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Abstract

This thesis illustrates the use of a particular class of rational orthonormal
bases for the purposes of analyzing the performance of least-squares dynamic
system estimates that involve model structures which are linear in the param-
eters. The genesis of this work comes from seminal results on approximating
variance error of estimated frequency responses, and work on the use of re-
stricted classes of orthonormal bases (Laguerre and two-parameter Kautz for
example) as a model structure parameterization option. A key original per-
spective of this thesis is that by generalizing the bases involved to the case
of arbitrary pole locations, these bases can be viewed as more than an imple-
mentational option, but also as an analysis tool of great utility, since it can be
applied regardless of whether the bases are used for model structure parameter-
ization or not. This utility is illustrated by deriving approximations of estimate
variability that are extensions of pre-existing ones, in that for scenarios where
poles are not all fixed at the origin, they can provide improved accuracy. The
key tools in this analysis involve the development of new results of general-
ized Fourier series convergence and generalization of the asymptotic properties
of Toeplitz matrices. Initially these results are derived for time invariant and
single-input, single-output scenarios, but subsequently extensions to multiple-
input, multiple-output and time varying situations are also provided.
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Introduction

This thesis deals with the use of rational orthonormal bases in identification of
discrete-time linear systems from input-output data.

System Identification can be defined as the area of System Theory that
deals with the study of methodologies for constructing a mathematical model
of a dynamical system based on measurements from the system. The area has
become an important tool in many branches of engineering (and in other fields
such as biology and economy) that rely on accurate models of the systems for
the purposes of analysis and design. In the Control and Signal Processing Areas,
mathematical models are important for several reasons. Among them we can
mention the following:

e Most of control design methodologies are based on the assumption that a
model for the system is available.

e For the purposes of simulation and prediction, a parameterized model of
the system is required.

e Mathematical models are required for the software and hardware imple-
mentation of digital filters.

A typical identification procedure can be summarized as follows:

e Design of the experiments to be performed on the system, and the way
the data has to be collected.

e Selection of the model set. This is usually done based on physical laws,
which allows the incorporation of prior information, but can also be done
in a black-boz fashion [Lju87]. Here the parameters to be estimated do
not have necessarily a physical meaning.

e Selection of the model in the set that best match with the measured data.
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e Model validation. This usually implies testing the model quality with a
different set of data.

For the case of time invariant systems (that is, systems whose parameters do
not change in time) the identification can be performed off-line, which means
that the parameter estimation is performed once a whole set of data is collected
from the system. Most of this thesis will deal with time-invariant systems,
the exception being Chapter 6 where time-varying systems are considered. In
these last cases the identification can not be performed off-line but has to be
carried out on-line or recursively, which means that the parameter estimates
are updated each time a new data is collected from the system.

A unified perspective of System Identification Theory is given in the text-
books [Lju87, SS89].

In this thesis, systems are modeled using rational orthonormal basis func-
tions with fixed poles. These basis functions are generalizations of the well
known trigonometric bases of classical Fourier analysis, but with arbitrary poles
not restricted to be all at the origin. The transfer function G(z) describing the
input-output properties of the system is represented as a series expansion in
terms of the basis functions. This leads to a model which is linear in the un-
known parameters. The estimation can then be performed in the framework of
Prediction Error Methods [Lju87] that for this case provide estimates in closed
form.

A dominating theme of this thesis will be the analysis of the accuracy of
obtained estimates. For systems modeled with arbitrary fixed denominator
structures, the quantification of the estimation error, consisting of both bias
error and variance error, has proven to be a very difficult problem. In this thesis
it is shown that the analysis can be made more tractable by re-parameterizing
the system using orthonormal model structures with the same fixed poles. In
consideration of this, orthonormal structures are also viewed in this thesis as an
analysis tool that can be used to facilitate the study of estimation accuracy for
a class of models. In fact, this perspective that orthonormal bases are equally
(perhaps more) useful as an analysis tool, than as an implementational option
in the formation of a model structure, is one of the original contributions.
Expanding on this a little more, work on orthonormal bases pre-dating that
of this thesis (which will be reviewed in the sequel) concentrated solely on the
utility of orthonormal bases as an implementational tool for parameterising
a fixed denominator model structure. In this thesis we establish a different
perspective, that regardless of how the fixed denominator model is implemented,
there is great utility for analysis purposes of re-parameterising the structure in
orthonormal form, whether or not it was actually implemented in this form.
Key to this strategy is that by virtue of linearity, the estimated frequency
response is tnvariant to this parameterisation, so the most convenient one may
as well be chosen for analysis purposes.



The quantification of the estimation accuracy for the proposed identifica-
tion schemes is performed by establishing new results on the convergence of
(block) Toeplitz-like matrices. These matrices appear in the computation of
the component of the frequency response estimation error that is induced by
the measurement noise. The Toeplitz-like convergence results allow the gen-
eralization to the arbitrary fixed denominator case, of corresponding results
that exist in the literature specific to FIR (Finite Impulse Response) model
structures.

A second theme we want to emphasize in this thesis is the fact that, in
contradiction to what one would expect by appealing to existent frequency
domain results on the variability of the estimates for FIR structures [LY85] and
on linear filtering, the variability of the estimates with fixed denominator model
structures is affected by the location of the poles in the model. The way the
variability is affected by the pole locations is also an important issue studied in
this thesis.

We now present a brief overview of the rest of the thesis.

Chapter 2: In this chapter, most of our notation is introduced. The
classes of signals and systems this thesis deal with, and the associated
Hilbert spaces in which these signals and systems can be embedded are
presented. A succinct description of the identification methods employed
in this thesis, viz. Prediction Error Methods, is also given.

Chapter 3: The construction of several families of (scalar) rational or-
thonormal bases on the unit circle is reviewed in this chapter. The con-
cept of reproducing kernel associated with the bases is introduced, and its
importance for the analysis of the approximating properties of the bases
is pointed out. We focus on a particular family of orthonormal bases,
namely the Orthonormal Bases with Fixed Poles, which will be used in
the context of system identification in the following chapters. For this
family, a closed form expression for the associated reproducing kernel is
derived, and a minimal state-space realization is presented. In addition, it
is shown how families of matrix orthonormal bases for the space H5"*"(T)
can be constructed from orthonormal bases on H,(T).

Chapter 4: This chapter deals with the Least Squares identification (from
input-output data) of Discrete-Time (DT), Linear Time-Invariant (LTI),
Single-Input Single-Output (SISO) systems represented using Orthonor-
mal Bases with Fixed Poles. The accuracy of the estimation is analyzed
and the two components of the estimation error (namely, the bias and
variance errors) are quantified. The derivation of new results on conver-
gence of some Toeplitz-like matrices will prove to be fundamental for the
analysis in this chapter.
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Chapter 5: In this chapter the idea of using orthonormal bases and PEM
(least squares techniques) for the identification of discrete-time linear
time-invariant systems is extended from the SISO to the MIMO (Multiple-
Input Multiple-Output) setting. It will be shown how the rational or-
thonormal bases with fixed poles introduced in Section 3.5 (or the corre-
sponding MIMO bases generated as in Section 3.6) can be used to linearly
parameterize any multivariable fixed denominator model structure. As in
the SISO case, the accuracy of the estimation is quantified by deriving
expressions for an upper bound on the undermodelling error and for the
asymptotic (in data-length and model order) covariance of the transfer
matrix estimate (noise induced error). The obtained results generalize to
the MIMO case and to general orthonormal bases with fixed poles the pre-
existing FIR results in [Lju85, YL84]. Fundamental in this derivation are
some new convergence properties of generalized block Toeplitz-like matri-
ces. Subspace Identification methods are briefly reviewed for the purposes
of comparison with the orthonormal basis-based methods proposed in this
thesis.

Chapter 6: In this chapter, a frequency domain analysis of the tracking
performance of several adaptive algorithms for the recursive identification
of time-varying linear systems is carried out for the case in which the
system is represented by a fixed denominator model structure. The focus
is on the study of the trade-off between disturbance rejection and tracking
ability, and how these properties are influenced by input and noise spectral
densities, step size of the adaptive algorithms, and the choice of the fixed
pole locations in the model structure.

Chapter 7: In this chapter we summarized the contributions of this thesis,
and present some concluding remarks.
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Background

In this chapter, some elementary definitions regarding the classes of signals
and systems this thesis deals with, and the related Hilbert spaces in which
these signals and systems can be embedded are given. We also give a succinct
description of Prediction Error Methods for System Identification, since these
are the identification methods we will employ throughout the thesis.

2.1 Signals, Systems, and related Hilbert Spaces

2.1.1 Signals and Systems

To begin with, some standard material concerning the representation of signals
and systems will be presented. A more detailed and complete treatment of
these topics can be found (for example) in the books [Lju87, SS89].

Most of this thesis will deal with discrete-time (DT), linear time-invariant
(LTI), multiple-input-multiple-output (MIMO) systems whose input-output re-
lationship can be described by

Yk = Zg(g)ukff + vk = G(Q)ug + Vi, (2.1)
=0

where y, € R™, u;, € R”, and v, € R™ denote respectively the vectors of output,
input, and disturbance (or measurement noise) signals at time k, where {g(¢)}
are the so-called (m x n) ‘Markov parameters’, and where

denotes the (m x n) input to output transfer matrix operator (provided the
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infinite sum exists), with ¢ standing for the ‘forward shift operator’ defined as!

A
q Up = Uk+1,

for any sequence {u;}, and for all k.

Sometimes, a z-domain representation of system (2.1) will be preferred.
This complex-plane representation can be obtained by taking the Z-transform
on both sides of equation (2.1). The Z-transform of a signal {z;} is defined as

X(2) = Z Tz " (2.2)

Assuming that the system is initially relaxed, the representation (2.1) can be
written in the z-domain as

Y(2) = G(2)U(2) + V(2),

where G(z) is the transfer matrix of the system, and Y'(2), U(z) and V(z) are the
Z-transforms of the sequences {y;}, {ux} and {v} respectively. The definition
of the Z-transform in (2.2) requires that the signals be specified for the entire
time range —oo < k£ < oo. In practical problems the signals are known for
k > 0, but by no means are zero for £ < 0. It is then useful to define the
‘one-sided’ or ‘unilateral’ Z-transform as

Definition 2.1.1. [OS89, PM92] The one-sided or unilateral Z-transform of a
signal {z} is defined by

X(z) = Zxkz_k
k=0

&

It will be assumed that the input sequence {u;} is a ‘quasi-stationary’ (n-
dimensional) process, which means that the following limits defining the mean
(m,,) and covariance (R, (7)) functions exist [Lju87]

| X
lim — Z E{u},
k=1

m
v N—soo [V

R, (1)

I
B
m
——
<
=
|
S
E
=
=
!
|
S
.
S
—

I'The ‘backward shift operator’ is defined similarly as

-1 A

q U =Ug-1.
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where E {-} stands for the statistical expectation operator; the expectation be-
ing over the probability space that any random components are defined on.
When deterministic inputs are considered, the expectation operator can be
omitted in the previous definitions, and of course, in these situations it makes
no difference to retain it. We will sometimes denote the operator

lim iiE{-}

Nooo N

with the more compact notation E {-} introduced by Ljung in [Lju87].

The disturbance sequence {v;} will usually be assumed to be a stationary?
(m-dimensional) stochastic process with mean and covariance functions defined
as

m, = E{v},
2

RII(T) E {(Vk — ml/)(yka - mu)T} )

respectively. At times, we will also assume that the disturbance {v}} is statis-
tically independent of the input {uy}.

Associated with a stochastic process {u;} (either stationary or quasi-statio-
nary) is the ‘(Power) Spectral Density Function’ defined as the Discrete Fourier
Transform of the covariance function

®,(w) & Z R, (1)e ™.

T=—00
The covariance function can then be recovered from the spectral density by
Inverse Discrete Fourier transformation:

Ru(r) = — / " By (w)e™dw.

