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Abstract
This thesis illustrates the use of a particular class of rational orthonormalbases for the purposes of analyzing the performance of least-squares dynamicsystem estimates that involve model structures which are linear in the param-eters. The genesis of this work comes from seminal results on approximatingvariance error of estimated frequency responses, and work on the use of re-stricted classes of orthonormal bases (Laguerre and two-parameter Kautz forexample) as a model structure parameterization option. A key original per-spective of this thesis is that by generalizing the bases involved to the caseof arbitrary pole locations, these bases can be viewed as more than an imple-mentational option, but also as an analysis tool of great utility, since it can beapplied regardless of whether the bases are used for model structure parameter-ization or not. This utility is illustrated by deriving approximations of estimatevariability that are extensions of pre-existing ones, in that for scenarios wherepoles are not all �xed at the origin, they can provide improved accuracy. Thekey tools in this analysis involve the development of new results of general-ized Fourier series convergence and generalization of the asymptotic propertiesof Toeplitz matrices. Initially these results are derived for time invariant andsingle-input, single-output scenarios, but subsequently extensions to multiple-input, multiple-output and time varying situations are also provided.



1Introduction
This thesis deals with the use of rational orthonormal bases in identi�cation ofdiscrete-time linear systems from input-output data.System Identi�cation can be de�ned as the area of System Theory thatdeals with the study of methodologies for constructing a mathematical modelof a dynamical system based on measurements from the system. The area hasbecome an important tool in many branches of engineering (and in other �eldssuch as biology and economy) that rely on accurate models of the systems forthe purposes of analysis and design. In the Control and Signal Processing Areas,mathematical models are important for several reasons. Among them we canmention the following:� Most of control design methodologies are based on the assumption that amodel for the system is available.� For the purposes of simulation and prediction, a parameterized model ofthe system is required.� Mathematical models are required for the software and hardware imple-mentation of digital �lters.A typical identi�cation procedure can be summarized as follows:� Design of the experiments to be performed on the system, and the waythe data has to be collected.� Selection of the model set. This is usually done based on physical laws,which allows the incorporation of prior information, but can also be donein a black-box fashion [Lju87]. Here the parameters to be estimated donot have necessarily a physical meaning.� Selection of the model in the set that best match with the measured data.



2 1. Introduction� Model validation. This usually implies testing the model quality with adi�erent set of data.For the case of time invariant systems (that is, systems whose parameters donot change in time) the identi�cation can be performed o�-line, which meansthat the parameter estimation is performed once a whole set of data is collectedfrom the system. Most of this thesis will deal with time-invariant systems,the exception being Chapter 6 where time-varying systems are considered. Inthese last cases the identi�cation can not be performed o�-line but has to becarried out on-line or recursively, which means that the parameter estimatesare updated each time a new data is collected from the system.A uni�ed perspective of System Identi�cation Theory is given in the text-books [Lju87, SS89].In this thesis, systems are modeled using rational orthonormal basis func-tions with �xed poles. These basis functions are generalizations of the wellknown trigonometric bases of classical Fourier analysis, but with arbitrary polesnot restricted to be all at the origin. The transfer function G(z) describing theinput-output properties of the system is represented as a series expansion interms of the basis functions. This leads to a model which is linear in the un-known parameters. The estimation can then be performed in the framework ofPrediction Error Methods [Lju87] that for this case provide estimates in closedform.A dominating theme of this thesis will be the analysis of the accuracy ofobtained estimates. For systems modeled with arbitrary �xed denominatorstructures, the quanti�cation of the estimation error, consisting of both biaserror and variance error, has proven to be a very di�cult problem. In this thesisit is shown that the analysis can be made more tractable by re-parameterizingthe system using orthonormal model structures with the same �xed poles. Inconsideration of this, orthonormal structures are also viewed in this thesis as ananalysis tool that can be used to facilitate the study of estimation accuracy fora class of models. In fact, this perspective that orthonormal bases are equally(perhaps more) useful as an analysis tool, than as an implementational optionin the formation of a model structure, is one of the original contributions.Expanding on this a little more, work on orthonormal bases pre-dating thatof this thesis (which will be reviewed in the sequel) concentrated solely on theutility of orthonormal bases as an implementational tool for parameterisinga �xed denominator model structure. In this thesis we establish a di�erentperspective, that regardless of how the �xed denominatormodel is implemented,there is great utility for analysis purposes of re-parameterising the structure inorthonormal form, whether or not it was actually implemented in this form.Key to this strategy is that by virtue of linearity, the estimated frequencyresponse is invariant to this parameterisation, so the most convenient one mayas well be chosen for analysis purposes.



3The quanti�cation of the estimation accuracy for the proposed identi�ca-tion schemes is performed by establishing new results on the convergence of(block) Toeplitz-like matrices. These matrices appear in the computation ofthe component of the frequency response estimation error that is induced bythe measurement noise. The Toeplitz-like convergence results allow the gen-eralization to the arbitrary �xed denominator case, of corresponding resultsthat exist in the literature speci�c to FIR (Finite Impulse Response) modelstructures.A second theme we want to emphasize in this thesis is the fact that, incontradiction to what one would expect by appealing to existent frequencydomain results on the variability of the estimates for FIR structures [LY85] andon linear �ltering, the variability of the estimates with �xed denominator modelstructures is a�ected by the location of the poles in the model. The way thevariability is a�ected by the pole locations is also an important issue studied inthis thesis.We now present a brief overview of the rest of the thesis.Chapter 2: In this chapter, most of our notation is introduced. Theclasses of signals and systems this thesis deal with, and the associatedHilbert spaces in which these signals and systems can be embedded arepresented. A succinct description of the identi�cation methods employedin this thesis, viz. Prediction Error Methods, is also given.Chapter 3: The construction of several families of (scalar) rational or-thonormal bases on the unit circle is reviewed in this chapter. The con-cept of reproducing kernel associated with the bases is introduced, and itsimportance for the analysis of the approximating properties of the basesis pointed out. We focus on a particular family of orthonormal bases,namely the Orthonormal Bases with Fixed Poles, which will be used inthe context of system identi�cation in the following chapters. For thisfamily, a closed form expression for the associated reproducing kernel isderived, and a minimal state-space realization is presented. In addition, itis shown how families of matrix orthonormal bases for the space Hm�n2 (T)can be constructed from orthonormal bases on H2(T).Chapter 4: This chapter deals with the Least Squares identi�cation (frominput-output data) of Discrete-Time (DT), Linear Time-Invariant (LTI),Single-Input Single-Output (SISO) systems represented using Orthonor-mal Bases with Fixed Poles. The accuracy of the estimation is analyzedand the two components of the estimation error (namely, the bias andvariance errors) are quanti�ed. The derivation of new results on conver-gence of some Toeplitz-like matrices will prove to be fundamental for theanalysis in this chapter.



4 1. IntroductionChapter 5: In this chapter the idea of using orthonormal bases and PEM(least squares techniques) for the identi�cation of discrete-time lineartime-invariant systems is extended from the SISO to the MIMO (Multiple-Input Multiple-Output) setting. It will be shown how the rational or-thonormal bases with �xed poles introduced in Section 3.5 (or the corre-sponding MIMO bases generated as in Section 3.6) can be used to linearlyparameterize any multivariable �xed denominator model structure. As inthe SISO case, the accuracy of the estimation is quanti�ed by derivingexpressions for an upper bound on the undermodelling error and for theasymptotic (in data-length and model order) covariance of the transfermatrix estimate (noise induced error). The obtained results generalize tothe MIMO case and to general orthonormal bases with �xed poles the pre-existing FIR results in [Lju85, YL84]. Fundamental in this derivation aresome new convergence properties of generalized block Toeplitz-like matri-ces. Subspace Identi�cation methods are brie
y reviewed for the purposesof comparison with the orthonormal basis-based methods proposed in thisthesis.Chapter 6: In this chapter, a frequency domain analysis of the trackingperformance of several adaptive algorithms for the recursive identi�cationof time-varying linear systems is carried out for the case in which thesystem is represented by a �xed denominator model structure. The focusis on the study of the trade-o� between disturbance rejection and trackingability, and how these properties are in
uenced by input and noise spectraldensities, step size of the adaptive algorithms, and the choice of the �xedpole locations in the model structure.Chapter 7: In this chapter we summarized the contributions of this thesis,and present some concluding remarks.



2Background
In this chapter, some elementary de�nitions regarding the classes of signalsand systems this thesis deals with, and the related Hilbert spaces in whichthese signals and systems can be embedded are given. We also give a succinctdescription of Prediction Error Methods for System Identi�cation, since theseare the identi�cation methods we will employ throughout the thesis.2.1 Signals, Systems, and related Hilbert Spaces2.1.1 Signals and SystemsTo begin with, some standard material concerning the representation of signalsand systems will be presented. A more detailed and complete treatment ofthese topics can be found (for example) in the books [Lju87, SS89].Most of this thesis will deal with discrete-time (DT), linear time-invariant(LTI), multiple-input{multiple-output (MIMO) systems whose input-output re-lationship can be described byyk = 1X̀=0 g(`)uk�` + �k = G(q)uk + �k; (2.1)where yk 2 Rm , uk 2 Rn , and �k 2 Rm denote respectively the vectors of output,input, and disturbance (or measurement noise) signals at time k, where fg(`)gare the so-called (m� n) `Markov parameters', and whereG(q) , 1X̀=0 g(`)q�`denotes the (m � n) input to output transfer matrix operator (provided the



6 2. Backgroundin�nite sum exists), with q standing for the `forward shift operator' de�ned as1q uk , uk+1;for any sequence fukg, and for all k.Sometimes, a z-domain representation of system (2.1) will be preferred.This complex-plane representation can be obtained by taking the Z-transformon both sides of equation (2.1). The Z-transform of a signal fxkg is de�ned asX(z) , 1Xk=�1xkz�k: (2.2)Assuming that the system is initially relaxed, the representation (2.1) can bewritten in the z-domain asY (z) = G(z)U(z) + V (z);where G(z) is the transfer matrix of the system, and Y (z); U(z) and V (z) are theZ-transforms of the sequences fykg; fukg and f�kg respectively. The de�nitionof the Z-transform in (2.2) requires that the signals be speci�ed for the entiretime range �1 < k < 1. In practical problems the signals are known fork � 0, but by no means are zero for k < 0. It is then useful to de�ne the`one-sided' or `unilateral' Z-transform asDe�nition 2.1.1. [OS89, PM92] The one-sided or unilateral Z-transform of asignal fxkg is de�ned by X(z) , 1Xk=0 xkz�k }It will be assumed that the input sequence fukg is a `quasi-stationary' (n-dimensional) process, which means that the following limits de�ning the mean(mu) and covariance (Ru(�)) functions exist [Lju87]mu , limN!1 1N NXk=1 E fukg ;Ru(�) , limN!1 1N NXk=1 E�(uk �mu)(uk�� �mu)T	 ;1The `backward shift operator' is de�ned similarly asq�1 uk , uk�1:



2.1 Signals, Systems, and related Hilbert Spaces 7where E f�g stands for the statistical expectation operator; the expectation be-ing over the probability space that any random components are de�ned on.When deterministic inputs are considered, the expectation operator can beomitted in the previous de�nitions, and of course, in these situations it makesno di�erence to retain it. We will sometimes denote the operatorlimN!1 1N NXk=1 E f�gwith the more compact notation E f�g introduced by Ljung in [Lju87].The disturbance sequence f�kg will usually be assumed to be a stationary2(m-dimensional) stochastic process with mean and covariance functions de�nedas m� , E f�kg ;R�(�) , E�(�k �m�)(�k�� �m�)T	 ;respectively. At times, we will also assume that the disturbance f�kg is statis-tically independent of the input fukg.Associated with a stochastic process fukg (either stationary or quasi-statio-nary) is the `(Power) Spectral Density Function' de�ned as the Discrete FourierTransform of the covariance function�u(!) , 1X�=�1Ru(�)e�j�!:The covariance function can then be recovered from the spectral density byInverse Discrete Fourier transformation:Ru(�) = 12� Z ��� �u(!)ej�!d!:In the case of a quasi-stationary process fukg, the last expression leads toE�ukuTk 	 = 12� Z ��� �u(!)d!; (2.3)which is a form of Parseval's identity or Parseval's Theorem (see next sub-section). We will frequently use this identity in the derivation of frequencydomain expressions of estimation accuracy.2By `stationary' we actually mean `weakly stationary'. A stochastic process f�kg is said tobe weakly stationary if [Doo53, Ros85]E f�kg = m� = constantCov f�k; �sg = R�(k � s); depends only on (k � s):



8 2. BackgroundSometimes we will be interested in the statistics of the output yk of a linearsystem G(q) as a function of the statistics of the input uk, in the absence ofnoise. In this case we have a linear �ltering of the input ukyk = G(q) uk;where the �lter is the transfer matrix operator G(q). As already mentioned,assuming that the �lter (the system) is stable and causal, it can be representedas G(q) = 1X̀=0 g(`) q�`:Stability of G(q) implies that kg(`)k ! 0 as `!1, where k�k denotes a matrixnorm (for instance the 2-norm). Causality means that the impulse responsesequence fg(`)g is one-sided, which implies that the output at time k doesn'tdepend on future values of the input uk+1; uk+2; � � � . In this situation it is notdi�cult to prove (see [Lju87, SS89]) that the mean value of yk is given bymy , E fykg = 1X̀=0 g(`) mu = G(1) mu;and that the deviations from the mean value of inputs and outputs are relatedaccording to yk �my = G(q) (uk �mu):Furthermore, the spectral density of the output signal is given by�y(!) = G(ej!) �u(!) G?(ej!);where (�)? denotes the complex conjugate transposed.2.1.1.1 Convergence of random variablesAt several points in this thesis, di�erent concepts of convergence of random vari-ables will be used. These concepts are summarized in the following de�nition(see [Doo53, Pap84] for a more detailed treatment of these topics).De�nition 2.1.2. Let fxkg be an indexed sequence of random vectors, and letx? be a random vector of the same dimension. Then� xk is said to converge to x? with probability 1, or almost surely, anddenoted xk a.s.�! x?; as k!1;if P fxk ! x?g = 1. Here P is the underlying measure on the probabilityspace f
;F ; Pg, that the random variables fxkg are de�ned on.



2.1 Signals, Systems, and related Hilbert Spaces 9� xk is said to converge to x? in probability, denotedxk P�! x?; as k !1;if for any � > 0,P fjxk � x?j > �g ! 0; as k !1;where j�j denotes the Euclidean norm of a vector.� xk is said to weakly converge to x? if the distribution function Fxk(x) ofxk converges to that of x?, say Fx?(x), as k ! 1. We also say that xkconverges in distribution to x?, and we denotexk dist�! x?; as k !1:� xk is said to converge to x? in the mean square sense ifE�jxk � x?j2	! 0; as k!1: }It can be proved that a.s. convergence implies convergence in probability,which in turn implies weak convergence; also that convergence in mean squaresense implies convergence in probability [Doo53, Pap84].2.1.1.2 Persistency of ExcitationIn Chapter 6, the convergence properties of adaptive identi�cation algorithmsare analyzed. A fundamental concept in this analysis is that of `persistencyof excitation' of a signal. This property is required of the input signal to en-sure the stability of the algorithms. Persistency of excitation essentially meansthat the signal is rich enough to excite all the modes of the system. A moreprecise meaning of this concept is given in the following de�nition (see forinstance [And82, GS84, SS89]).De�nition 2.1.3. The sequence fukg (with uk 2 Rn) is said to be `persistentlyexciting' of order M if there exists some integer p, and positive constants � > 0and � > 0 such that30 < �I < `+pXk=` 'k'Tk < �I <1; for all `; (2.4)3Given a symmetric matrix R, the notation R > 0 means that R is positive de�nite, i.e.xTRx > 0; for all x 6= 0;where x is a column vector of compatible dimension. Analogously, given R1 and R2 symmetricmatrices, the expression R1 > R2 (respectively, R1 � R2) indicates that R1 � R2 is positivede�nite (respectively, positive semide�nite).



10 2. Backgroundwhere I is the identity matrix (of dimensions nM � nM in this case), and thevector 'k is de�ned as 'k , [uTk�1; uTk�2; � � � ; uTk�M ]T : }In the case that fukg is a stationary stochastic process, condition (2.4) canbe simpli�ed to limN!1 1N NXk=1 'k'Tk > 0:If in addition fukg is ergodic4, the time average operatorlimN!1 1N NXk=1(�)can be substituted by the ensemble average operator E f�g, so that the conditionfor the signal fukg to be persistently exciting of order M becomesE�'k'Tk 	 > 0:Sometimes, a frequency domain interpretation of this concept will be more use-ful. In the frequency domain, persistent excitation of a signal requires the posi-tive de�niteness of its spectral density matrix for a number of frequencies. Theprecise statement is given in the following proposition (see for instance [SS89]).Proposition 2.1.1. A stationary, ergodic, stochastic process fukg is persistentlyexciting of order M provided its spectral density matrix �u(!) is positive de�-nite for at least M distinct values of ! in the interval (��; �). �4A stationary stochastic process fukg is said to be ergodic up to second order statisticsif [Ros85] 1N NXk=1 uk a.s.�! E fukg1N NXk=1 uk+�uk a.s.�! E fuk+�ukgas N !1.



2.1 Signals, Systems, and related Hilbert Spaces 112.1.1.3 State-Space DescriptionsAt times in this thesis we will consider internal representation of systems in theform of state-space realizations of the formxk+1 = Axk +Buk + wk; (2.5)yk = Cxk +Duk + vk; (2.6)E��wkvk � �wTs vTs �� = �Q SST R� �ks (2.7)where xk 2 Rnx , yk 2 Rm , uk 2 Rn , are respectively the state, the output andthe input vectors at time k, and A 2 Rnx�nx, B 2 Rnx�n, C 2 Rm�nx , and D 2Rm�n are the state-feedback, the input, the output, and the input feedthroughmatrices respectively [Kai80]. The vectors wk 2 Rnx , and vk 2 Rm , represent theprocess and output measurement noise vectors at time k respectively, while thematrices Q 2 Rnx�nx, S 2 Rnx�m, and R 2 Rm�m are the covariance matricesof these noise sequences. In most of the cases it will be assumed that wk andvk are zero mean, stationary, white noise vector sequences.For obvious reasons, equations (2.5) and (2.6) are called state equation andoutput equation, respectively.For deterministic systems (where both the process noise and the outputmeasurement noise are identically zero), the state space description (2.5)-(2.7)reduces to xk+1 = Axk +Buk; (2.8)yk = Cxk +Duk: (2.9)An m�n rational transfer matrix G(z) has an nx-dimensional state-space real-ization (A;B;C;D), with A 2 Rnx�nx, B 2 Rnx�n, C 2 Rm�nx , and D 2 Rm�n ,if G(z) = C(zI � A)�1B +D:The above expression can be obtained from equations (2.8) and (2.9) by takingthe Z-transform of both equations and eliminating the state variable.The observability and controllability matrices associated with the system(2.8)-(2.9) are de�ned asO , [CT ; (CA)T ; � � � ; (CAnx�1)T ]T ;C , [B;AB; � � � ; Anx�1B];respectively. In a similar way the extended (i; j > nx) observability Oi andcontrollability Cj matrices are de�ned asOi , [CT ; (CA)T ; � � � ; (CAi�1)T ]T ; (2.10)Cj , [B;AB; � � � ; Aj�1B]: (2.11)



12 2. BackgroundDe�nition 2.1.4. Controllability: [Kai80] The pair (A;B) is said to be control-lable if there exists an input sequence fukg that takes the state of the systemfrom any initial state x0 = x0 to any desired �nal state xk = xf in a �nitenumber of steps (k is �nite). This concept should more properly be calledControllability from the origin or Reachability [Kai80], but with some abuseof terminology we will still refer to it as Controllability. A necessary andsu�cient condition for the controllability of the pair (A;B) is that the control-lability matrix C has full rank nx. }De�nition 2.1.5. Observability: [Kai80] The pair (C;A) is said to be observableif for any initial state x0 = x0 there is a �nite number of steps ` such that x0can be determined from the sequences uk and yk for 0 � k � `. A necessaryand su�cient condition for the observability of the pair (C;A) is that the ob-servability matrix O has full rank nx. }De�nition 2.1.6. Minimal Realization: A realization is said to be minimal if ithas minimal dimension, that is if there exists no other realization with lower di-mension. The dimension of a minimal realization is called theMcMillan degreeof the MIMO system. A necessary and su�cient condition for the minimalityof a realization is that the pair (A;B) is controllable and the pair (C;A) isobservable [Kai80]. The minimality of the realization (A;B;C;D) then impliesthat the matrices Oi , Cj (with i; j > nx), O and C have all rank nx [Kai80]. }The realization (A;B;C;D) in (2.8)-(2.9) uniquely de�nes the input-outputproperties of the system via yk = 1X̀=0 g(`) uk�`;where, as already mentioned, g(`) 2 Rm�n are the impulse response coe�cientsor Markov (matrix) parameters given byg(`) = � D; ` = 0CA`�1B; ` > 0 :Based on the impulse response coe�cients, the following Impulse ResponseBlock Hankel Matrix can be constructed [HK66]Hij , 26664 g(1) g(2) � � � g(j)g(2) g(3) � � � g(j + 1)... ... . . . ...g(i) g(i+ 1) � � � g(i+ j � 1) 37775 ; (2.12)whereHij 2 Rim�jn . It is not di�cult to see thatHij can be factorized as [Kai80]Hij = OiCj: (2.13)De�nition 2.1.7. Internal Stability:5 [Kai80] We say that a realization (A;B;C)5Internal stability is often called asymptotic stability.



2.1 Signals, Systems, and related Hilbert Spaces 13is (internally) stable or stable in the sense of Lyapunov, if the solution ofxk+1 = Axk;with initial condition x0, tends to zero as k!1, for arbitrary x0. A necessaryand su�cient condition for internal stability is that all the eigenvalues of Amust lie strictly inside the unit circle, that isj�i(A)j < 1;where �i(A) are the eigenvalues of A. }If the system (2.8)-(2.9) is stable, the associated controllability GramianP and observability Gramian Q are de�ned as the solution of the Lyapunovequations APAT +BBT = P;ATQA+ CTC = Q;respectively.De�nition 2.1.8. Hankel Singular Values: [Glo84] Let (2.8)-(2.9) be a stablestate-space realization of the transfer matrix G(z), so that G(z) can be writtenas G(z) = C(zI � A)�1B +D:Then, the Hankel Singular values of G(z) are de�ned as�Hi (G(z)) ,p�i(PQ);where P and Q are the controllability and observability Gramians, respectively.It is not di�cult to show that the Hankel singular values of G(z) are the singularvalues of the impulse response block Hankel matrix (2.12) [Glo84]. }De�nition 2.1.9. Balance Realizations: [PS82] A stable state-space realization iscalled internally balanced, or simply balanced ifP = Q = �;where � , diag��H1 ; �H2 ; � � � ; �Hnx	, �H1 � �H2 � � � � � �Hnx, is a diagonal matrixwith the Hankel singular values as diagonal elements. A stable state-spacerealization is called input balanced ifP = I; Q = �2;and is called output balanced ifP = �2; Q = I: }



14 2. Background2.1.2 Some Hilbert (Hardy) spaces related to signals and systemsIn this subsection, some basic concepts related to general Hilbert spaces are pre-sented, and the particular Hilbert (Hardy) spaces associated with the classes ofsignals and systems used in this thesis are introduced. An advanced treatmentof these topics can be found in the books [You88, Rud74].Let us �rst quote the de�nition of a Hilbert space [You88, Rud74]:\A Hilbert space is an inner product space which is completewith respect to the metric induced by (the norm induced by) theinner product."Here `inner product space' means a linear vector space H with an inner productoperation de�ned between two of its elements. This inner product is a real-valued function usually denoted6 h�; �i, that veri�es the following properties:1. hx; yi = hy; xi, for all x; y 2 H.2. h�x+ �y; ui = � hx; ui+ � hy; ui , for all x; y; u 2 H and scalar �; �.3. hx; xi > 0, and hx; xi = 0 if and only if x = O .Where (�) indicates complex conjugate, and where O is the null element in thespace H. The inner product can be used to de�ne the norm of an element ofthe space as follows: kxk , hx; xi1=2 ; x 2 H:Sometimes the notation k �kH will also be used to emphasize that it is the norminduced by the inner product in the space H. This norm can be used now tode�ne a metric in the space measuring the distance between two elements:d(x; y) , kx� yk; x; y 2 H:This concept of distance between two elements of the space can be used in turnto de�ne `convergence' of sequences of elements as follows:De�nition 2.1.10. A sequence fx(k)g of elements of the Hilbert space H con-verges, with respect to the metric d(x; y), to an element x 2 H iflimk!1d(x(k); x) = 0:The element x is called the `limit of the sequence', and we write without dis-tinction limk!1x(k) = x; or x(k)! x: }6Sometimes, the notation h�; �iH will also be used to emphasize that it is the inner producton the space H .



2.1 Signals, Systems, and related Hilbert Spaces 15Completeness of the space in the metric induced by (the norm induced by)the inner product means that any convergent Cauchy sequence7 of elements ofthe space converges to an element of the space.Fundamental in this thesis will be the concepts of orthogonality and or-thonormality of elements and subsets of a Hilbert space leading to the conceptof `orthonormal basis' . These concepts are summarized in the following de�-nition:De�nition 2.1.11.i. Two elements x; y in a Hilbert space H are said to be orthogonal, writtenx ? y, if hx; yi = 0.ii. The element x 2 H is said to be orthogonal to the subset S � H, writtenx ? S, if x is orthogonal to every y 2 S.iii. Two subsets S;Q � H are orthogonal, S ? Q, if hx; yi = 0 for all x 2 S andy 2 Q.iv. For a given subset S � H, the set S? de�ned asS? , fy 2 H : y ? x; 8x 2 Sgis called the `orthogonal complement of S'.v. An element x 2 H is said to be `normal' if kxk = 1.vi. A set of elements S = fxig in H is said to be an `orthogonal set' if theelements of the set are orthogonal to each other. If in addition, for eachxi 2 S, kxik = 1, the set is said to be `orthonormal'. An importantproperty of an orthogonal set is that its elements are linearly independent.vii. An orthonormal set S = fxig1i=0 in an inner product space is said to be com-plete if its closed linear span8 is the whole space. For the case of a Hilbertspace H, there is a theorem [You88] establishing that an orthonormal setis `complete' if and only if the only element in H which is orthogonal toeach of the xi is the zero element.viii. A complete orthonormal set in a Hilbert space is called an `orthonormalbasis'. }7A sequence fx(k)g in a Hilbert space is said to be a Cauchy sequence if d(x(k); x(`)) ! 0 ask; `!1. This means that for any � > 0 there exists an integer N� such that d(x(k); x(`)) � �for any k; ` � N�.8Let A be a set in the normed linear space E, A � E. The closed linear span of A, denotedSpan fAg, is the intersection of all closed linear subspaces of E which contain A.



16 2. BackgroundIt is possible to show that every Hilbert space has an orthonormal basis.This fact is important because it allows a unique representation of any elementof the space as an orthonormal series expansion in terms of the elements of thebasis (Generalized Fourier Series). In other words, given an orthonormal basisfBkg1k=0 in a (separable 9 ; 10) Hilbert space H, every element x 2 H can berepresented as x = 1Xk=0 hx;Bki Bk; (2.14)where the equality has to be interpreted as convergence in the norm inducedby the inner product11, that is aslimn!1




x� nXk=0 hx;Bki Bk




 = 0:It is clear that the representation in (2.14) is not useful in practical problemswhere only a �nite number of terms can be handled. The solution is then toapproximate x by the element bx,bx = miny2Xp kx� ykwhich is the closest element to x belonging to the subspace Xp spanned bythe �rst p elements of the orthonormal basis fBkgp�1k=0. By appealing to theProjection Theorem12 it can be proved that bx is given bybx = p�1Xk=0 hx;Bki Bk:9An inner product space is said to be separable if it contains a countable subset which iseverywhere dense (see next footnote). All Hilbert spaces considered in this thesis are separable.10A subset S of an inner product space H is everywhere dense if for every x 2 S and � > 0there is a y 2 S such that kx� yk < �.11When dealing with spaces of functions (x(t) 2 H) a di�erent interpretation of equation(2.14) is possible. Namely, one can interprete the partial sumsNXk=0 hx(t);Bki Bkas converging to the element x(t) 2 H for all values of t. This is called `pointwise convergence'.The two concepts are di�erent, and, in general, convergence in the norm does not necessarilyimply pointwise convergence.12Projection Theorem: Let S be a linear closed subspace in the Hilbert space H , and letx 2 H be a vector not in S. Then there exists a unique vector y0 2 S such that the distancefrom x to the subspace S is given by d(x; S) = kx� y0k:Furthermore (x� y0) ? S.



2.1 Signals, Systems, and related Hilbert Spaces 17The approximation error for this case lies in the orthogonal complement of Xp.Some important properties of orthonormal sets in Hilbert spaces are sum-marized in the following proposition [You88, Rud74].Proposition 2.1.2.i. Let fBkgpk=0 be an orthonormal set in the Hilbert spaceH. Let �0; � � � ; �p 2C , and let x be an element in H. Then




x� pXk=0 �kBk




2 = kxk2 + pXk=0 j�k � hx;Bki j2 � pXk=0 j hx;Bki j2:ii. Let fBkg1k=0 be a countable orthonormal set in the Hilbert space H, andlet x be an element in H. Then, the expansion coe�cients, hx;Bki, ofx 2 H, and the norm of x satisfykxk2 � 1Xk=0 jhx;Bkij2 ; (2.15)which is known as Bessel's inequality. If in addition, the orthonormalset fBkg1k=1 is complete (i.e., an orthonormal basis), Bessel's inequalitybecomes an equality, namelykxk2 = 1Xk=0 jhx;Bkij2 ; (2.16)which is known as Parseval's identity (or Parseval's Theorem). Thecondition (2.16) is a necessary and su�cient condition for the orthonormalset to be an orthonormal basis. An alternative formulation is given byhx; yi = 1Xk=0 hx;Bki hy;Bki; 8x; y 2 H:iii. Let fBkg1k=0 be an orthonormal basis in the Hilbert space H. Then theclosed linear span of fBkg1k=0 is the whole space H. �In the following, some particular Hilbert and Hardy spaces that will be usedin this thesis are introduced.Let us consider �rst a Hilbert space related to the impulse response sequenceof stable, causal, discrete-time systems. Let fg(k)g denote the impulse responsesequence of a stable, causal, discrete-time scalar system with input-output rep-resentation yk = G(q)uk , 1X̀=0 g(`)q�` uk: (2.17)



18 2. BackgroundThe absolute summability of the impulse response sequence1Xk=0 jg(k)j <1;ensures the (BIBO13) stability of the system14 [Kai80] and also implies thesquare summability of the sequence15. It is then natural to de�ne the Hilbertspace `2(N0) of square summable sequences with support in N0 (the set of non-negative integer numbers), equipped with the inner producthf; gi = Xk2N0 f(k)g(k);so that the impulse response sequences of all stable, causal, discrete-time sys-tems belong to this space. Of course, not every element of this space can beassociated with the impulse response of a stable, causal, discrete-time system,since square summability of the sequence does not necessarily imply its abso-lute summability. The space `2(N0) is a proper subspace of the Hilbert space`2(Z) of (two-sided) square summable sequences with support in Z (the set ofinteger numbers), with the same de�nition for the inner product (substitutingthe index set N0 by Z).Let us now turn our attention to a Hilbert space related to the transferfunctions of stable, causal, discrete-time systems. First we recall the de�nitionof the Discrete Fourier Transform (DFT) [OS89, PM92] of a sequence ff(k)g 2`2(Z) F (ej!) , 1Xk=�1 f(k)e�j!k: (2.18)13Bounded-Input{Bounded Output14BIBO Stability: A causal system is said to be externally stable or BIBO stable if a boundedinput uk < Mu < 1; 0 � k < 1 produces a bounded output yk < My < 1; 0 � k < 1. Anecessary and su�cient condition for BIBO stability is the absolute summability of the impulseresponse sequence [Kai80].15Absolute Summability ) Square Summability1Xk=0 jg(k)j <1 ) 1Xk=0 jg(k)j 1Xh=0 jg(h)j <1)1Xk=0 1Xh=0 jg(k)j jg(h)j <1 ) 1Xk=0 jg(k)j2 + 1Xk=0 1Xh=0h 6=k jg(k)j jg(h)j <1)) 1Xk=0 jg(k)j2 <1



2.1 Signals, Systems, and related Hilbert Spaces 19It can be proved that the Discrete Fourier transform of a sequence in `2(Z)belongs to the Hilbert space L2(T) of Lebesgue square-integrable functions onthe unit circle in the complex plane T , fz : jzj = 1g (or equivalently T ,�ej! : �� � ! � �	), equipped with the inner producthF;Gi , 12� Z ��� F (ej!)G(ej!)d!: (2.19)Recalling the de�nition of the `two-sided' Z-transform of a sequence ff(k)g 2`2(Z) [OS89, PM92], F (z) , 1Xk=�1 f(k)z�k; (2.20)it can be seen that the discrete Fourier transform (equation (2.18)) can beinterpreted as the Z-transform computed on the unit circle T. We can then givethe following alternative z-domain expression for the inner product in L2(T)16hF;Gi , 12�j ITF (z)G(1=z) dzz : (2.21)A proper subspace of L2(T) is the Hardy space17 H2(T) of Lebesgue square-integrable functions on the unit circle T that are analytic outside the unitdisc D , fz : jzj < 1g. It is clear that the discrete Fourier transforms of theimpulse response sequences of all stable, causal, discrete-time systems belongto this space18. With some abuse of terminology we will refer to this Hardyspace as `the space of all stable, causal, discrete-time transfer functions', sincethe discrete Fourier transform (respectively, the Z-transform) of the impulseresponse sequence is nothing else but the transfer function G(ej!) (respectively,G(z)) of the system19.An important property of Hilbert spaces is that all separable Hilbert spaceswith the same cardinality are isometrically isomorphic to each other. Thismeans that between any two separable Hilbert spaces (with the same cardinal-ity) there exists a one to one mapping preserving norms (an isometry). For thespaces `2(Z) and L2(T), the isometry is the discrete Fourier transform. Parse-val's identity then allows us to writehf; gi = hF;Gi :16Equation (2.19) follows from equation (2.21) by de�nition of contour integral, with z(!) =ej!, �� < ! � �, on the unit circle.17H2(T) is a Hilbert space with the inner product in L2(T).18Of course, not every element of this space can be interpreted as the discrete Fourier trans-form of the impulse response sequence of a stable, causal, discrete-time system.19See also the previous footnote.



20 2. BackgroundWhen dealing with identi�cation of multivariable systems in chapter 5 wewill be interested in a Hilbert space related to the transfer matrices of stable,causal, discrete-time MIMO systems. We will denote with Hm�n2 (T) the Hardyspace of (m�n) matrices whose elements are functions of the complex variablez, belonging to H2(T). With some abuse of terminology we will refer to thisspace as `the space of all stable, causal, discrete-time, (m�n) transfer matrices'.Hm�n2 (T) is a Hilbert space with the following de�nition for the inner producthB`;Bki = 12� Z ��� Tr �B`(ej!)Bk(ej!)?	 d!;or equivalently hB`;Bki = 12�j ITTr fB`(z)Bk(1=z)?g dzz :2.2 Prediction Error MethodsIn this section, system identi�cation methods based on minimization of predic-tion errors are reviewed. Usually these techniques are called Prediction ErrorMethods (PEM) (see for instance [Lju87, SS89] for a more detailed discussion).2.2.1 Problem FormulationTo formalize the problem, let us consider a discrete-time linear time-invariantMIMO system with a general model structure given byM(�) : yk = G(q; �) uk +H(q; �) ek; (2.22)where yk is the m-dimensional output vector, uk is the n-dimensional inputvector, and ek is a sequence of m-dimensional, independent and identicallydistributed (iid) random variables with zero mean (i.e. white noise), and co-variance matrix E�ekeTs 	 = Re�(k � s);where �(k � s) stands for the Kronecker delta20. Furthermore, G(q; �) andH(q; �) are matrices of real, rational, stable, strictly proper21 transfer functionsparameterized by the p-dimensional parameter vector � lying in the parameter20�(k � s) , � 1 for k = s0 for k 6= s21A rational transfer function is said to be strictly proper if the relative order (that is thedi�erence between the degrees of the numerator and denominator polynomials) is strictly neg-ative [Kai80].



2.2 Prediction Error Methods 21space DM � Rp . How the set DM has to be de�ned will become clear later inthe section.We assume also that an N -point data setZN = fyk; uk : k = 1; � � � ; Ng ;consisting of an input sequence fukg and an output sequence fykg is availablefor the purposes of estimating G(q; �) and H(q; �). We will denote by byk(�) aprediction of yk given the data up to time k � 1, and based on the parametervector �. In general the predictor can be a linear or a nonlinear �lter appliedto the data, and it can be constructed in various ways for any given model.It can be determined from the underlying system description, or from otherconsiderations. For instance, a frequently used predictor determined from themodel structure (2.22) is the so-called mean square optimal one-step-aheadpredictor byk(�) = �1�H�1(q; �)� yk +H�1(q; �)G(q; �) uk:A more general linear predictor is given asbyk(�) = F1(q; �) yk + F2(q; �) uk; (2.23)where the predictor �lters F1(q; �) and F2(q; �) are such that byk(�) is a functionof past data only.Given a model structure and a predictor, the prediction errors can then bede�ned as �k(�) = yk � byk(�) : (2.24)The objective is then to �nd an estimate b� of � that minimizes a given functionVN(�) of the prediction errors. This function is called a criterion (loss functionor cost function), and it is a scalar-valued function (typically positive) of allthe prediction errors �1(�); �2(�); � � � ; �N(�), which will assess the performanceof the predictor used. The criterion is minimized with respect to the parametervector � to choose the `best' predictor among the class considered. A criterionwhich is often adopted is the quadratic oneVN(�) = 1N NXk=1 Tr��k(�)�Tk (�)	 ; (2.25)but the range of possibilities is wide. A more general expression for the criterionwould be VN(�) = 1N NXk=1 � ��Fk (�)� ; (2.26)



22 2. Backgroundwhere �(�) is a scalar-valued function (typically positive) of some �ltered version�Fk (�) of the prediction errors �k(�).The estimate b�N is then computed as the minimizing argument of the cri-terion (2.26), i.e. b�N = argmin�2DM fVN(�)g : (2.27)It is now clear that the set DM (the parameter space) has to be de�ned as thosevalues of � for which the predictor is asymptotically stable.Summarizing, a Prediction Error Method (PEM) can be described as follows:� Choice of the model structure: This concerns the parameterization of thetransfer matrices G(q; �) and H(q; �) as a function of �.� Choice of the predictor: This concerns the de�nition of the predictor. Forexample, if a linear predictor is speci�ed as in equation (2.23), the userhas to choose the prediction �lters F1(q; �) and F2(q; �).� Choice of the criterion: This concerns the choice of the scalar-valued func-tion �(�) in the general criterion (2.26) which will assess the performanceof the predictor.� Computation of the parameter estimate b�N that minimizes the criterion(2.26). Implicit in this step is the choice of the minimization technique.Particular choices of the model structure, the predictor, the criterion, andthe minimization technique, result in particular methods with speci�c names.For example, the well known Least-Squares, Maximum Likelihood, and Ins-trumental-Variables Methods can all be considered as Prediction Error Meth-ods [Lju87, SS89].2.2.2 Asymptotic AnalysisIn this subsection, some results regarding the limiting properties of the esti-mated parameters as the number of data points tends to in�nity are reviewed.These results are concerned with two main aspects; namely, consistency ofthe estimate, and estimation accuracy. Again, the interested reader is referredto [Lju87, SS89], for a thorough treatment of these topics.We will denote by b�N the parameter estimate based on N data points, thatis, b�N is the minimizing argument of the criterion VN(�).For the analysis, the following basic assumptions will be made:A1. The data fuk; ykg are stationary processes.A2. The input fukg is persistently exciting.



