, a **full rank factorization** of this matrix will provide an estimate $\hat{\Gamma}_{\alpha}$ of the extended observability matrix. Estimates of the corresponding system matrices can be obtained by resorting to the **shift invariance property** of the extended observability matrix, and by solving a system of linear equations in the least squares sense.

LSD - September 2005

The factorization is provided by the SVD of the matrix on the left side

$$\mathbf{Y}_{\alpha}\mathbf{U}_{\alpha}^{\perp} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix} \approx U_{1}\Sigma_{1}V_{1}^{T} = \underbrace{\left(U_{1}\Sigma_{1}^{\frac{1}{2}}\right)}_{\hat{\Gamma}_{\alpha}} \underbrace{\left(\Sigma_{1}^{\frac{1}{2}}V_{1}^{T}\right)}_{\hat{\Gamma}_{\alpha}} \left(\Sigma_{1}^{\frac{1}{2}}V_{1}^{T}\right)$$

rank reduction (model order estimation)

(In the absence of noise $\Sigma_2 = 0$)

Weighting Matrices

Row and column weighting matrices can be introduced in (4) before performing the SVD of the matrix in the left hand side. Any choice of positive-definite weighting matrices W_r and W_c will result in consistent estimates of the extended observability matrix.

LSD - September 2005

$$W_{r}\mathbf{Y}_{\alpha}\mathbf{U}_{\alpha}^{\perp}W_{c} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix} \approx U_{1}\Sigma_{1}V_{1}^{T} = \underbrace{\left(U_{1}\Sigma_{1}^{\frac{1}{2}}\right)}_{\widehat{\Gamma}_{\alpha}} \underbrace{\left(\Sigma_{1}^{\frac{1}{2}}V_{1}^{T}\right)}_{\widehat{\Gamma}_{\alpha}}$$

change of coordinates in state-space

Existing algorithms employ the following choices for matrices W_r and W_c ,

- MOESP (Verhaegen, 1994): $W_r = I$, $W_c = \left(\frac{1}{N}\Phi\Pi_{U_{\alpha}^T}^{\perp}\Phi^T\right)^{-1}\Phi\Pi_{U_{\alpha}^T}^{\perp}$ • CVA (Larimore, 1990): $W_r = \left(\frac{1}{N}\mathbf{Y}_{\alpha}\Pi_{U_{\alpha}^T}^{\perp}\mathbf{Y}_{\alpha}^T\right)^{-\frac{1}{2}}$, $W_c = \left(\frac{1}{N}\Phi\Pi_{U_{\alpha}^T}^{\perp}\Phi^T\right)^{-\frac{1}{2}}$
- N4SID (Van Overschee and de Moor, 1994):

$$W_r = I, \quad W_c = \left(\frac{1}{N}\Phi\Pi_{U_{\alpha}^T}^{\perp}\Phi^T\right)^{-1}\Phi$$

LSD - September 2005

Computation of the system matrices

Given an estimate $\hat{\Gamma}_{\alpha}$ of the extended observability matrix, estimates of the system matrices can be computed as:

α

•
$$\hat{C}$$
 : first row block of $\hat{\Gamma}$

• \hat{A} : solving in the least squares sense

$$\overline{\overline{\Gamma_{\alpha}}} = \underline{\Gamma_{\alpha}}\hat{A}$$

shift-invariance property

• \hat{B} and \hat{D} : solving a system of linear equations

Presence of noise

In the presence of noise

$$\mathbf{Y}_{\alpha} = \Gamma_{\alpha} \mathbf{X} + H_{\alpha} \mathbf{U}_{\alpha} + \mathbf{N}_{\alpha}$$

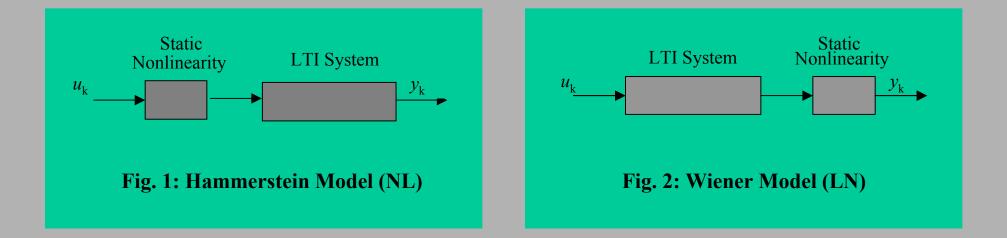
and

$$\mathbf{Y}_{\alpha}\mathbf{U}_{\alpha}^{\perp} = \Gamma_{\alpha}\mathbf{X} + \mathbf{N}_{\alpha}\mathbf{U}_{\alpha}^{\perp}$$

noise term needs to be removed

The noise term can be removed by **correlating it away** with a suitable matrix. This can be interpreted as an **oblique projection**.