= % o
In the case of a quasi-stationary process {u;}, the last expression leads to

_ 1 [T
E {usuf } = —/ P, (w)dw, (2.3)
2m J_,
which is a form of Parseval’s identity or Parseval’s Theorem (see next sub-
section). We will frequently use this identity in the derivation of frequency
domain expressions of estimation accuracy.

By ‘stationary’ we actually mean ‘weakly stationary’. A stochastic process {v} is said to
be weakly stationary if [Doo53, Ros85]

E{vx} = m, = constant
Cov{v,vs} = Ry(k-—2s), depends only on (k — s).
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Sometimes we will be interested in the statistics of the output ¥, of a linear
system G(q) as a function of the statistics of the input w;, in the absence of
noise. In this case we have a linear filtering of the input u;

Yr = G(Q) U,

where the filter is the transfer matrix operator G(q). As already mentioned,
assuming that the filter (the system) is stable and causal, it can be represented
as

Stability of G(¢) implies that ||g(¢)|| — 0 as ¢ — oo, where || - || denotes a matrix
norm (for instance the 2-norm). Causality means that the impulse response
sequence {g(¢)} is one-sided, which implies that the output at time % doesn’t
depend on future values of the input w1, ugio, -+ . In this situation it is not
difficult to prove (see [Lju87, SS89]) that the mean value of y; is given by

my £ E{g} =3 g(6) my = G(1) m,

and that the deviations from the mean value of inputs and outputs are related
according to

Yp — My = G(q) (uk - mu)
Furthermore, the spectral density of the output signal is given by
b, (w) = G(¥) Bu(w) GH(€"),

where (-)* denotes the complex conjugate transposed.

2.1.1.1 Convergence of random variables

At several points in this thesis, different concepts of convergence of random vari-
ables will be used. These concepts are summarized in the following definition
(see [Doob3, Pap84] for a more detailed treatment of these topics).

Definition 2.1.2. Let {x;} be an indexed sequence of random vectors, and let
z, be a random vector of the same dimension. Then

e 1, is said to converge to x, with probability 1, or almost surely, and
denoted

a.s.
T — Ty, as k — oo,

if P{x;, — x,} = 1. Here P is the underlying measure on the probability
space {2, F, P}, that the random variables {x;} are defined on.
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e 1, is said to converge to z, in probability, denoted
T N T as k — oo,
if for any € > 0,
P{|xr — xi| > €} — 0, as k — oo,
where |-| denotes the Euclidean norm of a vector.

e 1 is said to weakly converge to =, if the distribution function F, () of
xj converges to that of z,, say Fj, (x), as k — oco. We also say that z
converges in distribution to x,, and we denote

dist
Tl — Ty, as k — oo.

e 1, is said to converge to x, in the mean square sense if

E{|:17k—:17*|2}—>0, as k — oc.

o

It can be proved that a.s. convergence implies convergence in probability,
which in turn implies weak convergence; also that convergence in mean square
sense implies convergence in probability [Doo53, Pap84].

2.1.1.2 Persistency of Excitation

In Chapter 6, the convergence properties of adaptive identification algorithms
are analyzed. A fundamental concept in this analysis is that of ‘persistency
of excitation’ of a signal. This property is required of the input signal to en-
sure the stability of the algorithms. Persistency of excitation essentially means
that the signal is rich enough to excite all the modes of the system. A more
precise meaning of this concept is given in the following definition (see for
instance [And82, GS84, SS89)).

Definition 2.1.3. The sequence {u;} (with u; € R") is said to be ‘persistently
exciting’ of order M if there exists some integer p, and positive constants o > 0
and 3 > 0 such that?

l4p
0<al <Y prpp < I < oo, for all /, (2.4)
k=2

3Given a symmetric matrix R, the notation R > 0 means that R is positive definite, i.e.
TRz >0, for all x # 0,

where z is a column vector of compatible dimension. Analogously, given R, and R, symmetric
matrices, the expression Ry > R» (respectively, Ry > R») indicates that Ry — R is positive
definite (respectively, positive semidefinite).
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where 7 is the identity matrix (of dimensions nM x nM in this case), and the
vector oy, is defined as

A T T T T
Pr = [uk—la Up_9," " 7uk—M]

&

In the case that {u;} is a stationary stochastic process, condition (2.4) can
be simplified to

N
1 T
Jim, 5 2wk > 0

If in addition {u;} is ergodic?, the time average operator

. 1
Jim %> )

k=1

can be substituted by the ensemble average operator E {-}, so that the condition
for the signal {u;} to be persistently exciting of order M becomes

E {cpkgof} > 0.

Sometimes, a frequency domain interpretation of this concept will be more use-
ful. In the frequency domain, persistent excitation of a signal requires the posi-
tive definiteness of its spectral density matrix for a number of frequencies. The
precise statement is given in the following proposition (see for instance [SS89]).

Proposition 2.1.1. A stationary, ergodic, stochastic process {u} is persistently
exciting of order M provided its spectral density matrix ®,(w) is positive defi-
nite for at least M distinct values of w in the interval (—m, ). O

*A stationary stochastic process {u;} is said to be ergodic up to second order statistics
if [Ros85)

1
- Up i) E{uk}

1 .
-~ Zuk—i--ruk 25 E {upsruk}

as N — oo.
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2.1.1.3 State-Space Descriptions

At times in this thesis we will consider internal representation of systems in the
form of state-space realizations of the form

Tpr1 = Axp + Buy + wy,

Yy = Cxp+ Duy + vy,

w Q S
([t ) =8 5o o

where z, € R, y, € R™, u;, € R”, are respectively the state, the output and
the input vectors at time £k, and A € R™»*" B € R*=*" (' € R™*" and D €
R™*™ are the state-feedback, the input, the output, and the input feedthrough
matrices respectively [Kai80|. The vectors wy, € R"*, and v}, € R™, represent the
process and output measurement noise vectors at time & respectively, while the
matrices ) € R *", § € R™*™ and R € R™*™ are the covariance matrices
of these noise sequences. In most of the cases it will be assumed that w, and
v, are zero mean, stationary, white noise vector sequences.

For obvious reasons, equations (2.5) and (2.6) are called state equation and
output equation, respectively.

For deterministic systems (where both the process noise and the output
measurement noise are identically zero), the state space description (2.5)-(2.7)
reduces to

Tht1 — ALEk + Buk, (2.8)
Y — C:Ek + Duk. (2.9)
An m x n rational transfer matrix G(z) has an n,-dimensional state-space real-
ization (A, B,C, D), with A € R**"= B € R™*" (' € R™"  and D € R™*",
if
G(z) =C(zI — A)™'B+ D.
The above expression can be obtained from equations (2.8) and (2.9) by taking
the Z-transform of both equations and eliminating the state variable.
The observability and controllability matrices associated with the system
(2.8)-(2.9) are defined as
O Y [CT, (CA)T, e (CAnzfl)T]T,
C £ [B,AB,---,A™'B],
respectively. In a similar way the extended (i,j > n,) observability O; and
controllability C; matrices are defined as
O; T (cA)T, ... (cA—HTT (2.10)
C; [B,AB,---, A77'B]. (2.11)

Y
Y
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Definition 2.1.4. Controllability: [Kai80] The pair (A, B) is said to be control-
lable if there exists an input sequence {u;} that takes the state of the system
from any initial state 7o = 2° to any desired final state z;, = 2/ in a finite
number of steps (k is finite). This concept should more properly be called
Controllability from the origin or Reachability [Kai80], but with some abuse
of terminology we will still refer to it as Controllability. A necessary and
sufficient condition for the controllability of the pair (A, B) is that the control-
lability matrix C has full rank n,. &

Definition 2.1.5. Observability: [Kai80] The pair (C, A) is said to be observable
if for any initial state 2o = 2° there is a finite number of steps ¢ such that =z
can be determined from the sequences u; and ¥, for 0 < k£ < /. A necessary
and sufficient condition for the observability of the pair (C, A) is that the ob-
servability matrix O has full rank n,. &

Definition 2.1.6. Minimal Realization: A realization is said to be minimal if it
has minimal dimension, that is if there exists no other realization with lower di-
mension. The dimension of a minimal realization is called the McM:illan degree
of the MIMO system. A necessary and sufficient condition for the minimality
of a realization is that the pair (A, B) is controllable and the pair (C, A) is
observable [Kai80]. The minimality of the realization (A, B, C, D) then implies
that the matrices O; , C; (with ¢, 5 > n,), O and C have all rank n, [Kai80]. <

The realization (A, B, C, D) in (2.8)-(2.9) uniquely defines the input-output
properties of the system via

Yr = Z g(ﬁ) Uk—g,
=0

where, as already mentioned, ¢g(¢) € R™*" are the impulse response coefficients
or Markov (matrix) parameters given by

D, =0
90=1 ca1B, >0
Based on the impulse response coefficients, the following Impulse Response
Block Hankel Matriz can be constructed [HK66]

g(1) 9(2) - 90)
2 3) .. 41
o 9(2)  90) | 97 +1) | (2.12)
g(1) gGi+1) - g(i+j—1)
where H;; € R™*". 1t is not difficult to see that 7;; can be factorized as [Kai80]

Definition 2.1.7. Internal Stability:® [Kai80] We say that a realization (A, B, C)

5Internal stability is often called asymptotic stability.
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is (internally) stable or stable in the sense of Lyapunov, if the solution of
Tr+1 = A.I'k,

with initial condition z(, tends to zero as £ — oo, for arbitrary x,. A necessary
and sufficient condition for internal stability is that all the eigenvalues of A
must lie strictly inside the unit circle, that is

(A <1,
where )\;(A) are the eigenvalues of A. &

If the system (2.8)-(2.9) is stable, the associated controllability Gramian
P and observability Gramian O are defined as the solution of the Lyapunov
equations

APA" + BB P,
ATgAa+CTCc = 9,
respectively.

Definition 2.1.8. Hankel Singular Values: [Glo84] Let (2.8)-(2.9) be a stable
state-space realization of the transfer matrix G(z), so that G(z) can be written
as

G(z) =C(zI — A)™'B+ D.
Then, the Hankel Singular values of G(z) are defined as

0]'(G(2)) = VA(PQ),

where P and Q are the controllability and observability Gramians, respectively.
It is not difficult to show that the Hankel singular values of G(z) are the singular
values of the impulse response block Hankel matrix (2.12) [Glo84]. &

Definition 2.1.9. Balance Realizations: [PS82] A stable state-space realization is
called internally balanced, or simply balanced if

P=Q=71,

where ¥ £ diag {0}, 03t,--- 00t }, oft > 0}t > --- > o, is a diagonal matrix

Ng?

with the Hankel singular values as diagonal elements. A stable state-space
realization is called input balanced if

P=I, Q=32
and is called output balanced if

P =732 Q=1.
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2.1.2 Some Hilbert (Hardy) spaces related to signals and systems

In this subsection, some basic concepts related to general Hilbert spaces are pre-
sented, and the particular Hilbert (Hardy) spaces associated with the classes of
signals and systems used in this thesis are introduced. An advanced treatment
of these topics can be found in the books [You88, Rud74].

Let us first quote the definition of a Hilbert space [You88, Rud74]:

“A Hilbert space is an inner product space which is complete
with respect to the metric induced by (the norm induced by) the
inner product.”

Here ‘inner product space’ means a linear vector space H with an inner product
operation defined between two of its elements. This inner product is a real-
valued function usually denoted® (-, ), that verifies the following properties:

1. (z,y) = (y,z), forall z,y € H.
2. (ax + By,u) = a{x,uy + B {y,u), for all x,y,u € H and scalar «, 3.
3. {(z,x) >0, and (x,z) =0 if and only if z = Q.

Where (-) indicates complex conjugate, and where O is the null element in the
space H. The inner product can be used to define the norm of an element of
the space as follows:

|2 £ ¢z, 2)'"?, v €H.

Sometimes the notation ||- || will also be used to emphasize that it is the norm

induced by the inner product in the space H. This norm can be used now to

define a metric in the space measuring the distance between two elements:
d(l‘ay)énx_y“? %yGH-

This concept of distance between two elements of the space can be used in turn
to define ‘convergence’ of sequences of elements as follows:

Definition 2.1.10. A sequence {z(k)} of elements of the Hilbert space H con-
verges, with respect to the metric d(z,y), to an element = € H if

klirn d(xz(k),z) = 0.