2.2 Prediction Error Methods 23A3. The Hessian V 00N (�) is nonsingular locally around the minimum points ofVN(�).A4. The transfer matrices G(q; �) and H(q; �) are smooth (di�erentiable) func-tions of the parameter vector �.Part of the analysis will require the following additional assumption about thetrue system:A5. The set22 DT , f� : G(q; �) = G(q);H(q; �) = H(q)gconsisting of those parameter vectors for which the model structure givesan exact description of the true system consists of precisely one point.This point will be denoted by �0, which will be called the true parametervector.2.2.2.1 Asymptotic EstimateWe are interested here in the limit value to which the estimate b�N convergesas the number of data N tends to in�nity. This analysis is related to theconsistency of the estimation method, that is, with the issue of whether theestimates converge to the `true parameter' (provided that this value exists)when increasing number of data are considered. The main result is summarizedin the following Theorem [Lju87, SS89].Theorem 2.2.1. Let the estimate b�N be de�ned as in equation (2.27), with thegeneral criterion as in equation (2.26), and suppose that assumptions A1 to A4hold. Then, the criterion function VN(�) converges uniformly in � 2 DM to thelimit function V1(�), i.e.sup�2DM jVN(�)� V1(�)j a.s.�! 0 as N !1where V1(�) = limN!1 VN(�). Moreover, the minimizing argument b�N of VN(�)converges to a value �? in the set DC of minimizing arguments of V1(�). Thatis b�N a.s.�! �? as N !1; �? 2 DC ;where DC is de�ned asDC = argmin�2DM fV1(�)g = �� : � 2 DM; V1(�) = min�02DM V1(�0)� : �22When the set DT is not empty, the system is said to be `system identi�able'. If in addition,DT consists of only one element, the system is said to be `parameter identi�able'.



24 2. BackgroundThe result implies that when the set DT is empty, the asymptotic estimatewill be `biased' but it will give the best possible approximation of the systemwhich is available in the model set. If the system is parameter identi�able(condition A5 holds), then the set DT is not empty and consists of only oneelement. Under some weak assumptions on the data set, it is possible to showthat in this case DC = DT = f�0g, so that the estimate is strongly consistent.2.2.2.2 Asymptotic distribution of the parameter estimateWe analyze here the limiting distribution of the parameter estimates. Thefollowing theorem shows that the distribution of the random variablepN(b�N � �?);where b�N is the parameter estimate and �? is the asymptotic estimate (as de�nedin Theorem 2.2.1), converges to a Gaussian distribution under weak assump-tions [Lju87, SS89].Theorem 2.2.2. Under the conditions of Theorem 2.2.1pN(b�N � �?) dist�! N (0; P );where P = [V 001(�?)]�1 h limN!1NE�V 0N(�?)TV 0N (�?)	i [V 001(�?)]�1; (2.28)with V 0N(�?) denoting the gradient of VN(�) computed at � = �?, and V 001(�?)denoting the Hessian of V1(�) computed at � = �?. �This result is important because it gives an expression for the asymptoticcovariance matrix P (equation (2.28)), that can be used to quantify the esti-mation accuracy. The asymptotic covariance expression can also be used toderive con�dence intervals for each particular estimate b�N obtained from thedata set [Lju87]. Unfortunately, the expression for the asymptotic covariance(2.28) requires the knowledge of the asymptotic estimate �? which is unknownto the user. This problem can be solved by instead using an estimate of P . Asimple estimate of P in equation (2.28) can be obtained by replacing �? by b�N ,and the expectation operator by the sample average.2.2.3 Computational aspectsIn general, the minimization of the criterion VN(�) cannot be done analyti-cally. Only for the special case where the prediction error depends linearlyon � (which corresponds to the case of linear regressor) an analytic expression



2.2 Prediction Error Methods 25can be found for the solution of the minimization problem. In most cases theminimization problem is nonlinear and nonconvex, and the solution must be ob-tained by using some numerical iterative search method. Some commonly usedalgorithms are the Newton-Raphson Algorithm and the Gauss-Newton Algo-rithm [SS89, Lju87]. The main problem with these iterative search algorithmsis that convergence only to a local minimum of the criterion can be guaranteed.Usually, the way to �nd the global minimum is to run the algorithm from dif-ferent initial conditions and then to compare the estimates [Lju87]. In general,this constitutes a computationally intensive procedure.In this thesis, systems are parameterized using orthonormal bases that leadto linear regressor forms for which the problems of local minima are avoided.





3Orthonormal Bases on the Unit Circle
In this chapter, the construction of several families of (scalar) rational orthonor-mal bases on the unit circle will be reviewed. The concept of reproducing kernelassociated with the bases will be introduced, and its importance for the analysisof the approximating properties of the bases will be pointed out. The emphasisof the chapter will be on a particular family of orthonormal bases, namely theOrthonormal Bases with Fixed Poles, for which a minimal state space realiza-tion will be derived and a closed form expression for the reproducing kernelassociated with them will be given. Furthermore, it is shown how families of(matrix) orthonormal bases for the space Hm�n2 (T) can be constructed fromorthonormal bases on H2(T).3.1 IntroductionIn this chapter we study various families of rational orthonormal bases for theHardy space H2(T) of functions analytic outside, and square integrable on theunit circle T. The motivation for this is the practical utility of rational or-thonormal bases for the approximation of elements of H2(T) by rational transferfunctions [Wal35], even when the element is non rational. These approximatingproperties of rational orthonormal bases are exploited in this thesis in the con-text of identi�cation of discrete-time, linear systems. As already mentioned, amain advantage of using orthonormal bases in an identi�cation context is thatprior information about the dominant dynamics of the system can be easilyincorporated in the process of basis construction, and that the resulting modelstructures become linear in the parameters which simpli�es the estimation prob-lem.It is not the intention of this chapter to give a complete survey on the area,which would be an overwhelming task. Instead, the purpose is to focus onwhat this author believes is relevant for the material in the subsequent chap-ters. In Section 3.2, the concept of reproducing kernel associated with the



28 3. Orthonormal Bases on the Unit Circlespace spanned by an orthonormal set is introduced and some of its propertiesare studied. Closed form expressions for the reproducing kernels will be funda-mental for the quanti�cation of the accuracy of the estimation we perform inChapter 4.In Section 3.3, a brief description of some `standard' orthonormal baseson the unit circle such as the trigonometric bases (corresponding to the so-called FIR (Finite Impulse Response) model structures), Laguerre [Wah91b]bases and Kautz [Wah94b] bases is given. A more detailed description of moregeneral orthonormal bases that allow prior information about several dominantdynamics of the system to be included in the identi�cation process, and thathave the more common FIR, Laguerre and Kautz bases as special cases, isgiven in Sections 3.4 and 3.5 where the Orthonormal Bases Generated fromInner Functions (OBGIF) [HbVB95, VHB95], and the Orthonormal Bases withFixed Poles (OBFP) [NG94a, NG97] are respectively considered.Finally, in Section 3.6 it is shown how families of orthonormal bases for thespace of stable (m � n) transfer matrices Hm�n2 (T) can be constructed fromorthonormal bases on H2(T).3.2 Reproducing KernelsAs mentioned in the previous chapter, H2(T) is a Hilbert space when it isendowed with the inner product in L2(T), as de�ned in equations (2.19) or(2.21). An orthonormal basis fBk(z)g1k=0 in H2(T) is a complete orthonormalset. The orthonormality is re
ected by the propertyhBk;B`i = � 1 for (k = `)0 for (k 6= `) ;while the completeness is characterized by the fact that the closed linear spanof the set is the whole space.In this thesis, rational orthonormal bases on the unit circle are used torepresent discrete-time linear systems for the purposes of identi�cation frominput-output measurements. The transfer function of the unknown systemis modeled as a linear combination of the rational basis functions, and theidenti�cation is carried out by estimating a �nite number of coe�cients in thisorthonormal expansion, using least squares techniques. In this context, theaccuracy of the estimation is a�ected by two causes: the noise corruption of themeasured data that generates the so-called variance error, and the parsimonyof the model structure which is too simple to describe the real system, thatresults in the so-called bias error.In [LY85], Ljung and Yuan show that, for the case of the standard trigono-metric bases (or FIR model structure) fz�kg, the variance error in the frequencyresponse estimate can be approximated (for large model order and length of the



3.2 Reproducing Kernels 29available data) by the product of the noise-to-signal ratio and the model order-to-data length ratio. Essential in the derivation of this result has been theobservation that, due to the algebraic structureBn(z)Bm(z) = Bm+n(z); (3.1)enjoyed by the trigonometric bases, the covariance matrix of the transfer func-tion estimate has a Toeplitz structure, and then some classical results on asymp-totic properties of Toeplitz matrices [GS58] can be exploited to carry out theanalysis. Unfortunately, the Orthonormal Bases with Fixed Poles we considerin this thesis do not have the algebraic structure (3.1) and consequently thecovariance matrices do not have a Toeplitz structure. A key rôle in the analysisof the estimation accuracy is then played by the reproducing kernel associatedwith the bases [Aro50, Dav75], since it allows to generalize the convergenceresults of Toeplitz matrices for the case in which the orthonormal structure isnot the trigonometric one [NHG97b, NHG97a].In the following, we introduce the concept of reproducing kernel, and de-scribe some of its properties [Aro50, Dav75].De�nition 3.2.1 (Reproducing Kernel). The reproducing kernel associated witha Hilbert space X of functions on a set S, is de�ned as the unique functionKp(z; �) of the two variables z; � 2 S, that satis�es the following two condi-tions [Aro50]i. For every � 2 S, Kp(z; �), as a function of z, belongs to X.ii. Kp(z; �) has the reproducing property: for every function G(z) 2 X andevery � 2 S G(�) = hG(z); Kp(z; �)i : }When the space X is spanned by a �nite number of orthonormal basisfunctions fBk(z)gp�1k=0 with z 2 S, it is not di�cult to prove that the reproducingkernel can be computed asKp(z; �) = p�1Xk=0 Bk(z)Bk(�): (3.2)To see this we have to check that conditions i. and ii. in De�nition 3.2.1 aresatis�ed. That Kp(z; �) in equation (3.2) belongs to X is obvious since X isspanned by the basis functions fB0(z);B1(z); � � � ;Bk(z)g. It remains to check



30 3. Orthonormal Bases on the Unit Circlethe reproducing property ii. Let G(z) 2 X, and � 2 S, thenhG(z); Kp(z; �)i = *G(z); p�1Xk=0 Bk(z)Bk(�)+ ;= p�1Xk=0 DG(z);Bk(z)Bk(�)E ;= p�1Xk=0 hG(z);Bk(z)i Bk(�);= G(�): (3.3)In passing to the last line we have used the fact that, since X is spanned by thefunctions fB0(z);B1(z); � � � ;Bp�1(z)g, then any function G(z) 2 X has a uniquerepresentation of the formG(z) = p�1Xk=0 hG(z);Bk(z)i Bk(z):The existence of the reproducing kernel (3.2) makes the associated Hilbertspace a reproducing kernel Hilbert space (r.k.H.s.).In this thesis, the space X is most commonly H2(T), and the set S is theopen region outside the unit disk in the complex plane E , fz 2 C : jzj > 1g.At times we will need to compute the reproducing kernel1 on the unit circleT, that is for z = ej!, and � = ej�. In those cases we will use the shorthandKp(!; �) to denote Kp(ej!; ej�).We will use equation (3.2) to derive closed form expressions for Kp(z; �) forthe particular bases. In the context of orthogonal polynomials [Sze59], theseclosed form expressions for Kp(z; �) are known as `Christo�el-Darboux' typeformulas.Let now fBk(z)g1k=0 be a complete orthonormal set in H2(T). By analogywith (3.2) we can de�ne the functionK(z; �) , 1Xk=0 Bk(z)Bk(�); (3.4)for z; � 2 E . It is not di�cult to prove [Reg95] that K(z; �) has the reproducingproperty G(�) = hG(z); K(z; �)i ; (3.5)1Properly speaking, H2(T) is not a function space, but a space of equivalence classes offunctions, and then a reproducing kernel is not de�ned in H2(T). With some abuse of termi-nology we will still call a function in H2(T) satisfying conditions i. and ii. in De�nition 3.2.1,a reproducing kernel.



3.3 FIR, Laguerre and Kautz Basis 31and that as a function of � 2 E , it belongs to H2(T). A closed form expressionfor K(z; �) will be very useful in some of the developments of the followingchapters. The following Lemma shows that for any complete orthonormal basisin H2(T), and � 2 E , K(z; �) can be computed asK(z; �) = z�z�� 1 :Lemma 3.2.1. Let fBk(z)g1k=0 be a complete orthonormal set in H2(T), andlet K(z; �) be de�ned as in equation (3.4). Then, independently of theparticular basis, K(z; �) is given byK(z; �) = z�z�� 1 ;for jzj > 1; j�j > 1.Proof: See Appendix 3.A. �In the following sections various families of rational orthonormal bases onthe unit circle are introduced. For some of them, closed form expressions of theassociated reproducing kernels Kp(z; �) are derived.3.3 FIR, Laguerre and Kautz Basis3.3.1 FIR BasisThe most common orthonormal basis on L2(T) are the well known trigonometricor FIR basis, that corresponds to the choiceBk(z) = z�k; k � 0: (3.6)The completeness of the basis in L2(T) is a standard result of classical Fourierseries (the proof can be found for instance in [You88]). A direct calculationgives the following closed form expression for the reproducing kernel for thisbasis: Kp(z; �) = (z�)p � 1(z�)p � (z�)p�1 : (3.7)with jzj > 1 and j�j > 1.As pointed out by several authors in di�erent contexts (for instance in[GW90, Wah91b, WH93, LW93, NG97] in the context of system approxima-tion and identi�cation, or in [Wil93a, Pdd93, Oli94a, Oli95a, WZ96] in the



32 3. Orthonormal Bases on the Unit Circlecontext of signal processing) the use of FIR model structures to represent sys-tems with long (possibly in�nite) impulse responses has the disadvantage thatthe number of terms in the series expansion necessary to provide an acceptableapproximation of the system is high, and this may lead to poor accuracy in theestimated model. As a counterpart, and as it has already been mentioned, theanalysis of the accuracy of the least squares estimation using FIR structures isvery tractable by exploiting the algebraic structure (3.1) of the bases, leading toToeplitz structures of the covariance matrices of the estimates, and then usingknown results on asymptotics of Toeplitz matrices [GS58, HN77, HW89].3.3.2 Laguerre BasisThe use of Laguerre series in engineering applications has a long history, thatcan be traced back to the thirties with the work of Wiener and Lee (see forinstance [Lee60]) on synthesis of electrical networks. Since that work, La-guerre bases have been used in many di�erent areas, such as system approxi-mation [Nur87, M�ak90a, M�ak90b, Par91, WAH], system identi�cation [KP79,GW90, GW91, M�ak91, Wah91b, Wah94b], �lter design [KP77, den93b, den93a,FD93, den94, Oli94b, Oli95c, Oli95a, Oli95b], and control applications [ZD88,ZBD88, ZDP90].In the z-domain, the Laguerre bases are given byBk(z) =  p1� �2z � � !�1� �zz � � �k ; k � 0 (3.8)where � 2 R; j�j < 1 is a free (real) parameter called the Laguerre coe�cient,or Laguerre pole position. The orthonormality and completeness of the La-guerre basis in H2(T) follow from the fact that the bases are the Z-transformof the Laguerre sequences [Sze59] which are a complete orthonormal set in`2(N0) [Sze59], and the fact that H2(T) and `2(N0) are isometrically isomorphic(the isomorphism being the Z-transform).As the reader can easily verify, the FIR model is a special case of the Laguerrestructure corresponding to � = 0.The following Lemma gives the closed form expression for the reproducingkernel of the Laguerre basis.Lemma 3.3.1. Let fBk(z)g1k=0 be the Laguerre basis as de�ned in (3.8). Thenthe closed form expression for the reproducing kernel associated with thebasis is given by Kp(z; �) = 1� 'p(z)'p(�)z�� 1 ; (3.9)



3.3 FIR, Laguerre and Kautz Basis 33with jzj > 1 and j�j > 1, and where the de�nition'p(z) , �1� �zz � � �phas been used.Proof: See Appendix 3.A. �If prior information about the dominant dynamics of the system to be approx-imated is available, then choosing the Laguerre coe�cient close to the dom-inant pole will increase the rate of convergence of the Laguerre series expan-sion [Wah91b]. In this way, the number of terms needed to obtain an acceptableapproximation will also be reduced. This property represents an advantage ofthe Laguerre bases when compared to the FIR structure where the possibilityof incorporating `a priori' information to accelerate the rate of convergence doesnot exist.As pointed out in [WAH], highly resonant systems are very di�cult to ap-proximate with the Laguerre basis that only allows the incorporation of priorknowledge about non-resonant dominant dynamics. A more 
exible structurethat generalizes the Laguerre basis and is better suited for the approxima-tion of systems with highly oscillatory impulse responses is the so-called `two-parameter' Kautz basis [Kau52].3.3.3 Kautz BasisSince the work of Kautz [Kau52] on orthogonalization of a set of continuous ex-ponentials, considerable research e�ort has been devoted to the study of appli-cations of Kautz basis in system approximation [WAH], identi�cation [Wah91a,LW93, Wah94b, Wah94a], and �lter design [den93b, Oli94a, Oli95d, den96].In the z-domain, the `two-parameter' Kautz bases are given by [YH62,Bro65]Bk(z) = 8>>><>>>: p(1� a2)(1� c2)z2 � a(c + 1)z + c �cz2 � a(c+ 1)z + 1z2 � a(c + 1)z + c � k�12 ; k oddp(1� c2)(z � a)z2 � a(c+ 1)z + c �cz2 � a(c+ 1)z + 1z2 � a(c+ 1)z + c � k2 ; k even (3.10)with �1 < a < 1, �1 < c < 1, and k � 0. The Laguerre structure is a specialcase of the Kautz one when the poles are real and equal (i.e. for a2(c+1)2 = 4c).The condition on the poles for the completeness of the Kautz bases in H2(T)has been derived in [DD81] (see also [Oli94a, Wah94b]) .For systems with several resonant dynamics, more general orthonormal basesallowing the incorporation of prior information about several modes would be



34 3. Orthonormal Bases on the Unit Circlemore desiderable. Examples of such more general basis are the OrthonormalBasis Generated by Inner Functions (OBGIF) introduced by Heuberger, Vanden Hof and co-workers [HbVB95, VHB95], or the Orthonormal Basis withFixed Poles (OBFP) studied by Ninness and co-workers in [NG94a, NG97].The Kautz, Laguerre and FIR model structures are all special cases of thesemethods.3.4 Orthonormal Basis Generated by Inner FunctionsIn a series of papers [HB90, HVB92, HVB93, VHB94a, VHB94b, HbVB95,VHB95], Van den Hof, Heuberger and co-workers show how an in�nite setof orthonormal functions can be generated from a balanced realization of asquare and inner transfer function. The bases are suited for the representa-tion of systems with a wide range of dominant dynamics, since they allow theincorporation of prior information about a set of poles rather than one singlepole. By choosing the poles of the bases closed to the actual poles, the speedof convergence of the orthonormal expansion can be increased.Previous to the introduction of the orthonormal basis, we give the de�nitionof an inner function.De�nition 3.4.1. Inner Function. A rational transfer function G(z) is called in-ner if it is stable and satis�es G(z�1)G(z) = 1:That is, if it is stable and all-pass. }The main result concerning the generation of orthonormal functions for thespace H2(T) from an inner transfer function is summarized in the followingtheorem due to Van den Hof, Heuberger and co-workers [HbVB95].Theorem 3.4.1. [HbVB95] Let Gx(z) be a scalar inner function with McMil-lan degree nx > 0, having a minimal balanced realization (A;B;C;D). De-note Vk(z) = z(zI � A)�1BGkx(z) (3.11)Then the sequence of scalar rational functionsfBi;k(z)g , feTi Vk(z)g; (i = 1; � � � ; nx); (k = 0; � � � ;1); (3.12)where ei stands for the i-th Euclidean basis vector in Rnx , forms an or-thonormal basis for the Hilbert space H2(T). Moreover, these orthonor-mal bases induce associated bases for the signal space `2(N0) of squared



3.4 Orthonormal Basis Generated by Inner Functions 35summable sequences, through inverse z-transformation to the signal do-main. Denoting Vk(z) = 1X̀=0 vk̀z�`it follows that feTi vk̀g with (i = 1; � � � ; nx); (k = 0; � � � ;1) is an orthonormalbasis for the signal space `2(N0).Proof: See [HbVB95]. �Since the sequence fBi;k(z)g is an orthonormal basis in H2(T), then any transferfunction G(z) 2 H2(T) has a unique series representationG(z) = 1Xk=0 nxXi=1 �ikBi;k(z) = 1Xk=0 nxXi=1 �ikeTi Vk(z) = 1Xk=0 LkVk(z) (3.13)where Lk , [�1k; �2k; � � � ; �nxk ] 2 `1�nx2 (N0).This series representation is schematically depicted in the diagram of Figure3.1, where we have de�ned V0(q) , q(qI � A)�1B:It can be seen that this orthonormal family for the space of stable systemsH2(T)
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Figure 3.1: Schematic Representation of the Series Expansion in terms ofOrthonormal Bases Generated by Inner Functionscan be generated by the cascade connection of identical balanced realizationsof a stable all-pass �lter Gx(q), followed by low pass �lters Lk V0(q).



36 3. Orthonormal Bases on the Unit CircleIt should be noted that these basis functions can incorporate system dynam-ics of any complexity by the appropiate choice of the poles of the inner func-tion Gx(z). For speci�c choices of Gx(z) the classical FIR, Laguerre and `two-parameter' Kautz orthonormal basis can be generated (see [VHB95, HbVB95]for details).3.5 Orthonormal Basis with Fixed PolesThe limitation with the orthonormal bases generated from inner functions isthat they only allow the incorporation of prior information about one set ofpoles which is cyclically repeated. In [NG97] it was shown that the setBk(z) =  p1� j�kj2z � �k ! k�1Yi=0 �1� �izz � �i � (3.14)is a complete orthonormal set in H2(T), but allowing prior knowledge about anarbitrary number of modes f�0; �1; � � � ; �p�1g 2 D to be incorporated, withoutthe restriction of periodic repetition. The reader can easily check that when allthe poles are chosen at the origin (�k = 0, for all k), then the construction (3.14)reduces to an FIR model structure, while for the choice �k = � 2 R; j�j < 1,(3.14) reduces to the Laguerre basis.As pointed out in [NG97], the construction (3.14) has to be modi�ed toaccomodate the case of resonant poles, since in this case the bases would havecomplex valued impulse responses, which would be inappropriate for their usein the representation of physical systems.The idea in [NG97] is to still use the construction (3.14) for a complex pole,but including also the complex conjugate, and then replace these two basisfunctions by linear combinations of them in such a way that the resulting newbasis functions are orthonormal to one another and to all the preceeding basisfunctions, and also have real-valued impulse responses.To be more speci�c, suppose the n-th pole �n is chosen as complex, and sup-pose that Bn is the corresponding basis function (with complex-valued impulseresponse) computed as in (3.14). Then, the (n+1)-th pole has to be chosen asthe complex conjugate �n+1 = �n, leading to the basis function Bn+1 (also withcomplex-valued impulse response). Now the basis functions Bn and Bn+1 arereplaced by the linear combinationsB0n = �Bn + �Bn+1;B00n = �0Bn + � 0Bn+1;where in order to preserve orthonormality, and to have real-valued impulse



3.5 Orthonormal Basis with Fixed Poles 37response, the coe�cients �; �; �0 and � 0 must satisfy2��0� 0� = 1(�n � �n)p1� �2 � �n �1��n 1 � � � 1�1 ��� � 1 1�n �n� ���� (3.15)where we have de�ned � , �n + �n1 + j�nj2 :When only one �xed complex mode �k = � is considered and the followingchoice for � and �, satisfying (3.15), is made� = �� = p(1� �2)(1 + j�j2)� � � ;then the Kautz basis are obtained.The derivation of the basis (3.14) can be done in di�erent ways. For in-stance, in [Wal32, NG94b] it is shown how the basis can be derived using theGram-Schmidt orthonormalization procedure [You88] on the set of functionsfAk(z)gp�1k=0 de�ned as Ak(z) = 1z � �k ;with the same �xed poles f�0; �1; � � � ; �p�1g.In [NG97] it is shown that, under certain conditions on the poles f�kg, theset fzBk(z)g1p=0 is a complete orthonormal set in the space H2(T), and thatunder the same conditions the set fBk(z)g1p=0 spans the subset of H2(T) of allrational, causal, stable transfer functions so that we can have the followingunique series representation G(z) = 1Xk=0 �kBk(z):The necessary and su�cient condition for the completeness of the basis func-tions in the space H2(T) is given in the following theorem due to Ninness andco-workers [NG97].Theorem 3.5.1. [NG97] Consider the basis functions de�ned in (3.14). ThenSpan�Bk(ej!)	 is dense in H2(T) if and only if1Xk=0(1� j�kj) =1: (3.16)2For the derivation of this result see [NG97].



38 3. Orthonormal Bases on the Unit CircleProof: See [NG97]. The proof is based on the fact that a set is dense in aHilbert space if and only if there does not exist a non-zero element of the spacethat is orthogonal to all the elements in the set. A completely di�erent proof,based on some results by Sz�asz ([Cle63]), is given in [Oli95e]. �The series expansion of the system in terms of the orthonormal bases isschematically represented in Figure 3.2, where we have de�nedAk(q) , 1� �kqq � �k (all-pass section);Fk(q) , p1� j�kj2q � �k (low-pass section):
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Figure 3.2: Schematic Representation of the Series Expansion in terms ofOrthonormal Bases with Fixed PolesIt follows that this family of orthonormal bases can be generated by thecascade connection of (di�erent) �rst order all-pass sections (Ak(q)), followedby a �rst order low pass section (Fk(q)).Remark 3.5.1. Notice the similarity between Figures 3.2 and 3.1. In [Bod95]it is shown how a generalized family of orthonormal bases in H2(T) can begenerated by the cascade connection of stable all-pass �lters with input balancerealizations. �The Christo�el-Darboux formula for the reproducing kernel for these baseshas been derived by Ninness and co-workers in [NHG97a], and is given in thefollowing theorem.Theorem 3.5.2. [NHG97a] De�ne the Blaschke product-like quantity'p(z) , p�1Yk=0 1� �kzz � �k :



3.5 Orthonormal Basis with Fixed Poles 39Then the Reproducing Kernel associated to the orthonormal bases with�xed poles fBk(z)g as de�ned in (3.14) can be expressed asKp(z; �) = 1� 'p(�)'p(z)z�� 1 ; (3.17)with jzj > 1 and j�j > 1.Proof: See [NHG97a]. An alternative proof, by induction, is given in Ap-pendix 3.A. �3.5.1 A minimal state-space realization for the OBFPIn this subsection we derive a minimal state-space realization for the orthonor-mal expansion of the system in terms of the OBFP. The availability of a closedform expression for a minimal state-space realization will be important in thecontext of system identi�cation since it will allow the implementation of reliablealgorithms that can provide closed form estimates directly from input-outputdata. In addition, a state-space description of the identi�ed system will beimportant for the purposes of simulation, control design, model order reduc-tion [Glo84], or in the case of digital �lters, for an actual hardware implemen-tation of the system [RM87].A state-space realization of the orthonormal expansion in terms of the OBFPcan be obtained from the �lter structure of Figure 3.2 by giving each (�rstorder) all-pass section Ak(q) and each (�rst order) low-pass section Fk(q) aminimal state-space realization (which obviously will be one-dimensional) andthen connecting these elemental blocks to obtain the state space realization ofthe compound system. It is clear that a realization obtained in this way willbe in general non-minimal. Indeed, for the case of having p di�erent poles, thisprocedure will yield a 2p-dimensional state space realization, while a minimalrealization should be of dimension p, since only p di�erent modes are presenton the system. The reason for this is that in the �lter structure of Figure 3.2each pole �k appears in both Ak(q) and Fk(q) sections.An (input-output) equivalent �lter structure where each pole appears inonly one �rst order section is represented in Figure 3.3. In the following wewill show that the procedure described in the previous paragraph, but appliedto the �lter structure of Figure 3.3, will yield a minimal state space realizationfor the OBFP.Let us consider �rst the elemental �rst order section represented in Figure3.4. An equivalent representation is given in Figure 3.5, where the associatedstate variable xk̀ has been de�ned. From this diagram it is straightforward towrite the following (minimal) state space realizationxk̀+1 = �`xk̀ + (1� �`�`�1)uk̀; (3.18)eyk̀ = xk̀ � �`�1uk̀: (3.19)



40 3. Orthonormal Bases on the Unit Circle
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A = 266666664
A0 0 � � � 0B1C0 A1 � � � 0B2D1C0 B2C1 � � � 0B3D2D1C0 B3D2C1 � � � 0... ... . . . ...Bp�1Dp�2 � � �D1C0 Bp�1Dp�2 � � �D2C1 � � � Ap�1

377777775 ; (3.22)
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B = 2666664 B0B1D0B2D1D0...Bp�1Dp�2 � � �D1D0

3777775 ; eD = 2666664 D0D1D0D2D1D0...Dp�1Dp�2 � � �D1D0
3777775 ;

eC = 266666664
C0 0 � � � 0D1C0 C1 � � � 0D2D1C0 D2C1 � � � 0D3D2D1C0 D3D2C1 � � � 0... ... . . . ...Dp�1Dp�2 � � �D1C0 Dp�1Dp�2 � � �D2C1 � � � Cp�1

377777775 ; (3.23)
and where for ` = 1; � � � ; p� 1A` = �`;B` = 1� �`�`�1;C` = 1;D` = ��`�1:The case ` = 0 (that corresponds to the �rst section in Figure 3.3) is di�er-ent. It is not di�cult to show that a minimal realization for this section is(A0; B0; C0; D0) = (�0; 1; 1; 0). This simpli�es the expressions of matrices B andeD to B = (1; 0; � � � ; 0)T ; (3.24)and eD = 0, respectively.Considering that for ` = 0; � � � ; p� 1 we havebyk̀ =q1� �2̀ eyk̀;we can write byk = � eyk = � eCxk;where the matrix � is de�ned as� , 266664 p1� �20 0 � � � 00 p1� �21 � � � 00 0 . . . 00 0 � � � q1� �2p�1

377775 : (3.25)



3.6 Orthonormal Bases on Hm�n2 (T) 43Finally, the output yk can be computed asyk = (�0; �1; � � � ; �p�1) byk = �T� eC xk: (3.26)Summarizing, a minimal state-space realization for the OBFP is given by thequadruplet (A;B; �T� eC; 0);where matrices A;B; eC, and � are de�ned in equations (3.22), (3.24), (3.23)and (3.25) respectively.3.6 Orthonormal Bases on Hm�n2 (T)In this section we show how orthonormal bases for the space Hm�n2 (T) of stableand causal (m�n) transfer matrices, can be generated from orthonormal baseson H2(T). The result is summarized in the following theorem.Theorem 3.6.1. Let fB`(z)g1̀=0 be a complete orthonormal set (i.e., an or-thonormal basis) on the Hilbert space H2(T) with the usual de�nition forthe inner product:hB`;Bki = 12� Z ��� B`(ej!)Bk(ej!)d! = 12�j IT B`(z)Bk(1=z)dzz (3.27)and let �Bij` (z)	1̀=0 (i = 1; : : : ; m; j = 1; : : : ; n), be a set of transfer matriceswhose elements belong to H2(T), and which are de�ned as:Bij` (z) = 2666664 0 : : : 0 : : : 0... . . . ... . . . ...0 : : : B`(z) : : : 0... . . . ... . . . ...0 : : : 0 : : : 0
3777775  i"j (3.28)

Then �Bij` (z)	1̀=0 ; (i = 1; : : : ; m; j = 1; : : : ; n) is a complete orthonormal setin Hm�n2 (T), with the usual de�nition for an inner product on a space ofmatrix valued functions
Bij` ;Bstk � = 12� Z ��� Tr �Bij` (ej!)Bstk (ej!)?	d!: (3.29)Proof: See Appendix 3.A. �



44 3. Orthonormal Bases on the Unit CircleAssuming that �Bij` (z)	1̀=0 ; (i = 1; : : : ; m; j = 1; : : : ; n) is an orthonormal basisfor the space Hm�n2 (T) then any stable causal tranfer matrix G(z) in Hm�n2 (T)can be approximated by a linear combination of a �nite number of elements ofthe orthonormal set, that isG(z;�) = p�1X̀=0 mXi=1 nXj=1 �ij` Bij` (z): (3.30)By choosing fB`(z)g1̀=0 as the orthonormal bases with �xed poles of Sec-tion 3.5, the previous Theorem allows us to construct a MIMO version of theseOBFP. In the following subsection we derive a minimal state-space realizationfor these MIMO bases.3.6.1 A Minimal State-Space Realization for the MIMO-OBFPThe corresponding MIMO version of the �lter structure in Figure 3.3 is repre-sented in Figure 3.7 for the case m = n = 2.A minimal state-space realization for these MIMO-OBFP can be derivedfrom the �lter structure in Figure 3.7 by applying a procedure similar to theone employed in the derivation of the minimal realization for the scalar case inSubsection 3.5.1.We consider �rst the elemental �rst order section represented in Figure 3.8,where the second superscript in the input and output variables indicates thecorresponding input channel.An equivalent representation is given in Figure 3.9, where the associatedstate variable x`;ik has been de�ned. The following (minimal) state-space real-ization can be derived from the diagram in Figure 3.9x`;ik+1 = �`x`;ik + (1� �`�`�1)u`;ik ; (3.31)ey`;ik = x`;ik � �`�1u`;ik : (3.32)The associated matrices of the state space description are (A`;i; B`;i; C`;i; D`;i) =(�`; (1� �`�`�1); 1;��`�1).De�ning xk̀ , hx`;1k ; x`;2k ; � � � ; x`;nk iT ;eyk̀ , hey`;1k ; ey`;2k ; � � � ; ey`;nk iT ;euk̀ , heu`;1k ; eu`;2k ; � � � ; eu`;nk iT ;we can write in matrix formxk̀+1 = A`xk̀ +B`euk̀;eyk̀ = C`xk̀ +D`euk̀;
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k

kk

0 1 2

2

ξ

k

θ
0

θ
1 θ

22

+
+ +

+

+
+

+
+

1
y
~

k

0,1
= u

 k
1,1 y~

k

1,1
= u

k
2,1 ,1

u
k

p-1,1

,1,1 ,1

11 11 1121 21 21

q - ξ

1 -   ξ q
p-2

p-1

1 - ξ
p-1

2

y
~

k

θ
p-1 θ

p-1

+
+

+
+

p-1,1

ŷ
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Figure 3.7: Filter structure for the Multivariable Orthonormal Bases withFixed Poles (Case m = n = 2).where A` , 26664A`;1 0 � � � 00 A`;2 � � � 0... ... . . . ...0 0 � � � A`;n37775 ; B` , 26664B`;1 0 � � � 00 B`;2 � � � 0... ... . . . ...0 0 � � � B`;n37775 ;
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3.6 Orthonormal Bases on Hm�n2 (T) 47where the matrices A;B; eC and eD are given by
A = 266666664

A0 0 � � � 0B1C0 A1 � � � 0B2D1C0 B2C1 � � � 0B3D2D1C0 B3D2C1 � � � 0... ... . . . ...Bp�1Dp�2 � � �D1C0 Bp�1Dp�2 � � �D2C1 � � � Ap�1
377777775 ; (3.33)

B = 2666664 B0B1D0B2D1D0...Bp�1Dp�2 � � �D1D0
3777775 ; eD = 2666664 D0D1D0D2D1D0...Dp�1Dp�2 � � �D1D0

3777775 ;
eC = 266666664

C0 0 � � � 0D1C0 C1 � � � 0D2D1C0 D2C1 � � � 0D3D2D1C0 D3D2C1 � � � 0... ... . . . ...Dp�1Dp�2 � � �D1C0 Dp�1Dp�2 � � �D2C1 � � � Cp�1
377777775 : (3.34)

The expressions for B and D can be further simpli�ed by noting that B0 = Inand D0 = 0, so that B = [In;O n ; � � � ;O n ]T ; (3.35)and D = 0, where O n is an (n� n) matrix of zeros.Now, considering that by`;ik =q1� �2̀ ey`;ik ;then byk̀ =q1� �2̀ eyk̀;so that byk , 26664 by0kby1k...byp�1k
37775 = (�
 In) eyk;



48 3. Orthonormal Bases on the Unit Circlewhere matrix � is given by equation (3.25), and 
 stands for the Kroneckerproduct (see Appendix A).Finally, the j-th output is given byyjk = p�1X̀=0 ��j1` ; �j2` ; � � � ; �jn` � byk̀;= ��j0; �j1; � � � ; �jp�1� byk;where we have de�ned �j̀ , ��j1` ; �j2` ; � � � ; �jn` � :Vectorizing we then have that the output vector is given byyk , 26664 y1ky2k...ymk
37775 = 26664 �10 �11 � � � �1p�1�20 �21 � � � �2p�1... ... . . . ...�m0 �m1 � � � �mp�1

37775 byk = �T byk = �T (�
 In) eCxk:Summarizing, aminimal state-space realization for the MIMO-OBFP is givenby the quadruplet (A;B;�T (�
 In) eC; 0);where matrices A;B; eC, and � are de�ned in equations (3.33), (3.35), (3.34)and (3.25) respectively. The realization is of order np.3.7 ConclusionsIn this chapter, a review of rational orthonormal bases on the unit circle waspresented. The concept of reproducing kernel associated with the bases wasintroduced, and the approximating properties of the more common orthonormalfamilies in H2(T) were described. Emphasis was put on the Orthonormal Baseswith Fixed Poles, since this family has more 
exibility in the choice of the polelocations and encompasses the more common FIR, Laguerre and Kautz modelstructures in a uni�ed formulation. For this family, a closed form expressionfor the reproducing kernel was given, and a minimal state-space realization wasderived. This last issue is important in the context of system identi�cationsince it will allow the implementation of simple and reliable algorithms thatwill provide estimates in closed form (in state-space form) directly from input-output data.