Block-oriented Nonlinear Models



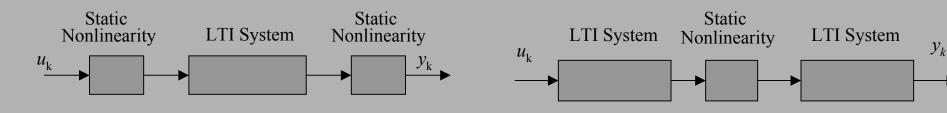


Fig. 3: Hammerstein-Wiener Model (NLN)

Fig. 4: Hammerstein-Wiener Model (LNL)

Hammerstein Model Identification

Problem Formulation

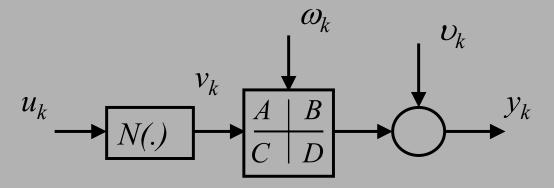


Fig. 5: Hammerstein model

LTI subsystem $\begin{cases} x_{k+1} = Ax_k + Bv_k + \omega_k & (1) \\ y_k = Cx_k + Dv_k + \upsilon_k & (2) \end{cases}$ $y_k \in \Re^m, \ x_k \in \Re^n, \ v_k \in \Re^p & g_i(\bullet) : \Re^p \to \Re^p, (i = 1, \dots, r) \text{ known basis functions} \\ \omega_k \in \Re^n, \ \upsilon_k \in \Re^m & \alpha_i \in \Re^{p \times p} & (i = 1, \dots, r) \text{ unknown matrix parameters} \end{cases}$ (3)

LSD - September 2005

J.C. Gómez

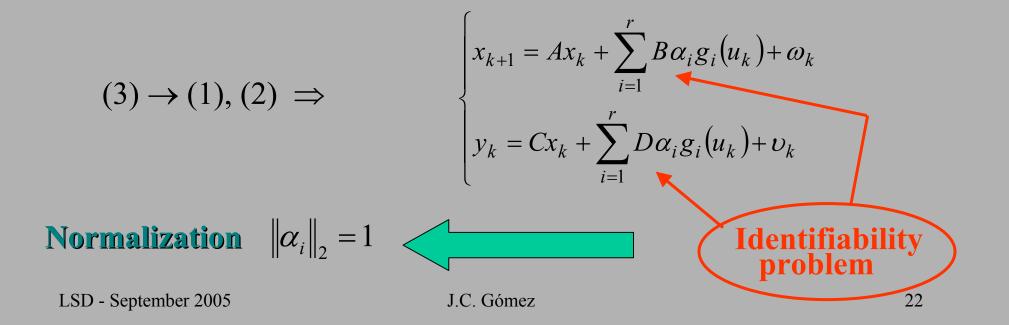
Nonlinear subsystem (3)

21

Identification problem: to estimate the unknown parameter matrices

 $\alpha_i \in \Re^{p \times p}, (i = 1, \dots, r)$, and *A*, *B*, *C*, and *D* characterizing the nonlinear and the linear parts, respectively, and the model order *n*, from an *N*-point data set $\{u_k, y_k\}_{k=1}^N$ of observed input-output measurements.