The element x is called the ‘limit of the sequence’, and we write without dis-
tinction

lim z(k) =2z, or x(k)— .
k—o0

&

6Sometimes, the notation (-, -y will also be used to emphasize that it is the inner product
on the space H.
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Completeness of the space in the metric induced by (the norm induced by)
the inner product means that any convergent Cauchy sequence’ of elements of
the space converges to an element of the space.

Fundamental in this thesis will be the concepts of orthogonality and or-
thonormality of elements and subsets of a Hilbert space leading to the concept
of ‘orthonormal basis’ . These concepts are summarized in the following defi-
nition:

Definition 2.1.11.

i. Two elements x,y in a Hilbert space H are said to be orthogonal, written
z Ly, if (z,y) =0.

ii. The element x € H is said to be orthogonal to the subset S C H, written
x L S, if x is orthogonal to every y € S.

iii. Two subsets S, C H are orthogonal, S | @, if (x,y) =0 for all x € S and
Yy E Q.

iv. For a given subset S C H, the set S defined as
St&2{yecH:ylxVreS}
is called the ‘orthogonal complement of S’.

v. An element x € H is said to be ‘normal’ if ||z| = 1.

vi. A set of elements S = {z;} in H is said to be an ‘orthogonal set’ if the
elements of the set are orthogonal to each other. If in addition, for each
z; € S, ||| = 1, the set is said to be ‘orthonormal’. An important
property of an orthogonal set is that its elements are linearly independent.

vii. An orthonormalset S = {x;}.° in an inner product space is said to be com-
plete if its closed linear span® is the whole space. For the case of a Hilbert
space H, there is a theorem [You88] establishing that an orthonormal set
is ‘complete’ if and only if the only element in H which is orthogonal to
each of the z; is the zero element.

viii. A complete orthonormal set in a Hilbert space is called an ‘orthonormal
basis’.

o

TA sequence {z(k)} in a Hilbert space is said to be a Cauchy sequence if d(z(k), z(¢)) — 0 as
k,¢ — oo. This means that for any € > 0 there exists an integer N, such that d(z(k),z(¢)) <e€
for any k,¢ > N..

8Let A be a set in the normed linear space E, A C E. The closed linear span of A, denoted
Span {A}, is the intersection of all closed linear subspaces of F which contain A.
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It is possible to show that every Hilbert space has an orthonormal basis.
This fact is important because it allows a unique representation of any element
of the space as an orthonormal series expansion in terms of the elements of the
basis (Generalized Fourier Series). In other words, given an orthonormal basis
{Bi}2°, in a (separable °:'°) Hilbert space H, every element x € H can be
represented as

T = <$,Bk> Bk, (214)
k=0
where the equality has to be interpreted as convergence in the norm induced
by the inner product'!, that is as

n

lim ||z — Z<$,Bk> Bk =0.

n—00
k=0

It is clear that the representation in (2.14) is not useful in practical problems
where only a finite number of terms can be handled. The solution is then to
approximate x by the element 7,

7= min |z =yl
which is the closest element to = belonging to the subspace X, spanned by

the first p elements of the orthonormal basis {Bk}Z;é- By appealing to the
Projection Theorem'? it can be proved that 7 is given by

9An inner product space is said to be separable if it contains a countable subset which is
everywhere dense (see next footnote). All Hilbert spaces considered in this thesis are separable.

10A subset S of an inner product space H is everywhere dense if for every 2 € S and € > 0
there is a y € S such that ||z — y|| <e.

"UWhen dealing with spaces of functions (z(t) € H) a different interpretation of equation
(2.14) is possible. Namely, one can interprete the partial sums

N

> (x(t), By) By

k=0

as converging to the element z(t) € H for all values of ¢. This is called ‘pointwise convergence’.
The two concepts are different, and, in general, convergence in the norm does not necessarily
imply pointwise convergence.

12Projection Theorem: Let S be a linear closed subspace in the Hilbert space H, and let
x € H be a vector not in S. Then there exists a unique vector yg € S such that the distance
from z to the subspace S is given by

d(z, S) = [lz = yoll-
Furthermore (z —yo) L S.
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The approximation error for this case lies in the orthogonal complement of X,.
Some important properties of orthonormal sets in Hilbert spaces are sum-
marized in the following proposition [You88, Rud74].

Proposition 2.1.2.
i. Let {B;}?_, be an orthonormal set in the Hilbert space H. Let 5, -+, 3, €

il.

iil.

C, and let x be an element in H. Then
p p p

= BBi| ==+ 18— @, Be) [P =) [ (x, By
k=0 k=0 k=0

Let {B;};2, be a countable orthonormal set in the Hilbert space H, and
let = be an element in H. Then, the expansion coefficients, (z, By), of
x € H, and the norm of z satisfy

2

oo

ol > 37 o, Bl (2.15)

k=0

which is known as Bessel’s inequality. If in addition, the orthonormal
set {Bg}32, is complete (i.e., an orthonormal basis), Bessel’s inequality
becomes an equality, namely

)| = Z|$Bk : (2.16)

which is known as Parseval’s identity (or Parseval’s Theorem). The
condition (2.16) is a necessary and sufficient condition for the orthonormal
set to be an orthonormal basis. An alternative formulation is given by

o¢]

Zka y,lS’/yc Vr,y € H.
k=0

Let {By}3°, be an orthonormal basis in the Hilbert space H. Then the
closed linear span of {B;}?°, is the whole space H.
O

In the following, some particular Hilbert and Hardy spaces that will be used
in this thesis are introduced.

Let us consider first a Hilbert space related to the impulse response sequence
of stable, causal, discrete-time systems. Let {g(k)} denote the impulse response
sequence of a stable, causal, discrete-time scalar system with input-output rep-
resentation

e = G(Qur 2> g(0)q " up. (2.17)
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The absolute summability of the impulse response sequence

ZL@ )| < o0,

ensures the (BIBO!?) stability of the system!? [Kai80] and also implies the
square summability of the sequence!®. It is then natural to define the Hilbert
space /5(Ny) of square summable sequences with support in N, (the set of non-
negative integer numbers), equipped with the inner product

9y = f(k)g(k),

k€eNy

so that the impulse response sequences of all stable, causal, discrete-time sys-
tems belong to this space. Of course, not every element of this space can be
associated with the impulse response of a stable, causal, discrete-time system,
since square summability of the sequence does not necessarily imply its abso-
lute summability. The space /5(Ny) is a proper subspace of the Hilbert space
05(Z) of (two-sided) square summable sequences with support in Z (the set of
integer numbers), with the same definition for the inner product (substituting
the index set Ny by Z).

Let us now turn our attention to a Hilbert space related to the transfer
functions of stable, causal, discrete-time systems. First we recall the definition
of the Discrete Fourier Transform (DFT) [OS89, PM92] of a sequence {f(k)} €
0,(2)

F(e) Zf Je k. (2.18)

k=—00

I3Bounded-Input-Bounded Output

14BIBO Stability: A causal system is said to be externally stable or BIBO stable if a bounded
input up < M, < 00,0 < k < oo produces a bounded output y, < M, < 00,0 <k < 00. A
necessary and sufficient condition for BIBO stability is the absolute summability of the impulse
response sequence [Kai80].

15 Absolute Summability => Square Summability

> lglk) <00 = Zlg IZIg )| < o0 =
k=0
ZZLq g(h)] < o0 = Z|g |+ZZ|g ) g(h)] < 00 =

k=0 h=0 k=0 h=
hh

= D lgk)]* < oo
k=0
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It can be proved that the Discrete Fourier transform of a sequence in /5(Z)
belongs to the Hilbert space L,(T) of Lebesgue square-integrable functions on
the unit circle in the complex plane T £ {z:|z| =1} (or equivalently T =
{e’: —1r <w < w}), equipped with the inner product

(F.G)2 o / " P () G dw. (2.19)

-

Recalling the definition of the ‘two-sided’ Z-transform of a sequence {f(k)} €
0,(7,) [0S89, PM92),

F(2) & Y flk)z", (2.20)

k=—00

it can be seen that the discrete Fourier transform (equation (2.18)) can be
interpreted as the Z-transform computed on the unit circle T. We can then give
the following alternative z-domain expression for the inner product in Lo(T)!*®

(F,G) = 2% ﬁF(z)G(l/z) %. (2.21)

A proper subspace of L,(T) is the Hardy space'” H,(T) of Lebesgue square-
integrable functions on the unit circle T that are analytic outside the unit
disc D 2 {z:|z| < 1}. It is clear that the discrete Fourier transforms of the
impulse response sequences of all stable, causal, discrete-time systems belong
to this space'®. With some abuse of terminology we will refer to this Hardy
space as ‘the space of all stable, causal, discrete-time transfer functions’, since
the discrete Fourier transform (respectively, the Z-transform) of the impulse
response sequence is nothing else but the transfer function G(e) (respectively,
G(2)) of the system'.

An important property of Hilbert spaces is that all separable Hilbert spaces
with the same cardinality are isometrically isomorphic to each other. This
means that between any two separable Hilbert spaces (with the same cardinal-
ity) there exists a one to one mapping preserving norms (an isometry). For the
spaces /5(Z) and Ly(T), the isometry is the discrete Fourier transform. Parse-
val’s identity then allows us to write

(f.9) = (F.G).

16Equation (2.19) follows from equation (2.21) by definition of contour integral, with z(w) =
el —1 < w < 7, on the unit circle.

'"H,(T) is a Hilbert space with the inner product in Ly(T).

180f course, not every element of this space can be interpreted as the discrete Fourier trans-
form of the impulse response sequence of a stable, causal, discrete-time system.

19See also the previous footnote.
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When dealing with identification of multivariable systems in chapter 5 we
will be interested in a Hilbert space related to the transfer matrices of stable,
causal, discrete-time MIMO systems. We will denote with H5"*"(T) the Hardy
space of (m x n) matrices whose elements are functions of the complex variable
z, belonging to H,(T). With some abuse of terminology we will refer to this
space as ‘the space of all stable, causal, discrete-time, (m x n) transfer matrices’.
H""(T) is a Hilbert space with the following definition for the inner product

(By, By,) = % /7r Tr { Bo(e") By ()} dw,

or equivalently

(B, B) = QL ]{Tﬂ (By(2)Be(1/2)")} %.

)

2.2 Prediction Error Methods

In this section, system identification methods based on minimization of predic-
tion errors are reviewed. Usually these techniques are called Prediction Error
Methods (PEM) (see for instance [Lju87, SS89] for a more detailed discussion).

2.2.1 Problem Formulation

To formalize the problem, let us consider a discrete-time linear time-invariant
MIMO system with a general model structure given by

M) yp=G(q,0)ur, + H(q,0) ey, (2.22)

where 3, is the m-dimensional output vector, u; is the n-dimensional input
vector, and e, is a sequence of m-dimensional, independent and identically
distributed (iid) random variables with zero mean (i.e. white noise), and co-
variance matrix

E{ewel'} = R.O(k —s),

where §(k — s) stands for the Kronecker delta?. Furthermore, G(q,6) and
H(q,0) are matrices of real, rational, stable, strictly proper?! transfer functions
parameterized by the p-dimensional parameter vector # lying in the parameter

1 for k=s
206(k_8)é{ 0 for k#s
2L A rational transfer function is said to be strictly proper if the relative order (that is the

difference between the degrees of the numerator and denominator polynomials) is strictly neg-
ative [Kai80].
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space Dy, C RP. How the set D), has to be defined will become clear later in
the section.
We assume also that an N-point data set

ZN:{ykauk: kzla"'aN}a

consisting of an input sequence {u;} and an output sequence {y;} is available
for the purposes of estimating G(q,¢) and H(q,f). We will denote by 7, (6) a
prediction of y, given the data up to time £ — 1, and based on the parameter
vector #. In general the predictor can be a linear or a nonlinear filter applied
to the data, and it can be constructed in various ways for any given model.
It can be determined from the underlying system description, or from other
considerations. For instance, a frequently used predictor determined from the
model structure (2.22) is the so-called mean square optimal one-step-ahead
predictor

ge(0) = [1 = H'(¢,0)] v+ H '(4,0)G(q,0) us.
A more general linear predictor is given as

Ye(0) = Fi(q,0) yr + Fa(q,0) uy, (2.23)

where the predictor filters F(q, ) and Fy(q, ) are such that 7;(#) is a function
of past data only.