3.A Proofs for Chapter 3 49Appendices3.A Proofs for Chapter 3Proof of Lemma 3.2.1 Let us compute �rst the inner product DG(z); z�z�� 1E :We have �G(z); z�z�� 1� = 12�j IT G(z) �=z(�=z)� 1 dzz ;= 12�j IT G(z) 1=z(1=z)� (1=�) dzz ;= 12�j IT G(1=z)z � (1=�) dz;= G(�);where in passing to the second last line the variable substitution z 7! 1=z wasused, and where in passing to the last line use was made of Cauchy ResidueTheorem. Now, from equation (3.5) we also havehG(z); K(z; �)i = G(�);so that for all G(z) 2 H2(T), and for all j�j > 1, we can write�G(z);� z�z�� 1 �K(z; �)�� = 0;what concludes the proof, since G(z) is an arbitrary element of H2(T) and theonly element of the space which is orthogonal to every other element of thespace is the zero element. �



50 3. Orthonormal Bases on the Unit CircleProof of Lemma 3.3.1 Considering the expression for the reproducing kernel in(3.2) we can writeKp(z; �) = p�1Xk=0 Bk(z)Bk(�);= p�1Xk=0 (1� �2)(z � �)(�� �) �1� �zz � � �k �1� ���� � �k ;= (1� �2)(z � �)(�� �) p�1Xk=0 �(1� �z)(1� ��)(z � �)(�� �) �k ;= (1� �2)(z � �)(�� �) 1� �(1� �z)(1� ��)(z � �)(�� �) �p1� (1� �z)(1� ��)(z � �)(�� �) ;
= 1� �(1� �z)(1� ��)(z � �)(�� �) �pz�� 1 ;where in passing to the fourth line use was made of the identityp�1Xk=0 xk = 1� xp1� x : (3.A.1)Now the result follows by de�ning'p(z) , �1� �zz � � �p : �Proof of Theorem 3.5.2 The proof proceeds by induction. We �rst prove thatequation (3.17) holds for p = 1. Then, assuming that (3.17) holds for p = q� 1,we prove that it holds also for p = q, which concludes the proof.Let p = 1, thenKp(z; �) = p�1Xk=0 Bk(�)Bk(z) = B0(�)B0(z);= 1� j�0j2(z � �0)(�� �0) : (3.A.2)



3.A Proofs for Chapter 3 51On the other hand, for p = 11� 'p(�)'p(z)z�� 1 = 1� '1(�)'1(z)z�� 1 ;= 1� (1� �0z)(1� �0�)(z � �0)(�� �0)z�� 1 ;= 1� j�0j2(z � �0)(�� �0) : (3.A.3)Therefor, the result holds for p = 1.Let us now assume that equation (3.17) holds for p = q � 1, that isq�2Xk=0 Bk(�)Bk(z) = 1� 'q�1(�)'q�1(z)z�� 1 :Thenq�1Xk=0 Bk(�)Bk(z) = Bq�1(�)Bq�1(z) + q�2Xk=0 Bk(�)Bk(z);= Bq�1(�)Bq�1(z) + 1� 'q�1(�)'q�1(z)z�� 1 ;= (1� j�q�1j2)'q�1(�)'q�1(z)(�� �q�1)(z � �q�1) + 1� 'q�1(�)'q�1(z)z�� 1 ;= 1z�� 1 �1� 1� ��q�1�� �q�1 'q�1(�)1� z�q�1z � �q�1 'q�1(z)� ;= 1� 'q(�)'q(z)z�� 1 ; (3.A.4)where in passing to the third line use was made of the identityBq(z) , p1� j�qj2z � �q q�1Yk=0 1� �kzz � �k = p1� j�qj2z � �q 'q(z):Hence, equation (3.17) holds also for p = q. This completes the proof. �Proof of Theorem 3.6.1 The proof proceeds in two steps. First, it is shown thatthe set �Bij` (z)	 is orthonormal with respect to the inner product in Hm�n2 (T),and then, that it is complete in that space.i. Orthonormality:It is clear that the matrices in the set �Bij` (z)	 are linearly independent.



52 3. Orthonormal Bases on the Unit CircleWe will use the de�nition of the inner product in equation (3.29) to provethat �Bij` (z)	 is an orthonormal set. Substituting z = ej!, equation (3.29)can be written as:
Bij` ;Bstk � = 12�j IT Tr �Bij` (z)Bstk (1=z)?	 dzz : (3.A.5)In order to prove that the matrices are orthonormal we have to check thatthe following conditions hold
Bij` ;Bstk � = � 0 if Bij` 6= Bstk1 if Bij` = Bstk (3.A.6)Let us consider �rst the inner product 
Bij` ;Bij` �. We have
Bij` ;Bij` � = 12�j IT Tr�Bij` (z)Bij` (1=z)?	 dzz ;(by de�nition of Bij` ) = 12�j IT B`(z)B`(1=z)dzz ;(by the orthonormality of fB`g) = 1: (3.A.7)Now, let us consider the inner product 
Bij` ;Bstk � for the case i 6= s for anyj; t; `; k, or j 6= t for any i; s; `; k. We have
Bij` ;Bstk � = 12�j IT Tr �Bij` (z)Bstk (1=z)?	 dzz ;(by de�nition of Bij` ) = 0: (3.A.8)Finally, let us consider the case i = s; j = t and ` 6= k. We have
Bij` ;Bstk � = 12�j IT Tr �Bij` (z)Bstk (1=z)?	 dzz ;(by de�nition of Bij` ) = 12�j IT B`(z)Bk(1=z)dzz ; (3.A.9)(by the orthonormality of fB`g) = 0: (3.A.10)Hence, we can conclude that �Bij` (z)	 is an orthonormal set in the spaceHm�n2 (T).ii. Completeness:We use the idea that an orthonormal set in a Hilbert space H is completeif and only if the only element of H which is orthogonal to every elementof the set is the null element. Suppose, in order to obtain a contradiction,that there exist a nonzero matrix F (z) = (fij(z)) 2 Hm�n2 (T) which isorthonormal to every element of the set �Bij` (z)	. Suppose also, without



3.A Proofs for Chapter 3 53loss of generality, that the entry fst(z) of F (z) is a nonzero function. Then,the inner product of F with any one of the matrices in �Bij` (z)	 is givenby 
F;Bstk � = 12�j IT Tr�F (z)Bstk (1=z)?	 dzz ;(by de�nition of Bij` ) = 12�j IT fst(z)Bk(1=z)dzz ; (3.A.11)= 0; (3.A.12)where the last equality should hold for each k, which means that thereexist a nonzero function, namely fst(z), which is orthogonal to every el-ement in fB`(z)g, which represents a contradiction, since the set fB`(z)gis complete by hypothesis. Hence, we can conclude that the orthonormalset �Bij` (z)	 is complete in Hm�n2 (T). �





4SISO Identi�cation using OrthonormalBases
In this chapter, the problem of least squares identi�cation (from input-outputdata in the time domain) of Discrete-Time (DT), Linear Time-Invariant (LTI),Single-Input Single-Output (SISO) systems represented using orthonormal mo-del structures will be analyzed. We concentrate on identi�cation using theorthonormal bases with �xed poles of Section 3.5, that have the most commonFIR, Laguerre and Kautz bases as special cases. The estimation accuracy will bequanti�ed by providing bounds on the undermodelling error and by deriving anasymptotic (in model order and data-length) expression for the noise inducederror. Fundamental for the analysis of the noise induced error will be theextension, to the OBFP, of some known results on convergence of Toeplitzmatrices available for FIR model structures.4.1 IntroductionIn the last years there has been signi�cant interest in the use of orthonor-mal basis functions for approximation of dynamical systems [GKB89, WAH,M�ak90a, M�ak90b, Par91, Oli95a, Oli94a], system identi�cation [KP79, Lju85,LY85, Nur87, Wah91b, M�ak91, Wah94b, NG97, VHB95, HbVB95, PT91], signalprocessing [KP77, Wil95, Pdd93, WZ96, MJM89, den93b], and control applica-tions [ZDP90, ZBD88, ZD88]. Particularly in the area of system identi�cation,several schemes have been proposed for the identi�cation of linear systems frominput-output data using orthonormal model structures and least squares tech-niques [Lju85, LY85, Wah91b, Wah94b, NG94a, NG97, VHB95, HbVB95]. Inthese methods, the transfer function of the system, say G(z) for the discretetime case, is represented as a series expansion in terms of orthonormal basisfunctions fBk(z)g, which are stable-causal transfer functions, and then the iden-ti�cation is performed by estimating a �nite number of expansion coe�cientsusing least squares techniques.



56 4. SISO Identi�cation using Orthonormal BasesOne of the main motivations for using orthonormal bases to represent thesystem is that the resulting model structure becomes linear in the parameters(a linear regressor form), with the regressors depending only on the observedinput signal. It is well known that in this case the least squares estimate has aclosed form solution which corresponds to a global minimum of the quadraticcriterion [Lju87, SS89]. In this way, the need for costly iterative optimizationprocedures for the parameter estimation, and the associated problems of localminima are avoided.A second factor that has been pointed out in the literature [Wah91b, Wah91a,Wah94b, Oli95a, Bod95] is the numerical robustness of these methods whencompared to estimation using non-orthonormal structures. This is so since aworst case numerical conditioning of the least squares estimation problem canbe guaranteed for the case of using orthonormal structures while in general thisresult can not be established for the non-orthonormal case. We defer the studyof this issue until the next chapter, since it is in the context of multivariablesystems, in which a large number of parameters need to be estimated, wherethe problem of numerical robustness is more relevant [Vd94a, Vib94].Besides the above mentioned advantages, a third aspect that we want to em-phasize in this thesis, following the lead of Ninness and co-workers [NHG97a], isthe use of orthonormal bases as an analysis tool which is particularly suited forthe study of estimation methods that employ �xed denominator model struc-tures. This is so because �xed denominator model structures can be linearlyre-parameterized using orthonormal bases with the same �xed poles. The anal-ysis of estimation accuracy can then be carried out by extending convergenceresults of the well known trigonometric bases fej!ng (i.e., results of classicalFourier analysis) to the more general orthonormal bases employed in this the-sis. In this chapter we concentrate on the study of identi�cation of DT-LTI-SISOsystems using orthonormal model structures and least squares techniques. Thematerial in this chapter will be used as a paradigm to extend these results tothe multivariable case in Chapter 5.The remainder of the chapter is organized as follows. In Section 4.2 we con-sider the identi�cation of DT-LTI-SISO systems from input-output data in thetime domain using rational orthonormal bases and least squares techniques.We then particularized the study of the estimation accuracy for the case ofusing the OBFP introduced in Section 3.5. This analysis is carried out in Sec-tions 4.3 and 4.4, where the bias error and the variance error are (respectively)considered. Fundamental in this analysis is the use of new results regarding theconvergence of generalized Toeplitz-like matrices. These convergence results arealso presented in this section. A new phenomenom of accuracy limitation thatarises in the estimation using orthonormal bases with �xed poles is illustratedin Section 4.5. Speci�cally, it is shown that at a given frequency there is a



4.2 Problem Formulation 57trade-o� between bias and variance errors regarding the choice of the poles ofthe bases.4.2 Problem FormulationIt is assumed that the LTI-SISO system is described by the standard modelyk = G(q) uk + �k; (4.1)and that an N point data record of input and output sequences fyk; ukgN�1k=0 isavailable for the identi�cation of the assumed stable (unknown) transfer func-tion G(q) describing the system dynamics.In the model (4.1), f�kg is a zero-mean stationary sequence representingsome measurement noise which is assumed to have �nite variance E f�2kg = �2� ,and to be uncorrelated from the input sequence fukg. It is also assumed thatthe input sequence fukg is a quasi-stationary process [Lju87], with spectraldensity �u(!).Let fBk(z)g1k=0 be an orthonormal basis inH2(T). Now, since the system wasassumed to be asymptotically stable, then its transfer function G(z) belongs toH2(T), and can be uniquely represented by the series expansionG(z) = 1Xk=0 �kBk(z); (4.2)where �k are the `Generalized Fourier Coe�cients' de�ned as�k , hG;Bki (k = 0; 1; � � � ): (4.3)Of course, since the transfer function G(z) is unknown, the coe�cients cannot be computed as in (4.3). Instead, our objective will be to estimate theparameters of a �nite dimensional modelG(z; �) , p�1Xk=0 �kBk(z); (4.4)so that the transfer function can be (approximately) identi�ed by using theestimate b� , hb�0; b�1; � � � ; b�p�1iT of the parameter vector � , [�0; �1; � � � ; �p�1]Tas follows G(z; b�) , p�1Xk=0 b�kBk(z): (4.5)



58 4. SISO Identi�cation using Orthonormal BasesIt remains now to choose the parameter estimation method. The model struc-ture (4.4) leads to the linear regressor formyk = �Tk � + �k;where the regressor vector �k is de�ned as�Tk , [B0(q)uk;B1(q)uk; � � � ;Bp�1(q)uk]:The obvious choice for the parameter estimation method is the `least squares'one, since it provides a closed form solution, and leads asymptotically to ane�cient estimate.The least squares estimate b� of � is the minimizing argument of the quadraticcriterion VN(�) = 1N N�1Xk=0 (yk � �Tk �)2: (4.6)That is b� , argmin� 2 Rp ( 1N N�1Xk=0 (yk � �Tk �)2) :It is well known that the solution of this minimization problem can be writtenin closed form as [Lju87, SS89, GP77]b� = Rp(N)�1( 1N N�1Xk=0 �kyk) ; (4.7)where Rp(N) , 1N N�1Xk=0 �k�Tk ; (4.8)with the subscript p indicating the model order (number of terms in the pa-rameterized model (4.4)).Given the parameter estimate b�, the transfer function estimate G(z; b�) canthen be computed as in equation (4.5).Remark 4.2.1. For the case of fBk(z)g1k=0 being the Orthonormal Bases with�xed poles of Section 3.5, once an estimate b� has been computed, a mini-mal state-space realization of the estimated model is immediately availableby appealing to the results of Subsection 3.5.1. The described identi�cationtechnique can be easily implemented in software, for instance in a Matlabenvironment [Mat94]. �



4.3 Undermodelling Error 59We are interested now in analyzing the performance of the proposed systemidenti�cation scheme. This performance will be evaluated by quantifying theestimation error. In the frequency domain, the estimation error can be writtenas G(ej!; b�)�G(ej!) = G(ej!; b�)�G(ej!; �?)| {z }noise induced + G(ej!; �?)�G(ej!)| {z }undermodelling induced (4.9)where �? is the convergence value of the estimate b� when the number of availabledata points N tends to in�nity. We can then recognize two components of theestimation error:� A component corresponding to the termG(ej!; b�)�G(ej!; �?);which is due to the noise corruption of the data. Typically, the size ofthis term is measured as ensemble average asEnjG(ej!; b�)�G(ej!; �?)j2o ;and it is also called variance error.� A component corresponding to the termG(ej!; �?)�G(ej!);which is due to the fact that the model (4.5) is too simple to representthe real system. We call this term undermodelling error or bias error.In this thesis, the study of estimation accuracy will focus on using the Or-thonormal Bases with Fixed Poles introduced in Section 3.5 as an e�ectiveanalysis tool for quantifying bias and variance error. One of the contributionsof this thesis will be to show how the bias and variance errors depend on thechoice of the poles of the basis functions fBk(z)g.The undermodelling error is analyzed in Section 4.3, and the noise inducederror in Section 4.4 .4.3 Undermodelling ErrorThe undermodelling induced error arises from the parsimony of the model struc-ture (4.4) (a �nite-length series expansion) which cannot completely describethe true dynamics G(z). This error can be quanti�ed in terms of the deviationbetween the real system and the modeljG(ej!; �?)�G(ej!)j:



60 4. SISO Identi�cation using Orthonormal BasesUnfortunately, the convergence value �? of the estimate b� is unknown. To quan-tify the undermodelling error we then compute the error involved in the ap-proximation of G(z) with bGp(z) which is the best H2(T) approximation of G(z)belonging to the subspace spanned by the �rst p basis functions fBk(z)gp�1k=0.As already mentioned, when compared to the FIR, Laguerre, Kautz or themore general OBGIF, the OBFP enjoy greater 
exibility in the possible choiceof the pole location without the need of a cyclic repetition. Unfortunately, thereis a price to be paid for this increased 
exibility in that these bases do not havethe algebraic structure (3.1) so that the analysis of the undermodelling errorcan not be reduced to that of the FIR case by a simple transformation of thesystem or change of variables. This is not the case for the Laguerre, Kautz andOBGIF, all of them having the algebraic structure (3.1). As a consequence, thederivation of results quantifying the undermodelling error for the case of theOBFP is considerably more complicated. In [NHG97a], Ninness and co-workersderive an upper bound on the undermodelling error based on the Christo�el-Darboux formula for the reproducing kernel associated with the bases (equation(3.17)). The result is summarized in the following theorem.Theorem 4.3.1. [NHG97a] Let the transfer function of the system G(z) havepartial fraction expansion G(z) = r�1X̀=0 �`z � 
` ; (4.10)where all the poles satisfy j
`j < 1. Let bGp(z) denote the best H2 approxi-mation to G(z) with respect to the p basis functions fBk(z)gp�1k=0 as de�nedin (3.14), with poles f�kgp�1k=0, i.e.bGp(z) = p�1Xk=0 hG;Bki Bk(z):Then ���G(ej!)� bGp(ej!)��� < r�1X̀=0 ���� �`ej! � 
` ���� p�1Yk=0 ���� 
` � �k1� �k
` ���� (4.11)Proof: The proof is given in Appendix 4.A. �It is obvious that the theorem also provides an upper bound in the undermod-elling error for the FIR and Laguerre bases, since these bases are special cases ofthe OBFP corresponding to poles �k = 0; 8k, and �k = � 2 R; 8k, respectively.It can be seen from equation (4.11) that if the poles of the system 
` areexactly known, then choosing �` = 
`; 8 ` gives a zero upper bound on the



4.3 Undermodelling Error 61undermodelling error. The result also implies that the convergence rate of theseries expansion can be faster than that of the special cases of FIR, Laguerre,or Kautz basis, if the guesses for the poles �k approach the true poles 
k. Toillustrate this, let us consider the following examples.Example 4.3.1. Let the transfer function of the true system beG(z) = 0:8z + 0:8 ;and let us consider a 10-th order expansion (i.e. p = 10), with guesses for thepoles satisfying j�kj = 0:4; 8 k. Then, from equation (4.11) the upper bound onthe undermodelling error isUB(!) = ���� 0:8ej! + 0:8���� 0:588210:The corresponding upper bound using a 10-th order FIR model isUBFIR(!) = ���� 0:8ej! + 0:8 ���� 0:810:We can see that the upper bound using OBFP is (0:8=0:5882)10 = 21:6 timessmaller than the corresponding one using an FIR expansion, even with a 50 %discrepancy between the guesses for the poles and the true poles. HExample 4.3.2. Let us consider now the second order systemG(z) = 1z + 0:8 + 1z + 0:4 ;with only two terms in the orthonormal model structure (p = 2). In Figure4.1, the upper bound on the undermodelling error for di�erent choices of thepoles of the basis is plotted as a function of the frequency !. In that �gure,Curve A corresponds to an FIR model structure (that is the guesses for thepoles are f0; 0g), Curve B corresponds to a Laguerre structure with poles atf�0:2;�0:2g, Curve C corresponds to the guesses f�0:6;�0:2g, and Curve Dcorresponds to poles at f�0:7;�0:3g. It can be seen that as the guesses for thepoles approach the true poles, the upper bound on the undermodelling errordecreases. This also illustrates our claim that when (approximate) `a priori'information about the dominating dynamics of the system is available, the useof OBFP is preferable over FIR structures since a smaller undermodelling errorwill be obtained for the same model order. HA result of the same type has been obtained by Van den Hof, Heubergerand co-workers [HbVB95] for the Orthonormal Bases Generated from InnerFunctions introduced in Section 3.4. In [HbVB95], the authors show that if the



62 4. SISO Identi�cation using Orthonormal Bases
A: Poles at {0,0} (FIR)           

B: Poles at {−0.2,−0.2} (Laguerre)
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Figure 4.1: Upper Bound on the Undermodelling Error for di�erent choicesof the polesdynamics of the inner function generating the orthonormal system Gx(z) andthe dynamics of the system to be identi�ed G(z) approach each other, then theconvergence rate of the series expansion representation of the system becomesvery fast. This implies that the number of coe�cients to be estimated in orderto accurately model the system becomes smaller. An upper bound of thisconvergence rate is given in Theorem 4.3.2, adapted from [VHB95, HbVB95].Before presenting this result, we need to introduce some notation. LetfBi;k(z)g be a set of orthonormal bases generated from an inner transfer functionGx(z) as in Theorem 3.4.1. Then any causal, stable system G(z) 2 H2(T) hasa unique series representation as in (3.13), i.e.G(z) = 1Xk=0 nxXi=1 �ikBi;k(z) = 1Xk=0 nxXi=1 �ikeTi Vk(z)= 1Xk=0 LkVk(z)



4.4 Noise Induced Error 63= p�1Xk=0 LkVk(z) + 1Xk=p LkVk(z)= bGp(z) + 1Xk=p LkVk(z); (4.12)where Lk = [�1k; �2k; � � � ; �nxk ] 2 `1�nx2 (N0), and bGp(z) is the best L2 approximationto G(z) with respect to the basis functions fBi;k(z)g.Theorem 4.3.2. [VHB95, HbVB95] Let the transfer function G(z) of the sys-tem have poles �i; (i = 1; � � � ; ns), and let the inner function Gx(z) generat-ing the orthonormal system fBi;k(z)g have poles �j; (j = 1; � � � ; nx). Denote� , maxi nxYj=1 ���� �i � �j1� �i�j ���� :Then there exists a constant c 2 R such that, for all � > �,vuut 1Xk=p LkLTk � c �p+1p1� �2 :Proof: See [VHB95, HbVB95]. In the proof, the authors exploit the algebraicstructure of the bases Bi;m(z)Bi;n(z) = Bi;0(z)Bi;(m+n)(z) (4.13)to establish a transformation of signal and systems (the so-called 'Hambo' trans-form [VHB94a, VHB94b, VHB95, HV96]) so that the system in the transformdomain can be obtained by a simple variable transformation from the originalsystem represented with the standard trigonometric bases fz�ng. The resultthen follows by using known properties of Fourier series approximation. �The previous theorem implies that when the two sets of poles converge toeach other, � will tend to zero, and the upper bound on the 2-norm of thetail of the series expansion will decrease drastically, reducing in this way theundermodelling error.4.4 Noise Induced ErrorOur interest is now in the quanti�cation of the component of the frequency re-sponse estimation error that is induced by the measurement noise (the `varianceerror'). Since the analysis for �nite data is too complicated, we follow the work



64 4. SISO Identi�cation using Orthonormal Basesof other authors [Lju85, LY85, Wah91b, Wah94b] and consider an asymptoticanalysis when the data-length N tends to in�nity. Since we are interested hereonly in the noise induced error, we will also allow the model order p to tendto in�nity to avoid the presence of undermodelling error. The quanti�cationof the frequency response noise induced error can be achieved by using knownresults [Lju87] on the asymptotic statistics of the parameter estimation errorand by noting that the frequency response estimate is linearly related to theparameter estimate.Using the results in [Lju87] (as summarized in Theorems 2.2.1 and 2.2.2) wecan draw the following conclusions on the asymptotic (as the number of dataN tends to in�nity) statistics of the parameter estimate (4.7):� Asymptotic Estimate: For �xed model order pb� a.s.�! �? as N !1where �? = argmin� 2 Rp � 12� Z ��� ��G(ej!)�Gp(ej!; �)��2�u(!) d!� (4.14)� Asymptotic Distribution of the parameter estimate: For �xed model orderp pN(b� � �?) dist�! N (0; Pp) as N �!1where Pp , R�1p QpR�1p ;Rp , limN!1Rp(N) = limN!1E fV 00N (�?)g ;Qp , limN!1NE�V 0N(�?)TV 0N(�?)	 ;Notice now that the transfer function estimate (4.5) can be written asG(z; b�) , p�1Xk=0 b�kBk(z) = �Tp (z) b�; (4.15)where we have de�ned�p(z) , [B0(z);B1(z); � � � ;Bp�1(z)]T : (4.16)This linear relationship between the transfer function estimate and the param-eter estimate, together with the above results on the statistics of the parameterestimate, allows us to give the following frequency domain characterization ofthe asymptotic distribution of the (transfer function) estimate:



4.4 Noise Induced Error 65� Asymptotic Distribution of the Frequency Response Estimate: For �xedmodel order ppN " G(ej!1 ; b�)�G(ej!1 ; �?)G(ej!2 ; b�)�G(ej!2 ; �?) # dist�! N (0;�0p(!1; !2))as N �!1, with�0p(!1; !2) , � �Tp (ej!1)�Tp (ej!2) � Pp � �Tp (ej!1)�Tp (ej!2) �?if !1 6= !2, and where �? denotes the conjugate transpose.A measure of the transfer function estimation error induced by the noise isthen given by the covariance matrix �0p(!1; !2). The exact expression for thecovariance matrices Pp and �0p(!1; !2) will depend on the particular choicefor the orthonormal basis. Unfortunately, these exact expressions for a �xed(�nite) model order p are so complicated that they have no practical util-ity. As mentioned before, the standard approach in the literature (see forinstance: [LY85, Lju85] for FIR basis, [Wah91b] for Laguerre basis, [Wah94b]for Kautz basis, [VHB95] for OBGIF, and [NHG97a] for OBFP) has been toprovide an approximate quanti�cation of the noise induced error by consideringan asymptotic analysis when both the model order p and the number of dataN are allowed to tend to in�nity.4.4.1 The FIR caseHistorically, the �rst results regarding the quanti�cation of the noise inducederror in this identi�cation setup were obtained by Ljung and Yuan [LY85, Lju85]for the case of FIR model structures. The FIR variance results are summarizedin the following theorem.Theorem 4.4.1. [LY85] Let G(z; �) be represented as in (4.4) and let fBk(z)gbe the standard FIR basis. Let eG(ej!) be de�ned aseG(ej!) , G(ej!; b�)�G(ej!; �?):Then provided that p!1 as N !1,sNp eG(ej!) dist�! N �0; ��(!)�u(!)�as N !1. In additionNp Covn eG(ej!1); eG(ej!2)o! ( 0 if !1 6= !2��(!1)�u(!1) if !1 = !2as N !1.



66 4. SISO Identi�cation using Orthonormal BasesProof: See [LY85]. �The theorem implies that the variance of the tranfer function estimate at aparticular frequency !, and for large model order and data-length can be ap-proximated by VarnG(ej!; b�)o � pN ��(!)�u(!) ; (4.17)which is the noise-to-signal ratio with a weighting factor which is the ratiobetween model order and data-length.4.4.2 The Fixed Denominator caseOur interest now is to determine if the FIR result in Theorem 4.4.1 can also beapplied for the case of a �xed denominator model structure. We can writeyk = G(q; b�)uk + �k = C(q; b�)D(q) uk + �k; (4.18)where the poles in D(q) are �xed (and known), and the unknown parametersare the coe�cients of the numerator polynomial C(q; b�). We can then writeyk = C(q; b�)� 1D(q)uk�+ �k = C(q; b�)~uk + �k; (4.19)where ~uk , 1D(q)ukis a �ltered version of uk. The �xed denominator model structure estimationproblem (4.18), being then by (4.19) really an FIR estimation problem with pre-�ltered input ~uk, should be amenable to FIR variance analysis by Theorem 4.4.1to lead to the conclusion that for a given frequency !, and for large model orderand data-length we can approximate the numerator variance asVarnC(ej!; b�)o � pN ��(!)�~u(!) ;and then considering that �~u(!) = �u(!)jD(ej!)j2 ;we have VarnC(ej!; b�)o � pjD(ej!)j2N ��(!)�u(!) :



4.4 Noise Induced Error 67Therefore, the variability of the full frequency response estimate could be ex-pected by Theorem 4.4.1 to be approximated asVarnG(ej!; b�)o � 1jD(ej!)j2VarnC(ej!; b�)owhich is (4.17), and therefore that in the general �xed denominator case, theestimation variance does not appear to depend on the location of the poles inthe model structure.This line of reasoning is, however, 
awed. The problem is that the �lterD(ej!) is changing as the model order p increases, and therefore the spectrum�~u(!) is also changing with p, so that we are applying a result (Theorem 4.4.1)which was derived assuming a �xed input spectrum to a case where this spec-trum is not �xed.The remedy for this problem turns out to be to reparameterize the problemin a special orthonormal form which is speci�cally adapted to the �xed denom-inator being used. Developing these methods consume the remainder of thischapter.4.4.3 Variance error using OBFPLet fBk(z)g be a set of orthonormal bases with �xed poles f�kg as de�ned in(3.14), and let us assume that a system G(z) 2 H2(T) is identi�ed using thesebases and least squares techniques as described in Section 4.2. The asymptotic(in model order and data-length) distribution of the transfer function estimatefor this case is as follows.Theorem 4.4.2. Let the input spectral density �u(!) have a �nite dimen-sional spectral factorization, and let the poles f�kg be chosen to satisfy thecompleteness condition 1Xk=0(1� j�kj) =1:Then for N !1 and p!1pN � 
p(!1) 00 
p(!2) ��1=2 " G(ej!1 ; b�)�G(ej!1 ; �?)G(ej!2 ; b�)�G(ej!2 ; �?) # dist�! N (0;�(!1; !2))where �(!1; !2) = 264 ��(!1)�u(!1) 00 ��(!2)�u(!2) 375



68 4. SISO Identi�cation using Orthonormal Basesif !1 6= !2, and 
p(!) , Kp(!; !) = p�1Xk=0 jBk(ej!)j2:Proof: The main di�culty encountered in the proof of these asymptotic re-sults has been that the bases (3.14) employed here do not have the algebraicstructure (3.1), so that the problem can not be reduced to the FIR one bya change of variables. Fundamental in the analysis will be the derivation ofsome results regarding the convergence properties of generalized Toeplitz-likematrices. These results are summarized in Appendix 4.B, and their derivationproceeds based only on the orthonormality of the bases and the Christo�el-Darboux formula for the reproducing kernel associated with them. The proofis given in Appendix 4.A. �As a corollary of the previous theorem we have the following quanti�cation ofthe noise induced error in the transfer function estimate.Corollary 4.4.3. Under the same conditions of the previous theorem, butwith the strengthened requirement that E fe8kg <1 thenlimp!1 limN!1 N
p(!)EnjG(ej!; b�)�G(ej!; �?)j2o = ��(!)�u(!) :Proof: Follows along the same lines in the developments in Appendix 9Bof [Lju87]. �These results imply that the variance of the transfer function estimate at a givenfrequency !, and for large N and model order p, can be well approximated byVarnG(ej!; b�)o � 
p(!)N ��(!)�u(!) ; (4.20)which is the noise-to-signal ratio weighted with a frequency dependent factorthat is determined by the basis functions. This variance expression explicitlyshows (through the factor 
p(!) , Kp(!; !)) how the choice of the poles ofthe basis functions (the poles in the �xed denominator model) a�ects the noiseinduced error. In Figure 4.2, the factor 
p(!) is plotted for model order p = 4and for various pole choices.In addition, this result generalizes similar results available for FIR modelstructures [Lju85, LY85], Laguerre basis [Wah91b], and Kautz basis [Wah94b].For example, the FIR model structure corresponds to the choice �k = 0; 8 k forthe poles of the bases, and in this case the factor 
p(!) = p, so that the varianceexpression (4.20) becomesVarnG(ej!; b�)o � pN ��(!)�u(!) ;
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Figure 4.2: Reproducing kernel 
p(!) , Kp(!; !) as a function of frequency!, and for model order p = 4 and various pole choices.which is the same result of Ljung and Yuan [Lju85, LY85] as summarized inTheorem 4.4.1. The Laguerre basis instead corresponds to the choice �k = � 2R; 8 k for the poles, so that the variance expression (4.20) becomesVarnG(ej!; b�)o � pN (1� �2)jej! � �j2 ��(!)�u(!) ;which is exactly the result obtained originally by Wahlberg [Wah91b].A result of the same nature as Theorem 4.4.2 has been derived by Van denHof and co-workers [VHB95] for the orthonormal bases generated from innerfunctions of Section 3.4. The authors exploit the algebraic structure (4.13)of the bases in order to establish a transformation of systems (the `HamboTransform') so that the system in the transformed domain can be obtained bya simple change of variables from the original system represented with the FIRbases fz�kg. See [VHB95] for the details.The following theorem summarizes these variance results.Theorem 4.4.4. [VHB95] Assume that the input spectral density �u(!) isbounded away from zero and su�ciently smooth. Then, for N; p �! 1,



70 4. SISO Identi�cation using Orthonormal Basesp2=N �! 0NpnxCovnG(ej!1; b�N); G(ej!2 ; b�N)o �! 8><>: 0 for Gx(ej!1) 6= Gx(ej!2)V T0 (ej!1)V0(e�j!1)��(!1)�u(!1)for !1 = !2 (4.21)where CovnG(ej!1 ; b�N); G(ej!2; b�N )o is the cross-covariance matrix in thejoint distribution ofhG(ej!1; b�N )�G(ej!1 ; �?); G(ej!2 ; b�N)�G(ej!2; �?)i ;and where ��(!) is the measurement noise spectral density.Proof: See [VHB95]. The key idea of the proof is to exploit the algebraicstructure (4.13) of the bases in order to establish a transformation of systems(the `Hambo Transform') so that the system in the transformed domain canbe obtained by a simple change of variables from the original system repre-sented with the standard trigonometric basis fz�kg. The use of convergenceresults available for FIR model structures [Lju85, LY85] together with asymp-totic properties of Toeplitz matrices [GS58] then gives the result. �As pointed out in [VHB95], the interpretation of the previous theorem is thatthe variance of the transfer function estimate at a given frequency !, and forlarge N and model order p, can be approximated byVarnG(ej!; b�)o � pnxN V T0 (ej!)V0(e�j!)��(!)�u(!) (4.22)which is the noise-to-signal ratio weighted with a frequency dependent factorthat is determined by the basis functions. This result also generalizes the avail-able FIR, and Laguerre results in [Lju85, LY85], and [Wah91b], respectively.See [VHB95] for the details.This thesis, via Theorem 4.4.2 has developed a result in a similar vein,but with one very important di�erence - it is asymptotic in the number ofpoles, not asymptotic in the number of repetitions of poles as the pre-existingresult of Theorem 4.4.4 is. This di�erence is considered very substantial, sincethe point of results such as Theorem 4.4.4 or our Theorem 4.4.2 is to allowthe progression to approximations like (4.22), and this can only be done byassuming that convergence has occurred in results like Theorems 4.4.4 and 4.4.2.If, as commonly occurs in practice, one is using a model with all the polesdi�erent (so as to distribute them as much as possible in the hope of minimizingthe undermodelling induced error), then there has been no repetition of poles,



4.5 Bias/Variance Trade-o� 71and it cannot be argued that convergence in Theorem 4.4.4 is likely to haveoccurred, and hence for (4.22) to be a realistic approximation.In contrast, in this same scenario of all poles being di�erent, but using newand completely di�erent analysis techniques to those used in deriving Theo-rem 4.4.4, the new result of Theorem 4.4.2 is relevant since, provided thereis a reasonable number of �xed poles (5 or more appears `reasonable' in ourexperience), then it can be argued that convergence may have approximatelyoccurred in Theorem 4.4.2 and hence that an approximation like (4.20) can bereasonably argued to be appropriate.4.5 Bias/Variance Trade-o�The variance expression (4.20) together with the upper bound on the under-modelling error (4.11) provides a complete characterization of the accuracy ofthe estimates. The results show the well known trade-o� that exists in thechoice of model order p with regard to the relative size of both error compo-nents. Speci�cally an increase in model order to reduce the undermodellingerror will be at the cost of an increase of the variance error.The results also show how the estimation accuracy is in
uenced by thechoice of the poles of the basis functions. Here, an until now unappreciatedphenomenom is manifested, namely, a trade-o� in the choice of the poles of thebases regarding the magnitude of the bias and variance errors. More speci�-cally, assuming that the noise induced error and the undermodelling error areuncorrelated we can writeE����G(ej!; b�)�G(ej!)���2� = E����G(ej!; b�)�G(ej!; �?)���2�+ En��G(ej!; �?)�G(ej!)��2oUse of Theorems 4.3.1 and 4.4.2 then allows us to upper bound the frequencyresponse estimation error as followsE����G(ej!; b�)�G(ej!)���2� � r r�1X̀=0 ���� �`ej! � 
` ����2 p�1Yk=0 ���� 
` � �k1� �k
` ����2 + 
p(!)N ��(!)�u(!)We can see that if we want to decrease the undermodelling error for a givenmodel order, the poles of the bases have to be chosen close to the true poles,but then the noise induce error cannot be reduced at the frequencies of thepoles (due to the presence of the factor 
p(!)). On the other hand, if we wantto reduce the noise induced error for a �xed model order, the poles of the baseshave to be chosen well below the frequency at which the noise is dominating,but then if the true poles are not at these frequencies, the undermodelling errorwill be incremented. The following example illustrates this phenomenom.