Subspace Identification Algorithm



Defining
$$\widetilde{B} \stackrel{\Delta}{=} [B\alpha_1, \cdots, B\alpha_r]$$
, $\widetilde{D} \stackrel{\Delta}{=} [D\alpha_1, \cdots, D\alpha_r]$, $U_k \stackrel{\Delta}{=} [g_1^T(u_k), \cdots, g_r^T(u_k)]^T$

$$\begin{cases} x_{k+1} = Ax_k + \widetilde{B}U_k + \omega_k \\ y_k = Cx_k + \widetilde{D}U_k + \upsilon_k \end{cases}$$

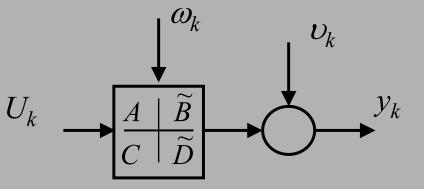


Fig. 6: Equivalent LTI system with input U_k

Linear Subspace Algorithms (N4SID, MOESP,CVA)

Estimates

 $\hat{A}, \hat{\tilde{B}}, \hat{C}, \hat{\tilde{D}},$ model order *n*

Defining $\alpha = [\alpha_1, \dots, \alpha_r]^T$, then $\widetilde{B} = B\alpha^T$, and $\widetilde{D} = D\alpha^T$, so that

$$\Theta_{BD} \stackrel{\Delta}{=} \begin{bmatrix} \widetilde{B} \\ \widetilde{D} \end{bmatrix} = \begin{bmatrix} B \\ D \end{bmatrix} \alpha^{T}$$

The **problem** then is how to compute estimates of matrices *B*, *D*, and α from the estimate of the matrices \tilde{B} , and \tilde{D} (i.e., from an estimate of Θ_{BD})

It is clear that the closest, in the 2-norm sense, estimates \hat{B} , \hat{D} , and $\hat{\alpha}$ are such that

$$(\hat{B}, \hat{D}, \hat{\alpha}) = \underset{B, D, \alpha}{\operatorname{argmin}} \left\{ \left\| \hat{\Theta}_{BD} - \begin{bmatrix} B \\ D \end{bmatrix} \alpha^T \right\|_2^2 \right\}$$

The **solution** to this optimization problem is provided by the SVD of Θ_{BD} .

LSD - September 2005

Wit

The

Let $\hat{\Theta}_{BD} \in \Re^{(n+m) \times rp}$ have rank s > p, and let its economy size SVD be partitioned as

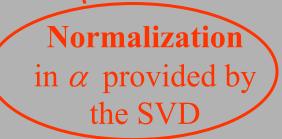
$$\hat{\Theta}_{BD} = U\Sigma V^{T} = \sum_{i=1}^{s} \sigma_{i} u_{i} v_{i}^{T} = \begin{bmatrix} U_{1} & U_{2} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix}$$
(4)

$$h \quad U_{1} \in \Re^{(n+m) \times p}, \quad V_{1} \in \Re^{rp \times p}, \text{ and } \Sigma_{1} = \text{diag} \left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right).$$

$$\text{en} \quad \left(\begin{bmatrix} \hat{B} \\ \hat{D} \end{bmatrix}, \hat{\alpha} \right) = \underset{B,D,\alpha}{\operatorname{argmin}} \left\| \hat{\Theta}_{BD} - \begin{bmatrix} B \\ D \end{bmatrix} \alpha^{T} \right\|_{2}^{2} = \left(U_{1}\Sigma_{1}, V_{1} \right),$$

and the approximation error is given by

$$\left\|\hat{\Theta}_{BD} - \begin{bmatrix}\hat{B}\\\hat{D}\end{bmatrix}\alpha^T\right\|_2^2 = \sigma_{p+1}^2.$$



Identification Algorithm

The subspace algorithm can be summarized as follows. **Step 1:** Compute estimates of the system matrices $(A, \tilde{B}, C, \tilde{D})$, and the model order *n*, using any available (linear) subspace algorithm, such as N4SID, MOESP, CVA.

<u>Step 2</u>: Based on the estimates \hat{B} and \hat{D} compute an estimate $\hat{\Theta}_{BD}$ of matrix Θ_{BD} .

<u>Step 3</u>: Compute the SVD of $\hat{\Theta}_{BD}$ and its partition as in (4).

Step 4: Compute the estimates of the parameter matrices *B*, *D*, and α as

$$\begin{bmatrix} \hat{B} \\ \hat{D} \end{bmatrix} = U_1 \Sigma_1$$
$$\hat{\alpha} = V_1$$

respectively.

LSD - September 2005

Under some assumptions on **persistency of excitation** of the inputs, which depend on the particular subspace method used in **Step 1** of the algorithm, the estimates $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ are **consistent** in the sense that they converge to the true values when the number of data points $N \to \infty$.

The consistency of $\hat{\widetilde{B}}$ and $\hat{\widetilde{D}}$, implies that of *B*, *D*, and α .