Given a model structure and a predictor, the prediction errors can then be
defined as

er(0) = yr — Tk(9) - (2.24)

The objective is then to find an estimate 0 of § that minimizes a given function
Vi (0) of the prediction errors. This function is called a criterion (loss function
or cost function), and it is a scalar-valued function (typically positive) of all
the prediction errors €;(6),ex(f),- -+ ,en(f), which will assess the performance
of the predictor used. The criterion is minimized with respect to the parameter
vector A to choose the ‘best’ predictor among the class considered. A criterion
which is often adopted is the quadratic one

Vi (6) = % ST {e () (0)}, (2.25)

but the range of possibilities is wide. A more general expression for the criterion
would be

Vi(0) = 3 S v (19)) (2.26)
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where v(-) is a scalar-valued function (typically positive) of some filtered version
€l'() of the prediction errors e ().

The estimate 6y is then computed as the minimizing argument of the cri-
terion (2.26), i.e.

Ay = argmin {Vy(6)} . (2.27)
0€ D pq
It is now clear that the set D), (the parameter space) has to be defined as those
values of f for which the predictor is asymptotically stable.
Summarizing, a Prediction Error Method (PEM) can be described as follows:

e Choice of the model structure: This concerns the parameterization of the
transfer matrices G(q,6) and H(q, f) as a function of 6.

e Choice of the predictor: This concerns the definition of the predictor. For
example, if a linear predictor is specified as in equation (2.23), the user
has to choose the prediction filters Fi(q,#) and F5(q,0).

e Choice of the criterion: This concerns the choice of the scalar-valued func-
tion v(-) in the general criterion (2.26) which will assess the performance
of the predictor.

e Computation of the parameter estimate §N that minimizes the criterion
(2.26). Implicit in this step is the choice of the minimization technique.

Particular choices of the model structure, the predictor, the criterion, and
the minimization technique, result in particular methods with specific names.
For example, the well known Least-Squares, Maximum Likelihood, and Ins-
trumental-Variables Methods can all be considered as Prediction Error Meth-
ods [Lju87, SS89].

2.2.2 Asymptotic Analysis

In this subsection, some results regarding the limiting properties of the esti-
mated parameters as the number of data points tends to infinity are reviewed.
These results are concerned with two main aspects; namely, consistency of
the estimate, and estimation accuracy. Again, the interested reader is referred
to [Lju87, SS89], for a thorough treatment of these topics.

‘We will denote by §N the parameter estimate based on N data points, that
is, O is the minimizing argument of the criterion Vi (0).

For the analysis, the following basic assumptions will be made:

A1l. The data {ug,yx} are stationary processes.

A2. The input {u;} is persistently exciting.
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A3. The Hessian V}((f) is nonsingular locally around the minimum points of
Viv(6).

A4. The transfer matrices G(q,f) and H (g, f) are smooth (differentiable) func-
tions of the parameter vector 6.

Part of the analysis will require the following additional assumption about the
true system:

A5. The set??
Dy ={0: G(q,0) = G(q); H(q,0) = H(q)}

consisting of those parameter vectors for which the model structure gives
an exact description of the true system consists of precisely one point.
This point will be denoted by 6y, which will be called the true parameter
vector.

2.2.2.1 Asymptotic Estimate

We are interested here in the limit value to which the estimate §N converges
as the number of data /N tends to infinity. This analysis is related to the
consistency of the estimation method, that is, with the issue of whether the
estimates converge to the ‘true parameter’ (provided that this value exists)
when increasing number of data are considered. The main result is summarized
in the following Theorem [Lju87, SS89].

Theorem 2.2.1. Let the estimate Oy be defined as in equation (2.27), with the
general criterion as in equation (2.26), and suppose that assumptions Al to A4
hold. Then, the criterion function Vy(#) converges uniformly in # € Dy, to the
limit function V(#), i.e.

sup |V () — Vo ()] 22 0 as N —
€D pq

where Voo (6) = limy_,o0 Viv(6). Moreover, the minimizing argument y of Vy ()
converges to a value 6, in the set D¢ of minimizing arguments of V. (6). That
is

Oy 255 0, as N = oo, #6,€ Dg,

where D, is defined as
D¢ = argmin {V(0)} = {0 : 0 € Dy, Vio(f) = min VOO(G')} :
0€D pq 0'€Dpq
O

22When the set D7 is not empty, the system is said to be ‘system identifiable’. If in addition,
D consists of only one element, the system is said to be ‘parameter identifiable’.
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The result implies that when the set Dr is empty, the asymptotic estimate
will be ‘biased’ but it will give the best possible approximation of the system
which is available in the model set. If the system is parameter identifiable
(condition A5 holds), then the set D7 is not empty and consists of only one
element. Under some weak assumptions on the data set, it is possible to show
that in this case Do = Dy = {6}, so that the estimate is strongly consistent.

2.2.2.2 Asymptotic distribution of the parameter estimate

We analyze here the limiting distribution of the parameter estimates. The
following theorem shows that the distribution of the random variable

\/N(é\N - 9*):

where §N is the parameter estimate and 6, is the asymptotic estimate (as defined
in Theorem 2.2.1), converges to a Gaussian distribution under weak assump-
tions [Lju87, SS89].

Theorem 2.2.2. Under the conditions of Theorem 2.2.1
VN(@y - 6,) E5 N (0, P),
where

P=V20)] " lim NE{VL0)TVO)} A6 (228)
N—00
with V}(f,) denoting the gradient of Vy(f) computed at # = 6,, and V(6,)
denoting the Hessian of V.. () computed at 0 = ,.
O
This result is important because it gives an expression for the asymptotic
covariance matrix P (equation (2.28)), that can be used to quantify the esti-
mation accuracy. The asymptotic covariance expression can also be used to
derive confidence intervals for each particular estimate Ay obtained from the
data set [Lju87]. Unfortunately, the expression for the asymptotic covariance
(2.28) requires the knowledge of the asymptotic estimate ¢, which is unknown
to the user. This problem can be solved by instead using an estimate of P. A
simple estimate of P in equation (2.28) can be obtained by replacing 6, by fy,
and the expectation operator by the sample average.

2.2.3 Computational aspects

In general, the minimization of the criterion Vi () cannot be done analyti-
cally. Only for the special case where the prediction error depends linearly
on A (which corresponds to the case of linear regressor) an analytic expression
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can be found for the solution of the minimization problem. In most cases the
minimization problem is nonlinear and nonconvex, and the solution must be ob-
tained by using some numerical iterative search method. Some commonly used
algorithms are the Newton-Raphson Algorithm and the Gauss-Newton Algo-
rithm [SS89, Lju87]. The main problem with these iterative search algorithms
is that convergence only to a local minimum of the criterion can be guaranteed.
Usually, the way to find the global minimum is to run the algorithm from dif-
ferent initial conditions and then to compare the estimates [Lju87]. In general,
this constitutes a computationally intensive procedure.

In this thesis, systems are parameterized using orthonormal bases that lead
to linear regressor forms for which the problems of local minima are avoided.
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Orthonormal Bases on the Unit Circle

In this chapter, the construction of several families of (scalar) rational orthonor-
mal bases on the unit circle will be reviewed. The concept of reproducing kernel
associated with the bases will be introduced, and its importance for the analysis
of the approximating properties of the bases will be pointed out. The emphasis
of the chapter will be on a particular family of orthonormal bases, namely the
Orthonormal Bases with Fixed Poles, for which a minimal state space realiza-
tion will be derived and a closed form expression for the reproducing kernel
associated with them will be given. Furthermore, it is shown how families of
(matrix) orthonormal bases for the space Hj"*"(T) can be constructed from
orthonormal bases on H,(T).

3.1 Introduction

In this chapter we study various families of rational orthonormal bases for the
Hardy space H,(T) of functions analytic outside, and square integrable on the
unit circle T. The motivation for this is the practical utility of rational or-
thonormal bases for the approximation of elements of H,(T) by rational transfer
functions [Wal35], even when the element is non rational. These approximating
properties of rational orthonormal bases are exploited in this thesis in the con-
text of identification of discrete-time, linear systems. As already mentioned, a
main advantage of using orthonormal bases in an identification context is that
prior information about the dominant dynamics of the system can be easily
incorporated in the process of basis construction, and that the resulting model
structures become linear in the parameters which simplifies the estimation prob-
lem.

It is not the intention of this chapter to give a complete survey on the area,
which would be an overwhelming task. Instead, the purpose is to focus on
what this author believes is relevant for the material in the subsequent chap-
ters. In Section 3.2, the concept of reproducing kernel associated with the
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space spanned by an orthonormal set is introduced and some of its properties
are studied. Closed form expressions for the reproducing kernels will be funda-
mental for the quantification of the accuracy of the estimation we perform in
Chapter 4.

In Section 3.3, a brief description of some ‘standard’ orthonormal bases
on the unit circle such as the trigonometric bases (corresponding to the so-
called FIR (Finite Impulse Response) model structures), Laguerre [Wah91b]
bases and Kautz [Wah94b]| bases is given. A more detailed description of more
general orthonormal bases that allow prior information about several dominant
dynamics of the system to be included in the identification process, and that
have the more common FIR, Laguerre and Kautz bases as special cases, is
given in Sections 3.4 and 3.5 where the Orthonormal Bases Generated from
Inner Functions (OBGIF) [HbVB95, VHBO5], and the Orthonormal Bases with
Fixed Poles (OBFP) [NG94a, NG97| are respectively considered.

Finally, in Section 3.6 it is shown how families of orthonormal bases for the
space of stable (m x n) transfer matrices H,"*"(T) can be constructed from
orthonormal bases on Hy(T).

3.2 Reproducing Kernels

As mentioned in the previous chapter, H,(T) is a Hilbert space when it is
endowed with the inner product in Ly(T), as defined in equations (2.19) or
(2.21). An orthonormal basis {Bj(z)},—, in H>(T) is a complete orthonormal
set. The orthonormality is reflected by the property

1 for (k=1
<B’“Bﬂ>:{ 0 for (k#0) -

while the completeness is characterized by the fact that the closed linear span
of the set is the whole space.

In this thesis, rational orthonormal bases on the unit circle are used to
represent discrete-time linear systems for the purposes of identification from
input-output measurements. The transfer function of the unknown system
is modeled as a linear combination of the rational basis functions, and the
identification is carried out by estimating a finite number of coefficients in this
orthonormal expansion, using least squares techniques. In this context, the
accuracy of the estimation is affected by two causes: the noise corruption of the
measured data that generates the so-called variance error, and the parsimony
of the model structure which is too simple to describe the real system, that
results in the so-called bias error.

In [LY85], Ljung and Yuan show that, for the case of the standard trigono-
metric bases (or FIR model structure) {2 %}, the variance error in the frequency
response estimate can be approximated (for large model order and length of the
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available data) by the product of the noise-to-signal ratio and the model order-
to-data length ratio. Essential in the derivation of this result has been the
observation that, due to the algebraic structure

B (2)Bm(2) = Bmin(2), (3.1)

enjoyed by the trigonometric bases, the covariance matrix of the transfer func-
tion estimate has a Toeplitz structure, and then some classical results on asymp-
totic properties of Toeplitz matrices [GS58] can be exploited to carry out the
analysis. Unfortunately, the Orthonormal Bases with Fixed Poles we consider
in this thesis do not have the algebraic structure (3.1) and consequently the
covariance matrices do not have a Toeplitz structure. A key réle in the analysis
of the estimation accuracy is then played by the reproducing kernel associated
with the bases [Aro50, Dav75|, since it allows to generalize the convergence
results of Toeplitz matrices for the case in which the orthonormal structure is
not the trigonometric one [NHG97b, NHG97a].