72 4. SISO Identi�cation using Orthonormal BasesExample 4.5.1. Let the true system be given byG(q) = 0:1548q + 0:0939(q � 0:6065)(q � 0:3679) = 0:7871(q � 0:6065) � 0:6323(q � 0:3679) ;and let us consider that N = 1000 samples are available for the estimation inthe identi�cation setup of Section 4.2. It is assumed that the measurementnoise is a zero mean Gaussian white noise process of variance �2� = 0:01, andthat the input is a Gaussian white noise process with variance �2u = 0:1.
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Figure 4.3: Illustration of Bias/Variance trade-o� with respect to the choiceof Laguerre pole position.Figure 4.3 shows the dependence on the �xed pole position of the varianceerror, the bias error, and the total error at a frequency ! = 0:1 rad/s, whenusing an 8th order Laguerre model structure. H4.6 ConclusionsIn this chapter we have studied the problem of identi�cation, from input-outputdata in the time domain, of discrete-time single-input, single-output linear sys-tems using rational orthonormal bases and least squares techniques. The focusof the chapter has been the derivation of results concerning the accuracy ofthe estimation for the case of using orthonormal bases with �xed poles. Theresults generalize previous works corresponding to FIR, Laguerre and Kautz



4.A Proofs for Chapter 4 73bases. The way the location of the poles in the orthonormal structure a�ectsthe two components of the estimation error has been determined. This showsa new phenomenom of bias/variance trade-o� regarding the choice of the polelocations.Appendices4.A Proofs for Chapter 4Proof of Theorem 4.3.1 Using the Christo�el-Darboux formula for the repro-ducing kernel (equation (3.17)), and the partial fraction expansion for G(z) in(4.10) we can writeG(�)� bGp(�) = hG(z); K(z; �)�Kp(z; �)i= *G(z); 1 + 'p(z)'p(�)z�� 1 +
= hG(z); 1i+*G(z); 'p(z)'p(�)z�� 1 +
= *G(z); 'p(z)'p(�)z�� 1 += �'p(�) 12�j IT G(z)'p(z�1)z � � dz= �'p(�) r�1X̀=0 �` 12�j IT 'p(z�1)(z � 
`)(z � �) dz:In passing to the fourth line, use was made of the fact that due to CauchyResidue Theorem and the analyticity of G(z) outside the unit circle, thenhG(z); 1i = 12�j ITG(z�1)dzz = 0:Considering now that 'p(z�1) = p�1Yk=0 z � �k1� z�k ;



74 4. SISO Identi�cation using Orthonormal Baseswe can write appealing once again to Cauchy Residue TheoremG(�)� bGp(�) = �'p(�) r�1X̀=0 �` 12�j IT p�1Yk=0 (z � �k)(z � 
`)(z � �)(1� z�k) dz= �'p(�) r�1X̀=0 �`(
` � �) p�1Yk=0 
` � �k1� 
`�k :Now, the result follows by computing the previous equation on the unit circle(� = ej!), taking the module on both sides of the equation, considering that��'p(ej!)�� = 1 , and using triangle inequality. �Proof of Theorem 4.4.2 As mentioned at the beginning of Section 4.4, by ap-pealing to the results in [Lju87] it is possible to give the following frequencydomain characterization of the asymptotic distribution of the transfer functionestimate.� Asymptotic distribution of the transfer function estimate. For �xed modelorder p pN " G(ej!1; b�)�G(ej!1; �?)G(ej!2; b�)�G(ej!2; �?) # dist�! N (0;�0p(!1; !2))as N �!1, with�0p(!1; !2) , � �Tp (ej!1)�Tp (ej!2) � Pp � �Tp (ej!1)�Tp (ej!2) �?if !1 6= !2, and wherePp , R�1p QpR�1p ;Rp , limN!1Rp(N) = limN!1E fV 00N (�?)g ;Qp , limN!1NE�V 0N(�?)TV 0N(�?)	 :It is then straightforward to conclude that, for �xed model order ppN �
p(!1) 00 
p(!2)��1=2 " G(ej!1; b�)�G(ej!1; �?)G(ej!2; b�)�G(ej!2; �?) # dist�! N (0;�p(!1; !2))(4.A.1)as N �!1, where now �p(!1; !2) is de�ned as�p(!1; !2) , �
p(!1) 00 
p(!2)��1=2 �0p(!1; !2) �
p(!1) 00 
p(!2)��1=2 :



4.A Proofs for Chapter 4 75After some matrix manipulation, �p(!1; !2) can be written as�p(!1; !2) = 2664�?p(ej!1)Pp�p(ej!1)
p(!1) �?p(ej!1)Pp�p(ej!2)
1=2p (!1)
1=2p (!2)�?p(ej!2)Pp�p(ej!1)
1=2p (!1)
1=2p (!2) �?p(ej!2)Pp�p(ej!2)
p(!2) 3775 : (4.A.2)It is now clear that in order to analyze the asymptotic distribution (4.A.1) whenp tends to in�nity, we need only to study the asymptotic behaviour of the term�?p(ej!1)Pp�p(ej!2)
1=2p (!1)
1=2p (!2) : (4.A.3)To proceed with this analysis, we will provide a frequency domain expressionfor the matrix Pp.We introduce �rst some notation. For any positive function f : [��; �] !(0;1) we de�ne the p� p matrix Mp(f) asMp(f) , 12� Z ��� �p(ej!)f(!)�?p(ej!)d!: (4.A.4)We will call Mp(f) a Toeplitz-like matrix on account of the fact that for thecase of the basis functions being the FIR ones, then Mp(f) has e�ectively aToeplitz structure.1 [GS58].Considering the expression of Rp(N) in equation (4.8), the matrix Rp canbe written as Rp = limN!1 1N N�1Xk=0 E��k�Tk 	 :Using now Parseval's Theorem (in the form given by equation (2.3)), and thede�nition of Mp(f) in (4.A.4), Rp can be written asRp = 12� Z ��� �p(ej!)�u(!)�?p(ej!)d! =Mp(�u):The derivation of a frequency domain expression for the matrix Qp is moredi�cult. In [NHG97a] it is shown that Qp can be written asQp =Mp(�u��) + �p;1A matrix is said to be Toeplitz if its i; j-th entry depends only on the di�erence (i� j) ofthe indices. Some basic properties of Toeplitz matrices are:� A Toeplitz matrix is constant along its diagonals.� A lower (upper) triangular Toeplitz matrix is completely speci�ed by the elements ofthe �rst column (row).



76 4. SISO Identi�cation using Orthonormal Baseswhere �p is given by�p = 12� Z ��� �p(ej!)�2u(!)j eGp(ej!)j2�?p(ej!)d!;with eGp(ej!) , G(ej!)�G(ej!; �?):It can be also proved [NHG97a] that2limp!1 k�pk2 = 0:Finally, a frequency domain expression of the matrix Pp is then given byPp =M�1p (�u)Mp(�u��)M�1p (�u) +M�1p (�u)�pM�1p (�u):The term (4.A.3) can then be written as�?p(ej!1)Pp�p(ej!2)
1=2p (!1)
1=2p (!2) = �?p(ej!1)M�1p (�u)Mp(�u��)M�1p (�u)�p(ej!2)
1=2p (!1)
1=2p (!2)| {z }Term 1+ �?p(ej!1)M�1p (�u)�pM�1p (�u)�p(ej!2)
1=2p (!1)
1=2p (!2)| {z }Term 2 : (4.A.5)Now, the asymptotic analysis when p ! 1 can be carried out by resorting tothe results on convergence of Toeplitz-like matrices in Appendix 4.B. It canbe proved that for any choices of !1 and !2, Term 2 on the right hand side ofequation (4.A.5) tends to zero as p!1. On the other hand, as p!1, Term 1tends to ��(!)=�u(!) for !1 = !2 = !, and tends to zero for !1 6= !2. We referthe reader to [NHG97a, NHG97b] for the remainder details of the proof. �4.B Convergence of Toeplitz-like MatricesAlthough for general orthonormal bases the matrix form Mp(f) de�ned in(4.A.4) will not have a Toeplitz structure, some results on convergence ofToeplitz matrices can be extended to this form. For the orthonormal baseswith �xed poles introduced in Section 3.5, these convergence results are asfollows.2Here k � k2 stands for the matrix induced 2-norm or spectral norm (i.e. the maximumsingular value).



4.B Convergence of Toeplitz-like Matrices 77Theorem 4.B.1. Suppose f(!) is a real valued and continuous function on[��; �]. Then provided 1Xk=0(1� j�kj) =1;the following limit result holdslimp!1 �?p(ej!)Mp(f)�p(ej!)
p(!) = f(!):Proof: [NHG97b]�p(ej!)?Mp(f)�p(ej!) == p�1Xm=0 p�1Xn=0 Bm(ej!)Bn(ej!)[Mp(f)]m;n;= 12� Z ��� f(�) p�1Xm=0 p�1Xn=0 Bm(ej!)Bn(ej!)Bm(ej�)Bn(ej�) d�;= 12� Z ��� f(�) jKp(!; �)j2 d�:Therefore, for any � > 012� ������?p(ej!)Mp(f)�p(ej!)
p(!) � f(!)����� == 12�
p(!) ���?p(ej!)Mp(f)�p(ej!)� 
p(!)f(!)�� ;= 12�
p(!) ����Z ��� (f(�)� f(!)) jKp(!; �)j2 d����� ;� 12�
p(!) ����Z�2[!��;!+�] (f(�)� f(!)) jKp(!; �)j2 d����� ++ 12�
p(!) ����Z� 62[!��;!+�] (f(�)� f(!)) jKp(!; �)j2 d����� :Now, since f(!) is continuous, then for � su�ciently smalljf(�)� f(!)j � � on [! � �; ! + �]:and hence 12�
p(!) ����Z�2[!��;!+�] (f(�)� f(!)) jKp(!; �)j2 d����� �� �2�
p(!) Z ��� jKp(!; �)j2 d� = �:



78 4. SISO Identi�cation using Orthonormal BasesAlso, since f is continuous on compact [��; �] then f is bounded by someM=2 <1. Therefore 12�
p(!) ����Z� 62[!��;!+�] (f(�)� f(!)) jKp(!; �)j2 d����� �� M2�
p(!) Z� 62[!��;!+�] jKp(!; �)j2 d�:This gives12� ������?p(ej!)Mp(f)�p(ej!)
p(!) � f(!)����� � �+ M2�
p(!) Z� 62[!��;!+�] jKp(!; �)j2 d�Using the result in Lemma 4.C.1 and considering that � is arbitrary then com-pletes the proof. �Theorem 4.B.2. Suppose f(!) 2 L2([��; �]) is positive de�nite and has �nitedimensional spectral factorization. Then provided1Xk=0(1� j�kj) =1the following limit result holdslimp!1 �p(ej!)?M�1p (f)�p(ej!)
p(!) = f�1(!)Proof:�p(ej�)?Mp(f)�1�p(ej!)
p(!) = �p(ej�)?Mp(1=f)�p(ej!)
p(!) ++ �p(ej�)?Mp(f)�1[I �Mp(f)Mp(1=f)]�p(ej!)
p(!)Now by construction, the elements of the vector �(ej!) are bounded in mag-nitude by some �nite number K1, as de�ned in Lemma 5.E.2. Similarly, byLemma 4.C.3 the elements of the vector Mp(f)�1�p(ej!) can also be boundedby some �nite number K. In this case, using Lemma 4.C.2 gives that for some



4.C Technical Lemmas 79j�j < 1 ���p(!)?Mp(f)�1[I �Mp(f)Mp(1=f)]�p(!)�� �� p�1Xm=0 p�1Xn=0 ����p(!)?Mp(f)�1�m���� ���[Mp(f)Mp(1=f)]m;n � [Mp(1)]m;n��� ��[�p(!)]n��� K1K2 p�1Xm=0 p�1Xn=0(�p�m + �m)(�p�n + �n)= K1K2�1� �p1� � �2 (�p + �)2 <1:But by Lemma 5.E.3 12 p�1Xk=0(1� j�kj) � 
p(!);so that under the conditions of the lemmalimp!1 �p(!)?Mp(f)�1[I �Mp(f)Mp(1=f)]�p(!)
p(!) = 0:Therefore, by using Theorem 4.B.1limp!1 �p(!)?Mp(f)�1�p(!)
p(!) = limp!1 �p(!)?Mp(1=f)�p(!)
p(!) = f�1(!): �4.C Technical LemmasLemma 4.C.1. [NHG97b] Let Kp(!; �) denote the reproducing kernel of theOBFP fBkg introduced in Section 3.5. Then12� Z ��� jKp(!; �)j2 d� = p�1Xm=0 jBm(ej!)j2 , 
p(!):Furthermore, for any � > 0, provided1Xk=0(1� j�kj) =1;then limp!1 1
p(!) Z� 62[!��;!+�] jKp(!; �)j2 d� = 0:



80 4. SISO Identi�cation using Orthonormal BasesProof: See [NHG97b]. �Lemma 4.C.2. Let f; g 2 L2([��; �]) have �nite dimensional spectral factor-izations. Then there exists j�j < 1 and K <1 such that���[Mp(f)Mp(g)]m;n � [Mp(fg)]m;n��� � K(�p�m + �m)(�p�n + �n):Proof: See [NHG96]. �Lemma 4.C.3. Suppose f 2 L2([��; �]) has a �nite dimensional spectral fac-torization. Then 9K <1 which is independent of p such that��[Mp(f)�p(!)]`�� < K; ����M�1p (f)�p(!)�`��� < K:Proof: See [NHG96]. �



5MIMO Identi�cation using OrthonormalBases
In this chapter the idea of using orthonormal bases and PEM (least squarestechniques) for the identi�cation of discrete-time linear time-invariant systemswill be extended from the SISO to the MIMO (Multiple-Input Multiple-Output)setting. It will be shown how the rational orthonormal bases with �xed polesintroduced in Section 3.5 (or the corresponding MIMO bases generated as inSection 3.6) can be used to linearly parameterize any multivariable �xed de-nominator model structure. The use of these bases will allow the incorporationin the identi�cation process of prior knowledge about dominant dynamics ofthe system, and will facilitate the analysis of the estimation accuracy. As donefor the SISO case, the accuracy of the estimation will be quanti�ed by deriv-ing expressions for an upper bound on the undermodelling error and for theasymptotic (in data-length and model order) covariance of the transfer ma-trix estimate (noise induced error). The asymptotic covariance analysis will bebased on the derivation of convergence properties of some block Toeplitz-likematrices. The recently popular Subspace-based State Space System IDenti�ca-tion (4SID) methods for multivariable systems [Vd96] will be brie
y reviewed,and through simulation experiments, their performance will be compared withthat of the orthonormal basis-based methods proposed here.5.1 IntroductionTo the best of our knowledge, except for the well known special case of FIRmultivariable model structure studied in [YL84, Zhu89, Zhu94], the use of moregeneral bases in MIMO system identi�cation has not been studied to date exceptfor the work in [HbVB95] and work by Ninness, the current author and co-workers in [NnGW95, NG96].Following the SISO paradigm for identi�cation using orthonormal bases andleast squares techniques described in the previous chapter, the obvious exten-



82 5. MIMO Identi�cation using Orthonormal Basession to the MIMO setting would be to construct general orthonormal bases forthe space Hm�n2 (T) of (m� n) transfer matrices whose elements are in H2(T),and then to parameterize the transfer matrix of the system as a series expan-sion in terms of these bases. The identi�cation would then be performed byestimating a �nite number of expansion coe�cients using least squares tech-niques. However, in contrast to the SISO case, several parameterizations ofthe system using orthonormal bases are possible in the MIMO context. For in-stance, in [YL84], Yuan and Ljung use the standard FIR scalar bases fz�kg toparameterize the (m� n) transfer matrix of the system as a linear combinationof the bases, where the coe�cients are (m� n) matrices (the impulse responsematrices or Markov (matrix) parameters).This idea of using scalar bases in identi�cation of MIMO systems is appliedhere for the case of the more general orthonormal bases studied in Section 3.5.In addition, it is shown that the parameterization of the MIMO system usingscalar bases (with matrix coe�cients) is equivalent to the parameterizationusing matrix bases (generated from the scalar ones via Theorem 3.6.1) withscalar coe�cients.As mentioned in the introduction of the previous chapter, some emphasis hasbeen placed in the literature [Wah91b, Wah94b, Wah91a, Oli95a, Bod95] on theuse of orthonormal model structures as an implementational tool with certainnumerical properties ensuring the well-posedness of the least squares estimationproblem. In this chapter, an upper bound on the condition number of the leastsquares estimation will be derived. This guarantees a worst case numericalconditioning of the estimation using orthonormal structures. However, it will beshown that since this upper bound is completely speci�ed by the input spectraldensity and is not a�ected by the particular bases chosen (as far as they areorthonormal), the numerical conditioning can still be very bad depending onthe nature of the input.In consideration of this, and as has already been mentioned, the approach inthis thesis, following [NHG97a], is to consider the orthonormal structure as ananalysis tool rather than an implementational tool. We will show that any mul-tivariable �xed denominator model structure can be linearly re-parameterizedusing rational orthonormal bases with the same �xed poles. The analysis of theestimation accuracy can then be carried out on the orthonormal structure in amore tractable way by exploiting the orthonormality property of the bases.In this chapter, we extend the single-input, single-output results concerningthe accuracy of the estimation presented in [Wah91b, Wah94b] for Laguerre andKautz models, and in [VHB95, NG97, NHG97a] (as summarized in Sections 4.3and 4.4) for more general models, to the multivariable setting; and also themultivariable results in [YL84] from the FIR setting to more general modelstructures which encompass the FIR structure as a special case.The main contribution of the chapter is the extension of the asymptotic



5.1 Introduction 83FIR results of [YL84] to the case of using general orthonormal bases with �xedpoles. More speci�cally, in [YL84] the variance of the FIR transfer functionmatrix estimate was shown to be approximately (for large data-length N andlarge model order p) equal to pN ��1u (!)
 ��(!)where �u(!) is the input spectral density, ��(!) is the output measurementnoise spectral density, and 
 is the Kronecker matrix product (see Appendix Afor the de�nition and properties). In this chapter we show that for the OBFPdescribed in Section 3.5, the above expression should be changed to
p(!)N ��1u (!)
 ��(!):where 
p(!) , Pp�1k=0 jBk(ej!)j2 (see Figure 4.2). Note that for FIR models
p(!) = p so that the new expression contains the previously known FIR modelstructure result [YL84] as a special case. The expression is also in formal analogywith the single-input, single-output result of Theorem 4.4.2. The derivation,however, is considerably more complicated. A �rst di�culty (inherited fromthe SISO case) is that the OBFP we use in this thesis do not have the algebraicstructure that would allow to reduce the problem to the FIR case. A seconddi�culty is that in the MIMO case several quantities do not conmute. Fun-damental for the analysis will be the derivation of some results concerning theconvergence of block Toeplitz-like matrices.The rest of the chapter is organized as follows. The identi�cation problemis stated in Section 5.2. In that section we also show how the orthonormalbasis with �xed poles introduced in Section 3.5 can be used to linearly re-parameterized any multivariable �xed denominator model structure. In Section5.3, it is shown that the parameterization of the MIMO system using (matrix)orthonormal bases (with scalar coe�cients) is equivalent to the parameteri-zation using scalar bases with matrix coe�cients. The MIMO identi�cationproblem using orthonormal bases and least squares techniques is solved in Sec-tion 5.4. The numerical robustness of the identi�cation algorithms is analyzedin Section 5.5. In Section 5.6 we analyze the undermodelling induced errorthat results from the parsimony of the model structure (due to a �nite numberof expansion terms), which is too simple to exactly represent the system. InSection 5.7, the main contribution of the chapter is derived. Namely, an ex-pression for the asymptotic (in number of observed data and in model order)covariance of the transfer matrix estimate is obtained. This expression is usedto quantify the estimation error induced by the presence of measurement noise.The derived result is consistent with that presented in [YL84] for the partic-ular case of FIR multivariable model structures, and indicates that the noiseinduced error is asymptotically proportional to the (generalized) noise-to-signal



84 5. MIMO Identi�cation using Orthonormal Basesratio. The analysis is based on new results concerning the convergence of blockToeplitz-like matrices. For the purposes of comparison with the orthonomalbasis-based identi�cation method proposed in this chapter, a brief review ofSubspace-based State Space System IDenti�cation (4SID) methods for multi-variable systems is given in Section 5.9. Finally, some simulation examples arepresented in Section 5.10, and some conclusions in Section 5.11.5.2 Problem FormulationWe address the problem of identi�cation of Discrete-Time Linear Time-InvariantMIMO systems from observed input-output data in the time domain. To bemore speci�c, it is assumed that the system has n inputs and m outputs andthat N samples of n input sequences fu1kg; fu2kg; : : : ; funkg, as well as m outputsequences fy1kg; fy2kg; : : : ; fymk g are available for the identi�cation. We assumealso that the data are related according toyik = nXj=1 Gij(q)ujk + mXs=1 His(q)esk; (5.1)with i = 1; 2; � � � ; m.The scalar transfer functions fGij(q)g and fHij(q)g describe respectively theunknown (assumed stable) system dynamics and the disturbance model thatare to be identi�ed. A notational simpli�cation is possible by vectorizing:yk , (y1k; y2k; : : : ; ymk )T ;uk , (u1k; u2k; : : : ; unk)T ;ek , (e1k; e2k; : : : ; emk )T ;G(q) = 26664 G11(q) G12(q) : : : G1n(q)G21(q) G22(q) : : : G2n(q)... ... : : : ...Gm1(q) Gm2(q) : : : Gmn(q)
37775 ;

H(q) = 26664 H11(q) H12(q) : : : H1m(q)H21(q) H22(q) : : : H2m(q)... ... : : : ...Hm1(q) Hm2(q) : : : Hmm(q)
37775 ;so that (5.1) can be rewritten in matrix form asyk = G(q) uk +H(q) ek = G(q) uk + �k: (5.2)



5.2 Problem Formulation 85Here fekg is assumed to be a stationary (zero mean) white noise vector processswith covariance matrix E�ekeTk 	 = �. In this case, the disturbance term �k =H(q) ek is also a stationary process with spectral density [Lju87]��(!) = H(ej!)�H?(ej!): (5.3)A standard approach is to provide the model (5.2) with a �nite dimensionalparameterization yk = G(q; �) uk +H(q; �) ek; (5.4)so that the system can be identi�ed by estimating the (�nite dimensional)parameter vector �.There are many options available for the estimation of G(q; �) and H(q; �)within this problem setting. For example, a general prediction error tech-nique (as described in Chapter 2) using a multivariable Box{Jenkins [BJ76]or a state{space model structure could be employed [Lju87] (see [Lju91] foran example of identi�cation of arbitrarily parameterized state-space modelswithin the framework of the System Identi�cation Toolbox [Lju95] for usewith Matlab1[Mat94]). Unfortunately, as mentioned in Chapter 2, apartfrom the various di�culties concerning identi�ability of these model struc-tures [Lju87, GW74, Gui75, Gui81], this strategy may also result in a numeri-cally intensive iterative (possibly nonlinear and nonconvex) optimization proce-dure. In addition, the analysis of the (�nite data) estimation accuracy becomesvery di�cult (sometimes intractable) for this case.Another possibility is to employ one of the recently popular Subspace-based State-Space System IDenti�cation (4SID)2 methods for multivariable sys-tems [Vd96], such as the N4SID [Vd94a, Vd94b, Vd91a, Vib94, Vib95, OV94,VOWL93, VOWL91], MOESP [Ver91, VD91b, VD92], and CVA [Lar90, Lar94]methods. These schemes provide accurate state-space models for multivariablesystems directly from input-output data, and have the advantage that no itera-tive procedures are involved. Instead, they employ reliable numerical algorithmssuch as Singular Value Decomposition (SVD), and QR-decomposition [GV89].Work is still progressing on quantifying the estimation error involved with theuse of such methods [VWO97, DPS95, DPS94].In this thesis, our interest is not on the estimation of the model for theadditive output noise (that is, on the estimation of H(q; �)), whose secondorder statistics will be assumed to be known, but only on the estimation of thetransfer matrix G(q; �) describing the system dynamics. We concentrate thenon the parameterized model yk = G(q; �) uk + �k; (5.5)1Matlab is a registered trademark of The MathWorks, Inc.2Pronounced `force it'.



86 5. MIMO Identi�cation using Orthonormal Basesrather than on (5.4).Furthermore, and for the sake of ease of error quanti�cation, lack of iden-ti�ability problems and small computational load, we will focus on the studyof prediction error methods with a quadratic criterion and with a particularmodel structure that has �xed poles that are chosen according to prior knowl-edge about the system. To facilitate the analysis of estimation accuracy we willfurther re-parameterize this model structure using orthonormal bases with thesame �xed poles.The particular model structure we will consider is given asG(q; �) = D�1p (q) p�1Xk=0 �kqk; (5.6)Dp(q) = p�1Ỳ=0(q � �`); (5.7)where �k 2 Rm�n ; k = 0; � � � ; p� 1, are matrices of parameters to be estimated(namely, the coe�cients of the numerator polynomials of the individual transferfunctions fGij(q)g), and f�0; �1; � � � ; �p�1g are the poles chosen by the user tore
ect prior knowledge about the true system G(q). The advantage of thismodel structure is that it allows the input-output relationship to be easily castin linear regressor form as yk = �T k + �k; (5.8)with �T , (�0; �1; � � � ; �p�1) ; (5.9) k , 2666664 D�1p (q)InqD�1p (q)Inq2D�1p (q)In...qp�1D�1p (q)In
3777775 uk = �p(q) uk; (5.10)�p(q) , �D�1p (q)In; qD�1p (q)In; � � � ; qp�1D�1p (q)In�T ; (5.11)so that if a quadratic criterion is used, the resulting least squares estimate canbe found in a computationally cheap manner. It is well known that the leastsquares estimate can be written in closed form asb� =  N�1Xk=0  Tk  k!�1 N�1Xk=0  kyTk : (5.12)



5.2 Problem Formulation 87Our main interest is now to quantify the accuracy of the resulting transfermatrix estimate G(q; b�) = b�T �p(q); (5.13)and particularly to study how the estimation error is a�ected by the choice ofthe poles f�kg in Dp(q).To undertake this study let us �rst notice that since via equations (5.6),(5.7), (5.9), (5.11), and (5.12) the estimate G(q; b�) is linear in the data, then itis invariant under linear re-parameterization of the model structure (5.6) (SeeLemma 5.E.1 in Appendix 5.E). This implies that the same transfer matrixestimate G(q; b�) is obtained if one instead chooses the model structureG(q;�) = p�1Xk=0 �Tk Bk(q) = �T �p(q); (5.14)where the transfer functions fB`(q)g are the orthonormal bases with �xed poles(OBFP) introduced in Section 3.5, with the same poles as in Dp(q), and wherenow � , ��T0 ; �T1 ; � � � ; �Tp�1�T ;with �Tk 2 Rm�n , and �p(q) , [B0(q)In;B1(q)In; � � � ;Bp�1(q)In]T .Although the two formulations (5.6)-(5.7) and (5.14) are equivalent in thesense that the obtained tranfer matrix estimates are identical (i.e. G(q; b�) =G(q; b�)), the latter structure (5.14) is much preferable from an analytical pointof view, since the basis functions fB`(q)g are orthonormal, and this propertycan be exploited in the quanti�cation of the estimation accuracy. Due to thisequivalence, it is not di�cult to see that the bias and variance error propertiesof the estimates derived from the two model structures are also identical. How-ever, since the orthonormal structure (5.14) is more tractable, this is the modelstructure we will employ for the analysis in this chapter, keeping in mind thatthe results of this analysis can also be applied to the model structure (5.6)-(5.7)or any other linearly equivalent one.As mentioned in the introduction of the chapter, several parameterizationsusing orthonormal basis are possible in the MIMO framework. Besides themodel structure (5.14) that corresponds to the case of scalar bases fB`(z)g (i.e.bases of the space H2(T)) with matrix coe�cients �T̀ 2 Rm�n , we will also con-sider an orthonormal structure corresponding to (m�n)-matrix bases (i.e. basesof the space Hm�n2 (T), as the ones introduced in Section 3.6) with scalar coef-�cients �T̀ 2 R . In the following section we prove that both parameterizationsare equivalent.



88 5. MIMO Identi�cation using Orthonormal Bases5.3 An equivalent MIMO parameterizationLet �Bij` (z)	1̀=0 ; (i = 1; : : : ; m; j = 1; : : : ; n) be an orthonormal basis for thespace Hm�n2 (T) generated from the scalar bases fB`(z)g1̀=0 as in Theorem 3.6.1.Then any stable causal tranfer matrix G(z) in Hm�n2 (T) can be approximatedby a linear combination of a �nite number of elements of the orthonormal set,that is G(z;�) = p�1X̀=0 mXi=1 nXj=1 �ij` Bij` (z): (5.15)The following Lemma shows that, for the appropriate de�nition of the param-eter matrices �`, the above expression is equivalent toG(z;�) = p�1X̀=0 �T̀B`(z): (5.16)Lemma 5.3.1. Let fBij` (z)g1̀=0; (i = 1; : : : ; m; j = 1; : : : ; n) be an orthonormalbasis on Hm�n2 (T) generated from the scalar basis fB`(z)g1̀=0 as in Theorem3.6.1. Then the following identity holdsp�1X̀=0 mXi=1 nXj=1 �ij` Bij` (z) = p�1X̀=0 �T̀B`(z);where the parameter matrices �` are de�ned as�T̀ , 264 �11` : : : �1n`... . . . ...�m1` : : : �mn` 375 : (5.17)Proof: See Appendix 5.A. �Remark 5.3.1. This result means that the two orthonormal structures we haveconsidered thus far (given by equations (5.16) and (5.15)) are completely equiv-alent, so that we can use any of them indistinctively to represent the transfermatrix of the system. Most of the analysis of the following sections will becarried out for the parameterization with scalar bases and matrix coe�cients(5.16). However, when convenient, the parameterization with matrix bases willalso be used. �



5.4 Parameter Estimation 895.4 Parameter EstimationThe representation in (5.14) leads to the convenient linear regressor formyk = G(q;�)uk + �k;= ��T0 ; �T1 ; � � � ; �Tp�1�26664 InB0(q)InB1(q)...InBp�1(q)
37775 uk + �k;= �T (Bp(q)
 In) uk + �k;= �T �p(q) uk + �k;= �T �k + �k; (5.18)where we have de�ned3 �T , ��T0 ; �T1 ; � � � ; �Tp�1� ; (5.19)Bp(q) , [B0(q); � � � ;Bp�1(q)]T ; (5.20)�p(q) , Bp(q)
 In; (5.21)�k , �p(q) uk: (5.22)With the above de�nitions for � and �p(q), the transfer matrix is given byG(q;�) = �T �p(q): (5.23)With the system in linear regressor form (5.18), the most obvious scheme forestimating the parameter matrix � is the least squares method. The leastsquares estimate b� of � is the minimizing argument of the quadratic criterionVN (�) = 1NTr(N�1Xk=0 "k(�)"Tk (�)) ; (5.24)where "k(�) = yk �G(q;�)uk. That isb� = argmin� fVN(�)g = argmin� ( 1NTr(N�1Xk=0 "k(�)"Tk (�))) : (5.25)It is well known [Lju87] that this optimization problem has an explicit solutiongiven byb� =  1N N�1Xk=0 �k�Tk!�1 1N N�1Xk=0 �kyTk! = eR�1p (N) 1N N�1Xk=0 �kyTk! ; (5.26)3Please don't confuse Bp(q) (a column vector of tranfer functions), with Bp(q) (a scalartransfer function).



90 5. MIMO Identi�cation using Orthonormal Baseswhere we have de�ned eRp(N) ,  1N N�1Xk=0 �k�Tk! : (5.27)Adopting the vectorized notationY T = (y0; y1; � � � ; yN�1) ;�T = (�0; �1; � � � ; �N�1) ;V T = (�0; �1; � � � ; �N�1) ;the model for the N point observed data record can be written as:Y = ��+ V; (5.28)so that the estimate b� de�ned in equation (5.25) can be written in a morecompact form as b� = �yY; (5.29)where �y is the Moore-Penrose pseudoinverse of �. If there is su�cient inputexcitation for the indicated inverse to exist this will be given by�y = (�T�)�1�T : (5.30)The frequency response estimate is then given byG(ej!; b�) = b�T�p(ej!): (5.31)Remark 5.4.1. Although the proposed identi�cation scheme can be used withany orthonormal basis fB`(z)g 2 H2(T), we will restrict the analysis of esti-mation accuracy to the generalized orthonormal basis with �xed poles (OBFP)introduced in Section 3.5 (or the equivalent MIMO version generated via Theo-rem 3.6.1), keeping in mind that these bases allow the representation of a moreextensive class of models. In particular, they can be used to represent the mul-tivariable �xed denominator model structure with arbitrary poles in (5.6)-(5.7).This is not the case with other orthonormal bases such as FIR, Laguerre, Kautz,or the more general OBGIF, where the poles are restricted either to be all thesame, or to come from the same set which is repeated cyclically as higher modelorders are assumed. �In the following sections we analyze the numerical properties of the proposedidenti�cation algorithm, as well as the accuracy of the estimation (bias andvariance errors).



5.5 Numerical properties 915.5 Numerical propertiesThe numerical robustness of identi�cation algorithms is particularly importantin the context of multivariable systems where large numbers of parametersneed to be estimated [Vd94a, Vib94]. Furthermore, it is well known [GV89]that when least squares procedures are employed, these numerical propertiesare strongly governed by the condition number of the `covariance' matrix eRp(N)(de�ned in (5.27)) in the normal equation (5.26).For the single-input, single-output case this condition number has been up-per bounded in terms of the input spectral density �u(!) when particular or-thonormal basis model structures are employed [Wah91b, Wah94b, VHB95,NHG97b, GS58].This result can be extended to arbitrary orthonormal bases and to the mul-tivariable setting. This is done in the following Lemma, where (as in [Wah91b,Wah94b, NHG97b]) we compute lower and upper bounds on the singular valuesof the asymptotic (in data-length N) covariance matrix eRp de�ned aseRp , limN!1 eRp(N) = limN!1 1N N�1Xk=0 �k�Tk! = E��k�Tk 	 :Lemma 5.5.1. Let the set of singular values of eRp be denoted as �[ eRp] and let�[�u(!)] and �[�u(!)] denote the smallest and the largest singular valuesof the input spectral density �u(!), respectively. Then�[ eRp] � �inf! �[�u(!)]; sup! �[�u(!)]� :Proof: See Appendix 5.A. �Using this lemma, the condition number �[ eRp] of eRp may be straightforwardlyupper bounded in terms of the singular values of the input spectral density as1 � �[ eRp] � sup! �[�u(!)]inf! �[�u(!)] : (5.32)This upper bound provides a guaranteed worst-case limit for the numericalconditioning. Notice however that since the upper bound depends exclusivelyon the input excitation, the numerical conditioning can be very bad dependingon the nature of this input. For the particular case of white input, the inputspectral density �u(!) is constant, so that equation (5.32) implies�[ eRp] = 1;which means that the least squares estimation using the orthonormal structureis perfectly numerically conditioned.



92 5. MIMO Identi�cation using Orthonormal BasesNotice that the way the numerical conditioning is a�ected by an increas-ing model order (which is the case where the numerical issue is more impor-tant [GV89]) or by the particular choices for the poles of the bases, is notre
ected by the upper bound we have derived.As already mentioned, this guarantee of the worst{case numerical condition-ing appears to have been one of the main motivations for using orthonormalbases in a system identi�cation setting. However, to the best of our knowledge,there is no theoretical evidence to suggest that an orthonormal structure willnecessarily provide a better numerical conditioning when compared with theone obtained with an equivalent non-orthonormal structure. In the following,lower and upper bounds on the ratio between the condition numbers usingorthonormal and non-orthonormal model structures are derived.Let the transfer matrix of the system be represented as a truncated seriesexpansion in terms of the orthonormal basis fBk(q)gp�1k=0 . This representationleads to the linear regressor form of equation (5.18), or its vectorized form (5.28).The asymptotic (in data-length) numerical conditioning of the least squaresestimation is then given by the condition number of the matrix E��k�Tk	.Similarly, the transfer matrix can be represented as a linear combination ofthe elements of a (non-orthonormal) set fAk(q)gp�1k=0, spanning the same space asfBk(q)gp�1k=0. For example, for the case of fBk(q)gp�1k=0 been the OBFP introducedin Section 3.5, a possible non-orthonormal set spanning the same space is givenby the functions Ak(q) = 1=(q � �k), with the same poles as in the set fBk(q)g.The representation of the system using the non-orthonormal set also leads to alinear regressor form yk = G(q; �)uk + �k = �T k + �k;where � 2 Rnp�m is the parameter matrix to be estimated, and where k , �p(q)uk;�p(q) , Ap(q)
 In;Ap(q) , [A0(q); � � � ;Ap�1(q)]T :In vectorized form we can writeY = 	� + V;Y T , (y0; y1; � � � ; yN�1) ;	T , ( 0;  1; � � � ;  N�1) ;V T , (�0; �1; � � � ; �N�1) :In this case the asymptotic (in data-length) numerical conditioning of the leastsquares estimation of the parameter matrix � is determined by the conditionnumber of the matrix E� k Tk 	.



5.5 Numerical properties 93Our objective is now to relate the matrices E��k�Tk 	 and E� k Tk 	 in orderto compare the numerical conditioning of the estimation using orthonormaland non-orthonormal model structures. To proceed with this, notice that sinceAk(z) 2 Span�fBk(z)gp�1k=0	 we can writeAk(z) = p�1Xj=0 hAk(z);Bj(z)i Bj(z);= [hAk(z);B0(z)i ; � � � ; hAk(z);Bp�1(z)i]Bp(z):Then Ap(z) and Bp(z) are related according toAp(z) = J�1Bp(z);where J 2 Rp�p is the nonsingular matrixJ = 264 hA0(z);B0(z)i � � � hA0(z);Bp�1(z)i... ... ...hAp�1(z);B0(z)i � � � hAp�1(z);Bp�1(z)i 375�1 :Based on this it is not di�cult to show that the regressors  k and �k are relatedaccording to  k = �J�1 
 In��k; (5.33)and then E� k Tk 	 = �J�1 
 In�E��k�Tk 	 �J�1 
 In�T ; (5.34)which is the relation we were looking for. Considering now that for a givennorm and matrices A and B of appropriate dimensions [GV89]�[AB] � �[A]�[B];from equation (5.34) we can write1�[(J 
 In)]2 � �[E� k Tk 	]�[E ��k�Tk 	] � �[(J 
 In)]2: (5.35)The above equation shows that it is not necessarily true that the use of or-thonormal model structures represents an improvement on the numerical con-ditioning of the estimation with respect to the case of using non-orthonormalmodel structures. The following example illustrates this fact.