Wiener Model Identification

Problem Formulation

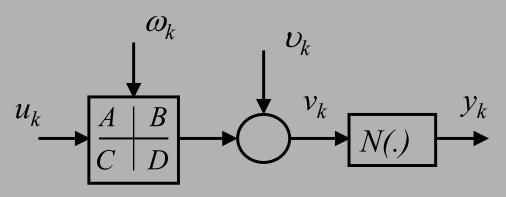


Fig. 7: Wiener model

LTI subsystem $\begin{cases}
x_{k+1} = Ax_k + Bu_k + \omega_k \quad (5) \\
v_k = Cx_k + Du_k + \nu_k \quad (6)
\end{cases}$ $u_k \in \Re^p, \ x_k \in \Re^n, \ v_k \in \Re^m \quad (6)$ $\omega_k \in \Re^n, \ \upsilon_k \in \Re^m \quad (6)$ LSD - September 2005

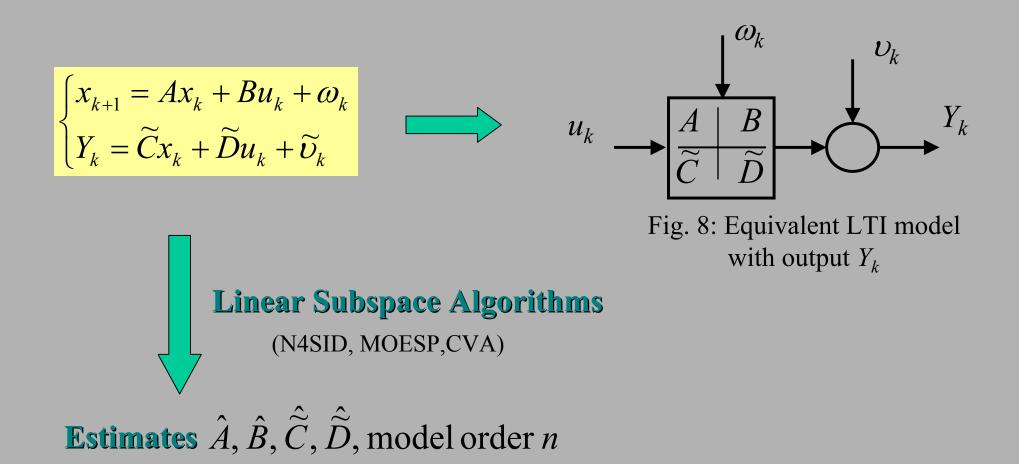
Nonlinear subsystem $v_k = N^{-1}(y_k) = \sum_{i=1}^r \alpha_i g_i(y_k)$ (7) $g_i(\bullet): \mathfrak{R}^m \to \mathfrak{R}^m, (i = 1, \dots, r)$ known basis
functions $\alpha_i \in \mathfrak{R}^{m \times m}$ $(i = 1, \dots, r)$ unknown matrix
parametersJ.C. Gómez28

Identification problem: to estimate the unknown parameter matrices

 $\alpha_i \in \Re^{m \times m}$, $(i = 1, \dots, r)$, and *A*, *B*, *C*, and *D* characterizing the nonlinear and the linear parts, respectively, and the model order *n*, from an *N*-point data set $\{u_k, y_k\}_{k=1}^N$ of observed input-output measurements.

Subspace Identification Algorithm

$$(7) \rightarrow (6) \Rightarrow \begin{cases} x_{k+1} = Ax_k + Bu_k + \omega_k \\ \alpha Y_k \stackrel{\Delta}{=} \sum_{i=1}^r \alpha_i g_i(y_k) = Cx_k + Du_k + \upsilon_k \end{cases} \Rightarrow \begin{cases} x_{k+1} = Ax_k + Bu_k + \omega_k \\ Y_k = \widetilde{C}x_k + \widetilde{D}u_k + \widetilde{\upsilon}_k \end{cases}$$
$$\alpha = [\alpha_1, \cdots, \alpha_r], Y_k = [g_1^T(y_k), \cdots, g_r^T(y_k)]^T \qquad \qquad \widetilde{C} \stackrel{\Delta}{=} \alpha^+ C, \quad \widetilde{D} \stackrel{\Delta}{=} \alpha^+ D$$
$$\underbrace{\text{Normalization}}_{\text{LSD - September 2005}} \|\alpha^+\|_2 = 1$$