In the following, we introduce the concept of reproducing kernel, and de-
scribe some of its properties [Aro50, Dav75].

Definition 3.2.1 (Reproducing Kernel). The reproducing kernel associated with
a Hilbert space X of functions on a set S, is defined as the unique function
K,(z, 1) of the two variables z, u € S, that satisfies the following two condi-
tions [Aro50]

i. For every p1 € S, K,(z, 1), as a function of z, belongs to X.

ii. K,(z, ;) has the reproducing property: for every function G(z) € X and
every p € S

¢

When the space X is spanned by a finite number of orthonormal basis
functions {By(z)}2_; with z € S, it is not difficult to prove that the reproducing
kernel can be computed as

p—1

Ky(z, 1) = Bi(2)By(p). (3.2)

k=0

To see this we have to check that conditions i. and ii. in Definition 3.2.1 are
satisfied. That K,(z, 1) in equation (3.2) belongs to X is obvious since X is
spanned by the basis functions {By(z), Bi(z)," -+, Bk(z)}. It remains to check
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the reproducing property ii. Let G(z) € X, and p € S, then

(G(2), Kp(2,p)) = (G(2), i Bk(Z)Bk(u)> )

— pzi <G(z),3k(z)8k(u>> ,

I
N
Q
—~
N
N
=
B
—~
N
N
~
=
B
~~
S—r

= G(p). (3.3)

In passing to the last line we have used the fact that, since X is spanned by the
functions {By(z), Bi(z), -, B,—1(2)}, then any function G(z) € X has a unique
representation of the form

G(2) = ) _(G(2), Bi(2)) Bi(2).

The existence of the reproducing kernel (3.2) makes the associated Hilbert
space a reproducing kernel Hilbert space (r.k.H.s.).

In this thesis, the space X is most commonly H,(T), and the set S is the
open region outside the unit disk in the complex plane E = {z € C: |z| > 1}.
At times we will need to compute the reproducing kernel' on the unit circle
T, that is for 2 = e, and u = €/”. In those cases we will use the shorthand
K,(w, o) to denote K,(e“, ).

We will use equation (3.2) to derive closed form expressions for K,(z, i) for
the particular bases. In the context of orthogonal polynomials [Sze59], these
closed form expressions for K,(z, ;) are known as ‘Christoffel-Darboux’ type
formulas.

Let now {By(z)},-, be a complete orthonormal set in H,(T). By analogy
with (3.2) we can define the function

oo

K(zp1) 2 Bi(2)Bi(p), (3.4)

k=0

for z, u € E. It is not difficult to prove [Reg95] that K (z, ;) has the reproducing
property

G(u) = (G(2), K(z, 1)), (3.5)

!Properly speaking, H»(T) is not a function space, but a space of equivalence classes of
functions, and then a reproducing kernel is not defined in H»(T). With some abuse of termi-
nology we will still call a function in H5(T) satisfying conditions i. and ii. in Definition 3.2.1,
a reproducing kernel.
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and that as a function of 1 € E, it belongs to H(T). A closed form expression
for K(z, ) will be very useful in some of the developments of the following
chapters. The following Lemma shows that for any complete orthonormal basis
in Hy(T), and p € E, K(z, 1) can be computed as

2

K = .

Lemma 3.2.1. Let {By(2)},—, be a complete orthonormal set in H,(T), and
let K(z,u) be defined as in equation (3.4). Then, independently of the
particular basis, K(z, ) s given by

Z[

K =

for |z| > 1, |u| > 1.
Proof: See Appendix 3.A. [ |

In the following sections various families of rational orthonormal bases on
the unit circle are introduced. For some of them, closed form expressions of the
associated reproducing kernels K, (z, i) are derived.

3.3 FIR, Laguerre and Kautz Basis

3.3.1 FIR Basis

The most common orthonormal basis on Ly(T) are the well known trigonometric
or FIR basis, that corresponds to the choice

Bi(z) =z"% k>0 (3.6)

The completeness of the basis in L,(T) is a standard result of classical Fourier
series (the proof can be found for instance in [You88|). A direct calculation
gives the following closed form expression for the reproducing kernel for this
basis:

(zp) — 1
ap) =zt

Kol = ¢ (3.7)

with |z| > 1 and |u| > 1.
As pointed out by several authors in different contexts (for instance in

[GW90, Wah91b, WH93, LW93, NG97| in the context of system approxima-
tion and identification, or in [Wil93a, Pdd93, Oli94a, Oli95a, WZ96] in the
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context of signal processing) the use of FIR model structures to represent sys-
tems with long (possibly infinite) impulse responses has the disadvantage that
the number of terms in the series expansion necessary to provide an acceptable
approximation of the system is high, and this may lead to poor accuracy in the
estimated model. As a counterpart, and as it has already been mentioned, the
analysis of the accuracy of the least squares estimation using FIR structures is
very tractable by exploiting the algebraic structure (3.1) of the bases, leading to
Toeplitz structures of the covariance matrices of the estimates, and then using
known results on asymptotics of Toeplitz matrices [GS58, HN77, HW&9].

3.3.2 Laguerre Basis

The use of Laguerre series in engineering applications has a long history, that
can be traced back to the thirties with the work of Wiener and Lee (see for
instance [Lee60]) on synthesis of electrical networks. Since that work, La-
guerre bases have been used in many different areas, such as system approxi-
mation [Nur87, Mak90a, Mak90b, Par91, WAH], system identification [KP79,
GW90, GW91, Mak91, Wah91b, Wah94b], filter design [KP77, den93b, den93a,
FD93, den94, Oli94b, Oli95c, Olig5a, Oligsb], and control applications [ZD88,
ZBD88, ZDP90|.
In the 2-domain, the Laguerre bases are given by

where £ € R, [¢| < 1 is a free (real) parameter called the Laguerre coefficient,
or Laguerre pole position. The orthonormality and completeness of the La-
guerre basis in H,(T) follow from the fact that the bases are the Z-transform
of the Laguerre sequences [Sze59] which are a complete orthonormal set in
05(Ny) [Szeb9], and the fact that Hy(T) and ¢5(Ny) are isometrically isomorphic
(the isomorphism being the Z-transform).

As the reader can easily verify, the FIR model is a special case of the Laguerre
structure corresponding to £ = 0.

The following Lemma gives the closed form expression for the reproducing
kernel of the Laguerre basis.

Lemma 3.3.1. Let {By(z)},-, be the Laguerre basis as defined in (3.8). Then

the closed form expression for the reproducing kernel associated with the

basis 1s given by

1 — p(2)0p (1)
i —1

Ky(z, 1) = : (3.9)
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with |z| > 1 and |u| > 1, and where the definition
a (162
o) 2 (=5

Proof: See Appendix 3.A. [

has been used.

If prior information about the dominant dynamics of the system to be approx-
imated is available, then choosing the Laguerre coefficient close to the dom-
inant pole will increase the rate of convergence of the Laguerre series expan-
sion [Wah91b]. In this way, the number of terms needed to obtain an acceptable
approximation will also be reduced. This property represents an advantage of
the Laguerre bases when compared to the FIR structure where the possibility
of incorporating ‘a priori’ information to accelerate the rate of convergence does
not exist.

As pointed out in [WAH], highly resonant systems are very difficult to ap-
proximate with the Laguerre basis that only allows the incorporation of prior
knowledge about non-resonant dominant dynamics. A more flexible structure
that generalizes the Laguerre basis and is better suited for the approxima-
tion of systems with highly oscillatory impulse responses is the so-called ‘two-
parameter’ Kautz basis [Kaub2].

3.3.3 Kautz Basis

Since the work of Kautz [Kau52] on orthogonalization of a set of continuous ex-
ponentials, considerable research effort has been devoted to the study of appli-
cations of Kautz basis in system approximation [WAH], identification [Wah91a,
LW93, Wah94b, Wah94a], and filter design [den93b, Oli94a, Oli95d, den96|.

In the z-domain, the ‘two-parameter’ Kautz bases are given by [YH62,
Bro65]

VA=) =) <cz —ale+ )z—|—1>% J odd

k(2) = 2 —alc+l)z+c\ 22—alc+1)z+c
1)

k
1= ) (s — _ 3
(1—e*)(z—a) (cz?—alc+1)z+1 b even
22—alc+D)z+c\ 22—alc+1)z+c

(3.10)

with —1 <a <1, =1 <e¢< 1, and k£ > 0. The Laguerre structure is a special
case of the Kautz one when the poles are real and equal (i.e. for a*(c+1)? = 4c).
The condition on the poles for the completeness of the Kautz bases in H,(T)
has been derived in [DD81] (see also [Oli94a, Wah94b]) .
For systems with several resonant dynamics, more general orthonormal bases
allowing the incorporation of prior information about several modes would be
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more desiderable. Examples of such more general basis are the Orthonormal
Basis Generated by Inner Functions (OBGIF) introduced by Heuberger, Van
den Hof and co-workers [HbVB95, VHBO5|, or the Orthonormal Basis with
Fixed Poles (OBFP) studied by Ninness and co-workers in [NG94a, NG97].
The Kautz, Laguerre and FIR model structures are all special cases of these
methods.

3.4 Orthonormal Basis Generated by Inner Functions

In a series of papers [HB90, HVB92, HVB93, VHB94a, VHB94b, HbVBO5,
VHB95|, Van den Hof, Heuberger and co-workers show how an infinite set
of orthonormal functions can be generated from a balanced realization of a
square and inner transfer function. The bases are suited for the representa-
tion of systems with a wide range of dominant dynamics, since they allow the
incorporation of prior information about a set of poles rather than one single
pole. By choosing the poles of the bases closed to the actual poles, the speed
of convergence of the orthonormal expansion can be increased.

Previous to the introduction of the orthonormal basis, we give the definition
of an wnner function.

Definition 3.4.1. Inner Function. A rational transfer function G(z) is called in-
ner if it is stable and satisfies

G(zHG(z) = 1.
That is, if it is stable and all-pass. &

The main result concerning the generation of orthonormal functions for the
space Hy(T) from an inner transfer function is summarized in the following
theorem due to Van den Hof, Heuberger and co-workers [HbVB95].

Theorem 3.4.1. [HbVBO95| Let G,(z) be a scalar inner function with McMil-
lan degree n, > 0, having a minimal balanced realization (A, B,C,D). De-
note

Vi(2) = 2(2I — A)"'BGE(2) (3.11)
Then the sequence of scalar rational functions
{Bin(2)} £ {e/ Vi(2)}, (i=1,--+ ng);(k=0,-+,00), (3.12)

where ¢; stands for the i-th Euclidean basis vector in R"*, forms an or-
thonormal basis for the Hilbert space Hy(T). Moreover, these orthonor-
mal bases induce associated bases for the signal space (5,(Ny) of squared
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summable sequences, through inverse z-transformation to the signal do-
main. Denoting

o0
z) = g vzt
=0

it follows that {el vF} with (i=1,--- ,ngy); (k =0,--+,00) is an orthonormal
basts for the signal space (5(Ny).

Proof: See [HbVBO95]. |

Since the sequence {B; x(z)} is an orthonormal basis in H,(T), then any transfer
function G(z) € Ho(T) has a unique series representation

ZZ% ik ZZG e; Vi(2) ZLkvk (3.13)
k=0 =1 k=0 =1

where Ly = [0},02, -+ ,07°] € £, (Ny).
This series representation is schematically depicted in the diagram of Figure
3.1, where we have defined

Volq) = qlqI — A)~!