94 5. MIMO Identi�cation using Orthonormal BasesExample 5.5.1. Let us consider the scalar case where the orthonormal functionsfBk(z)g are the Laguerre basesBk(z) =  p1� �2z � � !�1� �zz � � �k ; k � 0; (5.36)and where the non-orthonormal functions fAk(z)g are given byAk(z) = 1(z � �)k+1 ; k � 0; (5.37)with the same �xed pole �, and spanning the same space as fBk(z)g . For thecase of model order p = 3, matrix J is given byJ = 24 p1� �2 0 0��p1� �2 (1� �2)p1� �2 0�2p1� �2 2�(�2 � 1)p1� �2 p1� �2(1� �4 + 2�2(�2 � 1)) 35 :Figure 5.1 shows the upper bound �[(J 
 In)]2 in equation (5.35) as a functionof the pole location (�) for this case.
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Figure 5.1: Upper bound on the ratio between the conditionnumbers for the non-orthonormal and the orthonormal structures(�[E� k Tk 	]=�[E��k�Tk 	]) as a function of the pole location �, and formodel order p = 3.



5.5 Numerical properties 95The left hand plot of Figure 5.2 shows the condition numbers �[E� k Tk 	](dashed line) and �[E��k�Tk 	] (solid line) corresponding to the non-orthonormaland the orthonormal structures respectively, as a function of the model orderp, for the case � = �0:1. The right hand plot of the �gure shows the ratio�[E� k Tk 	]=�[E��k�Tk 	] between these conditions numbers. The simulationswere performed with a unit amplitude, square wave input signal of fundamentalfrequency 0:01 Hz.
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Figure 5.2: Left hand �gure shows the condition numbers �[E� k Tk 	](dashed line) and �[E��k�Tk	] (solid line) corresponding to the non-orthonormal and the orthonormal structures respectively, as a functionof the model order p for the case � = �0:1. Right hand �gure shows theratio �[E� k Tk 	]=�[E��k�Tk	] as a function of p for this case.The simulations show that for the case p = 3 and � = �0:1 the upperand lower bounds on the ratio between the condition numbers of the non-orthonormal and orthonormal covariance matrices are�[(J 
 In)]2 = 1:5688 ; 1�[(J 
 In)]2 = 0:6374;while the value of this ratio is�[E� k Tk 	]�[E ��k�Tk 	] = 0:6698:It is clear from the plots in Figure 5.2 that, in this case, the use of theorthonormal structure (5.36) instead of the more natural non-orthonormal form(5.37) results in a deterioration of the numerical conditioning rather than in animprovement. H



96 5. MIMO Identi�cation using Orthonormal Bases5.6 Undermodelling ErrorIn this section we derive results regarding the quanti�cation of the compo-nent of the transfer matrix estimation error that is produced by the restrictedcomplexity of the model used to represent the system. For the single-input,single-output case, the result of Theorem 4.3.1, in the form of an upper boundon the undermodelling error, shows that the 
exibility in the choice of the polesof the bases can be exploited in order to provide a more accurate estimation. Asimilar result can be established for the multivariable case `mutatis mutandis'from the single-input, single-output result in Theorem 4.3.1.Let bG(z) denote the bestHm�n2 (T) approximation toG(z) with respect to thepmn basis matrices �B110 ; � � � ;Bmn0 ; � � � ;B11p�1; � � � ;Bmnp�1	 de�ned by equations(3.28)-(3.14) . Namely bG(z) , p�1Xk=0 mXi=1 nXj=1 
G;Bijk �Bijk (z) (5.38)where h�; �i stands for the inner product in the space Hm�n2 (T) as de�ned in(3.29). Considering the de�nition of Bijk (z) in (3.28), equation (5.38) can bewritten as bG(z) = p�1Xk=0 264 hG;B11k i � � � hG;B1nk i... . . . ...hG;Bm1k i � � � hG;Bmnk i 375Bk(z)Then, the i; j-th component bGij(z) of bG(z) is given bybGij(z) = p�1Xk=0 
G;Bijk �Bk(z): (5.39)Using again the de�nition of Bijk (z), it is straightforward to show that
G;Bijk � = hGij;Bki ;where in the RHS, the symbol h�; �i stands now for the inner product in thespace H2(T) as de�ned in (3.27)4. Substituting back in equation (5.39), theexpression for bGij(z) becomesbGij(z) = p�1Xk=0 hGij;Bki Bk(z); (5.40)4The fact that the same symbol is being used to denote both the inner product in H2(T) andin Hm�n2 (T) should lead to no confusion, since the meaning becomes clear from the context.



5.6 Undermodelling Error 97which is the best H2(T) approximation of Gij(z) with respect to the p basisfunctions fB0(z);B1(z); � � � ;Bp�1(z)g. In similar way, it can be proved that thei; j-th component Gij(z) of the true transfer matrix G(z) is given byGij(z) = 1Xk=0 hGij;Bki Bk(z): (5.41)We are now able to quantify (component-wise) the error between the true trans-fer function Gij(z) and the restricted complexity approximation bGij(z). Theresult is summarized in the following theorem.Theorem 5.6.1. Let the i; j-th component Gij(z) of the transfer matrix G(z)of the system have partial fraction expansionGij(z) = rij�1X̀=0 �ij`z � 
ij` ;where all the poles satisfy j
ij` j < 1. Let bGij(z) denote the i; j-th com-ponent of best Hm�n2 (T) approximation bG(z) to G(z) with respect to thepmn basis matrices �B110 ; � � � ;Bmn0 ; � � � ;B11p�1; � � � ;Bmnp�1	 de�ned by equations(3.28)-(3.14), with �xed poles f�kg(k = 0; � � � ; p� 1) . Then���Gij(ej!)� bGij(ej!)��� < rij�1X̀=0 ����� �ij`ej! � 
ij` ����� p�1Yk=0 ����� 
ij` � �k1� �k
ij` ����� : (5.42)Proof: Considering the derived expressions for Gij(z) and bGij(z) in equations(5.41) and (5.40) respectively, it becomes clear that the proof proceeds in anidentical way as that of Theorem 4.3.1 for the single-input, single-output case,and therefore it is omitted. �The same comments made on page 60 in relation to the result in Theorem 4.3.1also apply component-wise to this case. The theorem indicates that the ap-proximation error that results from the use of the restricted complexity modelstructure (5.38) can be reduced by choosing the poles f�kg of the bases closeto the true poles f
ij` g of the system, since this minimizes the product term inthe upper bound in (5.42).Theorem 5.6.1 can also be used to provide a quanti�cation of the undermod-elling induced error in the least squares estimate G(q; b�) by noting that underthe given assumptions, by the results in [Lju87] (as summarized in Theorems2.2.1 and 2.2.2) b� a.s.�! �? as N !1;



98 5. MIMO Identi�cation using Orthonormal Baseswhere �? = argmin�2Rm�np( limN!1 1NTr(N�1Xk=0 E�"k(�)"Tk (�)	)) ;with "k(�) , yk �G(q;�)uk = (G(q)�G(q;�))uk + �k:Using Parseval's Theorem (in the form given in equation (2.3)), and neglectingterms independent of � then allows �? to be re{expressed as�? = argmin�2Rm�np� 12� Z ��� Tr f�~u(!;�)g d!� ; (5.43)where �~u(!;�) = �G(ej!)�G(ej!;�)��u(!) �G(ej!)�G(ej!;�)�? :In the special case of white input excitation where �u = In, this gives theasymptotic estimate as�? = argmin�2Rm�np( 12� mXk=1 nX̀=1 Z ��� jGk`(ej!)�Gk`(ej!;�)j2 d!) :This criterion is satis�ed by the solution�? = ��T0 ; � � � ; �Tp�1� ;with �Tk = 264 hG;B11k i � � � hG;B1nk i... . . . ...hG;Bm1k i � � � hG;Bmnk i 375 ;so that the result of Theorem 5.6.1 implies��Gij(ej!)�Gij(ej!;�?)�� < rij�1X̀=0 ����� �ij`ej! � 
ij` ����� p�1Yk=0 ����� 
ij` � �k1� �k
ij` ����� ; (5.44)which provides quanti�cation (which applies with probability one) of the asymp-totic undermodelling induced error in the case of white input excitation.The case of non{white input is more di�cult. Nevertheless, for such cases itis still possible to derive frequency dependent upper bounds on the undermod-elling error similar to that possible for the white input case (5.44), but that are



5.6 Undermodelling Error 99not as tight or as explicit. To present them, it is necessary to recall that sincefBijk g is complete in Hm�n2 (T) then any G(ej!) 2 Hm�n2 (T) may be expanded asG(ej!;�) = p�1X̀=0 mXi=1 nXj=1 �ij` Bij` (ej!) + 1X̀=p mXi=1 nXj=1 �ij` Bij` (ej!) (5.45)where �ij` ,< G;Bij` > are the generalized Fourier coe�cients. Appealing toLemma 5.3.1, equation (5.45) can be written asG(ej!) = p�1X̀=0 �`B`(ej!) + 1X̀=p �`B`(ej!): (5.46)where �` 2 Rm�n are de�ned in equation (5.17). When G(z) is �nite dimen-sional, a simple argument using Cauchy's Residue Theorem shows that theseparameters decay exponentially as j�ijk j = o(�k) as k !1 for some j�j < 1.In terms of these decaying parameters, and a possibly coloured input spec-trum �u(!), a frequency dependent bound on the undermodelling induced es-timation error may then be given as follows.Lemma 5.6.1. Let K1 be de�ned asK1 ,s1 + j�maxj1� j�maxj ; (5.47)where �max denotes the pole with maximum module in the set f�kg. Then,with probability one:��[G(ej!)�G(ej!;�0)]i;j�� �� K1 1X̀=p maxi;j ���ijt ��!�sup! 
p(!)pmnsup! �[�u(!)]inf! �[�u(!)] + 1� :Proof: See Appendix 5.B. �The chief use for this result is in the derivation of the main result of thischapter (Theorem 5.7.1) where it is used to show that as the model ordergrows, a particular component of the estimation variance expression decays tozero uniformly in frequency.A less explicit characterization of the nature of the undermodelling inducedestimation error is given by the following Lemma.Lemma 5.6.2. The frequency response is on average (over frequency) un-der{estimated in the sense thatZ ��� Tr�G(ej!;�?)�u(!)G?(ej!;�?)	 d! � Z ��� Tr �G(ej!)�u(!)G?(ej!)	 d!:Proof: The proof is analogous to the one corresponding to the single-input,single-output case given in [Nin96], and can be found in Appendix 5.B. �



100 5. MIMO Identi�cation using Orthonormal Bases5.7 Noise Induced ErrorIn this section, the main result (Theorem 5.7.1) of the chapter, regarding thequanti�cation of the component of the frequency response estimation error thatis induced by the measurement noise, is derived. The result is the extensionto general multivariable model structures with �xed poles of several asymp-totic variance expressions that have been derived in the literature in the single-input, single-output context [LY85, Wah91b, Wah94b, VHB95, NHG97a], or inthe multivariable framework but only for FIR model structures [YL84]. Theresult is built on earlier work that applies only to single-input, single-outputsystems [NHG97a], as summarized in Section 4.4.Here again, as in the SISO case, a quanti�cation of the noise induced erroris given by the covariance matrix of the transfer matrix estimate G(ej!; b�).However, since it is desiderable to be able to quantify the error in each individualcomponent Gij(ej!;�) of the matrix G(ej!;�) it is more convenient to use themethods in [YL84, Zhu89, Zhu90] and deal with a vectorized form of G(ej!;�).This vectorized form is obtained by stacking the columns of G(ej!;�) on topof each other, that is by applying the vec -operator (see Appendix A for thede�nition and some properties) to the matrix G(ej!;�) to obtaing(ej!;�) , vecG(ej!;�):Analyzing the distribution of the estimate g(ej!; b�) then provides informationabout the noise induced error in each component of G(ej!;�).We start the analysis by re-de�ning the parameter matrix in such a waythat the vectorized transfer matrix is still a linear function of the parameters,so that the linear regressor form of the model (5.18) is preserved and thereforea closed form solution for the least squares estimation can also be obtained forthis case. Considering the linear regressor model in equation (5.18), and usingproperties of the Kronecker products and vec -operator (see Appendix A) wecan write yk = �T �k + �k;= vec ��T �k	+ �k;= ��Tk 
 Im� vec�T + �k;=  Tk � + �k; (5.48)where � , vec�T (5.49)is the new parameter vector, and k , �k 
 Im (5.50)



5.7 Noise Induced Error 101is the new regressor matrix. It is clear that the new parameter vector � linearlyparameterizes the vectorized transfer matrix g(ej!;�), sinceg(ej!;�) = vec f�T�p(ej!)g;= ��Tp (ej!)
 Im� vec�T ;= e�Tp (ej!) �; (5.51)where the de�nition e�p(ej!) , �p(ej!)
 Imhas been made.It is not di�cult to prove (see Lemma 5.C.1 in Appendix 5.C) that the leastsquares estimate b� of �, given by the well known expressionb� =  1N N�1Xk=0  k Tk!�1 1N N�1Xk=0  kyk! ; (5.52)and the least squares estimate b� of � in equation (5.26), are related accordingto b� = vec b�T :The vectorized transfer matrix estimate is then given byg(ej!; b�) = e�Tp (ej!) b�:We undertake now the derivation of the main result of the chapter regardingthe asymptotic (in data-length and model order) distribution of the (vectorized)transfer matrix estimate. Fundamental in this analysis will be some resultsconcerning the asymptotic properties of what we will call Block Toeplitz-likematrices. These results are presented in the following subsection.5.7.1 Convergence of Block Toeplitz-like MatricesIn this subsection and the following ones we consider positive de�nite real matri-cesMp(F;W ) of dimensions nmp�nmp, de�ned by two real symmetric positivede�nite matrix valued functions F (!) andW (!) (of dimensions n�n andm�mrespectively) asMp(F;W ) , 12� Z ��� �p(!)F (!)�?p(!)
W (!) d!: (5.53)



102 5. MIMO Identi�cation using Orthonormal BasesHere, for the sake of notational simplicity, we have used the notation �p(!) asa shorthand for �p(ej!) as de�ned in (5.21), viz�p(!) � �p(ej!) , �InB0(ej!); InB1(ej!); � � � ; InBp�1(ej!)�T ;where fBk(z)g are orthonormal basis functions in H2(T).We refer toMp(F;W ) in (5.53) as a Block Toeplitz-like Matrix, since for thecase of fBk(z)g being the standard FIR (or trigonometric) bases �Bk(z) = z�k	,Mp(F;W ) has e�ectively a block Toeplitz structure5 [GS58]. To see this, let usconsider the explicit expression of Mp(F;W ) for this case. Using properties ofthe Kronecker product (see Appendix A) we can writeMp(F;W ) , 12� Z ��� �p(!)F (!)�?p(!)
W (!) d!;= 12� Z ��� �Bp(ej!)
 In�F (!) �B?p(ej!)
 In�
W (!) d!;= 12� Z ��� Bp(ej!)B?p(ej!)
 (F (!)
W (!)) d!:ThatMp(F;W ) has a block Toeplitz structure now follows from the fact that forthe case of FIR basis, the matrix �Bp(ej!)B?p(ej!)� has itself a Toeplitz structure,since it is given byBp(ej!)B?p(ej!) = 2666664 1 ej! ej2! � � � ej(p�1)!e�j! 1 ej! � � � ej(p�2)!e�j2! e�j! 1 � � � ej(p�3)!... ... ... . . . ...e�j(p�1)! e�j(p�2)! e�j(p�3)! � � � 1
3777775 :For arbitrary orthonormal bases fBk(z)g the matrix form (5.53) will in gen-eral not have a Toeplitz structure. However, some asymptotic properties ofToeplitz matrices [GS58, HN77, HW89] will also hold for the form (5.53), whatjusti�es the nameToeplitz-like we are using. In particular, the following Lemmaprovides a result concerning the convergence of a quadratic form of the blockToeplitz-like matrix (5.53) as the model order p tends to in�nity, for the caseof fBk(z)g being the OBFP introduced in Section 3.5.Lemma 5.7.1. Let Mp(F;W ) be the (mnp � mnp) block Toeplitz-like matrixde�ned in equation (5.53), where F (!), and W (!) (of dimensions (n� n)and (m � m) respectively) are assumed to be positive de�nite, Lipschitzcontinuous in [��; �], and with �nite dimensional spectral factorizations.5A matrix is said to be block Toeplitz if its i; j-th block entry depends only on the di�erence(i� j) of the indices.



5.7 Noise Induced Error 103It is also assumed that all the poles f�kg of the basis functions are chosenin the open unit disc D . Then the following limit result holdslimp!1 (�?p(�)
 Im)Mp(F;W )(�p(!)
 Im)
1=2p (!)
1=2p (�) = � F (!)
W (!) ; � = !0 ; � 6= !where 
p(!) , Kp(!; !) = p�1Xk=0 ��Bk(ej!)��2 :Proof: See Appendix 5.D. �Lemma 5.7.2. Let Mp(�; �) be the (mnp�mnp) block Toeplitz-like matrix de-�ned in equation (5.53), and let W (!) > 0; X(!) > 0; Z(!) > 0 and U(!) > 0be spectral densities (of dimensions (n� n), (m�m), (n� n) and (m�m),respectively) with �nite dimensional spectral factorizations. Then thereexists j�j < 1 and K <1 such that���[Mp(W;X)Mp(Z; U)]smn+y;tmn+x � [Mp(WZ;XU)]smn+y;tmn+x��� �� mnK2(�p�s + �s)(�p�t + �t)Proof: See Appendix 5.D. �5.7.2 Asymptotic Distribution of the (Vectorized) Tranfer MatrixEstimateBased on the convergence results of the block Toeplitz-like matrices of theprevious subsection, we are now able to analyze the asymptotic (in data-lengthand model order) distribution of the vectorized transfer matrix estimate. Theresult is given in the following theorem.Theorem 5.7.1. Let �u(!) and ��(!) be the input and measurement noisespectral densities, respectively, and let �u(!) have a �nite dimensionalspectral factorisation. If the poles f�kg of the bases (3.14) are all chosenwithin the open unit disc D , then as N !1 and p!1 pN � 
p(!1) 00 
p(!2) ��1=2
 Imn!� g(ej!1; b�)� g(ej!1; �0)g(ej!2; b�)� g(ej!2; �0) � dist�!dist�! N (0;�(!1; !2))where �(!1; !2) = � ��1u (!1)
 ��(!1) 00 ��1u (!2)
 ��(!2) �



104 5. MIMO Identi�cation using Orthonormal Basesif !1 6= !2, and 
p(!) , Kp(!; !) = p�1Xk=0 jBk(ej!)j2:Proof: By appealing to the results in [Lju87] as summarized in Theorems 2.2.1and 2.2.2, it is possible to conclude that under the given assumptionspN (b� � �?) dist�! N (0; Pp) as N !1;where Pp , R�1p QpR�1p ;Rp , E fV 00N(�?)g ;Qp , limN!1NEnV 0N(�?) (V 0N(�?))To ;VN(�) , 1N N�1Xk=0 Tr �(yk � (�Tk 
 Im)�)(yk � (�Tk 
 Im)�)T	 :Therefore, since g(ej!; b�) = e�Tp (ej!)b�;where e�p(!) , �p(!) 
 Im, it is possible to conclude that, as N !1, pN � 
p(!1) 00 
p(!2) ��1=2
 Imn!� g(ej!1; b�)� g(ej!1; �?)g(ej!2; b�)� g(ej!2; �?) � dist�!dist�! N (0;�p(!1; !2)) ;where �p(!1; !2) ,  � 
p(!1) 00 
p(!2) ��1=2
 Imn!" e�Tp (!1)e�Tp (!2) #�� Pp " e�Tp (!1)e�Tp (!2) #?  � 
p(!1) 00 
p(!2) ��1=2
 Imn! :After some matrix manipulation, �p(!1; !2) can be written as�p(!1; !2) = 2666664 e�?p(!1)Ppe�p(!1)
p(!1) e�?p(!1)Ppe�p(!2)
1=2p (!1)
1=2p (!2)e�?p(!2)Ppe�p(!1)
1=2p (!1)
1=2p (!2) e�?p(!2)Ppe�p(!2)
p(!2)
3777775 ;



5.7 Noise Induced Error 105so that it becomes clear that in order to analyze its asymptotic behavior whenthe model order p tends to in�nity, we need only to study the asymptoticbehavior of the term e�?p(!1)Ppe�p(!2)
1=2p (!1)
1=2p (!2) : (5.54)We �rst provide a frequency domain expression for the covariance matrix Pp.Considering the de�nition of the matrix Rp, simple algebra givesRp = limN!1 1N N�1Xk=0 E��k�Tk 
 Im	 :Using now Parseval's Theorem, and the de�nition in (5.53), the following fre-quency domain expression for Rp is obtainedRp = 12� Z ��� �p(ej!)�u(!)�?p(ej!)
 Im d! =Mp(�u; Im): (5.55)The derivation of a frequency domain expression for Qp is more di�cult. ByLemma 5.E.4 and the de�nition (5.53) Qp may be expressed asQp = 12� Z ��� �p(!)�u(!)�?p(!)
 ��(!) d!| {z }=Mp(�u;��) +�p =Mp(�u;��) + �p;where �p , 12� Z ��� �p(!)�u(!)�?p(!)
 eGp(!)�u(!) eG?p(!) d!;eGp(!) , G(ej!)�G(ej!; �?):Finally, matrix Pp can then be written asPp = M�1p (�u; Im) (Mp(�u;��) + �p)M�1p (�u; Im);= M�1p (�u; Im)Mp(�u;��)M�1p (�u; Im) +M�1p (�u; Im)�pM�1p (�u; Im):With this expression for Pp the term in (5.54) becomese�?p(!2)Ppe�p(!1)
1=2p (!1)
1=2p (!2) = e�?p(!1)M�1p (�u; Im)Mp(�u;��)M�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) ++ e�?p(!1)M�1p (�u; Im)�pM�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) : (5.56)



106 5. MIMO Identi�cation using Orthonormal BasesWe analyze �rst the asymptotic behavior of the second term on the RHS ofequation (5.56). For the i; j-th component we have6������"e�?p(!1)M�1p (�u; Im)�pM�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) #i;j������ �� 




e�?p(!1)M�1p (�u; Im)�pM�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) 




2� 

M�1p (�u; Im)

22 k�pk2where in passing to the second line use was made of the fact [GV89] that for agiven matrix A = (ai;j) maxi;j jai;jj � kAk2; (5.57)and in passing to the last line of the fact that, by Lemma 5.E.6,ke�p(!)k2 =q
p(!):Considering now that by Lemma 5.E.8, 

M�1p (�u; Im)

2 is bounded above, andthat k�pk2 ! 0 as p!1 (see Lemma 5.E.9), we can conclude thatlimp!1 e�?p(!1)M�1p (�u; Im)�pM�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) = 0: (5.58)Let us analyze now the asymptotic behavior of the �rst term on the RHS ofequation (5.56). We can writee�?p(!1)M�1p (�u; Im)Mp(�u;��)M�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) == e�?p(!1)Mp(��1u ;��)e�p(!2)
1=2p (!1)
1=2p (!2) (5.59)+ e�?p(!1)M�1p (�u; Im) �Mp(In;��)�Mp(�u; Im)Mp(��1u ;��)� e�p(!2)
1=2p (!1)
1=2p (!2) (5.60)+ e�?p(!1)M�1p (�u; Im) [Mp(�u;��)�Mp(In;��)Mp(�u; Im)]M�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) (5.61)6Here the symbol k�k2 stands for the matrix induced 2-norm or spectral norm (i.e. themaximum singular value), not to be confussed with the H2-norm induced by the inner productdenoted by k�k or k�kH2 .



5.7 Noise Induced Error 107We will prove that the last two terms on the RHS of the above equation(terms (5.60) and (5.61)) both tend to zero as p tends to in�nity, and that the�rst term (5.59) tends, for !1 = !2 = !, to ��1u (!) 
 ��(!) when p tends toin�nity.To proceed with this, let us consider �rst the term (5.60). By construction,the elements of the matrix e�p(!) are bounded in magnitude by some �nitenumber K1 (as de�ned in equation (5.47)), i.e.����he�p(!)ii;j���� � K1:To see this, recall that the elements of this matrix are either equal to zero, orequal to Bk(ej!), and that by Lemma 5.E.2, jBk(ej!)j � K1. Furthermore, byappealing to the relation (5.57), Lemma 5.E.6, and Lemma 5.E.8 we can write������"e�?p(!1)M�1p (�u; Im)
1=2p (!1) #i;j������ � 




e�?p(!1)M�1p (�u; Im)
1=2p (!1) 




2� 

M�1p (�u; Im)

2� �inf! �(�u(!))��1 , K2:In this case, using Lemma 5.7.2 gives that for some j�j < 1������"e�?p(!1)M�1p (�u; Im)
1=2p (!1) [Mp(In;��)�Mp(�u; Im)Mp(��1u ;��)]e�p(!2)#i;j������ �� p�1Xs=0 p�1Xt=0 mnXx=1 mnXy=1 ������"e�?p(!1)Mp(�u; Im)�1
1=2p (!1) #i;tmn+x�������� ���[Mp(In;��)]smn+y;tmn+x � �Mp(�u; Im)Mp(��1u ;��)�smn+y;tmn+x����� ����he�p(!2)ismn+y;j����� K2K1K2 mnXx=1 mnXy=1 p�1Xs=0 p�1Xt=0 mn(�p�s + �s)(�p�t + �t)= K2K1K2(mn)3 �1 + �1� ��2 (1� �p)2 <1:But by Lemma 5.E.3 we have
p(!) � 12 p�1Xk=0(1� j�kj)



108 5. MIMO Identi�cation using Orthonormal Basesso that under the conditions of the theorem we can conclude that for any choiceof !1 and !2limp!1 e�?p(!1)M�1p (�u; Im)[Mp(In;��)�Mp(�u; Im)Mp(��1u ;��)]e�p(!2)
1=2p (!1)
1=2p (!2) = 0Using an identical argument for the term (5.61) we can conclude thatlimp!1 e�?p(!1)M�1p (�u; Im) [Mp(�u;��)�Mp(In;��)Mp(�u; Im)]M�1p (�u; Im)e�p(!2)
1=2p (!1)
1=2p (!2) = 0Finally, by applying Lemma 5.7.1 to the term (5.59) we havelimp!1 e�?p(!1)Mp(��1u ;��)e�p(!2)
1=2p (!1)
1=2p (!2) = � ��1u (!1)
 ��(!1) ; !1 = !20 ; !1 6= !2what completes the proof. �As a direct consequence of the previous theorem we have the following corollary.Corollary 5.7.2. Under the same conditions of the previous theorem, butwith the strengthened requirement on the sequence fekg of having boundedeighth moments, thenlimp!1 limN!1 N
p(!)Cov �g(ej!; b�)	 = ��1u (!)
 ��(!):Proof: The result follows by appealing to the results in Chapter 9 of [Lju87](as summarized in Theorems 2.2.1 and 2.2.2) and using the same arguments asin the proof of Theorem 5.7.1. �Theorem 5.7.1 and its corollary provide a generalization to the multivariableand arbitrary �xed pole setting of the asymptotic results available for single-input, single-output systems [LY85, Wah91b, Wah94b, VHB95, NHG96], andfor multivariable systems with FIR model structures [YL84].Apart from this generalizing aspect, the previous theorem and corollary alsohave signi�cant utility in providing an approximate expression for the covari-ance matrix of the (vectorized) transfer matrix estimate. For large model orderand data-length, this covariance matrix can be approximated byCov �g(ej!; b�)	 � 
p(!)N ��1u (!)
 ��(!): (5.62)This approximate expression implies the following component-wise quanti�ca-tion of the noise induced error in the frequency response estimateE�jGi`(ej!)�Gi`(ej!; �?)j2	 � 
p(!)N ���1u (!)�`` [��(!)]ii :



5.8 Bias/Variance Trade-o� 109The generalizing aspect above mentioned can be demonstrated explicitly bynoting that for the particular case of FIR model structures the factor 
p(!) isgiven by 
p(!) , p�1Xk=0 jBk(ej!)j2 = p�1Xk=0 jej!kj2 = p;so that the covariance expression reduces toCov�g(ej!; b�)	 � pN ��1u (!)
 ��(!);which is the same expression as that derived in [YL84] where only the FIRmodel structure case is studied.A signi�cant aspect of the approximate covariance expression (5.62) is thatit explicitly shows how the choice of the �xed pole locations a�ects the noiseinduced estimation error. Speci�cally, equation (5.62) expresses the alreadyknown principle that the noise induce error is proportional to the 'noise-to-signal' ratio and the model order, and inversely proportional to the number ofobserved data. In addition, it also shows a new phenomenom, viz, that thechoice of the poles a�ects the noise induced error via the frequency dependentfactor 
p(!) (See �gure 4.2, where the factor 
p(!) is plotted for model orderp = 4 and for various pole choices. It can be noted from this diagram thatfor the case of all the poles at the origin, which corresponds to an FIR modelstructure, then 
p(!) = p = 4.).5.8 Bias/Variance Trade-o�The results in Theorems 5.6.1 and 5.7.1 provide a complete characterization ofthe estimation accuracy and show, as in the SISO case, two di�erent phenomenaof bias/variance trade-o�: the well known trade-o� with respect to model orderselection, and an until now unrecognized phenomenom of trade-o� with respectto the choice of the poles of the basis functions. The comments we made inSection 4.5 apply also here component-wise.5.9 Intermezzo: Brief Overview of Subspace-Based Iden-ti�cation MethodsFor the purposes of comparison with the multivariable identi�cation techniquewe propose in this chapter, a brief overview of a class of methods that also pro-vide MIMO estimates in closed form is presented in this section. The methodsare known as Subspace Identi�cation Methods.



110 5. MIMO Identi�cation using Orthonormal Bases5.9.1 IntroductionState-space models of the type introduced in Subsubsection 2.1.1.3 are veryconvenient to represent multivariable systems for the purposes of control designand simulation. This is so since many control problems can be solved moreelegantly in the state-space domain, while the solution to these problems issometimes more involved, or not so elegant with other representations (suchas transfer functions or matrix fraction descriptions (MFD) [Kai80]). State-space models have been successfully used to provide accurate descriptions ofmany industrial processes. In addition, or rather as a consequence of the abovecomments, most of the available CACSD7 software packages (e.g., the ControlSystem Toolbox [GLLT92] for use with Matlab 8) can handle this type ofmodels, although most of them also allow some other system representationssuch as transfer function models.Even though traditional PEM can be used for the estimation of state-spacemodels, typically the parameters in this model structure appear in a nonlinearfashion so that the minimum of the cost function cannot be computed analyt-ically. Instead, the estimation will usually involve a computationally intensive(possibly nonlinear and non convex) iterative optimization procedure, with theinherent problems associated with these techniques, such as existence of localminima of the cost function, initialization problems and no guaranteed con-vergence. Another di�culty of the use of prediction error methods for theestimation of state space models is the large number of parameters that needto be estimated (for example consider the case of a fully parameterized statespace model [McK94, McK95]). The number of parameters could be reduced byresorting to a canonical parameterization (see [Kai80]); however, as pointed outin [Vib94, Vd94a], the problem of �nding a numerically reliable canonical pa-rameterization for multivariable systems is not trivial and is, to a large extent,unsolved.In recent years considerable amount of research has been devoted to the de-velopment of new identi�cation methods that are able to deliver reliable state-space models of multivariable dynamical systems directly from input-outputdata, and that require only a modest computational complexity without theneed of iterative optimization procedures. These techniques have become col-lectively known as Subspace-based State-Space System IDenti�cation (4SID)methods (see for instance the recent book [Vd96] for a uni�ed description of thedi�erent subspace algorithms, and the survey paper [Vib95]), and have their ori-gin in state-space realization theory as developed in the sixties [HK66, Kun78].The main computational tools employed by subspace methods are QR andsingular-value decompositions [GV89].All 4SID methods involve at some stage the computation of the extended7CACSD stands for Computer Aided Control System Design.8Matlab is a registered trademark of The MathWorks, Inc.



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 111observability matrix from input-output data. In [Vib94, Vib95], subspace meth-ods are grouped into the following two sub-classes:� Realization-based 4SID Methods: in which an explicit estimate of theimpulse response coe�cients is obtained as a previous step of the esti-mation of the extended observability matrix [HK66, ZM74, Kun78, LS91,Liu92].� Direct 4SID Methods: in which the estimate of the extended observ-ability matrix in obtained directly from the input-output data [DVM+88,Ver91, VD91b, VD92, VOWL93, MR93, Ver94, OV94, Vd91a, Vd93, Vd94a,Vd94b, Vd95a, Vd95b, CV97, Lar90, Lar94].The various algorithms, with particular names attached to them, are thenclassi�ed according to the way the observability matrix is estimated from input-output data, and how it is used to compute the system matrices.In the following Subsection the fundamental concepts of realization theorywill be reviewed and the basic realization-based 4SID methods will be presented.5.9.2 Realization-based 4SID MethodsWe consider the state-space description introduced in Subsubsection 2.1.1.3(equations (2.8) and (2.9)), which is repeated here for conveniencexk+1 = Axk +Buk; (5.63)yk = Cxk +Duk; (5.64)where xk 2 Rnx , yk 2 Rm , uk 2 Rn are respectively the state, the output and theinput vectors at time k, and A 2 Rnx�nx, B 2 Rnx�n, C 2 Rm�nx , andD 2 Rm�nare the system matrices. It is assumed that the pair (A;B) is controllable andthe pair (C;A) is observable (in the sense given by De�nitions 2.1.4 and 2.1.5,respectively), which implies that the realization in minimal with McMillan de-gree nx.As already mentioned in Chapter 2, the realization (A;B;C;D) uniquelyde�nes the input-output properties of the system viayk = 1X̀=0 g(`) uk�`;where g(`) = � D; ` = 0CA`�1B; ` > 0are the impulse response coe�cients.



112 5. MIMO Identi�cation using Orthonormal BasesClassical realization theory [HK66] deals with the estimation of the systemmatrices (A;B;C;D) from the impulse response coe�cients fg(`)g. Most of therealization algorithms are based on the fact that the impulse response blockHankel matrix Hij (constructed from the impulse response coe�cients as inequation (2.12)), can be factorized asHij = OiCj; (5.65)where Oi and Cj are respectively the extended observability and controllabilitymatrices, and that these matrices always have rank nx. Then, if any full rankfactorization of Hij of the form Hij = bOi bCj; (5.66)is available, the matrices bOi and bCj in this factorization can be interpretedas the extended observability and controllability matrices for some realiza-tion ( bA; bB; bC; bD) of the system (which will be equivalent to the realization(A;B;C;D) in (5.63)-(5.64), modulo a similarity transformation). The factthat Hij has rank nx can be used to infer the unknown system order. Theproblem then is the computation of the system matrices from the factorization(5.66) of the Hankel matrix. Considering the de�nitions of the extended observ-ability and controllability matrices in equations (2.10) and (2.11) respectively,it is clear that the matrices bC and bB can be recovered by taking the �rst blockrow of bOi, and the �rst block column of bCj, respectively. Furthermore, thematrix bD is readily available from the impulse response coe�cient g(0).Regarding the matrix bA, there are several ways to compute it from thefactorization (5.66) of Hij. Before presenting them we introduce some notation.For a given block matrix H, H will denote the matrix obtained by deleting the�rst block row of H, while H will denote the matrix obtained by deleting thelast block row of H.One of the methods for computing bA, proposed by Zeiger and McEwenin [ZM74], follows from the observation thatHij = bOi bA bCj;so that bA can be computed as bA = bOyiHij bCzj ;where (�)z denotes the right pseudo-inverse9.9The right pseudo-inverse of the (non square) matrix A is de�ned as Az , AT (AAT )�1. Notto be confused with the left (Moore-Penrose) pseudo-inverse de�ned as Ay , (ATA)�1AT .



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 113Another possibility, proposed by Kung in [Kun78] (see also [JP85]), is to notethat the observability matrix bOi enjoys the so-called shift-invariant property,re
ected by the identity bOi = bOi bA:The matrix bA can then be computed by solving (in the least squares sense) thisequation to obtain bA = bOiy bOi:A dual result can be obtained by exploiting the shift invariant property of thecontrollability matrix bCj.This completes the basic deterministic realization-based algorithm. In prac-tice, however, it is more desiderable to start the algorithm directly from input-output measurements. This raises the question of how the impulse response co-e�cients can be estimated from input-output data. Several methods have beenproposed in the literature for achieving this. For instance, in [LS92] a method isproposed where the response of the system to impulse input signals is directlymeasured. Another possibility is to use correlation analysis [Lju87, SS89] to es-timate the input-output cross-covariance function from which a �nite numberof impulse response coe�cients can be estimated.A fundamental aspect of the realization algorithms not considered yet isthe way the factorization (5.66) of the (estimated) impulse response Hankelmatrix is performed, as well as the rank determination needed to estimate thesystem order. This issue is important for the case in which the impulse re-sponse is corrupted by noise (or it has been estimated from noisy data) becausethe rank determination of a matrix is very sensitive to perturbations on itsentries [GV89]. Both the Zeiger-McEwen [ZM74] and the Kung [Kun78] algo-rithms employ the singular-value decomposition (SVD) [GV89] to factorize theimpulse response Hankel matrix.The SVD of Hij is de�ned as:Hij = [U1U2] ��1 00 �2� �V T1V T2 � ; (5.67)where U = [U1U2] and V = [V1V2] are orthogonal matrices whose columns arerespectively the left and right singular vectors of Hij , and where� = ��1 00 �2�is a diagonal matrix containing the singular values of Hij in non-increasingorder, with �1 containing the nx largest, and �2 the (min(i; j) � nx) smallest.