The **problem** is how to compute estimates of matrices *C*, *D*, and α^+ from the estimates of the matrices \widetilde{C} , and \widetilde{D}

Similarly to what was done for the Hammerstein model the closest, in the 2-norm sense, estimates \hat{C} , \hat{D} , and $\hat{\alpha}^+$ are such that

$$(\hat{C}, \hat{D}, \hat{\alpha}^{+}) = \underset{C, D, \alpha^{+}}{\operatorname{argmin}} \left\{ \left\| \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} - \alpha^{+} \begin{bmatrix} C & D \end{bmatrix} \right\|_{2}^{2} \right\}$$

The **solution** to this optimization problem is provided by the SVD of the matrix $\begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}$

Result 3

Let $\begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} \in \Re^{mr \times (n+p)}$ have rank s > m, and let its economy size SVD be partitioned as

$$\begin{bmatrix} \hat{\widetilde{C}} & \hat{\widetilde{D}} \end{bmatrix} = U\Sigma V^T = \sum_{i=1}^s \sigma_i u_i v_i^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$
(8)

with $U_1 \in \Re^{mr \times m}$, $V_1 \in \Re^{(n+p) \times m}$, and $\Sigma_1 = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_m)$. Then

$$(\hat{\alpha}^+, \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}) = \operatorname*{argmin}_{C,D,\alpha^+} \left\| \begin{bmatrix} \hat{\widetilde{C}} & \hat{\widetilde{D}} \end{bmatrix} - \alpha^+ \begin{bmatrix} C & D \end{bmatrix} \right\|_2^2 = (U_1, \Sigma_1 V_1^T),$$

and the approximation error is given by

error is given by $\left\| \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} - \hat{\alpha}^{+} \begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} \right\|_{2}^{2} = \sigma_{m+1}^{2}.$ Normalization in α^{+} provided by the SVD

Identification Algorithm

The subspace algorithm can be summarized as follows.

Step 1: Compute estimates of the system matrices $(A, B, \tilde{C}, \tilde{D})$, and the model order *n*, using any available (linear) subspace algorithm, such as N4SID, MOESP, CVA.

<u>Step 2</u>: Compute the SVD of $\begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix}$ and its partition as in (8).

Step 3: Compute the estimates of the parameter matrices C, D, and α^+ as

$$\begin{bmatrix} \hat{C} & \hat{D} \end{bmatrix} = \Sigma_1 V_1^2$$
$$\hat{\alpha} = U_1^+$$

respectively.

Simulation Examples

Example 1: Hammerstein Model ID (**"academic"**)

The True System

$$G(z) = \frac{z^2 + 0.7z - 1.5}{z^3 + 0.9z^2 + 0.15z + 0.002}$$

linear subsystem

 $N(u_k) = 0.8589 u_k + 0.0149 u_k^2 - 0.5113 u_k^3 - 0.0263 u_k^4$

nonlinear subsystem

The input and noise

$$u_{k} = \sin(0.0005\pi k) + 0.5\sin(0.0015\pi k) + 0.3\sin(0.0025\pi k) + 0.1\sin(0.0035\pi k) + \gamma_{k}$$

input (γ_k white noise with variance 10^{-6})

Spectrum of the zero mean coloured noise

$$\Phi_{\nu}(\omega) = \frac{0.64 \times 10^{-8}}{1.2 - 0.4 \cos(\omega)}$$

LSD - September 2005

□ The Estimated Nonlinear Subsystem

$$\hat{N}(u_k) = 0.8589 \, u_k + 0.0142 \, u_k^2 - 0.5113 \, u_k^3 - 0.0260 \, u_k^4$$

Estimated nonlinear subsystem

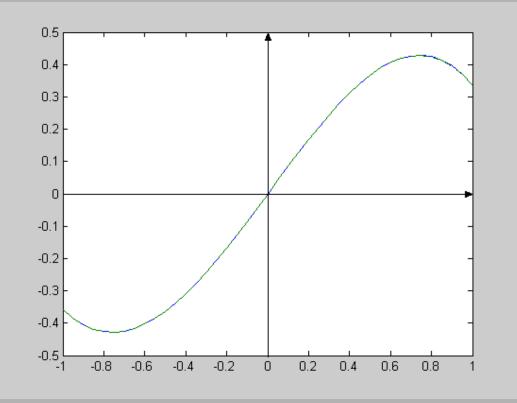


Fig.9: True (blue) and Estimated (green) nonlinear characteristic.