It can be seen that this orthonormal family for the space of stable systems Hy(T)

U
T GX(Q)T Gx(q)T v —— Gx(qj
v_(a) v _(a) v @ e v, (@
0 0 0
L L L L
0 1 2 p-1

+
+
OO O

Figure 3.1: Schematic Representation of the Series Ezxpansion in terms of
Orthonormal Bases Generated by Inner Functions

can be generated by the cascade connection of identical balanced realizations
of a stable all-pass filter G(q), followed by low pass filters L; V5(q).
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It should be noted that these basis functions can incorporate system dynam-
ics of any complexity by the appropiate choice of the poles of the inner func-
tion G,(z). For specific choices of G,(z) the classical FIR, Laguerre and ‘two-
parameter’ Kautz orthonormal basis can be generated (see [VHB95, HbVBO5]
for details).

3.5 Orthonormal Basis with Fixed Poles

The limitation with the orthonormal bases generated from inner functions is
that they only allow the incorporation of prior information about one set of
poles which is cyclically repeated. In [NG97] it was shown that the set

s = (VEEET )T () 619

is a complete orthonormal set in H5(T), but allowing prior knowledge about an
arbitrary number of modes {&y, &, -, &1} € D to be incorporated, without
the restriction of periodic repetition. The reader can easily check that when all
the poles are chosen at the origin (¢, = 0, for all k), then the construction (3.14)
reduces to an FIR model structure, while for the choice { = £ € R [¢] < 1,
(3.14) reduces to the Laguerre basis.

As pointed out in [NG97]|, the construction (3.14) has to be modified to
accomodate the case of resonant poles, since in this case the bases would have
complex valued impulse responses, which would be inappropriate for their use
in the representation of physical systems.

The idea in [NG97] is to still use the construction (3.14) for a complex pole,
but including also the complex conjugate, and then replace these two basis
functions by linear combinations of them in such a way that the resulting new
basis functions are orthonormal to one another and to all the preceeding basis
functions, and also have real-valued impulse responses.

To be more specific, suppose the n-th pole &, is chosen as complex, and sup-
pose that B, is the corresponding basis function (with complex-valued impulse
response) computed as in (3.14). Then, the (n + 1)-th pole has to be chosen as
the complex conjugate &,,1 = &,, leading to the basis function B, (also with
complex-valued impulse response). Now the basis functions B, and B, ; are
replaced by the linear combinations

B, = aB,+ B,
B' = oBy+ 8B,

where in order to preserve orthonormality, and to have real-valued impulse
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response, the coefficients «, 8, o' and ' must satisfy?

5 :@n—s_n)lﬂ I | | e | R B

where we have defined

s batén

U= .
14 [&nf?

When only one fixed complex mode &, = ¢ is considered and the following
choice for o and [, satisfying (3.15), is made

V=AU EP)
£—¢ ’

a=—0=

then the Kautz basis are obtained.

The derivation of the basis (3.14) can be done in different ways. For in-
stance, in [Wal32, NG94b] it is shown how the basis can be derived using the
Gram-Schmidt orthonormalization procedure [You88| on the set of functions
{Ag(2)}2Z} defined as

1
Z—fk’

with the same fixed poles {&, &1, ,&-1}-

In [NG97] it is shown that, under certain conditions on the poles {&;}, the
set {2B;(z)},2, is a complete orthonormal set in the space Hy(T), and that
under the same conditions the set {Bj(2)},Z, spans the subset of Hy(T) of all
rational, causal, stable transfer functions so that we can have the following
unique series representation

Ak(z) =

The necessary and sufficient condition for the completeness of the basis func-
tions in the space H(T) is given in the following theorem due to Ninness and
co-workers [NG97].

Theorem 3.5.1. [NG97| Consider the basis functions defined in (3.14). Then
Span {By(el“)} is dense in Hy(T) if and only if

> (1= &) = oo (3.16)

00
k=0

2For the derivation of this result see [NG97].
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Proof: See [NGO97]. The proof is based on the fact that a set is dense in a
Hilbert space if and only if there does not exist a non-zero element of the space
that is orthogonal to all the elements in the set. A completely different proof,
based on some results by Szdsz ([Cle63)), is given in [Oli95e]. |

The series expansion of the system in terms of the orthonormal bases is
schematically represented in Figure 3.2, where we have defined

Ai(q) = lq__i%cq (all-pass section),
J1 — 2
Fi(q) = ;_75“ (low-pass section).
u
k Vo
™A@ T Al(q)T> —»Ap_z(q,‘l
F, (@) F,() F, (@ @
: 0, 0, 6,
+ + + yk
OO

Figure 3.2: Schematic Representation of the Series Ezpansion in terms of
Orthonormal Bases with Fized Poles

It follows that this family of orthonormal bases can be generated by the
cascade connection of (different) first order all-pass sections (Ax(q)), followed
by a first order low pass section (Fj(q)).

Remark 3.5.1. Notice the similarity between Figures 3.2 and 3.1. In [Bod95]
it is shown how a generalized family of orthonormal bases in Hy(T) can be
generated by the cascade connection of stable all-pass filters with input balance
realizations. ¢

The Christoffel-Darboux formula for the reproducing kernel for these bases
has been derived by Ninness and co-workers in [NHGO97a], and is given in the
following theorem.

Theorem 3.5.2. [NHGO97a| Define the Blaschke product-like quantity
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Then the Reproducing Kernel associated to the orthonormal bases with
fized poles {By(z)} as defined in (3.14) can be expressed as

1 — (1) pp(2)
i —1

Koz, m) = , (3.17)

with |z| > 1 and |u| > 1.

Proof: See [NHGO97a]. An alternative proof, by induction, is given in Ap-
pendix 3.A. (]

3.5.1 A minimal state-space realization for the OBFP

In this subsection we derive a minimal state-space realization for the orthonor-
mal expansion of the system in terms of the OBFP. The availability of a closed
form expression for a minimal state-space realization will be important in the
context of system identification since it will allow the implementation of reliable
algorithms that can provide closed form estimates directly from input-output
data. In addition, a state-space description of the identified system will be
important for the purposes of simulation, control design, model order reduc-
tion [Glo84], or in the case of digital filters, for an actual hardware implemen-
tation of the system RM87].

A state-space realization of the orthonormal expansion in terms of the OBFP
can be obtained from the filter structure of Figure 3.2 by giving each (first
order) all-pass section Ax(¢q) and each (first order) low-pass section F(¢) a
minimal state-space realization (which obviously will be one-dimensional) and
then connecting these elemental blocks to obtain the state space realization of
the compound system. It is clear that a realization obtained in this way will
be in general non-minimal. Indeed, for the case of having p different poles, this
procedure will yield a 2p-dimensional state space realization, while a minimal
realization should be of dimension p, since only p different modes are present
on the system. The reason for this is that in the filter structure of Figure 3.2
each pole &, appears in both A,(¢) and Fy(q) sections.

An (input-output) equivalent filter structure where each pole appears in
only one first order section is represented in Figure 3.3. In the following we
will show that the procedure described in the previous paragraph, but applied
to the filter structure of Figure 3.3, will yield a minimal state space realization
for the OBFP.

Let us consider first the elemental first order section represented in Figure
3.4. An equivalent representation is given in Figure 3.5, where the associated
state variable z{ has been defined. From this diagram it is straightforward to
write the following (minimal) state space realization

Trpr = &g+ (1= & )ug, (3.18)
Ve = T — &g, (3.19)
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0-g, 0- &, \ ' 0 £,
r ! \
1-¢2 \ 1-¢ \1- &2 1-¢f
2 pl

A0 Al

Figure 3.3: An alternative filter structure for the Orthonormal Bases with
Fized Poles.

Figure 3.4: Elemental first order section in the filter structure of Figure
3.8.

The associated matrices of the state space description are (A, BY,C* DY) =
(gb (]- - €Z€Z—1)7 ]-7 _&—1)-

Let us consider now the cascade of, say, three of these elemental sections.
This cascade connection is represented in Figure 3.6.

Defining
Ty £ (xﬁ_l, xﬁ, xﬁ“)T , (3.20)
- 1 o~ ~ T
Yk é (y]l; layll;:y]l;Jrl) ) (321)

the state space realization of the compound system can be written as

I 0 0 B!
Tpe1 = Bﬁcﬁ—l Al 0 T + BtD1 ui—1,
B£+1DZ0Z71 BE+10£ AE+1 B€+1D£D£71
T o o 0] [ ]
Uk = DfCtt C* 0 {az+| DD7' uh
I DZ+1D60671 D£+lcv£ CZ+1 J DE+1DZD£71
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=~ &
I I
uk + k+1 + y
——>Q—> q-l — — k
+
& |

Figure 3.5: An internal representation of the elemental first order section
of Figure 3.4.
-1 ~I-1 v I+1 I+l
Y — Yoo % Y % Y
A' | Bl—l AI |BI AI+1 BI+1
|
C -1 ‘ D -1 D 1+1

P

CI ‘DI CI+1

Figure 3.6: Cascade connection of elemental first order sections.

We are now able to write a state space realization for an arbitrary number of
sections. For the case of p sections the minimal realization is given by

Tpp1 = Az + Buy,

Yp = 5xk+5uk,

where now
Tk = (xg,x}c,--- 7xZ71)T’
- ~ _I\T
Yk = (ggayliaagz 1) )
and the matrices A, B, C and D are given by
[ A° 0 0 |
B Al 0
B2D!(C° B2C! 0
o |- (3.22)

A= 33D2D100 BSDQCl

BprDpfé ...DYCO BprDpfé .D2ot . A;;q
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B D°
B'D° D'D°
B = B?D'D° : D= D*D'DP ,
] Bp—lpp—é...Dll)O ] ] Dp—lpp—é...Dlpo ]
[ o 0 0 ]
D'c® c! 0
~ D*D'C? D*C! 0
C = D3D2DLCO D320 0 , (3.23)
D:o—lpp—é ... DO Dp—lpp—é ...D2Ct . Cz;—l

and where for / =1,--- ;p—1

AL = g,

B' = 1-&&-,
ct =1,

D' = —&o1-

The case ¢/ = 0 (that corresponds to the first section in Figure 3.3) is differ-
ent. It is not difficult to show that a minimal realization for this section is
(A BY C° DY) = (&,1,1,0). This simplifies the expressions of matrices B and

D to
B = (1,0,---,0)7, (3.24)

and D = 0, respectively.
Considering that for / =0,--- ,p — 1 we have

@\]l;:\/l_ ggia

Uk = A J = ACxy,

we can write

where the matrix A is defined as

m 0 0
0 m 0

A
AL 0 0 0 . (3.25)

0 0 - (1

p—1



3.6 Orthonormal Bases on H"*"(T) 43

Finally, the output ¥, can be computed as
k= (00,01, ,0,_1) G = 0TAC xy.. (3.26)

Summarizing, a minimal state-space realization for the OBFP is given by the
quadruplet

(A, B,0TAC,0),

where matrices A, B,C, and A are defined in equations (3.22), (3.24), (3.23)
and (3.25) respectively.

3.6 Orthonormal Bases on H)"*"(T)

In this section we show how orthonormal bases for the space H}"*"(T) of stable
and causal (m x n) transfer matrices, can be generated from orthonormal bases
on Hy(T). The result is summarized in the following theorem.

Theorem 3.6.1. Let {B,(z)},2, be a complete orthonormal set (i.e., an or-
thonormal basts) on the Hilbert space Hy(T) with the usual definition for
the inner product:

1 [~ . 1 —dz
—_ — Jw Jw = — -
(B, By) = o /_ BB = 5 ﬁ B2 Bul1/2) (3.27)
and let {B;J(z)}zo (i=1,...,m;5=1,...,n), be a set of transfer matrices

whose elements belong to H,(T), and which are defined as:

0 0 0
Bl(z)= | 0 ... By(z2) ... 0| <«
oo o . (3.28)
0 0 0 |
T
J
Then {B@J(z)}zo J(i=1,...,m;j=1,...,n) 1s a complete orthonormal set

. HP™(T), with the usual definition for an inner product on a space of
matriz valued functions

(BY,By) = % / Tr { B ()By ()"} dw. (3.29)

Proof: See Appendix 3.A. [ |
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Assuming that {B;J(z)}zo (i=1,...,m;j=1,...,n) is an orthonormal basis
for the space H}"*"(T) then any stable causal tranfer matrix G(z) in Hy**"(T)
can be approximated by a linear combination of a finite number of elements of
the orthonormal set, that is

p—1 n

m
>N 607B(2). (3.30)
=0 i=1 j=1
By choosing {B(z)},-, as the orthonormal bases with fixed poles of Sec-
tion 3.5, the previous Theorem allows us to construct a MIMO version of these
OBFP. In the following subsection we derive a minimal state-space realization
for these MIMO bases.