114 5. MIMO Identi�cation using Orthonormal BasesFor the case in which the impulse response is not corrupted by noise, Hij hasrank nx and then �2 = 0. In this case equation (5.67) can be written asHij = U1�1V T1 = �U1�1=21 ���1=21 V T1 � ;which provides the factorization (5.66) by choosingbOi = U1�1=21 ;bCj = �1=21 V T1 :When the available measurements of the impulse response are noisy, thematrixHij will in general have full rank and therefore a rank reduction step willbe necessary. This rank reduction is provided by the SVD, but the user mustdecide which is the number of signi�cant singular values or equivalently whichis the system order. Once the system order is given, a low-rank approximationof Hij can be computed asbHij = �U1�1=21 ���1=21 V T1 � ;but now bHij will in general not be a Hankel matrix, neither the estimates of bOiand bCj will have the shift invariant property. As a consequence, the algorithmswill provide only approximate estimates of the system matrices. Some resultsconcerning the quanti�cation of the error induced by the noise corruption ofthe impulse response data are given in [Kun78] and [DD87].5.9.3 Direct 4SID AlgorithmsIn the direct 4SID algorithms, the impulse response Hankel matrix is not re-quired for the estimation of the extended observability matrix that can becomputed directly from the input-output data. This represents an advantangewith respect to the realization-based algorithms, since in practice the impulseresponse coe�cients are di�cult to measure.We describe the basic direct 4SID algorithms corresponding to two di�erentcases, namely:� Deterministic Case, where the unknown system is assumed to have onlydeterministic inputs (uk).� Combined Deterministic-Stochastic Case, where the unknown system isassumed to have both deterministic (uk) and stochastic (wk and vk) inputs.



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 1155.9.3.1 Deterministic CaseWe consider that the unknown system has the state-space representation givenin (5.63)-(5.64). The identi�cation objective is to estimate the model order nx,and the system matrices A;B;C and D in (5.63)-(5.64) from N samples of theinputs uk and the outputs yk. Before presenting the basic deterministic 4SIDalgorithm we introduce some notation adapted from [Vd96]. The input blockHankel matrix is de�ned as
U02i;j ,

2666666666664
u0 u1 � � � uj�1u1 u2 � � � uj... ... � � � ...ui�1 ui � � � ui+j�2ui ui+1 � � � ui+j�1ui+1 ui+2 � � � ui+j... ... � � � ...u2i�1 u2i � � � u2i+j�2

3777777777775 , �U0i;jU ii;j� , �UpUf� (5.68)
where:� The superscript in the matrices U02i;j; U0i;j and U ii;j denotes the subscript ofthe �rst element of the �rst row, the �rst subscript denotes the numberof block rows, and the second subscript, the number of (block) columnsof the block Hankel matrix.� The input Hankel matrix U02i;j is partitioned o� into two parts of i blockrows each. Somewhat arbitrarily, the upper part Up , U0i;j will be calledthe past inputs (with the subscript `p' standing for `past'), while thebottom part Uf , U ii;j will be called the future inputs (with the subscript`f ' standing for `future').� The number of block rows i has to be larger than the expected order ofthe system to be identi�ed.� Typically, the number of columns j is such that all the available data isused. That is, if N is the total number of data, then j = N � 2i+ 2.The output block Hankel matrices Y 02i;j, Yp and Yf are de�ned in similar way.The state sequence matrix is de�ned as:X0j , [x0; x1; � � � ; xj�1] ; (5.69)where the superscript denotes the subscript of the �rst element of the statesequence, and the subscript denotes the number of columns. To be consistent



116 5. MIMO Identi�cation using Orthonormal Baseswith the de�nitions of the past and future inputs and outputs we de�ne thepast state sequence as Xp , X0j ;and the future state sequence as Xf , X ij:The block lower triangular Toeplitz matrix Hi is de�ned asHi , 2666664 D 0 0 � � � 0CB D 0 � � � 0CAB CB D � � � 0... ... ... . . . 0CAi�2B CAi�3B CAi�4B � � � D
3777775 ;where the subscript indicates the number of block rows of the Toeplitz matrix.With these de�nitions, the following matrix input-output relations can bederived from the state-space representation (5.63)-(5.64)Y 02i;j = O2iX0j +H2iU02i;j; (5.70)Yp = OiXp +HiUp; (5.71)Yf = OiXf +HiUf : (5.72)Furthermore, the following `state equation' relating the past and future statesequences can also be derived from (5.63)-(5.64)Xf = AiXp + Crdi Up; (5.73)where Crdi is the reversed extended (deterministic) controllability matrix de-�ned as Crdi , �Ai�1B;Ai�2B; � � � ; AB;B� ;with the subscript i denoting the number of block columns, the superscript rstanding for `reversed' and the superscript d standing for `deterministic'.From equations (5.73) and (5.71), the future state sequence matrix Xf canbe written as a linear combination of the past input Up and past output YpHankel matrices. To see this, we compute Xp from (5.71) and substitute into(5.73), to obtain Xf = AiOyi (Yp �HiUp) + Crdi Up;= �Crdi � AiOyiHi�Up + AiOyiYp;= h�Crdi � AiOyiHi� AiOyi i �UpYp� ;= Lp!fWp; (5.74)



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 117where in passing to the last line we have de�ned the block Hankel matrix ofpast inputs and outputs Wp , W 0i;j , �UTp Y Tp �T (with the subscripts andsuperscript in W 0i;j having the same meaning as in U0i;j), and the matrix Lp!frelating the past inputs and outputs with the future statesLp!f , h�Crdi � AiOyiHi� AiOyi i :From these equations it is possible to compute the extended observabilitymatrix Oi and the future state sequence matrix Xf based only on the input-output data. The main tool employed is the singular value decomposition(SVD). The basic deterministic algorithm proceeds as follows.Algorithm 5.9.1 (Deterministic Algorithm).1. Perform the full SVD of the Hankel matrix of future inputs UfUf = � �� 0� �	T1	T2 � = ��	T1 :Now notice that since 	 = �	1 	2� is an orthogonal matrix, then 	T	 =I, so that 	T1	2 = 0;and then Uf	2 = 0:We can then de�ne the orthogonal complement of Uf asU?f , 	2:Multiplying the input-output equation (5.72) from the right by U?f thengives YfU?f = OiXfU?f : (5.75)Substituting the expression for Xf in (5.74), in the previous equation weobtain YfU?f = OiLp!fWpU?f ;so that we can write OiLp!f = YfU?f �WpU?f �z :



118 5. MIMO Identi�cation using Orthonormal BasesFinally, multiplying both sides of the above equation from the right byWp yields OiXf = YfU?f �WpU?f �zWp: (5.76)Now the matrices Oi and Xf can be obtained by performing the SVD ofthe matrix on the right hand side of the equation above. Note that thismatrix depends only on the available input-output data. It can be provedthat the matrix on the right-hand side of equation (5.76) is equivalent tothe oblique projection of the row space10 of the future outputs Yf alongthe row space of the future inputs Uf onto the row space of the past inputsand outputs Wp, de�ned asPi , �Yf � YfUTf �UfUTf �y Uf��Wp �WpUTf �UfUTf �y Uf�yWp:2. Perform the SVD of the matrix Pi = YfU?f �WpU?f �zWp, to obtainPi = OiXf = [U1U2] ��1 00 �2� �V T1V T2 � : (5.77)In the noise free case, �2 = 0, and thenPi = YfU?f �WpU?f �zWp = OiXf = U1�1V T1 = �U1�1=21 ���1=21 V T1 � :3. The order nx of the system (5.63)-(5.64) is given by the number of singularvalues di�erent from zero in (5.77), i.e. by nx = rank (�1).4. The extended observability matrix is given byOi = �U1�1=21 � :5. The future state sequence is given byXf = ��1=21 V T1 � :6. System Matrices: The system matrices can be computed basically in twodi�erent ways. One of the methods uses the extended observability matrixOi, and the other one uses the future state sequence Xf . We describe herethe �rst method.10The row (column) space of a matrix A is the space spanned by the rows (columns) of A.



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 119� Matrix A can be computed by exploiting the shift-invariant propertyof Oi, as in the realization algorithm by Kung [Kun78], as describedin Subsection 5.9.2, i.e. A = Oiy Oi:� Matrix C can be computed by taking the �rst block row of Oi.� Matrices B and D. With matrices A and C known, matrices B andD can be computed from the input-output equation (5.72) as follows.Compute a full row rank matrix O?i such that O?i Oi = 0. A naturalcandidate for O?i is the matrix UT2 in (5.77). This is so since matrixU = �U1 U2� is an orthogonal matrix and then UT2 U1 = 0, whichimplies UT2 Oi = 0.Multiplying the input-output equation (5.72) from the left by O?i ,and from the right by U yf , we obtainO?i YfU yf = O?i Hi; (5.78)which is a set of linear equations in the matrices B and D (providedthat matrices A and C are known). The system is typically overde-termined (for the case of noisy data) and it can be solved for B andD in the least squares sense (see [DVM+88], or [Vd96] for details).This concludes the basic deterministic 4SID algorithm. At several points in thealgorithm some matrices are assumed to have full rank or to be nonsingular. Inorder for this to be ensured, the following assumptions have to be made [Vd96]i. The input uk is persistently exciting of order 2i, in the sense given byDe�nition 2.1.3.ii. The intersection of the row space of Uf and the row space of Xp is empty.�5.9.3.2 Combined Deterministic-Stochastic CaseWe consider now that the unknown system has both stochastic (wk and vk) anddeterministic (uk) inputs. A state-space representation of the combined systemwas introduced in Subsubsection 2.1.1.3, in equations (2.5), (2.6) and (2.7). Forthe reader's convenience, we rewrite these equations here.xk+1 = Axk +Buk + wk; (5.79)yk = Cxk +Duk + vk; (5.80)E�� wkvk ��wTs vTs �� = � Q SST R � �ks (5.81)



120 5. MIMO Identi�cation using Orthonormal BasesThe identi�cation objective for this case is to estimate the system order nx, thesystem matrices A;B;C and D, and the second order statistics of the processand measurement noise de�ned by the covariance matrices Q; S and R, from Nsamples of the inputs uk and outputs yk.Before presenting the algorithm we need to introduce some notation. Thesystem (5.79)-(5.80) can be regarded as the superposition of two subsystems:one re
ecting the in
uence of the deterministic input (uk), which will be calledthe `deterministic subsystem', and the other one re
ecting the in
uence of thestochastic inputs (the noise sequences wk and vk), which will be called the`stochastic subsystem'. The state variable xk and the output yk can accordinglybe written as the superposition of a deterministic and a stochastic component,as follows xk = xdk + xsk; (5.82)yk = ydk + ysk; (5.83)where the superscript d denotes `deterministic' and the superscript s denotes`stochastic'. The deterministic subsystem is then given byxdk+1 = Axdk +Buk;ydk = Cxdk +Duk;while the stochastic subsystem byxsk+1 = Axsk + wk;ysk = Cxsk + vk:It is assumed that the pair (A;C) is observable, and that the pair �A; �B Q1=2��is controllable, which implies that all the modes of the system are excited eitherby the deterministic input uk or by the process noise wk.The processes wk and vk are assumed to be zero mean white noise vectorsequences independent of xsk, which implies thatE�xskvTk 	 = 0;E�xskwTk 	 = 0:It is also assumed that the process fxskg is stationary, so thatE fxskg = 0;E�xsk(xsk)T	 , �x;where the stochastic state covariance matrix �x is independent of the time k. Itis not di�cult to show that �x satis�es the following Lyapunov equation [Vd94a,Vd96] �x = A�xAT +Q: (5.84)



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 121The stochastic output covariance matrices are de�ned as�i , E�ysk+i(ysk)T	 ; (5.85)and the cross-covariance matrix between stochastic outputs and states asG , E�xsk+1(ysk)T	 : (5.86)It is straightforward to show that the following identities hold:�0 , E�ysk(ysk)T	 = C�xCT +R; (5.87)G = A�xCT + S; (5.88)and, for i = 1; 2; � � � , �i = CAi�1G; (5.89)��i = GT (Ai�1)TCT : (5.90)The reversed extended stochastic controllability matrix Crsi is de�ned asCrsi , �Ai�1G; Ai�2G; � � � ; AG; G� ;where the subscript i denotes the number of block columns. The following blockToeplitz matrices can be constructed from the output covariance matrices �iMi , 26664 �i �i�1 �i�2 � � � �1�i+1 �i �i�1 � � � �2... ... ... ... ...�2i�1 �2i�2 �2i�3 � � � �i
37775 = Oi Crsi ; (5.91)

Ni , 26664 �0 ��1 ��2 � � � �1�i�1 �0 ��1 � � � �2�i... ... ... ... ...�i�1 �i�2 �i�3 � � � �0
37775 : (5.92)Consistently with equation (5.82) are de�ned the deterministic X idj and thestochastic X isj state sequence matrices asX idj , �xdi ; xdi+1; � � � ; xdi+j�1� ;X isj , �xsi ; xsi+1; � � � ; xsi+j�1� :It is obvious that these matrices satisfyX ij = X idj +X isj :



122 5. MIMO Identi�cation using Orthonormal BasesSimilarly as we did for the deterministic case in Subsubsection 5.9.3.1, we de�nethe past and future deterministic and stochastic state sequences asXdp , X0dj ; Xdf , X idj ;Xsp , X0sj ; Xsf , X isj ;and the past and future deterministic and stochastic block Hankel output ma-trices as Y dp , Y 0di;j ; Y df , Y idi;j ;Y sp , Y 0si;j ; Y sf , Y isi;j :The matrix input-output equations for this case, analogous to equations (5.71)to (5.73) in the deterministic problem, becomeYp = OiXdp +HiUp + Y sp ;Yf = OiXdf +HiUf + Y sf ;Xdf = AiXdp + Crdi Up:The algorithm for this combined deterministic-stochastic case is based onthe computation of the extended observability matrixOi and a non-steady stateKalman �lter estimate of the state sequences (we will denote this estimate bybX ij) from input-output data. The system matrices are then recovered from Oiand bX ij.The non-steady state Kalman �lter estimate bxk of the state xk, given theinput and output measurements u0; u1; � � � ; uk�1 and y0; y1; � � � ; yk�1, is givenby the following recursive expressions (see [Vd94a, Vd96] for the proof of thisresult)bxk = Abxk�1 +Kk�1 (yk�1 � Cbxk�1 �Duk�1) ; (5.93)Kk�1 = �G� APk�1CT � ��0 � CPk�1CT ��1 ; (5.94)Pk = APk�1AT + �G� APk�1CT � ��0 � CPk�1CT ��1 �G� APk�1CT �T ;(5.95)with initial state estimate bx0 = 0, and initial covariance of the state estimateP0. The Kalman �lter estimate can be explicitly written as
bxk = �Ak � 
kOk j Crdk � 
kHk j 
k�26666666664

bx0u0...uk�1y0...yk�1
37777777775 ; (5.96)



5.9 Intermezzo: Brief Overview of Subspace-Based Identi�cation Methods 123where the matrix 
k is de�ned as
k , �Crsk � AkP0OTk � �Nk �OkP0OTk ��1 :Equation (5.96) shows that the Kalman �lter state estimate bxk is a linear com-bination of the past inputs and outputs u0; u1; � � � ; uk�1; y0; y1; � � � ; yk�1, and theinitial state estimate bx0. We can then compute the Kalman �lter state estimatesequence matrix asbX ij , �bxi; bxi+1; � � � ; bxi+j�1� ;= �Ai � 
iOi j �Crdi � 
iHi j 
i�� � bX0Wp� ;where bX0 is the sequence of initial states. This equation can be interpreted asa bank of Kalman �lters working in parallel in each of the columns of the blockHankel matrix of past inputs and outputs Wp.We are now able to present the basic combined deterministic-stochastic al-gorithm. The algorithm proceeds as follows:Algorithm 5.9.2 (Combined Deterministic-Stochastic Algorithm).1. From the input-output data compute the oblique projection of the rowspace of Yf along the row space of Uf on the row space of WpPi , �Yf � YfUTf �UfUTf �y Uf��Wp �WpUTf �UfUTf �y Uf�yWp:In [Vd94a, Vd96] it is proved that in the limit when the number of mea-surements N ! 1 (and consequently j ! 1), the matrix Pi equals theproduct of the extended observability matrix Oi and the Kalman �lterstate sequence estimate bX ij, i.e.Pi = Oi bX ij;where the Kalman �lter is run from particular values of the initial esti-mates bX0 and P0, which are computed from the input-output data. Theinterested reader is referred to [Vd94a, Vd96] for the details.2. Perform the SVD of the matrix Pi to obtainPi = Oi bX ij = [U1U2] ��1 00 0� �V T1V T2 � = �U1�1=21 ���1=21 V T1 � : (5.97)3. The system order nx is equal to the number of singular values di�erentfrom zero in (5.97). That is nx = rank (�1).



124 5. MIMO Identi�cation using Orthonormal Bases4. The extended observability matrix is given byOi = U1�1=21 :5. The Kalman �lter state estimate sequence matrix is given bybX ij = �1=21 V T1 :6. System matrices: As in the purely deterministic case, there are severalways to compute the system matrices from the extended observabilitymatrix and the Kalman �lter state estimate sequence matrix. We don'tanalyze this topic here and refer the interested reader to [Vd96]. �The N4SID11 algorithms [Vd94a], MOESP12 algorithms [Ver94], and CVA13algorithms [Lar90, Lar94] are variations of Algorithm 5.9.2, where the matrix Piis weighted with di�erent matrices for each case, before the SVD is performed(see [Vd94a, Vd96] for details).5.10 Simulation ExamplesIn this section, the proposed method for identi�cation of multivariable systemsusing OBFP is illustrated with a brief simulation study.An underlying continuous time multivariable system, with m = 2 outputsand n = 2 inputs and with transfer matrix representation given by:G(s) = 264 0:1e�s(s+ 1)(s+ 0:1) 1(s+ 2)(s+ 0:5)0:21(s+ 0:7)(s+ 0:3) 0:32e�s(s+ 0:4)(s+ 0:8)375 (5.98)is considered. It is assumed that there is available an observation of N = 2000samples spaced 1 second apart of the outputs fy1kg; fy2kg of G(s) when the in-puts fu1kg; fu2kg are unit amplitude square waves of fundamental frequencies0.02 Hz and 0.05 Hz respectively. The output data is corrupted with station-ary and white Gaussian distributed noise of variances �2e1 = �2e2 = 0:001 andwith colouring �lter H(q) = I. Based on this observed data, the identi�cationobjective is to estimate the dynamics of the zero order hold equivalent [�AW84]11N4SID stands for \Numerical algorithms for Subspace State Space System IDenti�cation".12MOESP stands for \Multivariable Output-Error State sPace".13CVA stands for \Canonical Variate Analysis".



5.10 Simulation Examples 125discrete time systemG(z) = ZOH fG(s)g = 264 (0:0355z + 0:0247)z(z � 0:9048)(z � 0:3679) (0:2364z + 0:1038)(z � 0:6065)(z � 0:1353)(0:0760z + 0:0545)(z � 0:7408)(z � 0:4966) (0:1087z + 0:0729)z(z � 0:6703)(z � 0:4493)375 :(5.99)
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Figure 5.3: Left hand �gure shows the true (solid line) and estimated (dash{dotted line) frequency response. The estimate was obtained using a �xeddenominator structure and a least squares criterion with N = 2000 samples.The four plots shown are the four possible responses from the 2 inputs tothe 2 outputs. The right hand �gure shows the true poles as crosses andthe a-priori guesses as circles.In the left hand diagram of Figure 5.3 we show the results as true andestimated Nyquist plots (for each of the four scalar entries of the estimatedtransfer function matrix) when using the least squares estimation methods ofSection 5.4, and the �xed denominator model structure of (5.16)-(3.14). Fiveestimates based on �ve di�erent noise realizations are shown as dash{dottedlines while the true frequency responses are shown as solid lines. The poles inthe structure (5.16)-(3.14) where chosen atf�kg = f0:2231; 0:8187; 0:0498; 0:3329; 0:2466; 0:5488; 0:5220; 0:2019g :These choices correspond to an eighth order model and 32 scalar parametersbeing estimated. The choice of the pole locations is of limited accuracy asillustrated in the right hand diagram of Figure 5.3 where the true pole locationsare shown as crosses, and the above choices are shown as circles.Another estimation approach was also investigated whereby a state spacemodel structure was found using a standard prediction error identi�cation
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Figure 5.4: Left hand �gure shows estimation results over �ve di�erentnoise realizations when using an 8th order state-space model structure anda prediction error estimation method. The right hand �gure shows theresults using the same �ve noisy data records and the same model structure,but using an N4SID method to obtain the estimates. In both cases thetrue response is the solid line and the estimates are the dash{dot lines.(N = 2000 samples)algorithm, implemented with The Mathworks's System Identi�cation Tool-box [Lju95] along the lines suggested in [Lju91]. In this case, an eighth ordermodel was used to capture the eight di�erent poles in (5.98). This implies(after a suitable canonical form for the state space model structure is selected)the estimation of 48 parameters. The same data used to provide the estimatesshown in Figure 5.3 were used to derive the prediction error method estimates.The results are shown in the left hand diagram of Figure 5.4. As can beseen, the results are more accurate than for the �xed denominator structure,but as reference to Table 5.1 shows, they involve two orders of magnitudemore computation. On the other hand, the derivation of the state{space modelstructure estimate does not require approximate prior knowledge of the locationof system poles.Finally, a sixth order state-space model was estimated using the SubspaceState Space System Identi�cation (N4SID) algorithm proposed in [Vd94a] (seethe combined deterministic-stochastic algorithm in Section 5.9). The resultsare shown in the left hand diagram of Figure 5.4. The results are as accurate asfor the prediction error method estimates, but as reference to Table 5.1 shows,they involve an order of magnitude less computation.To complete the simulation example, this set of identi�cation experimentswas repeated with the only change being that the amount of observed datawas decreased by 80% to 400 samples. The results are shown in Figures 5.5{5.6. The key point to notice is that the variability of the parameter estimatesincreases only slightly (as compared to the 2000 sample case) when using the



5.10 Simulation Examples 127Method # of Parameters Flops Order Addit. Inform.OBFP 32 4:59� 106 8 Guesses for PolesPEM 48 1:42� 108 8 Obs. Indices: [4 4]N4SID 72 (D=0; X0=0) 3:92� 107 6 Aux Order: 10Table 5.1: Computational Load of di�erent Identi�cation Methods (N=2000samples)
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Figure 5.5: Same experiment as shown in left hand diagrams of Figures 5.3and 5.4 but with only 20% the amount of observed data (400 samples).Fixed denominator model structure on the left and state{space structureestimated using prediction error method on the right.�xed denominator structure, but increases very markedly when estimating astate-space model structure with a general prediction error method or with asubspace method. This deterioration of performance for relatively small amountof observed data comes to no surprise for the case of subspace methods whichprovide accurate estimates only when the number of data is large (when N !1).Together, these examples suggest that if prior knowledge of pole positionsis available, and specially if only short data records are available or if compu-tational load is a serious concern, then estimation using a �xed denominatormodel structure (re-parameterized using Orthonormal Bases with Fixed Poles)can yield improved results when compared to state-space structure estimatesusing prediction error or subspace methods. However, if no prior informationis available, (and if the calculation of con�dence regions valid for �nite data isnot required) then it is likely that Subspace Methods will yield better results.
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Figure 5.6: Same experiment as shown in right hand diagram of Figure 5.4but with only 20% the amount of observed data (400 samples). State{spacemodel structure estimated by N4SID methods.5.11 ConclusionsIn this chapter we have studied the problem of identi�cation, from input-outputdata in the time domain, of discrete-time linear multivariable systems using�xed denominator model structures and least squares techniques. The esti-mation accuracy has been analyzed by quantifying the undermodelling errorand the noise induced error. Fundamental in this analysis has been the re-parameterization of the �xed denominator model structure using rational or-thonormal bases with the same �xed poles. The main contributions of thechapter have been the extension to the multivariable setting, and to the case ofusing general orthonormal bases with �xed poles, of some single-input, single-output FIR results concerning the asymptotic (in model order and data-length)distribution of the frequency domain estimation error. Fundamental in thederivations were some results on convergence properties of block Toeplitz-likematrices that were also established in the chapter. As in the SISO case, a newphenomenom of bias/variance trade-o� with respect to the choice of the polesin the model structure could also be recognized in the multivariable setting ofthis chapter.The numerical robustness of the proposed identi�cation scheme was also ana-lyzed, and it was shown that the estimation with an orthonormal structure doesnot necessarily guarantee a better numerical conditioning when compared withthe estimation using an equivalent (with the same �xed poles) non-orthonormalstructure, the exception being the case of white input in which the estimationwith an orthonormal structure is perfectly numerically conditioned.For the purposes of comparison with the orthonormal basis-based estima-tion method proposed here, a brief overview of Subspace Methods, which alsoprovide closed form estimates, was presented in this chapter. The simulation



5.A Proofs for Lemmas 5.3.1 and 5.5.1 129results showed that both methods have a similar performance, specially whenprior information about the system dynamics is available and a relatively smallamount of data is observed.Appendices5.A Proofs for Lemmas 5.3.1 and 5.5.1Proof of Lemma 5.3.1 From the de�nition of the bases �Bij` (z)	 in equation(3.28) we can writeBij` (z) = B`(z) 2666664 0 : : : 0 : : : 0... . . . ... . . . ...0 : : : 1 : : : 0... . . . ... . . . ...0 : : : 0 : : : 0
3777775  i"jso that �ij` Bij` (z) = B`(z) 2666664 0 : : : 0 : : : 0... . . . ... . . . ...0 : : : �ij` : : : 0... . . . ... . . . ...0 : : : 0 : : : 0
3777775  i"jThen mXi=1 nXj=1 �ij` Bij` (z) = 264 �11` : : : �1n`... . . . ...�m1` : : : �mn` 375B`(z) = �T̀ B`(z)and the result follows straightforwardly. �Proof of Lemma 5.5.1 Using Parseval's Theorem, eRp can be given the followingfrequency domain representationeRp = 12� Z ��� �p(ej!)�u(!)�?p(ej!) d!; (5.A.1)



130 5. MIMO Identi�cation using Orthonormal Baseswhere �p(ej!) is de�ned in equations (5.20) and (5.21). Then, appealing to theorthonormality of the bases we can writeeRp � inf! �[�u(!)] 12� Z ��� �p(ej!)�?p(ej!) d!= inf! �[�u(!)]Inp:Using a similar argument for the upper bound we obtaineRp � sup! �[�u(!)] 12� Z ��� �p(ej!)�?p(ej!) d!= sup! �[�u(!)]Inp:The result now follows straightforwardly. �5.B Proofs for Lemmas 5.6.1 and 5.6.2Proof of Lemma 5.6.1 Let the true system be represented byyk = G(q) uk + �k;where G(q) = 1Xk=0 �kBk(q);and let �0 , [�T0 ; �T1 ; � � � ; �Tp�1] be the 'true' truncated parameter matrix, and b�the least squares estimate as given in equation (5.26). Then the error betweenthe parameter estimate and the true truncated parameter matrix is given bye� , b�� �0:Considering equation (5.26) in the limit when N tends to in�nity, we can writeE��k�Tk 	 b� = E��kyTk 	 ; (5.B.2)where the notation E fxkg , limN!1 1N N�1Xk=0 E fxkgdue to Ljung [Lju87] has been used. Now, sinceyk = �T0 �k + 1X̀=p �T̀B`(q)uk = �T0 �k + zk;



5.B Proofs for Lemmas 5.6.1 and 5.6.2 131where zk , [G(q)�G(q;�0)]uk =P1̀=p �T̀B`(q)uk, thenE��kyTk 	 = E��k�Tk 	�0 + E��kzTk 	 :Equation (5.B.2) can then be written asE��k�Tk 	 b� = E��k�Tk	�0 + E��kzTk 	 ;so that the error between the parameter estimate and the true truncated pa-rameter matrix is given by e� = eR�1p E��kzTk 	 ; (5.B.3)where the de�nition eRp , E��k�Tk 	 has been used.Therefore, the error in the transfer matrix estimate is given byG(ej!)�G(ej!; b�) = E�zk�Tk	 eR�1p �p(ej!) + 1X̀=p �T̀B`(ej!);and then ����hG(ej!)�G(ej!; b�)ii;j���� == ������"E�zk�Tk	 eR�1p �p(ej!) + 1X̀=p �T̀B`(ej!)#i;j������ ;� ����hE�zk�Tk	 eR�1p �p(ej!)ii;j����+ 1X̀=p ���ij` �� ��B`(ej!)�� ;� 

E�zk�Tk	

2 


 eR�1p 


2 

�p(ej!)

2 + 1X̀=p ���ij` �� ��B`(ej!)�� ;� p
p(!)

E�zk�Tk 	

2inf! �(�u(!)) + 1X̀=p ���ij` �� ��B`(ej!)�� : (5.B.4)Now, by Parseval's Theorem, we can writeE�zk�Tk	 = 12� Z ��� 1X̀=p �T̀B`(ej!)�u(!)�?p((ej!)d!;



132 5. MIMO Identi�cation using Orthonormal Basesso that

E�zk�Tk	

2 � 1X̀=p 

�T̀

2 



 12� Z ��� B`(ej!)�u(!)�?p((ej!)d!



2 ;� 1X̀=p 

�T̀

2 12� Z ��� ��B`(ej!)�� k�u(!)k2 

�?p((ej!)

2 d!;� K1 sup! �(�u(!)) 1X̀=p 

�T̀

2 12� Z ���q
p(!)d!;� K1pmn sup! q
p(!) sup! �(�u(!)) 1X̀=p maxi;j ���ij` �� ;with the constant K1 de�ned in the statement of the lemma. Substituting backin equation (5.B.4) then yields the result. �Proof of Lemma 5.6.2 Equation (5.43) can be interpreted as the norm mini-mization problem �? = argmin�2Rnp�m �

G(ej!)�G(ej!;�)

u	where k�ku stands for the norm on the Hilbert space Hm�n2 (T) induced by theinner product hF;W iu = 12� Z ��� Tr�F (ej!)�u(!)W ?(ej!)	 d!:Now, since G(ej!;�) is in the subspace of (Hm�n2 (T); k�ku) spanned by the basisfunctions fB`(ej!)g 14, then by the Projection Theorem
G(ej!)�G(ej!;�?); G(ej!;�?)�u = 0so that 
G(ej!); G(ej!;�?)�u = 

G(ej!;�?)

2u :Use of Cauchy-Schwarz inequality then gives the result. �5.C Relation between the estimates b� and b�Lemma 5.C.1. Let � be de�ned as in equation (5.19) and � as in equation(5.49), then the least squares estimate b� of � is related to the least squaresestimate b� of � according to b� = vec b�T14To be precise, by the matrix bases fBij` (ej!)g.



5.C Relation between the estimates b� and b� 133Proof: The least squares estimate b� of � is given byb� =  N�1Xk=0  k Tk!�1 N�1Xk=0  kyk (5.C.5)Considering that  k , (�k 
 Im) we have k Tk = (�k 
 Im)(�Tk 
 Im) = �k�Tk 
 Imand then N�1Xk=0  k Tk = N�1Xk=0 (�k�Tk 
 Im) =  N�1Xk=0 �k�Tk!
 Imso that  N�1Xk=0  k Tk!�1 =  N�1Xk=0 �k�Tk!�1 
 ImFurthermore N�1Xk=0  kyk = N�1Xk=0 (�k 
 Im)ykEquation (5.C.5) can then be written asb� = 0@ N�1Xk=0 �k�Tk!�1 
 Im1A N�1Xk=0 (�k 
 Im)yk (5.C.6)On the other hand, the least squares estimate b� of � is given byb�T =  N�1Xk=0 �kyTk!T  N�1Xk=0 �k�Tk!�1 ;so that vec b�T = 0@ N�1Xk=0 �k�Tk!�1 
 Im1A vec (N�1Xk=0 yk�Tk) (5.C.7)But vec (N�1Xk=0 yk�Tk) = N�1Xk=0 vec �yk�Tk	 ;= N�1Xk=0 (�k 
 Im) vec yk;= N�1Xk=0 (�k 
 Im) yk:



134 5. MIMO Identi�cation using Orthonormal BasesIn this case equation (5.C.7) can be written asvec b�T = 0@ N�1Xk=0 �k�Tk!�1 
 Im1A N�1Xk=0 (�k 
 Im)yk: (5.C.8)The result then follows by noting that the right hand sides of equations (5.C.6)and (5.C.8) are equal. �5.D Proof of Convergence of Block Toeplitz-like MatricesProof of Lemma 5.7.1 Let Bp(!) denoteBp(!) � Bp(ej!) , �B0(ej!);B1(ej!); � � � ;Bp�1(ej!)�T : (5.D.9)Then �p(!) = Bp(!)
 In;e�p(!) = Bp(!)
 In 
 Im = Bp(!)
 Inm;so that �?p(�)�p(�) = (B?p(�)
 In)(Bp(�)
 In);= B?p(�)Bp(�)
 In;= p�1Xk=0 Bk(ej�)Bk(ej�)
 In;= Kp(�; �)
 In = Kp(�; �)In;and similarly �?p(�)�p(!) = Kp(!; �)In;where Kp(�; �) is the Reproducing Kernel associated with the orthonormal sys-tem fBk(z)g. Now we can writee�?p(�)Mp(F;W )e�p(!) == 12� Z ���(�?p(�)
 Im) ��p(�)F (�)�?p(�)
W (�)� (�p(!)
 Im)d�= 12� Z ��� �?p(�)�p(�)F (�)�?p(�)�p(!)
W (�)d�= 12� Z ���Kp(�; �)Kp(!; �) (F (�)
W (�)) d� (5.D.10)



5.D Proof of Convergence of Block Toeplitz-like Matrices 135Considering the case � = ! the previous expression becomese�?p(�)Mp(F;W )e�p(!) = 12� Z ��� jKp(!; �)j2 (F (�)
W (�)) d�Therefore, using Lemma 4.C.1, we havee�?p(�)Mp(F;W )e�p(!)
p(!) � F (!)
W (!) == 1
p(!) �e�?p(�)Mp(F;W )e�p(!)� 
p(!)F (!)
W (!)�= 12�
p(!) Z ��� jKp(!; �)j2 (F (�)
W (�)� F (!)
W (!)) d�Considering now the i; j-th component of the above matrix di�erence, we have������"e�?p(�)Mp(F;W )e�p(!)
p(!) � F (!)
W (!)#i;j������ �� 12�
p(!) Z ��� jKp(!; �)j2 ���[F (�)
W (�)]i;j � [F (!)
W (!)]i;j��� d�= 12�
p(!) Z�2
 jKp(!; �)j2 ���[F (�)
W (�)]i;j � [F (!)
W (!)]i;j��� d� ++ 12�
p(!) Z�=2
 jKp(!; �)j2 ���[F (�)
W (�)]i;j � [F (!)
W (!)]i;j��� d�(5.D.11)where 
 = [! � �; ! + �], for some � > 0. Now, since F (!) and W (!) areassumed (component-wise) continuous, then for an arbitrary " > 0 there is a �su�ciently small such that���[F (�)
W (�)]i;j � [F (!)
W (!)]i;j��� < "for � 2 
. Therefore, using this and Lemma 4.C.1 the �rst term on the RHSof equation (5.D.11) can be bounded as12�
p(!) Z�2
 jKp(!; �)j2 ���[F (�)
W (�)]i;j � [F (!)
W (!)]i;j���d� �� "2�
p(!) Z ��� jKp(!; �)j2 d� = "On the other hand, since F (!) and W (!) are continuous on compact [��; �],then [F (!)
W (!)]i;j is bounded by some constant M=2 < 1. Therefore, the



136 5. MIMO Identi�cation using Orthonormal Basessecond term in the RHS of equation (5.D.11) can be bounded as12�
p(!) Z�=2
 jKp(!; �)j2 ���[F (�)
W (�)]i;j � [F (!)
W (!)]i;j��� d� �� M2�
p(!) Z�=2
 jKp(!; �)j2 d�We �nally have ������"e�?p(�)Mp(F;W )e�p(!)
p(!) � F (!)
W (!)#i;j������ �� "+ M2�
p(!) Z�=2
 jKp(!; �)j2 d�Using Lemma 4.C.1 and the fact that " is arbitrary then gives the result for� = !. �Proof of Lemma 5.7.2 The (smn+ y; tmn+ x)-th element of matrix Mp(W;X)is given by[Mp(W;X)]smn+y;tmn+x = 12� Z ��� BsBt[W (!)
X(!)]y;xd!= hBs;Bt[W 
X]y;xi :Therefore [Mp(W;X)Mp(Z; U)]smn+y;tmn+x == p�1Xk=0 mnXr=1 [Mp(W;X)]smn+y;kmn+r [Mp(Z; U)]kmn+r;tmn+x= p�1Xk=0 mnXr=1 hBs[W 
X]y;r;Bki hBt[Z 
 U ]r;x;Bki (5.D.12)On the other hand[Mp(WZ;XU)]smn+y;tmn+x = 12� Z ��� BsBt [WZ 
XU ]y;x d!= 12� Z ��� BsBt [(W 
X)(Z 
 U)]y;x d!Considering that[(W 
X)(Z 
 U)]y;x = mnXr=1 [W 
X]y;r[Z 
 U ]r;x



5.E Technical Lemmas 137we can write[Mp(WZ;XU)]smn+y;tmn+x = mnXr=1 12� Z ��� BsBt[W 
X]y;r[Z 
 U ]r;xd!= mnXr=1 hBs[W 
X]y;r;Bt[Z 
 U ]r;xi (5.D.13)Now, from equations (5.D.12) and (5.D.13), and Lemma 5.E.10 we have���[Mp(W;X)Mp(Z;U)]smn+y;tmn+x � [Mp(WZ;XU)]smn+y;tmn+x��� == �����mnXr=1 "p�1Xk=0 hBs[W 
X ]y;r;Bki hBt[Z 
 U ]r;x;Bki � hBs[W 
X ]y;r;Bt[Z 
 U ]r;xi#������ mnXr=1 �����p�1Xk=0 hBs[W 
X ]y;r;Bki hBt[Z 
 U ]r;x;Bki � hBs[W 
X ]y;r;Bt[Z 
 U ]r;xi������ mnXr=1 


Bs[W 
X ]y;r � bVy;r


H2 


Bt[Z 
 U ]r;x � bJr;x


H2 (5.D.14)where bVy;r(!) = p�1Xk=0 hBs[W 
X]y;r;Bki Bk(!)and bJr;x(!) = p�1Xk=0 hBt[Z 
 U ]r;x;Bki Bk(!)But by Lemma 5.E.11, for some K <1 and j�j < 1 we have


Bs[W 
X]y;r � bVy;r


H2 � K(�p�s + �s)