The Estimated Linear Subsystem

$$\hat{G}(z) = \frac{0.9986z^2 + 0.6997z - 1.4984}{z^3 + 0.9002z^2 + 0.1495z + 0.0014}$$

LSD - September 2005

J.C. Gómez

Estimated linear subsystem

□ Validation results

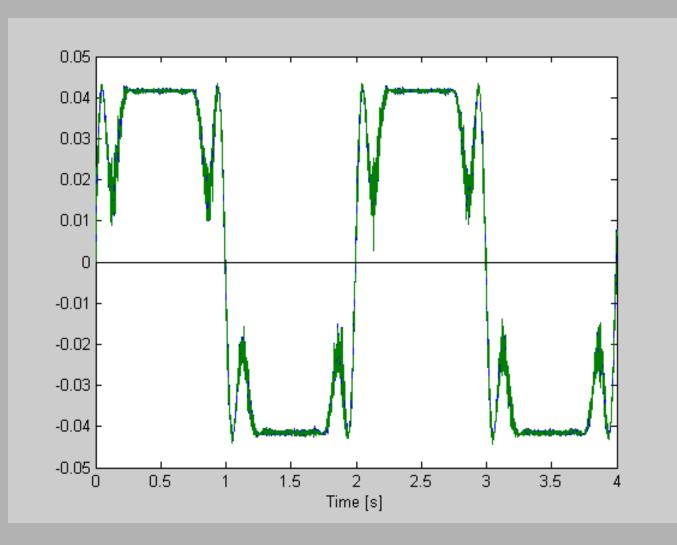
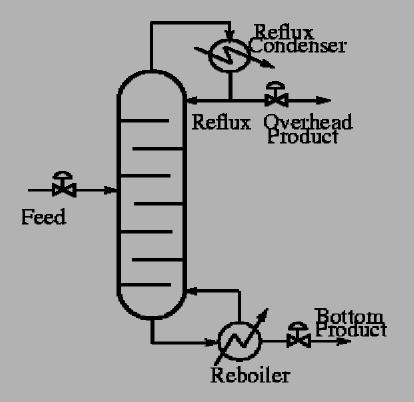


Fig. 10: True (green) and Estimated (blue) Output.

LSD - September 2005

Example 2: Hammerstein Model ID (Binary Distillation Column)



Input: reflux ratio (*u*)

Outputs: overhead flow rate (y_1) overhead methanol concentration (y_2) bottom flow rate (y_3) bottom methanol concentration (y_4)

Fig. 11: Schematic representation of the distillation column

(Weischedel & McAvoy, 1980)

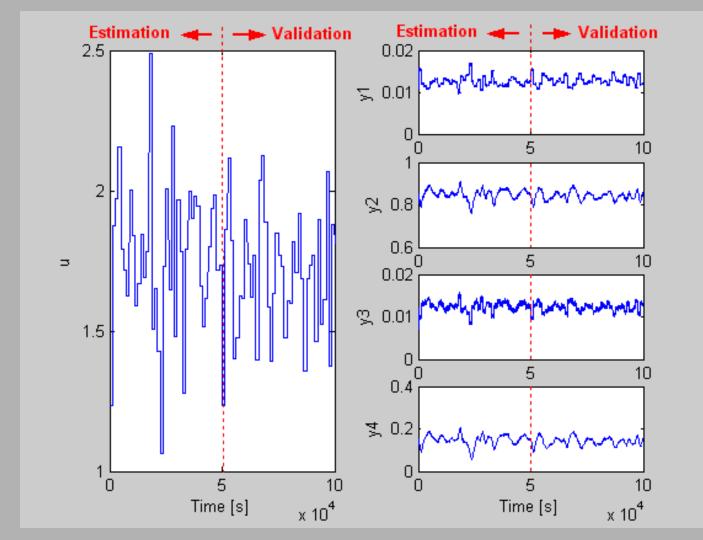


Fig. 12: Left Plot: Estimation (first 1000 points), and validation (remaining 1000 points) Input Data. Right Plot: Estimation (first 1000 points) and Validation (remaining 1000 points) Output Data.