3.6.1 A Minimal State-Space Realization for the MIMO-OBFP

The corresponding MIMO version of the filter structure in Figure 3.3 is repre-
sented in Figure 3.7 for the case m =n = 2.

A minimal state-space realization for these MIMO-OBFP can be derived
from the filter structure in Figure 3.7 by applying a procedure similar to the
one employed in the derivation of the minimal realization for the scalar case in
Subsection 3.5.1.

We consider first the elemental first order section represented in Figure 3.8,
where the second superscript in the input and output variables indicates the
corresponding input channel.

An equlvalent representation is given in Figure 3.9, where the associated
state variable xk has been defined. The following (mlmmal) state-space real-
ization can be derived from the diagram in Figure 3.9

xiil = &'+ (1= &)y, (3.31)
io= m =Gy (3.32)

The associated matrices of the state space description are (A%, B4, C% D) =

(& (1 —&&o-1), 1, =&1).

Defining
¢ Ao [ e1 2 on T
T, = |xy T, T ,
~ & [~1 ~22 o] T
Y = yk 7yk s Y )
A [0 ~02 )T
Uk — Uk ,Uk ,"' Uk 5

we can write in matrix form
¢ Y 0~
T, = Ar,+B uk,

U = C’E + D',
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Figure 3.7: Fulter structure for the Multivariable Orthonormal Bases with

Fized Poles (Case m =n=2).

where
ABt 0 o 0] [BXY 0 - 0
40 0 A% ... 0 Bt A 0 B% ... 0
0 0 AL ] 00 B
ctt 0 - 0] Dt 0 -0
ot b 0o C% ... Dt b 0 D% ... 0
0 0 ) 0 0 .. D™

Considering the definitions of A%, B C* and D", the expressions for A¢, B¢, C*
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u’ 1-¢,,9 Y,
q- ¢

Figure 3.8: Elemental first order section in the filter structure of Figure 3.7.

Figure 3.9: An internal representation of the elemental first order section
of Figure 3.8.

and D* reduce to

Aé = fZIn:

Bé = (]- - gégﬁ—l)]na
ct = I,

Dé = _gﬁ—ljn-

The filter structure of Figure 3.7 can now be considered as the cascade
connection of p sections with minimal realizations given by the quadruplets
(A*, B*,C*, D*) with £ = 0,--- ,p — 1 . Defining

Ty = [:E%,:Ei’l,--- ,ivi_l] )
~ ~ T
Yk £ [@gayliaayk; ] )
we can then write
Tpp1 = Az + Buy,
e = Cuap+ Duy,



3.6 Orthonormal Bases on H"*"(T) 47
where the matrices A, B, C and D are given by
[ A 0 0 ]
BC? Al 0
B?D'C? B*C"! 0
A= B3D2D100 BSDQCl 0 5 (3.33)
BprDpfé ...DYCO BprDpfé ...D2C! Az;fl
- B0 - _ o -
B'D? D'D°
B= B’D'D° : D= D*D'D° ,
Bp—lpp—é ...DIDO Dp—lpp—é ...DIDO
[ c° 0 0 ]
D'CY Ct 0
~ D*D'C? D*C! 0
C= D3D2D' (0 D3D2C1 0 (3.34)
Dplepfé ...DYCO Dzﬂleznfé ...D20! Cz;fl

The expressions for B and D can be further simplified by noting that B° = I,
and D° = 0, so that

B=1[I,,0,, -

,0,1",

and D = 0, where O, is an (n X n) matrix of zeros.
Now, considering that

then

so that

0
Yi

:’/1— EQy

~0,i

k

?/J]l;:\/]-_ l?g]l;a

(3.35)
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where matrix A is given by equation (3.25), and ® stands for the Kronecker
product (see Appendix A).
Finally, the j-th output is given by
p—1
' i1 pi2 ] -~
=0
= [0870{7 70;3)71} gka

where we have defined
0; = (0,60, ---,00"].

Vectorizing we then have that the output vector is given by

o5 07 --- 0°_ -
w2 | =Y T " e =0"5 =0T (A® I,,) Cxy.
Ui O o - 5t

Summarizing, a minimal state-space realization for the MIMO-OBFP is given
by the quadruplet

(4,B,0T (A®1,)C,0),

where matrices 4, B,C, and A are defined in equations (3.33), (3.35), (3.34)
and (3.25) respectively. The realization is of order np.

3.7 Conclusions

In this chapter, a review of rational orthonormal bases on the unit circle was
presented. The concept of reproducing kernel associated with the bases was
introduced, and the approximating properties of the more common orthonormal
families in H,(T) were described. Emphasis was put on the Orthonormal Bases
with Fixed Poles, since this family has more flexibility in the choice of the pole
locations and encompasses the more common FIR, Laguerre and Kautz model
structures in a unified formulation. For this family, a closed form expression
for the reproducing kernel was given, and a minimal state-space realization was
derived. This last issue is important in the context of system identification
since it will allow the implementation of simple and reliable algorithms that
will provide estimates in closed form (in state-space form) directly from input-
output data.
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APPENDICES

3.A Proofs for Chapter 3

Proof of Lemma 3.2.1 Let us compute first the inner product <G(z), 2 > :
We have

2l B L
<G(2)’Zﬁ—1> T o

where in passing to the second last line the variable substitution z — 1/z was
used, and where in passing to the last line use was made of Cauchy Residue
Theorem. Now, from equation (3.5) we also have

(G(2), K(z, 1)) = G(n),

so that for all G(z) € Hy(T), and for all |u| > 1, we can write

what concludes the proof, since G(z) is an arbitrary element of H,(T) and the
only element of the space which is orthogonal to every other element of the
space is the zero element. [ |
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Proof of Lemma 3.3.1 Considering the expression for the reproducing kernel in
(3.2) we can write

Ky(z,p) = ZBk( )Br (1),

p—1

B Z(z—(gg ) <1_§§ <1_§M>

- (1—52 (-1 —ep)
- e ()
B <<1 _en —€ﬁ)>”

(1-e2) EERITEN)
C-0m-¢ ;,_ (0-&)1—&n

EERIES)
(—e)-m)
! ((z—ﬁ)(ﬁ—§)>

i —1

—_

Y

where in passing to the fourth line use was made of the identity

—

p—

Y k= L= (3.A.1)

1—=2x
=0

=

Now the result follows by defining

op(2) 2 <1Z—_§€z>p.

Proof of Theorem 3.5.2 The proof proceeds by induction. We first prove that
equation (3.17) holds for p = 1. Then, assuming that (3.17) holds for p = ¢ —1,
we prove that it holds also for p = ¢, which concludes the proof.

Let p=1, then

Kp(z,p) = Br(p)Bi(2) = Bo(w)Bo(2),

P
(z = &)(E — &)

(3.A.2)
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On the other hand, for p =1

L-—opep(z) _ 1= e(wei(2)
zin—1 i —1
L (1 —=&2)(1 - &p)
(2 = &) (B — &)
i —1
I el (3.A.3)

(2 — &) (7 — &)

)

)

Therefor, the result holds for p = 1.
Let us now assume that equation (3.17) holds for p = ¢ — 1, that is

[\

q—

By (1) By(2) = 1- ‘Pq—l(ﬂ)%_l(z).

P i —1
Then
q—1 q—2
Be()Bi(z) = Bi(0)By(2) + Y Bu(w)Bu(2),
k=0 k=0

By—1 (1) By-1(2) + L= ¢g-1(1)9e-1(2)

2 —1 ’
_ A= aP)eer(Wealz) | 1= w1 (W)eea(2)
(7 — gqfl)(z - gqfl) Zip—1
1 1 - 1 ——1—2&
- 1 — ———=p1 () ——F—¢¢-1(2) | »
Z:u_1< ﬁ—qul ! Z—fq,l ‘
1 —
_ eal1)ea(2) (3.A.4)
i —1
where in passing to the third line use was made of the identity
—1 e
A vl_ |§q|2q 1 — &2 o \/1_ |§q|2
B,(z) & = Pq(2)-
z =& k:oz_gk z =&
Hence, equation (3.17) holds also for p = ¢. This completes the proof. [ |

Proof of Theorem 3.6.1 The proof proceeds in two steps. First, it is shown that
the set {B;(z)} is orthonormal with respect to the inner product in Hy**"(T),
and then, that it is complete in that space.

i. Orthonormality: -
It is clear that the matrices in the set {B;J (z)} are linearly independent.
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ii.

We will use the definition of the inner product in equation (3.29) to prove
that {B,(z)} is an orthonormal set. Substituting z = €/, equation (3.29)
can be written as:

(B, By = i yf Tr (B (2)Bi(1/2)") %. (3.A.5)

2m;)

In order to prove that the matrices are orthonormal we have to check that
the following conditions hold

i s 0 if BY # B
<B£]’Bkt> :{ 1 if BZJ 7_éBst (3'A'6)

Let us consider first the inner product (B, B/). We have

ij  1aij 1 i B o dz
(B/,B/) = 27” Tr {B{(2)B/(1/2)"} 0
- i ———dz
(by definition of B) = o yng(z)Bg(l/z)?,
(by the orthonormality of {B,}) = 1. (3.A.7)

Now, let us consider the inner product <B,§j , B,‘?> for the case 7 # s for any
j,t, 0 k, or j #t for any i, s,/, k. We have

1

(B/,B) = o T{B” )B;!(1/2) }—
(by definition of BY) = 0. (3.A.8)

Finally, let us consider the case : = s,j =t and ¢ # k. We have

(B.81) = 5= § T{BIBr/2)} T

27rJ
’ 4
(by definition of BY) — —— ]f B()B(1/9Y,  (3.A.9)
27y Jr z
(by the orthonormality of {B,}) = 0. (3.A.10)

Hence, we can conclude that {Béj (z)} is an orthonormal set in the space
H""(T).

Completeness:

We use the idea that an orthonormal set in a Hilbert space H is complete
if and only if the only element of H which is orthogonal to every element
of the set is the null element. Suppose, in order to obtain a contradiction,
that there exist a nonzero matrix F(z) = (fi;(z)) € Hy”"(T) which is
orthonormal to every element of the set {Bf_}j (z)} Suppose also, without
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loss of generality, that the entry f,(2) of F'(2) is a nonzero function. Then,
the inner product of F' with any one of the matrices in {B;J (z)} is given

by
1 dz
st _ st 2 G
(F.BY) = o TTr{F(Z)Bk (1/2)} —,
(by definition of BY) = L_j{fst(z)l?k(l/z)%, (3.A.11)
2y Jr z
~ 0, (3.A.12)

where the last equality should hold for each k, which means that there
exist a nonzero function, namely fy(z), which is orthogonal to every el-
ement in {B(z)}, which represents a contradiction, since the set {B,(z)}
is complete by hypothesis. Hence, we can conclude that the orthonormal
set {B,(2)} is complete in Hy"*"(T).

[ |
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SISO Identification using Orthonormal
Bases

In this chapter, the problem of least squares identification (from input-output
data in the time domain) of Discrete-Time (DT), Linear Time-Invariant (LTI),
Single-Input Single-Output (SISO) systems represented using orthonormal mo-
del structures will be analyzed. We concentrate on identification using the
orthonormal bases with fixed poles of Section 3.5, that have the most common
FIR, Laguerre and Kautz bases as special cases. The estimation accuracy will be
quantified by providing bounds on the undermodelling error and by deriving an
asymptotic (in model order and data-length) expression for the noise induced
error. Fundamental for the analysis of the noise induced error will be the
extension, to the OBFP, of some known results on convergence of Toeplitz
matrices available for FIR model structures.