Bt[Z 
 U ]r;x � bJr;x


H2 � K(�p�t + �t):Substituting this into (5.D.14) then gives the result. �5.E Technical LemmasLemma 5.E.1. Invariance of LSE under linear re-parameterization. Let the pa-rameterized model be given byyk = G(q;�)uk + �k = �T�k + �k (5.E.15)



138 5. MIMO Identi�cation using Orthonormal Baseswhere G(q;�) , �T (Bp(q)
 In) (5.E.16)Bp(q) , [B0(q);B1(q); � � � ;Bp�1(q)]T (5.E.17)�k = (Bp(q)
 In)uk: (5.E.18)Let G(q; �) , �T (Ap(q)
 In) (5.E.19)Ap(q) , JBp(q); (5.E.20)be a linear re-parameterization of the transfer matrix of the system, whereJ is a nonsingular matrix of appropriate dimensions. Then, the leastsquares estimates of the parameter matrices � and � are related accordingto b� = (JT 
 In)�1b�;so that the corresponding transfer matrix estimates are the same, i.e.G(q; b�) = G(q; b�):Proof: The re-parameterization (5.E.19)-(5.E.20) leads to the linear regressorform yk = G(q; �)uk + �k = �T k + �k; (5.E.21)where the new regressor matrix  k is related to the original one, �k, accordingto  k = (J 
 In)�k: (5.E.22)Adopting the vectorized notationY T = (y0; y1; � � � ; yN�1) ;V T = (�0; �1; � � � ; �N�1) ;�T = (�0; �1; � � � ; �N�1) ;	T = ( 0;  1; � � � ;  N�1) ;the model for the N point observed data record can be written as:Y = ��+ V; (5.E.23)or in re-parameterized form Y = 	� + V: (5.E.24)



5.E Technical Lemmas 139Now, the least squares estimate b� of the parameter matrix � is given byb� = �	T	��1	TY:Based on equation (5.E.22), simple algebra gives	 = �(JT 
 In);so that b� can be written asb� = �	T	��1	TY;= �(J 
 In)�T�(J 
 In)T ��1 (J 
 In)�TY;= (J 
 In)�T ��T���1 (J 
 In)�1(J 
 In)�TY;= (J 
 In)�T ��T���1�TY;= (J 
 In)�T b�:It remains now to prove that the transfer matrix estimates with both parame-terizations are the same. We haveG(q; b�) = b�T (Ap(q)
 In);= b�T (J 
 In)�1(J 
 In)(Bp(q)
 In);= b�T (Bp(q)
 In);= G(q; b�): �Lemma 5.E.2. Let fBkg be a set of OBFP de�ned as in equation (3.14) fromthe set of poles f�kg, and let �max denote the pole with maximum modulein this set. Thens1� j�maxj1 + j�maxj � jBk(ej!)j �s1 + j�maxj1� j�maxj , K1 <1Proof: ��Bk(ej!)�� = ����� p1� j�kj2ej! � �k ! k�1Yi=0 �1� �iej!ej! � �i ������= ����� p1� j�kj2ej! � �k !����� = p1� j�kj2jej! � �kjNow, since by assumption is j�kj � j�maxj < 1, we have(1� j�maxj) � (1� j�kj) � ��ej! � �k�� � (1 + j�kj) � (1 + j�maxj)and the result follows straightforwardly. �



140 5. MIMO Identi�cation using Orthonormal BasesLemma 5.E.3. Let 
p(!) be de�ned as
p(!) , Kp(!; !) = p�1Xk=0 ��Bk(ej!)��2and let �max denote the pole with maximum module in the set f�kg of polesof the basis functions fBkg. Then the following inequalities holdp2 (1� j�maxj) � 12 p�1Xk=0(1� j�kj) � 
p(!) � p 1 + j�maxj1� j�maxjProof: The result is a direct consequence of Lemma 5.E.2. �Lemma 5.E.4. Let Qp and eGp(!) be de�ned asQp , limN!1NEnV 0N(�0) (V 0N(�0))To ;eGp(!) , G(ej!)�G(ej!; �0):Then Qp = 12� Z ��� �p(!)�u(!)�?p(!)
 ��(!) d! +�pwhere �p , 12� Z ��� �p(!)�u(!)�?p(!)
 eGp(!)�u(!) eG?p(!) d!:Proof: By the de�nition of QpQp = limN!1 1N N�1Xk=0 N�1X̀=0 (�k 
 Im)E�"k"T̀	 (�T̀ 
 Im)where �k is de�ned in (5.22) and"k = [G(q)�Gp(q; �0)]uk| {z }zk +�k:Therefore, using Lemma 5.E.5Qp = limN!1 1N N�1Xk=0 N�1X̀=0 (�k 
 Im)E��k�T̀	 (�T̀ 
 Im) ++ limN!1 1N N�1Xk=0 N�1X̀=0 (�k 
 Im)E�zkzT̀	 (�T̀ 
 Im)= 12� Z ��� �p(!)�u(!)�?p(!)
 ��(!) d! ++ 12� Z ��� �p(!)�u(!)�?p(!)
 eGp(!)�u(!) eG?p(!) d!| {z }�p :



5.E Technical Lemmas 141�Lemma 5.E.5. limN!1 1N N�1Xk=0 N�1X̀=0 (�k 
 Im)E��k�T̀	 (�T̀ 
 Im) == 12� Z ��� �p(!)�u(!)�?p(!)
 ��(!) d!:Proof: Since f�kg is a stationary process with an associated spectral density��(!) then E��k�T̀	 , R�(k � `) = 12� Z ��� ��(!)e�j!(k�`) d!:Therefore, 1N N�1Xk=0 N�1X̀=0 (�k 
 Im)E��k�T̀	 (�T̀ 
 Im) == 12�N Z ��� N�1Xk=0 N�1X̀=0 (�k 
 Im)��(�T̀ 
 Im)e�j!(k�`) d!= 12�N Z ��� N�1Xk=0 N�1X̀=0 ��k�T̀ 
 ��(!)� e�j!(k�`) d!= 12�N Z ��� N�1Xk=0 N�1X̀=0 �k�T̀ e�j!(k�`)!
 ��(!) d!= 12� Z ��� N�1X�=1�N  1N N�1Xk=0 �k�Tk��!| {z }R�N (�) e�j!� 
 ��(!) d!= 12� Z ��� N�1X�=1�N R�N (�)e�j!�!
 ��(!) d! (5.E.25)where use has been made of the change of variable k � ` = � and it has beenassumed that uk = 0 for k < 0. Since uk is a quasi-stationary signal, then also�k , �p(q)uk is quasi-stationary, and then its covariance matrix is given byR�(�) , limN!1 1N N�1Xk=0 �k�Tk�� = limN!1R�N (�)



142 5. MIMO Identi�cation using Orthonormal Basesand the spectral density by��(!) , 1X�=�1R�(�)e�j!�Now, the result follows by taking the limits when N tends to in�nity in equation(5.E.25), and considering that��(!) = �p(!)�u(!)�?p(!) �Lemma 5.E.6. Let �p(!) and e�p(!) be de�ned as�p(!) , �B0(ej!);B1(ej!); � � � ;Bp�1(ej!)�T 
 Ine�p(!) , �p(!)
 Imrespectively. Then k�p(!)k2 = ke�p(!)k2 =q
p(!)Proof: Let Bp(!) be de�ned as in equation (5.D.9), so that �p(!) and e�p(!)can be written as �p(!) = Bp(!)
 Ine�p(!) = Bp(!)
 In 
 Im = Bp(!)
 Inmrespectively. Thenk�p(!)k2 , supx6=0 k�p(!)xk2kxk2= supx6=0 qx?�?p(!)�p(!)xpx?x= supx6=0 qx?(B?p(!)
 In)(Bp(!)
 In)xpx?x= supx6=0 qx?(B?p(!)Bp(!)
 In)xpx?x =q
p(!)where the last equality follows considering that B?p(!)Bp(!) = 
p(!). In similarway it can be proved that ke�p(!)k2 =p
p(!). �



5.E Technical Lemmas 143Lemma 5.E.7. Let Rp be de�ned as in equation (5.55), and let �(Rp) denotethe eigenvalues of Rp, and �(�u(!)) and �(�u(!)) denote the minimum andmaximum singular values of �u(!), respectively. Theninf! �(�u(!)) � �(Rp) � sup! �(�u(!)) (5.E.26)and �sup! �(�u(!))��1 � �(R�1p ) � �inf! �(�u(!))��1 : (5.E.27)Proof: For any �, Rp can be written asRp = 12� Z ��� �p(ej!) (�In � (�In � �u(!))) �?p(ej!)
 Im d!= 12� Z ��� �p(ej!)�In�?p(ej!)
 Im d! �� 12� Z ��� �p(ej!) (�In � �u(!)) �?p(ej!)
 Im d!Now choose � = sup! �(�u(!)). Since �u(!) � 0, then (�In � �u(!)) � 0, andthen 12� Z ��� �p(ej!) (�In � �u(!)) �?p(ej!)
 Im d! � 0so that we can writeRp � 12� Z ��� �p(ej!)�In�?p(ej!)
 Im d!= sup! �(�u(!))� 12� Z ��� �p(ej!)�?p(ej!) d!�
 Im= sup! �(�u(!)) Imnpwhere in passing to the last line the following identity was used12� Z ��� �p(ej!)�?p(ej!) d! = InpOn the other hand, Rp can be written asRp = 12� Z ��� �p(ej!) (�In + (�u(!)� �In)) �?p(ej!)
 Im d!= 12� Z ��� �p(ej!)�In�?p(ej!)
 Im d! ++ 12� Z ��� �p(ej!) (�u(!)� �In) �?p(ej!)
 Im d!



144 5. MIMO Identi�cation using Orthonormal BasesNow choose � = inf! �(�u(!)). Since �u(!) � 0, then (�u(!)� �In) � 0, andthen 12� Z ��� �p(ej!) (�u(!)� �In) �?p(ej!)
 Im d! � 0so that we can writeRp � 12� Z ��� �p(ej!)�In�?p(ej!)
 Im d!= inf! �(�u(!))� 12� Z ��� �p(ej!)�?p(ej!) d!�
 Im= inf! �(�u(!)) ImnpFinally, we have inf! �(�u(!)) Imnp � Rp � sup! �(�u(!)) Imnp (5.E.28)so that�sup! �(�u(!))��1 Imnp � R�1p � �inf! �(�u(!))��1 Imnp (5.E.29)and the result follows straightforwardly. �Lemma 5.E.8. Let Rp be de�ned as in equation (5.55). Then

R�1p 

2 = 

M�1p (�u; Im)

2 � �inf! �(�u(!))��1Proof: The result follows directly from Lemma 5.E.7 considering that the 2-norm equals the maximum singular value. �Lemma 5.E.9. Let �p be de�ned as�p , 12� Z ��� �p(!)�u(!)�?p(!)
 eGp(!)�u(!) eG?p(!) d!Then limp!1 k�pk2 = 0



5.E Technical Lemmas 145Proof: k�pk2 � 12� Z ��� 


�p(!)�u(!)�?p(!)
 eGp(!)�u(!) eG?p(!)


2 d!= 12� Z ��� 

�p(!)�u(!)�?p(!)

2 


 eGp(!)�u(!) eG?p(!)


2 d!� 12� Z ��� k�p(!)k22 k�u(!)k22 


 eGp(!)


22 d!� 12� Z ��� 
p(!) k�u(!)k22 


 eGp(!)


2F d!� �sup! �(�u(!))�2�sup! 
p(!)� 12� Z ��� 


 eGp(!)


2F d!= �sup! �(�u(!))�2�sup! 
p(!)� 


 eGp(!)


2H2Here, k � kF stands for the Frobenius15 matrix norm, while k � kH2 stands for theH2-norm16 induced by the inner product. Finally, the result follows under theassumption that 


 eGp(!)


2H2 decays to zero faster than 1=
p(!), so thatlimp!1�sup! 
p(!)� 


 eGp(!)


2H2 = 0: �Lemma 5.E.10. [NHG96] For f; g 2 L2(T), let bf and bg be de�ned asbf , p�1Xk=0 hf;Bki Bkbg , p�1Xk=0 hg;Bki Bkrespectively. Then�����p�1Xk=0 hf;Bki hg;Bki � hf; gi����� � 


f � bf


L2 kg � bgkL2 :Proof: See Lemma C.3 in [NHG96]. �15The Frobenius norm of the matrix A = (aij)m�n is de�ned as kAk2F ,Pmi=1Pnj=1 jaij j2.16The H2-norm induced by the inner product is given by kG(!)k2H2 ,< G;G >=12� R ��� Tr �G(ej!)G?(ej!)	 d! = 12� R ��� kG(ej!)k2F d!.



146 5. MIMO Identi�cation using Orthonormal BasesLemma 5.E.11. [NHG96] For f 2 L2(T), let bh be de�ned asbh , p�1Xk=0 hBmf;Bki Bk:Then if f has a �nite dimensional spectral factorization there exists K <1, j�j < 1 such that for m � p


Bmf � bh


L2 � K(�p�m + �m)Proof: See Lemma C.4 in [NHG96]. �



6Adaptive Tracking Performance Analysisusing Orthonormal Bases
A fundamental problem in control and signal processing is to track the time-varying parameters of a system or the properties of a signal as they vary withtime. In recent years, considerable e�ort has been devoted to the derivationand analysis of a variety of adaptation algorithms for their use in recursive iden-ti�cation, adaptive �ltering and control. In this chapter, a frequency domainanalysis of the tracking performance of several adaptive algorithms for the re-cursive identi�cation of time-varying linear systems will be carried out for thecase in which the system is represented by a �xed denominator model struc-ture. As done in the preceding chapters, to facilitate the analysis these modelstructures will be re-parameterized using the orthonormal bases with �xed polesintroduced in Section 3.5. We concentrate on the study of the trade-o� betweendisturbance rejection and tracking ability. This trade-o� will be illustrated byshowing how the quality of the adaptive estimation is in
uenced by such thingsas input and noise spectral densities, step size of the adaptive algorithms, andthe choice of the �xed pole locations in the model structure.6.1 IntroductionThe derivation of a mathematical model for a system from observation data isthe topic of System Identi�cation. When dealing with time-invariant systems,the identi�cation can be carried out o�-line, which means that the parameterestimation is performed once the whole set of data is collected from the system.This cannot be done when the system properties vary with time. In this casethe identi�cation has to be performed on-line, which basically means that theestimate of the unknown parameters is updated each time a new data becomesavailable. This leads us to the �eld of Recursive Identi�cation, where a consir-able amount of research has been carried out in recent years (see for instance thebooks [You84, GS84, WS85, CG91]). In this context, identi�cation algorithms



148 6. Adaptive Tracking Performance Analysis using Orthonormal Baseshave to adapt themselves to track the changes in the system, and for this reasonthey are called adaptive algorithms or (adaptive) tracking algorithms.At this point, a question that arises is what characteristics of the algorithmsshould be considered to evaluate their performance. In general, one is interestedin the following aspects of the algorithm� Stability: exponential stability of the algorithm is necesary to guaranteeboundedness of the tracking error, and is a pre-requisite for the practicalapplications and the analysis. The general conditions for stability of thealgorithms we consider here have been established by Guo and Ljungin [GL95a], and therefore this issue is not studied in this chapter.� Transient Response: the dominating dynamics governing the behaviourof the adjusted parameters when there is an abrupt change in the truesystem, or after an initialization.� Steady-State Response: the variability of the estimated parameters withrespect to the `true' parameters, after a long period of time, when thesystem is assumed to be time-invariant (or slowly time-varying).We concentrate in this chapter only in the analysis of the last two issues, viz.the transient response and the steady-state response of the algorithms.A second question that arises is how to quantify the quality of the estima-tion. For instance, Guo and Ljung in [GL95b, GL95a] consider a general familyof tracking algorithms, and quantify the quality of the estimation in the param-eter space. The quanti�cation is done in terms of the covariance matrix of theparameter tracking error (the so-called Mean Squares Error of the parameterestimate). Since the exact expression for this error is, in general, very compli-cated, the authors propose a simple expression that provides a good approxima-tion when the adaptation rate of the algorithm is small. In this chapter, we usethese results but, following the suggestions in [EJLW92, RJL96, Joh95, Joh93]about the utility of analysis of adaptive algorithms in the frequency domain,the quality of the estimate is analyzed here in terms of the covariance matrix ofthe frequency response estimation error rather than in terms of the covariancematrix of the parameter error. These frequency domain expressions are stilltoo complicated to be of any practical utility. Drawing inspiration from thework in [GL89, LG90, LY85, Gun88] we derive more tractable expressions byconsidering high model orders.Recent work in the areas of Adaptive Filtering [Wil95, Wil93a, WZ96] andRecursive Identi�cation [GW90], suggesting the use of new model structures-as an alternative to the popular FIR structures- in adaptive algorithms has in-spired us to use the �xed denominatormodel structures we consider in this chap-ter. Speci�cally, the �xed poles adaptive �lters (FPAF) proposed in [Wil93a],



6.2 Motivation 149the Gamma �lters in [Pdd93], the adaptive IIR �lters in [WZ96], and the re-cursively identi�ed Laguerre models in [GW90], can all be regarded as �xeddenominator model structures. All these model structures can be representedin a uni�ed way by re-parameterizing them using the OBFP introduced inChapter 3 (Section 3.5). As mentioned several times in this thesis, these �xeddenominator model structures can be regarded as generalizations of the FIRstructure, where the poles need not all be �xed at the origin. As pointed outin [Wil95, WZ96, GW90], the use of these structures can lead to many improve-ments in terms of estimation accuracy, and implementation and computationalcomplexity, while still retaining the desirable convergence properties enjoyedby adaptive FIR schemes.This chapter provides a frequency domain analysis of the tracking perfor-mance of some standard adaptation algorithms when used to track time-varyingsystems represented by these `generalized FIR' structures. Both a transient,and a steady state analysis of the behavior of the frequency response estima-tion error are performed. The analysis shows that there is an important designcompromise between tracking ability and noise sensitivity of the algorithms,and it makes explicit how this trade-o� is in
uenced by input and noise spec-tral densities, choice of step size (or adaptation rate) of the algorithm, and(what is a main focus here) the choice of the �xed pole positions in the modelstructure.The material in this chapter is closely related with the work of Gunnarssonand Ljung [GL89, LG90, Gun88] who studied adaptive FIR algorithms in thefrequency domain. Speci�cally, we borrow from [GL89, Gun88] the main ideaof this chapter which is to simplify error expressions by considering large modelorder, and small adaptation rate. The results of this chapter specialise to someof those in [GL89, Gun88] when all the poles of the orthonormal bases arechosen at the origin.These ideas, together with the use of recent results by Guo and Ljung [GL95b]that provide approximations to the parameter covariance for a general class ofadaptive algorithms under mild assumptions, constitute the base upon whichour results are constructed. An important tool employed in the derivation ofthese results is the re-parameterization of the �xed denominator model struc-ture into the orthonormal form studied in Chapter 3 (Section 3.5), in order tofacilitate the theoretical analysis.6.2 MotivationA result derived by Gunnarsson and Ljung [GL89, Gun88] that has proved tobe of great utility in the intuitive understanding and design [EJLW92, RJL96,Joh93, Joh95] of certain adaptive tracking schemes, is that the variability of arecursively computed p-th order FIR transfer function estimate G(ej!; b�) may



150 6. Adaptive Tracking Performance Analysis using Orthonormal Basesbe approximated (for time invariant systems) by the simple expressionVarfG(ej!; b�)g � p ��2��[�u(!)]r (6.1)where � is some constant, � is the step size, �2� is the white measurement noisevariance, �u(!) is the input excitation spectral density, and r = 1 for RecursiveLeast Squares (RLS), r = 1=2 for Kalman Filtering and r = 0 for the LeastMean Square (LMS) algorithm.In assessing the utility of the idea of implementing adaptive �lters witharbitrary �xed poles, a natural question arises as to how (6.1) should be mod-i�ed from the FIR case so as to describe VarfG(ej!; b�)g. The most obviouscourse is to conclude that these new `�xed denominator' model structures arereally just the old FIR ones with an input fukg pre-�ltered by an all-pole �lterF (q) = 1=D(q) where D(q) = Qp�1n=0(q � �n) with f�ng being the user chosenguesses as to the true pole locations. This would imply that the variabilityof the FIR `numerator' part is then given by the expression (6.1) with thesubstitution �u(!) 7! jF (ej!)j2�u(ej!) = �u(!)jD(ej!)j2 (6.2)made. The frequency domain variability of the whole model structure, being theFIR numerator part divided by the frequency response of the �xed denominatorpart, should then be (6.1) with the substitution (6.2) and then divided byjD(ej!)j2. Clearly the jD(ej!)j2 terms will cancel, and the conclusion will ensuethat the variability of VarfG(ej!; b�)g is invariant to the choice of �xed polelocation.This can be tested on a simple example wherein the true system isG(q) = 0:1548q + 0:0939(q � 0:6065)(q � 0:3679)and a p = 10'th order model is �tted using RLS when the input fukg hasspectral density �u(!) = 10(1:25� cos!)�1, the output measurements fykg arecorrupted by white noise of variance �2� = 0:01, and the algorithm is run forN = 2000 data samples. In this case, the true variability can be estimatedby the sample average over 200 Monte-Carlo simulations with di�erent inputand noise realizations. This can then be compared to the approximation (6.1).For the case of all the f�ng being at the origin (so that a true FIR structureis employed), then the results of such a comparison are shown in the top plotof �gure 6.1 - the approximation (6.1) being the dash-dotted line, and theMonte-Carlo estimate of true variability being the solid line. The agreement isexcellent.
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Figure 6.1: Comparison of (solid line) true variability to (dash-dotted line)FIR based theoretical approximation (6.1). Top plot is case of all poles atorigin (FIR case), bottom plot is case of all poles away from origin. Thedashed line is the improved new approximation presented in this chapter.In the top plot, the dash-dotted line showing the pre-existing approximation(6.1) obscures the new approximation because the new and old approxima-tions are identical for the FIR case.However, if all the poles are chosen away from the origin, �ve at �k = 0:2and �ve at �k = 0:8 then when examining the theoretical prediction (6.1) andthe true variability as shown in the bottom plot of �gure 6.1, the agreementbetween the two has disappeared.Clearly, the previous heuristic reasoning that tried to adapt the FIR result(6.1) to a situation for which it is prima-facie applicable is 
awed, and thisindicates the need for custom analysis of �xed denominator model structureestimation.Such is the purpose of this chapter, and pertaining to this note in the bottomdiagram of �gure 6.1 the good agreement between the true variability and thedashed line, which is a plot of the new `extended' approximation presented inthis chapter. This new approximation is the old one (6.1) with the model orderterm p replaced with a frequency dependent function 
p(!). However, in orderto develop the ideas that lead to this and other enhanced approximations, amore formal problem de�nition is required.6.3 Problem FormulationWe consider the (recursive) identi�cation of linear slowly time-varying systemsfrom observed input-output data. We assume that the underlying model relat-



152 6. Adaptive Tracking Performance Analysis using Orthonormal Basesing the observed input fukg and output fykg sequences is given byyk = Gk(q)uk + �k (6.3)where f�kg is a zero mean white noise process with variance E f�2kg = �2� <1and where Gk(q) represents the transfer function of the time-varying linearsystem at time k Gk(q) = 1Xn=0 gk(n)q�nwith square summable impulse response sequence fgk(n)g 2 `2. In order forthis representation to make sense we have of course to assume that the timevariation is slow so that Gk(q) can be given the usual interpretation of transferfunction describing the input{output properties of the system.It is assumed that the input signal fukg is a bounded, deterministic, andquasi-stationary sequence in the sense of [Lju87], as summarized in Chapter 2(page 6).We also assume that the input sequence fukg is weakly uncorrelated withthe noise f�kg in the sense that jE fuk�k��g j ! 0 as � !1, and that the inputspectral density has a �nite dimensional spectral factorization and it is positivede�nite �u(!) > 0 for almost all !, what guarantees that the input signal ispersistently exciting of any order [Reg95] (c.f. Proposition 2.1.1).Our interest is on the (recursive) estimation of the (assumed unknown) timevarying dynamics Gk(q) by means of the observations of inputs fukg and out-puts fykg. Of the many approaches available in the literature to solve thisestimation problem [SK95, GS84, Lju87, CG91], a common choice that facili-tates the analysis of the adaptive algorithms, is to express the model (6.3) inlinear regression form yk = �Tk �k + �k (6.4)where the `regression vector' �k depends in general on past outputs and inputs,and �k 2 Rp is a vector of p parameters in a model structure G(q; �k) thatattempts to describe the true dynamicsGk(q). An estimate of Gk(q) can then becomputed as G(q; b�k) where the parameter estimate b�k is obtained recursively.In this context, several well-known adaptive algorithms such as Least MeanSquares (LMS) (see [WS85] and the references therein), Recursive Least Squares(RLS) [GS84, You84], and the Kalman Filter (KF) [Kal60, KB61, Guo90] canbe used for the estimation.We restrict the analysis in this chapter to the three above mentioned adap-tation algorithms, namely the LMS, RLS, and KF algorithms, which can berepresented in a uni�ed way by the general adaptation law [GL89]b�k+1 = b�k + Lk(yk � �Tk b�k); (6.5)



6.3 Problem Formulation 153where Lk is a gain vector that is computed in di�erent ways, according to theparticular algorithm. For instance, when the gain vector is given byLk = ��k; � 2 (0; 1); (6.6)then the update law (6.5) is the `gradient-type' algorithm known as Least MeanSquares [WS85]. The case Lk = Pk�k (6.7)where Pk satis�esPk = 1� �Pk�1 � Pk�1�k�TkPk�1�+ �TkPk�1�k � ; � 2 (0; 1) (6.8)initialized with some positive de�nite matrix P0, corresponds to the RecursiveLeast Squares algorithm, where the constant � is known as the `forgettingfactor'. Finally, the case Lk = �Pk�1�k�2 + ��TkPk�1�k (6.9)where Pk satis�es the Riccati equationPk = Pk�1 � � Pk�1�k�TkPk�1�2 + ��TkPk�1�k + �� (6.10)with � > 0 and symmetric matrix, corresponds to the Kalman Filter algo-rithm. The KF gives an estimate of the parameter vector �k, when its timevariation is modeled via a random walk as�k+1 = �k + �wk (6.11)where wk is a stationary zero mean vector white noise process with covariancematrix E�wkwTk 	 = Q. The estimate is optimal in a mean-square sense underGaussian assumptions if � = �; �2 = �2� and � = Q. In the sequel it is assumedthat fwkg is weakly uncorrelated with fukg in the sense that jE fukwk��g j ! 0as � !1.The design variables of the three algorithms are the gain � for the LMSalgorithm, the forgetting factor � for the RLS algorithm, and the matrices �2and �, and the gain � for the Kalman Filter.A central question when using these algorithms is the accuracy of the es-timate. The most common way to quantify this accuracy is to compute theso-called Mean Square Error (MSE) of the transfer function estimateMean Square Error , EnjGk(q)�G(q; b�k)j2o ; (6.12)



154 6. Adaptive Tracking Performance Analysis using Orthonormal Basesas a measure of how well the estimate G(q; b�k) approximates the `true' transferfunction Gk(q). To do that, we need �rst to examine the accuracy of the pa-rameter estimate b�k itself [SK95, GS84]. This may be achieved by de�ning theparameter estimation error e�k as e�k , �k � b�k: (6.13)where �k represents the true parameter vector that allows the model structureto exactly describe the underlying time varying dynamics as G(q; �k) = Gk(q).Of course this can only be done if the system belongs to the model set. In thegeneral case, the model structure G(q; �k) will be too simple to exactly describethe true dynamics Gk(q) for any value of �k, and so there will be no `true'parameter �k. However, as pointed out in [GL89, LY85], we still can de�ne �kas the `best' approximation (for example in L2 sense) of a given order, and usethis value to calculate e�k. In this case, the true transfer function Gk(q) can beexpressed as Gk(q) = G(q; �k) + �p(q)where �p(q) represents the undermodelling error. As the model order increasesto in�nity this error tends to zero (�p(q)! 0 as p!1). It is reasonable then(following [GL89, LY85]) to perform an analysis asymptotic in model order.Since this analysis will involve deriving expressions that are asymptotic in p,there is no point in continually include the term �p(q) (that tends to zero asp goes to in�nity) throughout the derivations, and so we will ignore this termfrom the beginning. The validity of this strategy is con�rmed by simulationexample in Section 6.7. For the case in which Gk(q) is represented using theorthonormal bases with �xed poles of Section 3.5, the rate at which �p(ej!)tends to zero with increasing model order p is established via Theorem 4.3.1.Substituting (6.13) into the general update equation (6.5), and consideringthat the time-variation of the parameters is given by the random walk (6.11),gives that the parameter error satis�es the following di�erence equation [GL95b]e�k+1 = �I � Lk�Tk � e�k + � !k � Lk�k: (6.14)Equation (6.14) could now be used to calculate the covariance matrix of theparameter error Ene�ke�Tk o as a preliminary step for the computation of the MSEof the transfer function estimate, which ultimately is the magnitude we havechosen to measure the quality of the estimation. Unfortunately, as pointed outin [GL89, GL95b, Gun88, LG90], the exact expression for this covariance willbe very complicated except in very special circumstances. To obtain simpleexpressions approximating this covariance matrix we resort to the main resultof [GL95b] which establishes that, under certain assumptions on the regressors



6.3 Problem Formulation 155f�kg (the so-called �-mixing condition), and on the noise �k and parameterdrift !k, the covariance Ene�ke�Tk o may be approximated by the matrix �k givenby the linear deterministic di�erence equation�k+1 = (I � �SkR)�k(I � �SkR)T + �2�2�SkRSk + �2Q (6.15)where R , E��k�Tk 	 and Sk is de�ned asLMS: Sk = I; (6.16)RLS: Sk = (1 + �)Sk�1 � �Sk�1RSk�1; S0 = P0; (6.17)Kalman Filter: Sk = Sk�1 � �Sk�1RSk�1 + ��2�; S0 = 1�2P0; (6.18)The degree of the approximation is quanti�ed in [GL95b] by a result of theform1 


Ene�ke�Tk o� �k


 � �(�)where �(�) is a bounded function that tends to zero as � tends to zero, where� is a measure of the step size of the algorithm.However, as mentioned earlier in this section, our interest is not in thequanti�cation of the accuracy in the parameter space, but in quantifying howclose the estimated model G(q; b�k) is to the true system Gk(q) in terms of theerror eGk(ej!) , G(ej!; b�k)�Gk(ej!)in the estimated frequency response, and ultimately in terms of the MSE of thetransfer function estimate (6.12).In order to be able to compute this frequency response estimation error, weneed to relate it with the error in the parameter space. Since we are assuminga linear regression model for the system, we are restricted to considering modelstructures G(q; �k) for which the estimated frequency response depends linearlyon the estimated parameters, i.e. of the formG(ej!; b�k) = �Tp (ej!)b�k; (6.19)1Here k � k stands for the 2-norm of matrices or operator norm



156 6. Adaptive Tracking Performance Analysis using Orthonormal Baseswhere �p(q) , [B0(q);B1(q); � � � ;Bp�1(q)]T (6.20)is a vector of p rational-stable-causal transfer functions Bn(q). For example,Bn(q) = q�n corresponds to an FIR model structure.Using equations (6.15), (6.19) and (6.20), an approximate expression forthe Mean Square Error (MSE) of the transfer function estimate can then becomputed asEnj eGk(ej!)j2o = �?p(ej!)Ene�ke�Tk o�p(ej!) � �?p(ej!)�k�p(ej!) (6.21)This MSE of the transfer function estimate can then be used as a frequencydomain quanti�cation of the performance of the adaptive algorithms. Unfor-tunately again, this expression will in general be too complicated to give anypractical insight. Following the ideas in [GL89, LY85, Gun88], we will derivesimple approximations for (6.21) that are increasingly accurate for increasingmodel order p. Through simulation experiments we will show that the simpli-�ed expressions are good approximations even for relatively small model order.To be able to proceed with this asymptotic analysis we need to be moreexplicit about the expression for �p(ej!) in (6.21). That is, to be more speci�con the exact formulation of the transfer functions fBn(q)g determining themodel structure Gk(q; �).6.4 Model StructuresIn recent years, in an adaptive �ltering context, Williamson and co-workershave proposed and studied, in a series of papers [Wil95, Wil93b, Wil93a, WZ96],a new class of In�nite Impulse Response (IIR) adaptive �lters that have beentermed `Fixed Pole Adaptive Filters' (FPAF), or more generically `Vector SpaceAdaptive Filters' (VSAF). For the case of real poles, these adaptive �lters canbe formulated asG(q; �0k) = p�1Xn=0 �0k(n) nYi=0 1(q � �i) = p�1Xn=0 �0k(n)An(q); (6.22)where the `�xed poles' f�ngp�1n=0 are chosen to re
ect the available prior informa-tion about the likely pole positions of the true time varying system Gk(q), andwhere �0k(n) are adjustable �lter parameters. In passing to the last equality wehave de�ned An(q) , nYi=0 1(q � �i) :



6.4 Model Structures 157To contemplate the case of complex conjugate poles, the formulation is modi�edto G(q; �0k) = p�1Xn=0 (�0k(n)q + �00k(n)) nYi=0 1(q � �i)(q � �i) : (6.23)A special case of the structure (6.22) arises when all the poles f�ng are chosenat the origin in which case (6.22) is an FIR model structure.Although IIR �lters have several advantages over FIR �lters when usedto model very long impulse responses, FIR models have been preferred almostexclusively for the adaptive applications [WS85], mainly due to the fact that theglobal convergence of the adaptive algorithms can be ensured, in contrast to IIR�lters for which theoretical guarantee of global convergence is di�cult to providedue to the possibility of existence of multimodal error surfaces2 [WS85, Reg95].Williamson and co-workers [WZ96] show that the FPAF structure (6.22)-(6.23), though being an IIR model structure, preserves the global convergencecharacteristics of FIR �lters. They also provide some simulation results showingthat signi�cant improvements in the estimation accuracy can be achieved if theprior information about the dominant modes of the system is used to chosethe �xed poles in the model structure close to these dominant poles. Laterin this chapter, we will give some theoretical support to this observations byresorting to the results on the undermodelling error for the OBFP we presentedin Theorem 4.3.1.In spite of the above mentioned advantages of the model structure (6.22),its generality (as compared to an FIR structure) makes the frequency domainanalysis of the adaptive algorithms much more di�cult. To overcome thisdi�culty and make the analysis more tractable, we replace the model structure(6.22) with an orthonormal re-parameterization of the formG(q; �k) = p�1Xn=0 �k(n)Bn(q) (6.24)where fBn(q)g are the Orthonormal Bases with Fixed Poles introduced in Sec-tion 3.5, whose formulation we rewrite here for convenience,Bn(q) =  p1� j�nj2q � �n ! n�1Yk=0�1� �kqq � �k � : (6.25)As shown for the time-invariant case in Chapter 4, the model structure2This basically means that the surface describing the mean square tracking error in the(adaptive) parameter space may have multiple local minima.



158 6. Adaptive Tracking Performance Analysis using Orthonormal Bases(6.24) can be written in the linear regression form (6.4) by de�ning�k , �Tp (q)uk; (6.26)�p(q) , [B0(q);B1(q); � � � ;Bp�1(q)]T ; (6.27)�k , [�k(0); �k(1); � � � ; �k(p� 1)]T : (6.28)Before going further with the analysis, a natural question we should answer isthe following: How do the estimates with the orthonormal re-parameterization(6.24) relate to the estimates with the original model structure (6.22), whenusing the di�erent adaptive algorithms?To answer this question, let us notice �rst that since the poles of the modelstructures (6.24) and (6.22) are identical, we can always �nd a nonsingular(constant) matrix J 2 Rp�p such that the matrices �p(q) and �0p(q) associatedwith each parameterization are related according to�p(q) = JT�0p(q); (6.29)with �p(q) de�ned in (6.27), and where �0p(q) is de�ned analogously as�0p(q) , [A0(q);A1(q); � � � ;Ap�1(q)]TIt is then clear that the regressor vectors �k and �0k associated respectively tothe model structures (6.24) and (6.22), are related according to�k = JT�0k (6.30)Based on this observations, we are now able to prove the following result show-ing that the estimations using RLS and KF algorithms are invariant under thelinear re-parameterization (6.29), while the estimation using LMS algorithm isnot.Lemma 6.4.1. The RLS and KF algorithms are invariant under the linearre-paramaterization (6.29), which means that the estimates correspondingto the model structures (6.24) and (6.22) are related according tob�0k = Jb�k (6.31)provided that the initialization is consistent with the linear re-parameteri-zation, i.e. P 00 = JP0JTfor the RLS algorithm, and �0 = J�JTfor the KF. On the other hand, the LMS algorithm is not invariant underlinear re-parameterization and consequently equation (6.31) doesn't holdfor this case.



6.5 Transient analysis 159Proof: See Appendix 6.A. �It is clear now that, since the RLS and KF algorithms are frequency domain in-variant to linear model re{parameterization, the analysis using the orthonormalstructure will provide results that are valid for any �xed denominator modelstructure such as (6.22). Unfortunately, the LMS algorithm is not invariant un-der linear re{parameterisations [EJLW92, Wil95], and so any subsequent resultsfor this algorithm will only pertain to the orthonormal model structure (6.24).This is not considered a signi�cant limitation, since for the LMS algorithmthe orthonormal structure (6.24) is attractive from the viewpoint of numericalrobustness and enhanced convergence rate under white noise excitation.6.5 Transient analysisIn this section, we study the transient behavior of the frequency response esti-mation error for the Least Mean Squares algorithm.The dynamic behaviour of the frequency response estimation error can bestudied by using the approximation (6.21) substituted into (6.15) to obtainEnj eGk+1(ej!)j2o � �?p(ej!)(I � �SkR)�k(I � �SkR)T�p(ej!)+ �2�2��?p(ej!)SkRSk�p(ej!)+ �2�?p(ej!)Q�p(ej!): (6.32)As the reader can see, this is a very complicated expression from which it isdi�cult to extract useful design insights. However, if the model order p isassumed to be large, then equation (6.32) can be simpli�ed considerably.Here again, an important rôle in the analysis will be played by the repro-ducing kernel 
p(!) , Kp(!; !) associated to the orthonormal bases with �xedpoles fBn(q)g in (6.25). We recall that 
p(!) can be computed as
p(!) = p�1Xn=0 jBn(ej!)j2: (6.33)For the case of FIR model structures, it is well known that the error in theestimated models induced by the measurement noise is inversely proportionalto the model order p. This has been rigorously proved by Ljung and Yuanin [LY85] for o�-line identi�cation in the time-invariant case, and by Gunnarssonand Ljung in [GL89] for the case of recursive identi�cation. The frequencydependent quantity 
p(!) will serve to capture how this phenomenon generalizesto the �xed{denominator model structures (6.22),(6.24). As pointed out inChapter 4, for the case �n = 0 that corresponds to (6.24) being an FIR modelstructure, the factor 
p(!) equals p.