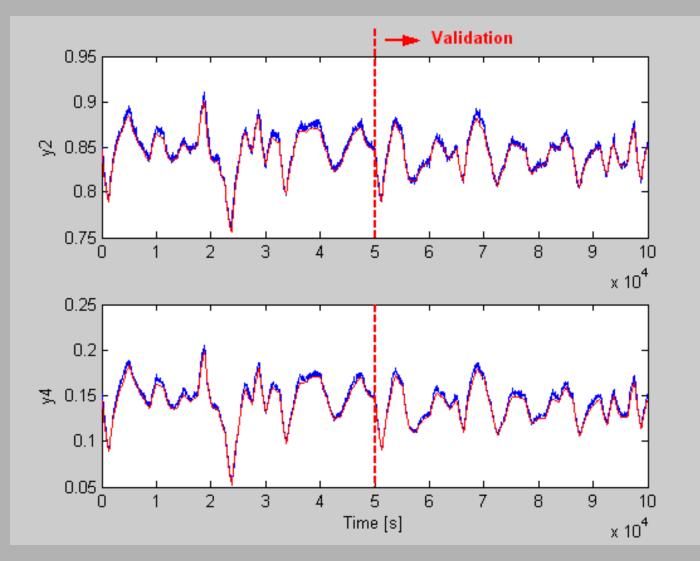
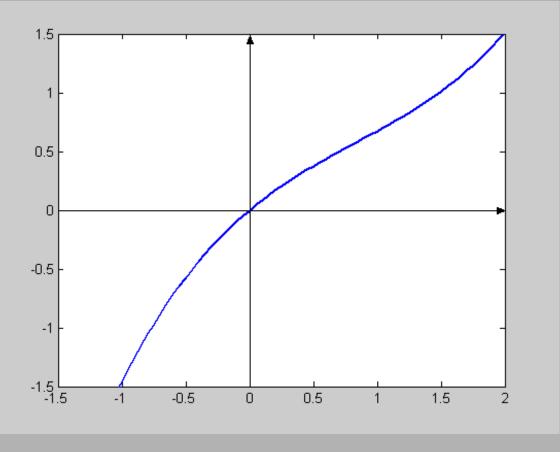


Fig. 13: True (blue) and Estimated (red) Outputs (validation data)

□ The Estimated Linear Subsystem

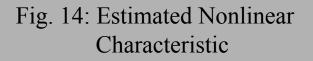
Third order model with eigenvalues at

The Estimated Nonlinear Subsystem



 $\{0.4916, 0.9557, 0.9726\}$

Third order polynomial



LSD - September 2005

Example 3: Wiener Model ID (pH Neutralization Process)



Fig. 15: Schematic representation of the pH Neutralization Process (Henson & Seborg, 92, 94, 97)

- base: NaOH acid: HNO₃
 buffer: NaHCO₃
- Manipulated variable: base flow rate (u_1)
- **Disturbances:** buffer flow rate (u_2) and acid flow rate (u_3)
- **Output:** pH of the effluent solution (y)

Simulation Model based on first principles (introducing two reaction invariants for each inlet stream)

$$\dot{x} = f(x) + g(x)u_1 + p(x)u_2$$
$$h(x, y) = 0$$

where

$$x \stackrel{\Delta}{=} [x_1, x_2]^T = [W_a, W_b]^T$$

$$f(x) = \left[\frac{u_3}{V}(W_{a3} - x_1), \frac{u_3}{V}(W_{b3} - x_2)\right]^T$$

$$g(x) = \left[\frac{1}{V}(W_{a1} - x_1), \frac{1}{V}(W_{b1} - x_2)\right]^T$$

$$p(x) = \left[\frac{1}{V}(W_{a2} - x_1), \frac{1}{V}(W_{b2} - x_2)\right]^T$$

$$h(x, y) = x_1 + 10^{y - 14} - 10^{-y} + x_2 \frac{1 + 2 \times 10^{y - pK_2}}{1 + 10^{pK_1 - y} + 10^{y - pK_2}}$$

LSD - September 2005

Estimation and Validation data

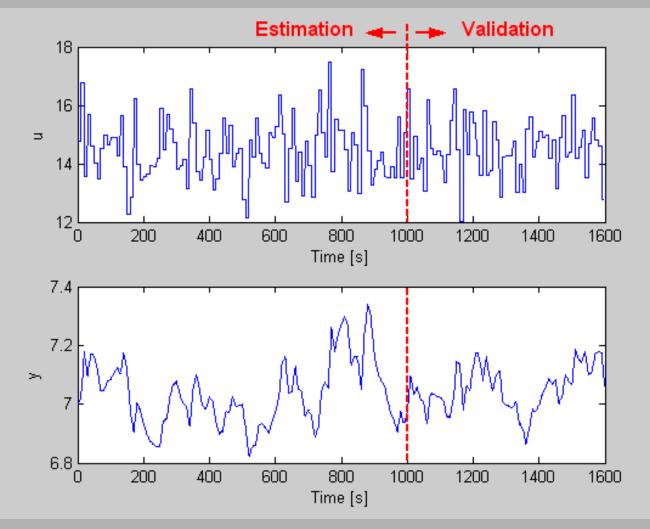


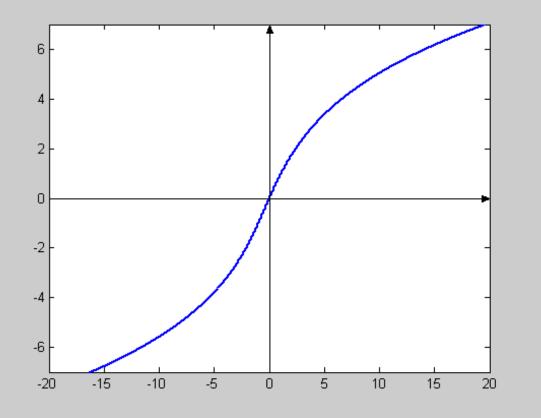
Fig. 16: Estimation (first 1000 points) and validation (remaining 600 points) input-output data.

□ The Estimated Linear Subsystem

Third order model

$$\hat{G}(z) = \frac{0.0062z^2 - 0.0122z + 0.006}{z^3 - 2.9466z^2 + 2.8940z - 0.9474}$$

□ The Estimated Nonlinear Subsystem



Third order polynomial

 $\hat{N}^{-1}(y_k) = 0.0319y_k^3 + 0.0358y_k^2 + 0.9989y_k$

Fig. 17: Estimated Nonlinear Characteristic. LSD - September 2005 J.C. Gómez

□ Validation results

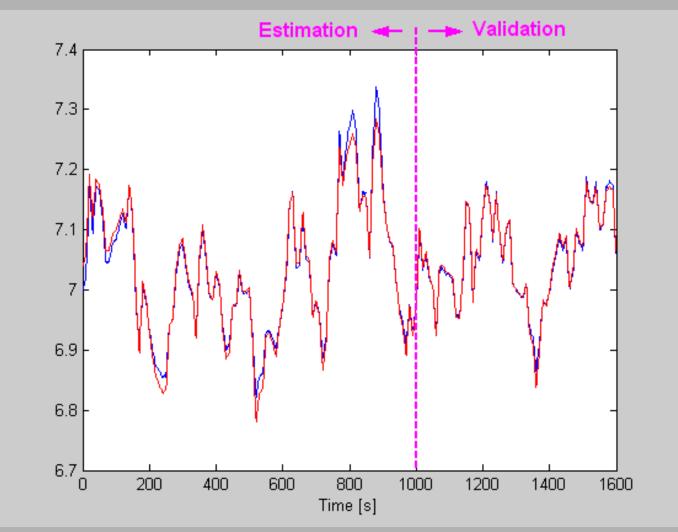


Fig. 18: True (blue) and estimated (red) Output (Estimation/Validation data).

Conclusions

- New subspace methods for the simultaneous identification of the linear and nonlinear parts of **multivariable Hammerstein and Wiener models** have been presented.
- The proposed methods make use of a standard (linear) subspace method followed by a 2-norm minimization problem which is solved via an SVD.
- The proposed methods **generalize** all the families of linear subspace methods to this class of nonlinear models.
- The method provides **consistent estimates** under the same conditions on persistency of excitation required by the (linear) subspace method used as the first step of the algorithm.
- The estimated models are in a format which is suitable for their use in standard (linear) Model Predictive Control schemes.

Research Seminar

Subspace Identification of Hammerstein and Wiener Models

Speaker

Juan C. Gómez

Laboratory for System Dynamics and Signal Processing FCEIA, Universidad Nacional de Rosario ARGENTINA

jcgomez@fceia.unr.edu.ar

LSD - September 2005