160 6. Adaptive Tracking Performance Analysis using Orthonormal BasesIt is also necessary to de�ne a quantity which re
ects the time varying natureof the system Gk(q) in the frequency domain, and is also commensurate withthe parameter space model for this time variation (6.11). Following [GL89],this may be achieved by using the linear relationship (6.19) in combinationwith (6.11) to obtain the model for the time variation asGk+1(ej!) = Gk(ej!) + ��Tp (ej!)wkso that E�jGk+1(ej!)�Gk(ej!)j2	 = �2�?p(ej!)Q�p(ej!) = �2�p(!): (6.34)where we have de�ned �p(!) , �?p(ej!)Q�p(ej!): (6.35)In the sequel, simpli�cations for equation (6.32) will be obtained by consideringincreasing model order p. To facilitate this analysis it is necessary (as in [GL89])to assume that as p grows, the covariance matrix Q is extended accordingly insuch a way that it is always positive de�nite and of bounded norm. In this case,the limit �(!) , limp!1 �p(!)
p(!) (6.36)exists and is non-zero. Given these de�nitions, the following theorem providesa simple frequency domain characterisation of the tracking characteristics ofthe LMS adaptation scheme when using the general �xed denominator modelstructure (6.24).Theorem 6.5.1. For the LMS algorithm and the model structure (6.24), thenusing the approximation (6.15) for the covariance matrix of the parameterestimation error, the following limit result can be establishedlimp!1 ���� 1
p(!)Enj eGk+1(ej!)j2o� � [1� ��u(!)]2
p(!) Enj eGk(ej!)j2o+ �2�2��u(!) + �2�(!)����� = 0Proof: See Appendix 6.A. �The interpretation of this result is that for large model order p, the equationgoverning the behaviour of the MSE of the tranfer function estimate for the



6.5 Transient analysis 161LMS algorithm and �xed denominator model structures can be approximatedby the following �rst order di�erence equationEnj eGk+1(ej!)j2o �� [1� ��u(!)]2Enj eGk(ej!)j2o + �2�2��u(!)
p(!) + �2�(!)
p(!):(6.37)The transient response is then governed by the homogeneous part of this dif-ference equation. That isEnj eGk+1(ej!)j2o � [1� ��u(!)]2Enj eGk(ej!)j2o ; (6.38)which for small � can be approximated byEnj eGk+1(ej!)j2o � [1� 2��u(!)]Enj eGk(ej!)j2o ; (6.39)and it is then characterized by the (frequency dependent) time constant for thedecay of the MSE �(!) , [1� 2��u(!)]:From equation (6.39) it is clear that the condition on the stepsize � for stabilityof the algorithm for all ! is � < 1sup! �u(!) : (6.40)These results are similar to the ones presented in [GL89, Gun88] for the FIRcase. A substantial di�erence between the MSE expression (6.37) and thosein [GL89, Gun88, EJLW92], is the presence of the factor 
p(!) in the drivingterms, making explicit how the tracking error is a�ected by the choice of polesin the model structure (6.24).Similarly to the results in [GL89, Gun88], equation (6.37) shows the designtrade-o� (for the LMS algorithm) between the tracking ability and the noiserejection properties of the algorithm. To be more speci�c, from (6.37) it canbe seen that the tracking error decays like [1� ��u(!)]2k � [1� 2��u(!)]k, sothat tracking would be better at frequencies where ��u(!) is large, but at thesefrequencies the `noise driving' term �2��2�u(!)
p(!) would also be large. How-ever, unlike the expressions in [GL89, Gun88], the presence of the modulationfactor 
p(!) in the driving terms in (6.37) suggests that the tracking perfor-mance could be improved, but not necessarily at the expense of a deteriorationin the noise rejection properties of the algorithm, by an appropriate choice ofthe poles in the model structure.



162 6. Adaptive Tracking Performance Analysis using Orthonormal BasesIn order to be able to apply these results {which are asymptotic in modelorder{ in practical problems we need to evaluate the accuracy of the approxi-mation (6.37) for the low model orders likely to be used in these cases. Thisis examined in Section 6.7 where for small enough step size �, (6.37) is shownto faithfully predict the frequency domain convergence properties of the LMSalgorithm { see �gure 6.7.6.6 Steady State AnalysisIn this section we are interested in the quanti�cation of the steady state behaviorof the frequency response estimation error. That is, we are interested in theerror Enj eGk(ej!)j2o for large values of k. In order to compute this steady-stateerror we need �rst to analyze the limiting behavior of the solution �k of (6.15)for large k; that is limk!1�k , �:Of course, for this limit to exist (and indeed for the approximation (6.32) tohold) it is necessary that the adaptive algorithm (6.5) be stable. As mentionedin the introduction to this chapter, su�cient conditions for the exponential sta-bility of the general adaptation algorithm (6.5), for any of the choices (6.6),(6.7)-(6.8), or (6.9)-(6.10) have been established by Guo and Ljung in [GL95a]. Theseconditions are very technical but can be summarized as follows:� Persistency of excitation: the sum of the covariance matrices of the re-gressors E��k�Th	 over a �nite time span of arbitrary length has full rank.In general this condition is satis�ed if the input spectral density �u(!) ispositive de�nite for almost all frequencies !. That is, if the input sequenceis persistently exciting of any order.� Weak dependance of the regressors: the dependance between the regres-sors �k and f�i; �i�1; wig decays to zero as the time distance (k� i) tendsto in�nity. This is the so-called `�-mixing condition' [GL95a, GL95b].� The measurement noise f�kg and the parameter drift fwkg are zero meanwhite noise sequences.Once the stability of the algorithm has been ensured, the steady-state parametererror � may be evaluated by determining the steady-state solutionsS , limk!1Skof (6.16){(6.18) and then substituting them into (6.32) before examining itsown steady state solution with terms of order �2� discarded [GL95b]. Theresults of this strategy for the three adaptive algorithms are as follows.



6.6 Steady State Analysis 163LMS: Here S = I so that � is the solution of the Lyapunov equation�R +R� = ��2�R + �2� Q: (6.41)RLS: Here S = R�1 so that � is given by� = ��2�2 R�1 + �22�Q: (6.42)Kalman Filter: This case is more di�cult. S is the solution of�2SRS = �;which may be expressed asS = 1p�2R�1=2 �R1=2�R1=2�1=2R�1=2; (6.43)so that � is given by the solution ofSR�+�RS = ��2��2 � + �2� Q: (6.44)For the special case of � = Q this system has solution� = �22 ���2��2 + �2� �S: (6.45)with S given in (6.43).Based on these expressions for the steady-state parameter error � together withequation (6.21) it is now possible to quantify the steady state estimation errorin the frequency domain asEnj eG(ej!)j2o , limk!1Enj eGk(ej!)j2o � �?p(ej!)��p(ej!): (6.46)However, the resulting expression is so complicated that it is di�cult to extractuseful design insight from it. As in the previous section, we will perform anasymptotic analysis with increasing model order p in order to simplify (6.46).The resulting expressions will be more tractable, and will provide some insighton how the steady-state estimation error is a�ected by factors such as the stepsize, the measurement noise energy, the input spectral density, and perhapsmost interestingly, the choice of �xed pole position. The e�ect of this choice ofpoles will be quanti�ed by the term 
p(!).The simpli�ed error equations for the LMS, RLS and KF algorithms arepresented in Theorems 6.6.1, 6.6.2 and 6.6.3 respectively.



164 6. Adaptive Tracking Performance Analysis using Orthonormal Bases� LMS Algorithm: In this case, the simpli�ed error quanti�cation is asfollows.Theorem 6.6.1. For the LMS algorithm and the model structure (6.24),the following limit result holds,limp!1 1
p(!)Enj eG(ej!)j2o = 12 ���2� + �2�(!)��u(!)�Proof: See Appendix 6.A. �The interpretation of this theorem is that for large model order p, andafter the algorithm has converged (large k), the steady-state MSE can beapproximated byEnj eGk(ej!)j2o � 
p(!)2 ���2� + �2�(!)��u(!)� : (6.47)For the case of all the poles f�ng in the model structure (6.24) chosen atthe origin, then 
p(!) = p and the above expression specializes to thatderived in [GL89, Gun88] (although in [GL89], only the case � = 1 is con-sidered). However, an important di�erence with the results for the FIRcase in [GL89, Gun88], is the presence of the frequency dependent factor
p(!) in the expression of the MSE (6.47) showing how pole choices otherthan FIR in
uence the frequency domain estimation error. As well, (6.47)illustrates that for time-invariant systems (corresponding to � = 0), thenthe error is proportional to the step size � and the measurement noisevariance �2�, while for time varying systems (� 6= 0), another error com-ponent arises due to the parameter drift, which is inversely proportionalto step size, and is also inversely proportional to input spectral density�u(!). In this latter case, we have a compromise in the choice of the stepsize �, since a small value of � will reduce the contribution of the measure-ment noise to the MSE, but simultaneously will increase the contributionof the parameter drift to that error.A fundamental question that now arises is one concerning the reliabil-ity of using the approximation (6.47) {that has been derived consideringlarge model order{ for the relatively small model orders used in practicalapplications. The most suitable way to deal with this issue would be toquantify the convergence rate in Theorem 6.6.1. This appears to be ex-tremely di�cult. Instead, the approach used in [GL89] is taken whereinthe validity of (6.47) for �nite p is examined via a simulation study. Thisis done in Section 6.7 , where it is shown (see Figures 6.3 and 6.5) that fora tenth order model, (6.47) is quite an accurate approximation; in fact, asshown in Figure 6.4, this holds even for as low as a fourth order model.



6.6 Steady State Analysis 165� RLS Algorithm: The same sort of analysis can also be performed in thiscase, with the results as follows.Theorem 6.6.2. For the RLS algorithm and the model structure (6.22)or (6.24), the following limit result holdslimp!1 1
p(!)Enj eG(ej!)j2o = 12 � ��2��u(!) + �2� �(!)� ;� = 1� �:Proof: See Appendix 6.A. �A similar interpretation to the previous theorem can be given also inthis case. Namely, this theorem means that for large model order p, andafter the algorithm has converged (large k), the steady state MSE can beapproximated byEnj eGk(ej!)j2o � 
p(!)2 � ��2��u(!) + �2� �(!)� : (6.48)Comparing this approximation to (6.47) illustrates a fundamental di�er-ence between the steady state behavior of LMS and RLS in terms of howthe input spectral density a�ects the noise and tracking performance.Speci�cally, (6.48) shows that for stationary systems (� = 0), the RLSestimation error is inversely proportional to the input spectral density�u(!), while (6.47) shows that the LMS estimation error is invariant tothe size of this spectral density; see Figure 6.5 for a simulation study vali-dation of this phenomenon. Conversely when � 6= 0, (6.47) shows that forLMS the tracking ability increases with increasing input spectral density,while for RLS the tracking ability is invariant to this factor, and onlydepends on step size.These observations, in the context of FIR model structures have alreadybeen made in [GL89, Gun88], and as per the LMS case, when all the polesare chosen at the origin and hence 
p(!) = p, then (6.48) is identical tothe expressions for RLS steady state error presented in [GL89, Gun88].However, again as per the LMS case, the inclusion of the frequency de-pendent factor 
p(!) in (6.48) shows how the choice of �xed denominatorpole position in the model structure G(q; �) a�ects the estimation errorin the frequency domain (Figure 4.2).The question of the validity of using an asymptotic result as a �nite dataand model order approximation in (6.48) again arises, and again this isdealt with in Section 6.7 via a simulation study. For example in Figure 6.4,(6.48) is shown to be quite accurate even for only a fourth order modeland 300 data points.



166 6. Adaptive Tracking Performance Analysis using Orthonormal Bases� Kalman Filter Algorithm: The same strategy of considering large modelorder can be used in this case. However, as already mentioned, there areparticular di�culties in solving for the steady state parameter covariance�, and this leads to the treatment of only a specialised case in which� = Q.Theorem 6.6.3. For the Kalman Filter algorithm, the model structure(6.22) or (6.24) and under the assumption that � = Q, thenlimp!1 1
p(!)Enj eG(ej!)j2o = 12 ���2��2 + �2� �s�2�(!)�u(!)Proof: See Appendix 6.A. �Similarly to the previous results, the interpretation of this theorem is thatfor large model order p and after the algorithm has converged (large k)then the MSE can be approximated byEnj eGk(ej!)j2o � 
p(!)2 ���2��2 + �2� �s�2�(!)�u(!) : (6.49)In terms of how input spectral density a�ects noise sensitivity and track-ing ability, (6.49) shows that Kalman Filter based algorithms sit betweenthe LMS and RLS algorithms in that instead of being a�ected separately,both noise and tracking performance are a�ected equally (but to a lesserextent due to the p� operation{see Figure 6.5) by the size of the inputspectral density �u(!). Again, the accuracy of the approximation (6.49)is validated experimentally in Section 6.7 to show that in fact it is mean-ingful for low model orders; see Figure 6.4.Note that the approximations (6.47), (6.48) and (6.49) can also be used tocalculate the optimal step size �opt which will minimise the MSE at a particularfrequency, with the results being�opt = ���s �(!)�u(!)for the LMS and RLS algorithms, and�opt = ����for the Kalman Filter algorithm. It is clear from these expressions that forthe LMS, and RLS algorithms a value �opt that minimizes the MSE for all



6.7 Simulation Examples 167frequencies can not be obtained. On the other hand, for the Kalman Filter casethe value of �opt is independent of frequency and so it will minimize the MSEat all frequencies. For all of these cases, the minimum MSE isEnj eGk(ej!)j2omin = � ��
p(!)s �(!)�u(!) :The presence of the term 
p(!) in all these error quanti�cations shows that theorthonormal parameterisation (6.24), (6.25) is more than just an essential toolfor the analysis of general �xed denominator model structures. Instead, theorthonormal `basis functions' fBn(q)g appear as an intrinsic part of adaptiveestimation with any �xed denominator model structure G(q; �).For example, for RLS and Kalman Filtering schemes, then in steady{statewhether or not the �xed denominator model structure is ab{initio cast in theorthonormal form (6.24), the complete contribution of the �xed pole choice tothe frequency domain error properties is captured by the term 
p(!) which via(6.33) is itself completely described by the orthonormal basis fBn(q)g.In other words, for any model structure with �xed denominator such as(6.22) and (6.24), the RLS and Kalman Filter frequency domain error quanti�-cation depends only on the location of the poles f�ng and is quanti�ed via thefactor 
p(!) associated with the orthonormal basis functions fBn(q)g .6.7 Simulation ExamplesIn this section, the utility of the previous theoretical analysis will be demon-strated via several simulation studies. In all cases, it is assumed that there isan underlying continuous time system with transfer functionG(s) = 1(s+ 1)(10s+ 1)from which input{output data is collected by sampling every one second. Webegin the study by considering the case of stationary systems, but later on,time variations away from G(s) will also be analyzed. It is assumed that theinput fukg is stationary and Gaussian with spectral density�u(!) = 101:25� cos!;and that the observed output fykg is corrupted by a white Gaussian noisesequence f�kg of variance �2� = 0:01. Based on this observed data, the identi�-cation objective is to estimate the zero order hold equivalent [�AW84] discretetime systemG(q) = ZOH� 1(s + 1)(10s+ 1)� = 0:0355q + 0:0247(q � 0:9048)(q � 0:3679) (6.50)



168 6. Adaptive Tracking Performance Analysis using Orthonormal Basesvia the model structure (6.24) with poles f�ng chosen to correspond to continu-ous time guesses of 0:2 and 0:25 radians per second. Note that these poles, beingfar from either of the true poles at 0:1 and 1 rad/s, are particularly bad guesses.They have been chosen to dispel any suspicion in the sequel that the high ac-curacy of the approximations (6.47), (6.48) and (6.49) illustrated in Figures 6.3to 6.7 derives from unreasonable prior knowledge or idealized conditions.All three algorithms, the LMS with � = 0:001, RLS with � = 0:999 andP0 = I, and the Kalman Filter with � = 0:001;� = 0:1; P0 = I and �2 = 0:01were employed with a tenth order model structure (p = 10). The parameterspace convergence results are shown in the plots of Figure 6.2, the fast conver-gence illustrating that these examples do not represent a case of unreasonablyslow adaptation. Again, this choice is made to illustrate the robustness of thetheoretical analysis to the violation of certain assumptions (small �) that it isperformed under. These estimation experiments were performed �ve hundred
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Figure 6.2: Parameter space convergence for LMS, RLS and Kalman Filter.times with di�erent realizations for the input and measurement noise. Thisallowed the true frequency domain estimation error Enj eGk(ej!)j2o to be esti-mated by calculating its sample value as an average over the 500 realizations.This is plotted as the solid line in Figures 6.3 to 6.5. The dash{dotted linesin these �gures are the approximations (6.47), (6.48) and (6.49) derived fromTheorems 6.6.1, 6.6.2 and 6.6.3, respectively.To be more speci�c, in the left hand diagram of Figure 6.3, the LMS approxi-
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172 6. Adaptive Tracking Performance Analysis using Orthonormal Basescase. This can be explained by noting that in the time invariant case, the polesf�kg in the model were deliberately chosen to be far from the true plant polesin order to test the robustness of the approximations (6.47), (6.48) and (6.49).In the time varying case under the model (6.50) this is not possible, so thatthere is no under{modeling component in the results shown in Figure 6.6.
Theoretical
Monte Carlo

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5
x 10

−4 Estimate Variability − RLS

Frequency (Normalised)
0 0.5 1 1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−6

Frequency (Normalised)

Frequency domain description of system variation

Figure 6.6: Comparison of Sample Variability (over 500 experiments) vstheoretically derived approximation for RLS algorithm and non{stationaryplant. On the left is the sample estimation error after k = 800 iterations(solid line) compared to the theoretical approximation (6.48) as a dash{dotted line. On the right is the non-stationarity modeled in the frequencydomain by �2�p(!)=�.6.8 ConclusionsIn this chapter, a frequency domain analysis of the tracking performance ofseveral adaptive estimation schemes has been carried out for the case in whichthe system is represented by �xed denominator model structures. The transient,as well as the steady-state behaviour of the frequency response tracking errorwas analyzed. The main contribution of the chapter was to extend knownresults for FIR model structures, where the poles are �xed at the origin, tomore general model structures where the poles may be placed arbitrarily. Thekey tool in this analysis was to re-parameterize the system using orthonormalbases with �xed poles that generalize the classical FIR bases. The analysis
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Figure 6.7: Transient behavior of LMS at two di�erent frequencies - ob-served (Monte Carlo Average) vs Theoretical prediction via approximation(6.37). Top plot is error Enj eGk(ej!)j2o at ! = 0:1 rad/s. Bottom plot iserror Enj eGk(ej!)j2o at ! = 0:4 rad/s.showed how the choice of the poles in the orthonormal structure a�ects thetracking and noise rejection abilities of the algorithms. A fundamental rôle inthis frequency domain error characterization was shown to be played by thereproducing kernel 
p(!) associated with the orthonormal bases. The validityof using the results derived for in�nite model order in a �nite model settingwas examined via simulation. The simulation experiments showed that theresults, which are exact for in�nite model order were shown to provide goodapproximations even for relatively small model orders.AppendicesThroughout the Appendices in this chapter we will use the Toeplitz-like matrixform Mp(f) introduced in Chapter 4, as de�ned in equation (4.A.4).6.A Proof for Chapter 6Proof of Lemma 6.4.1



174 6. Adaptive Tracking Performance Analysis using Orthonormal Bases� RLS algorithm: The parameter update law is given byb�k+1 = b�k + Pk�k(yk � �Tk b�k); (6.A.1)Pk = 1� �Pk�1 � Pk�1�k�TkPk�1� + �TkPk�1�k � ; � 2 (0; 1): (6.A.2)Considering that �k = JT�0k, equations (6.A.1) and (6.A.2) can be writtenas b�k+1 = b�k + PkJT�0k(yk � �0Tk Jb�k); (6.A.3)Pk = 1� �Pk�1 � Pk�1JT�0k�0Tk JPk�1� + �0Tk JPk�1JT�0k � : (6.A.4)Multiplying equation (6.A.3) on the left by J , and equation (6.A.4) onthe left by J and on the right by JT , we obtainJb�k+1 = Jb�k + JPkJT�0k(yk � �0Tk Jb�k); (6.A.5)JPkJT = 1� �JPk�1JT � JPk�1JT�0k�0Tk JPk�1JT�+ �0Tk JPk�1JT�0k � : (6.A.6)Now, the result for the RLS algorithm follows by de�ning P 0k , JPkJT .� KF algorithm: The parameter update law in this case is given byb�k+1 = b�k + �Pk�1�k�2 + ��TkPk�1�k (yk � �Tk b�k);Pk = Pk�1 � � Pk�1�k�TkPk�1�2 + ��TkPk�1�k + ��:Considering that �k = JT�0k, these equations can be written asb�k+1 = b�k + �Pk�1JT�0k�2 + ��0Tk JPk�1JT�0k (yk � �0Tk Jb�k); (6.A.7)Pk = Pk�1 � � Pk�1JT�0k�0Tk JPk�1�2 + ��0Tk JPk�1JT�0k + ��: (6.A.8)Multiplying equation (6.A.7) on the left by J , and equation (6.A.8) onthe left by J and on the right by JT , we obtainJb�k+1 = Jb�k + �JPk�1JT�0k�2 + ��0Tk JPk�1JT�0k (yk � �0Tk Jb�k);JPkJT = JPk�1JT � �JPk�1JT�0k�0Tk JPk�1JT�2 + ��0Tk JPk�1JT�0k + �J�JT :Now, the result for the KF algorithm follows by de�ning P 0k , JPkJT and�0 , J�JT .



6.A Proof for Chapter 6 175� LMS algorithm: In this case the parameter update law is given byb�k+1 = b�k + ��k(yk � �Tk b�k):Considering that �k = JT�0k, we can writeb�k+1 = b�k + �JT�0k(yk � �0Tk Jb�k):From this equation we can easily conclude that the LMS estimate is notinvariant under the linear re-parameterization �k = JT�0k. �Proof of Theorem 6.5.1 Considering equation (6.32) with Sk = I, and the def-inition (6.35), we can write1
p(!)Enj eGk+1(ej!)j2o == 1
p(!)�?p(ej!)(I � �R)�k(I � �R)T�p(ej!)+ �2�2� 1
p(!)�?p(ej!)R�p(ej!) + �2 �p(!)
p(!) : (6.A.9)By Parseval's Theorem matrix R can be given the following spectral represen-tation R , E��k�Tk 	 = 12� Z ��� �p(ej!)�u(!)�?p(ej!)d! (6.A.10)Now, using the notation (4.A.4), equation (6.A.9) can be written as1
p(!)Enj eGk+1(ej!)j2o == 1
p(!)�?p(ej!)Mp(1� ��u)�kMp(1� ��u)�p(ej!)+ �2�2� 1
p(!)�?p(ej!)Mp(�u)�p(ej!) + �2 �p(!)
p(!) : (6.A.11)Finally, taking the limit as p!1, and applying Theorem 4.B.1, Lemma 6.B.1,and the de�nition of �(!) in (6.36), then gives the result. �Proof of Theorem 6.6.1 Using the formulation (6.A.10) together with the no-tation (4.A.4) in (6.41) gives that in the limit as k !1�Mp(�u) +Mp(�u)� = ��2�Mp(�u) + �2� Q



176 6. Adaptive Tracking Performance Analysis using Orthonormal Basesso that �?p(ej!)�Mp(�u)�p(ej!)
p(!) + �?p(ej!)Mp(�u)��p(ej!)
p(!) == ��2��?p(ej!)Mp(�u)�p(ej!)
p(!) + �2�p(!)�
p(!)Now the result follows by taking the limit of both sides as p !1 while usingTheorem 4.B.1, Lemma 6.B.2 and the de�nition of �(!) in (6.36). �Proof of Theorem 6.6.2 Using the formulation (6.A.10) together with the no-tation (4.A.4) in (6.42) gives that in the limit as k!11
p(!)Enj eG(ej!)j2o = �?p(ej!)��p(ej!)
p(!) == ��2�2
p(!)�?p(ej!)M�1p (�u)�p(ej!) + �2�p(!)2�
p(!)Taking the limit of both sides as p ! 1 while using Theorem 4.B.2 and thede�nition of �(!) in (6.36) then gives the result. �Proof of Theorem 6.6.3 Substituting the value of S from (6.45) into (6.44) with� = Q gives that � is the solution of�R� = �24 ���2��2 + �2� �2Q: (6.A.12)De�ne two positive de�nite, p � p dimensional real matrices Ap and Bp to beasymptotically equivalent Ap � Bp if they leave quadratic forms with �p(ej!)invariant: Ap � Bp , limp!1 1
p(!)�?p(ej!)(Ap � Bp)�p(ej!) = 0:Using the de�nition �2 , �24 ���2��2 + �2� �2and the notation (4.A.4), the matrix�Mp s �(!)�u(!)!



6.B Technical Results 177is an asymptotically equivalent solution to � given by (6.A.12) since using therepresentation (6.A.10)1
p(!)�?p(ej!)��R�� �2Mp(p�=�u)Mp(�u)Mp(p�=�u)��p(ej!) == �2
p(!)�?p(ej!)�Mp(�)�Mp(p�=�u)Mp(�u)Mp(p�=�u)��p(ej!) +(6.A.13)+ �2
p(!)�?p(ej!) (Q�M(�)) �p(ej!): (6.A.14)Now, considering the term (6.A.13), by Theorem 4.B.1 and Lemma 6.B.3limp!1 1
p(!)�?p(ej!)�Mp(�)�Mp(p�=�u)Mp(�u)Mp(p�=�u)��p(ej!) == �(!)�s �(!)�u(!)�u(!)s �(!)�u(!) = 0:Considering the term (6.A.14), and using the de�nition of �(!) and Theo-rem 4.B.1 limp!1 1
p(!)�?p(ej!) (Q�M(�)) �p(ej!) = �(!)� �(!) = 0:Therefore, since � � �Mp(p�(!)=�u(!)), then again by Theorem 4.B.1limp!1 1
p(!)Enj eG(ej!)j2o = limp!1 1
p(!)�?p(ej!)��p(ej!)= limp!1 �
p(!)�?p(ej!)Mp(p�=�u)�p(ej!)= �s �(!)�u(!) : �6.B Technical ResultsLemma 6.B.1. Let Qp 2 Rp�p be a symmetric, positive de�nite matrix withkQpk2 < 1 for all p, and let f(!) be a real valued function, continuouson [��; �] and having a �nite dimensional spectral factorization. Supposethat 1Xk=0(1� j�kj) =1:



178 6. Adaptive Tracking Performance Analysis using Orthonormal BasesThenlimp!1 1
p(!)�?p(!)Mp(f)QpMp(f)�p(!) = f 2(!) limp!1 1
p(!)�?p(!)Qp�p(!):Proof: For simplicity of notation, de�ne the function g(�) , f(�)�f(!). Then1
p(!) ���?p(!)Mp(f)QpMp(f)�p(!)� f 2(!)�?p(!)Qp�p(!)�� �� 1
p(!) ���?p(!)Mp(g)QpMp(g)�p(!)��++ jf(!)j
p(!) ���?p(!)[QpMp(g) +Mp(g)Qp]�p(!)�� : (6.B.15)Considering the �rst term in this upper bound, we can write1
p(!) ���?p(!)Mp(g)QpMp(g)�p(!)�� �� kQpk2
p(!) ���?p(!)M2p (g)�p(!)��� kQpk2
p(!) ���?p(!)Mp(g2)�p(!)��+ (6.B.16)+ kQpk2
p(!) ���?p(!)[M2p (g)�Mp(g2)]�p(!)�� : (6.B.17)Now, by Theorem 4.B.1, the term (6.B.16) tends to zero as p tends to in�nity,since limp!1 1
p(!)�?p(!)Mp(g2)�p(!) = g2(!) = 0:For the term (6.B.17) we have that since by construction the elements of�p(!) are bounded in magnitude by some �nite number K1 (as de�ned inLemma 5.E.2), use of Lemma 4.C.2 give us that for some j�j < 1���?p(!)[M2p (g)�Mp(g2)]�p(!)�� �� p�1Xm=0 p�1Xn=0 ��[�p(!)?]m���� ����M2p (g)�m;n � [Mp(g2)]m;n��� ��[�p(!)]n��� K1K2 p�1Xm=0 p�1Xn=0(�p�m + �m)(�p�n + �n)= K1K2�1� �p1� � �2 (�p + �)2 <1:



6.B Technical Results 179Considering that 12 p�1Xk=0(1� j�kj) � 
p(!);then, under the conditions of the theorem, also the term (6.B.17) tends to zeroas p tends to in�nity, i.e.limp!1 kQpk2
p(!) ���?p(!)[M2p (g)�Mp(g2)]�p(!)�� = 0:Using Lemma 6.B.2 to deal with the remaining term in the upper bound(6.B.15) then completes the proof. �Lemma 6.B.2. Let Qp 2 Rp�p be a symmetric, positive de�nite matrix withkQpk2 <1 for all p, and let f(!) be a real valued function, continuous on[��; �]. Suppose that 1Xk=0(1� j�kj) =1:Then limp!1 1
p(!)�?p(!)Mp(f)Qp�p(!) == limp!1 1
p(!)�?p(!)QpMp(f)�p(!) == f(!) limp!1 1
p(!)�?p(!)Qp�p(!):Proof: For simplicity of notation, de�ne the function g(�) , f(�)�f(!). Then1
p(!) ���?p(!)Mp(f)Qp�p(!)� f(!)�?p(!)Qp�p(!)�� == 1
p(!) ���?p(!)Mp(g)Qp�p(!)�� :Now de�ne the functions g+(�) , max[g(�); 0] and g�(�) , min[g(�); 0] so thatg(�) = g+(�) + g�(�) and hence1
p(!) ���?p(!)QpMp(g)�p(!)�� �� 1
p(!) ���?p(!)QpMp(g+)�p(!)��++ 1
p(!) ���?p(!)QpMp(g�)�p(!)�� : (6.B.18)



180 6. Adaptive Tracking Performance Analysis using Orthonormal BasesConsidering only the �rst term in this upper bound, note that provided f(!) isnot equal to a constant (in which case the Lemma is trivial since Mp(1) = I),then for x 2 Rp arbitraryxTMp(g+)x = 12� Z ��� jxT�p(�)j2g+(�) d� > 0so that Mp(g+) is positive de�nite and hence1
p(!) ���?p(!)QpMp(g+)�p(!)�� == 1
p(!) ���?p(!)M1=2p (g+)[M�1=2p (g+)QpM1=2p (g+)]M1=2p (g+)�p(!)��� kQpk2
p(!) ���?p(!)Mp(g+)�p(!)�� :Finally, using Theorem 4.B.1limp!1 1
p(!)�?p(!)Mp(g+)�p(!) = g+(!) = 0:Using the same argument for the remaining term in the upper bound (6.B.18)then completes the proof. �Lemma 6.B.3. Let f; g 2 L2([��; �]) have �nite dimensional spectral factor-izations. Then provided P1k=0(1� j�kj) =1,Mp(f)Mp(g)Mp(f) �Mp(f 2g) as p!1:with the notation `�' as introduced in the proof of Theorem 6.6.3.Proof: Using Lemmas 4.C.2 and 4.C.3�?p(!) �Mp(f)Mp(g)Mp(f)�Mp(f 2g)��p(!) == �?p(!)Mp(f) [Mp(g)Mp(f)�Mp(fg)] �p(!) ++�?p(!) �Mp(f)Mp(fg)�Mp(f 2g)��p(!)� p�1Xm=0 p�1Xn=0 ��[�p(!)?Mp(f)]m�� ���[Mp(g)Mp(f)]m;n � [Mp(fg)]m;n��� ��[�p(!)]n�� ++ p�1Xm=0 p�1Xn=0 ��[�p(!)?]m�� ���[Mp(f)Mp(fg)]m;n � [Mp(f 2g)]m;n��� ��[�p(!)]n��� K3 p�1Xm=0 p�1Xn=0(�p�m + �m)(�p�n + �n);= K3�1� �p1� � �2 (�p + �)2 <1:Noting that 2
p(!) �Pp�1k=0(1� j�j) then completes the proof. �



7Conclusions
In this thesis we have analyzed several aspects regarding the use of rationalorthonormal bases in identi�cation of discrete-time linear systems from input-output data in the time domain.We concentrated on the use of orthonormal bases with �xed poles that gen-eralize the more common FIR, Laguerre and Kautz bases, and that allows theincorporation in the identi�cation process of prior information about dominantdynamics of the system by an appropriate choice of the poles in the orthonormalstructure.Apart from the well known properties of orthonormal bases leading to linearregressor forms and guaranteeing worst case numerical conditioning of the leastsquares estimation, an aspect we have emphasized in this thesis is the use oforthonormal bases with �xed poles as an analysis tool that facilitates the quan-ti�cation of the estimation accuracy of any (multivariable) �xed denominatormodel structure. The numerical robustness of the least squares estimation us-ing orthonormal structures was also analyzed and compared to the case of usingan equivalent non-orthonormal structure.One of the main contributions of this thesis has been the extension to themultivariable setting and to general �xed denominator model structures of exis-tent single-input single-output FIR results quantifying the undermodelling errorand the asymptotic distribution of the transfer matrix estimate (the varianceerror). The variance error result establishes that the variance of the transfermatrix estimate at a given frequency, and for large model order and data-length,can be approximated by the generalized noise to signal ratio (��1u (!)
 ��(!))weighted with a frequency dependent factor (
p(!)=N) that depends on theparticular bases. These results explicitly show how the choice of the poles ofthe bases in
uences the bias and variance errors. In addition, they illustrate anuntil now unknown phenomenom of bias/variance trade-o� with respect to thelocation of the poles of the bases.Another contribution of this thesis, in the framework of recursive identi�ca-tion, is the performance analysis of general adaptive algorithms using orthonor-



182 7. Conclusionsmal bases with �xed poles. Here again, the analysis illustrates how several fac-tors, such as step size of the algorithm, excitation properties of the input signaland measurement noise, and choice of the �xed poles in the model structure,in
uence the disturbance rejection properties and the tracking ability of thealgorithms.



AKronecker Product and vec -Operator
In this Appendix, some basic properties of Kronecker products and the vec -operator are summarized. A more detailed treatment of these topics can befound in [Bre78].� Kronecker Product: Let A = (aij) and B = (bij) be m� n and `� p sizedmatrices. Then the Kronecker product of A and B, denoted A 
 B, isde�ned as the m`� np sized matrixA
B = 0BBB@ a11B a12B � � � a1nBa21B a22B � � � a2nB... ...am1B am2B � � � amnB

1CCCA� vec -Operator: is an operator which turns an m�n matrix A into a vectorby stacking the columns of A on top of one another:vecA = 0BBB@ A1A2...An
1CCCA (m� 1) vectorwhere Ak is the k-th column of A.� Operations with Kronecker Products: The following identities hold1. (A
B)(C 
D) = AC 
 BD2. (A
B)T = AT 
 BT3. (A
B)�1 = A�1 
B�1Finally a useful property of the vec -operator is that when A is m�n andB is n� ` thenvecAB = (I` 
 A) vecB = (BT 
 Im) vecA:



184 A. Kronecker Product and vec -OperatorLemma A.0.4. The eigenvalues of A 
 B are �i�j where �i are theeigenvalues of A and �j are the eigenvalues of B.Proof: See [Bel60], Theorem 3, page 235. �Lemma A.0.5. Let �Ai and �Bj denote the singular values of the matri-ces A and B respectively. Then the matrix A
B has singular values�Ai �Bj .Proof: By de�nition, the singular values of A
B are the square root ofthe eigenvalues of the matrix (A
B)(A
B)?. But(A
 B)(A
 B)? = AA? 
 BB?so that the result follows by applying Lemma A.0.4 to the RHS of theprevious equation. �Lemma A.0.6. The following identity holdskA
Bk2 = kAk2kBk2Proof: The results follows directly by applying Lemma A.0.5 and consid-ering that the 2-norm of a matrix equals its maximum singular value. �



BNotation
q forward shift operator .D the open unit disk in the complex plane fz 2 C : jzj < 1g .T the unit circle fz : jzj = 1g .E the open region outside the unit disk fz : jzj > 1g .C complex numbers.R real numbers.Z set of integer numbers .N0 set of non-negative integer numbers.`2(Z) Hilbert space of (two-sided) square summable sequences withsupport in Z .`2(N0) Hilbert space of (one-sided) square summable sequences withsupport in N0 .L2(T) Hilbert space of Lebesgue square-integrable functions on theunit circle.H2(T) Hardy space of Lebesgue square-integrable functions on theunit circle T that are analytic outside the unit circle (i.e.,analytic on E .Hm�n2 (T) Hardy space of (m � n) transfer matrices whose entries arein H2(T).fBk(z)gp�1k=0 set of orthonormal functions.Kp(z; �) Reproducing Kernel associated with an orthonormal set.



186 B. Notationh�; �i inner product (in a Hilbert space).h�; �iH inner product in Hilbert space H.k � k norm induced by the inner product.k � k2 2-norm of matrices or spectral norm.k � kF Frobenius norm of matrices.AT ; A? Transpose and conjugate transpose of matrix A.AcronymsFIR Finite Impulse Response (�lter or model structure).IIR In�nite Impulse Response (�lter or model structure).SISO Single-Input Single-Output (system).MIMO Multiple-Input Multiple-Output (system).DT Discrete Time (system).LTI Linear Time-Invariant (system).OBFP Orthonormal Bases with Fixed Poles.OBGIF Orthonormal Bases Generated fron Inner Functions.PEM Prediction Error Methods.rkHs reproducing kernel Hilbert space.DFT Discrete Fourier Transform.BIBO Bounded-Input Bounded-Output (stability).LMS Least Mean Squares.RLS Recursive Least Squares.KF Kalman Filter.4SID Subspace-based State-Space System IDenti�cation methods.N4SID Numerical algorithms for Subspace State-Space SystemIDenti�cation.MOESP Multivariable Output Error State sPace.CVA Canonical Variate Analysis.SVD Singular Value Decomposition.
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