4.1 Introduction

In the last years there has been significant interest in the use of orthonor-
mal basis functions for approximation of dynamical systems [GKB89, WAH,
Mak90a, Mak90b, Par91, Oli95a, Oli94a], system identification [KP79, Lju8s,
LY85, Nur87, Wah91b, Mak91, Wah94b, NG97, VHB95, HbVB95, PT91], signal
processing [KP77, Wil95, Pdd93, WZ96, MJM89, den93b], and control applica-
tions [ZDP90, ZBD88, ZD88|. Particularly in the area of system identification,
several schemes have been proposed for the identification of linear systems from
input-output data using orthonormal model structures and least squares tech-
niques [Lju85, LY85, Wah91b, Wah94b, NG94a, NG97, VHB95, HbVB95]. In
these methods, the transfer function of the system, say G(z) for the discrete
time case, is represented as a series expansion in terms of orthonormal basis
functions { By (z)}, which are stable-causal transfer functions, and then the iden-
tification is performed by estimating a finite number of expansion coefficients
using least squares techniques.
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One of the main motivations for using orthonormal bases to represent the
system is that the resulting model structure becomes linear in the parameters
(a linear regressor form), with the regressors depending only on the observed
input signal. It is well known that in this case the least squares estimate has a
closed form solution which corresponds to a global minimum of the quadratic
criterion [Lju87, SS89]. In this way, the need for costly iterative optimization
procedures for the parameter estimation, and the associated problems of local
minima are avoided.

A second factor that has been pointed out in the literature [Wah91b, Wah91a,
Wah94b, Oli95a, Bod95] is the numerical robustness of these methods when
compared to estimation using non-orthonormal structures. This is so since a
worst case numerical conditioning of the least squares estimation problem can
be guaranteed for the case of using orthonormal structures while in general this
result can not be established for the non-orthonormal case. We defer the study
of this issue until the next chapter, since it is in the context of multivariable
systems, in which a large number of parameters need to be estimated, where
the problem of numerical robustness is more relevant [Vd94a, Vib94].

Besides the above mentioned advantages, a third aspect that we want to em-
phasize in this thesis, following the lead of Ninness and co-workers [NHG97a], is
the use of orthonormal bases as an analysis tool which is particularly suited for
the study of estimation methods that employ fixed denominator model struc-
tures. This is so because fixed denominator model structures can be linearly
re-parameterized using orthonormal bases with the same fixed poles. The anal-
ysis of estimation accuracy can then be carried out by extending convergence
results of the well known trigonometric bases {e“"} (i.e., results of classical
Fourier analysis) to the more general orthonormal bases employed in this the-
sis.

In this chapter we concentrate on the study of identification of DT-LTI-SISO
systems using orthonormal model structures and least squares techniques. The
material in this chapter will be used as a paradigm to extend these results to
the multivariable case in Chapter 5.

The remainder of the chapter is organized as follows. In Section 4.2 we con-
sider the identification of DT-LTI-SISO systems from input-output data in the
time domain using rational orthonormal bases and least squares techniques.
We then particularized the study of the estimation accuracy for the case of
using the OBFP introduced in Section 3.5. This analysis is carried out in Sec-
tions 4.3 and 4.4, where the bias error and the variance error are (respectively)
considered. Fundamental in this analysis is the use of new results regarding the
convergence of generalized Toeplitz-like matrices. These convergence results are
also presented in this section. A new phenomenom of accuracy limitation that
arises in the estimation using orthonormal bases with fixed poles is illustrated
in Section 4.5. Specifically, it is shown that at a given frequency there is a
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trade-off between bias and variance errors regarding the choice of the poles of
the bases.

4.2 Problem Formulation
It is assumed that the LTI-SISO system is described by the standard model
Ye = G(q) ug + v, (4.1)

and that an N point data record of input and output sequences {y;, uk},]f:_ol is
available for the identification of the assumed stable (unknown) transfer func-
tion G(q) describing the system dynamics.

In the model (4.1), {vx} is a zero-mean stationary sequence representing
some measurement noise which is assumed to have finite variance E {v}} = o2,
and to be uncorrelated from the input sequence {u;}. It is also assumed that
the input sequence {u;} is a quasi-stationary process [Lju87], with spectral
density &, (w).

Let {By(z)}32, be an orthonormal basis in Hy(T). Now, since the system was
assumed to be asymptotically stable, then its transfer function G(z) belongs to
H,(T), and can be uniquely represented by the series expansion

G(2) =) 0:B(2), (4.2)

where 6, are the ‘Generalized Fourier Coefficients’ defined as
0. = (G,B) (k=0,1,---). (4.3)

Of course, since the transfer function G(z) is unknown, the coefficients can
not be computed as in (4.3). Instead, our objective will be to estimate the
parameters of a finite dimensional model

p—1

G(2,0) £ " 0:B(2), (4.4)

k=0

so that the transfer function can be (approximately) identified by using the

—~ ~ o~ —~ T
estimate 0 £ |6,,6,,--- ,9,,,1] of the parameter vector 6 2 [0, 0y,---,0, 1]"

as follows

G(Z, 9) £ kBk(Z) (45)
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It remains now to choose the parameter estimation method. The model struc-
ture (4.4) leads to the linear regressor form

e = O 0+,
where the regressor vector ¢ is defined as

dr = [Bo(q)ur, Bi(q)ug, -+ Bp_1(q)u].

The obvious choice for the parameter estimation method is the ‘least squares’
one, since it provides a closed form solution, and leads asymptotically to an
efficient estimate. R

The least squares estimate # of # is the minimizing argument of the quadratic
criterion

N-1

0= S (e~ 670)” (46)

k=0

That is

N1
aéargmin{ Zyk—¢fﬁ }
k=0

0 € RpP

It is well known that the solution of this minimization problem can be written
in closed form as [Lju87, SS89, GP77]

0=R { Z ¢kyk} (4.7)

where

2

-1

Ok P (4.8)

0

1
R,(N) £ ¥

i

with the subscript p indicating the model order (number of terms in the pa-
rameterized model (4.4)).

Given the parameter estimate @, the transfer function estimate G (2, 5) can
then be computed as in equation (4.5).

Remark 4.2.1. For the case of {By(z)};°, being the Orthonormal Bases with
fixed poles of Section 3.5, once an estimate f has been computed, a mini-
mal state-space realization of the estimated model is immediately available
by appealing to the results of Subsection 3.5.1. The described identification
technique can be easily implemented in software, for instance in a MATLAB
environment [Mat94]. ¢
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We are interested now in analyzing the performance of the proposed system
identification scheme. This performance will be evaluated by quantifying the
estimation error. In the frequency domain, the estimation error can be written
as

G(”,0) — G(e*) = G(e,0) - G(e¥,0,) +  G(*,0,) — G(é) (4.9)

noise induced undermodeﬁing induced

where 6, is the convergence value of the estimate 0 when the number of available
data points NV tends to infinity. We can then recognize two components of the
estimation error:

e A component corresponding to the term
G(e,0) — G(e,9,),

which is due to the noise corruption of the data. Typically, the size of
this term is measured as ensemble average as

E{|G(,0) - G(e#, 01},
and it is also called variance error.

e A component corresponding to the term
G(e,0,) — G(e¥),

which is due to the fact that the model (4.5) is too simple to represent
the real system. We call this term undermodelling error or bias error.

In this thesis, the study of estimation accuracy will focus on using the Or-
thonormal Bases with Fixed Poles introduced in Section 3.5 as an effective
analysis tool for quantifying bias and variance error. One of the contributions
of this thesis will be to show how the bias and variance errors depend on the
choice of the poles of the basis functions {Bx(z)}.

The undermodelling error is analyzed in Section 4.3, and the noise induced
error in Section 4.4 .

4.3 Undermodelling Error

The undermodelling induced error arises from the parsimony of the model struc-
ture (4.4) (a finite-length series expansion) which cannot completely describe
the true dynamics G(z). This error can be quantified in terms of the deviation
between the real system and the model

G (e, 0.) — G(e)].
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Unfortunately, the convergence value 6, of the estimate § is unknown. To quan-
tify the undermodelling error we then compute the error involved in the ap-
proximation of G(z) with G,(z) which is the best H,(T) approximation of G (2)
belonging to the subspace spanned by the first p basis functions {By(z)},_ 0

As already mentioned, when compared to the FIR, Laguerre, Kautz or the
more general OBGIF, the OBFP enjoy greater flexibility in the possible choice
of the pole location without the need of a cyclic repetition. Unfortunately, there
is a price to be paid for this increased flexibility in that these bases do not have
the algebraic structure (3.1) so that the analysis of the undermodelling error
can not be reduced to that of the FIR case by a simple transformation of the
system or change of variables. This is not the case for the Laguerre, Kautz and
OBGIF, all of them having the algebraic structure (3.1). As a consequence, the
derivation of results quantifying the undermodelling error for the case of the
OBFP is considerably more complicated. In [NHG97a], Ninness and co-workers
derive an upper bound on the undermodelling error based on the Christoffel-
Darboux formula for the reproducing kernel associated with the bases (equation
(3.17)). The result is summarized in the following theorem.

Theorem 4.3.1. [NHG97a| Let the transfer function of the system G(z) have
partial fraction expansion

G(z) = , (4.10)

where all the poles satisfy |v,| < 1. Let @p(z) denote the best H, approzi-
mation to G(z) with respect to the p basis functions {By(2)}2_ as defined
in (3.14), with poles {&}Y0_}, i.e.

p—1
Gp(2) = ) (G, By) Bi(2).
k=0
Then
-1 —1
G(e?) — Gp(e) (4.11)
EZ — e ,H) 1 - fm
Proof: The proof is given in Appendix 4.A. [

It is obvious that the theorem also provides an upper bound in the undermod-
elling error for the FIR and Laguerre bases, since these bases are special cases of
the OBFP corresponding to poles &, = 0,VEk, and &, = ¢ € R, Vk, respectively.
It can be seen from equation (4.11) that if the poles of the system ~, are
exactly known, then choosing & = ~,,V ¢ gives a zero upper bound on the
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undermodelling error. The result also implies that the convergence rate of the
series expansion can be faster than that of the special cases of FIR, Laguerre,
or Kautz basis, if the guesses for the poles &, approach the true poles ;. To
illustrate this, let us consider the following examples.

Example 4.3.1. Let the transfer function of the true system be

0.8
24+0.8’

G(z) =

and let us consider a 10-th order expansion (i.e. p = 10), with guesses for the
poles satisfying || = 0.4,V k. Then, from equation (4.11) the upper bound on
the undermodelling error is

0.8

UB(w) = ev +0.8

‘ 0.5882'9,

The corresponding upper bound using a 10-th order FIR model is

0.8

UBrin() =5 08

‘ 0.8'0.

We can see that the upper bound using OBFP is (0.8/0.5882)'° = 21.6 times
smaller than the corresponding one using an FIR expansion, even with a 50 %
discrepancy between the guesses for the poles and the true poles. v

Example 4.3.2. Let us consider now the second order system

1 N 1
2408 2404’

G(z) =

with only two terms in the orthonormal model structure (p = 2). In Figure
4.1, the upper bound on the undermodelling error for different choices of the
poles of the basis is plotted as a function of the frequency w. In that figure,
Curve A corresponds to an FIR model structure (that is the guesses for the
poles are {0,0}), Curve B corresponds to a Laguerre structure with poles at
{-0.2,—0.2}, Curve C corresponds to the guesses {—0.6,—0.2}, and Curve D
corresponds to poles at {—0.7, —0.3}. It can be seen that as the guesses for the
poles approach the true poles, the upper bound on the undermodelling error
decreases. This also illustrates our claim that when (approximate) ‘a priori’
information about the dominating dynamics of the system is available, the use
of OBFP is preferable over FIR structures since a smaller undermodelling error
will be obtained for the same model order. v

A result of the same type has been obtained by Van den Hof, Heuberger
and co-workers [HbVBO5| for the Orthonormal Bases Generated from Inner
Functions introduced in Section 3.4. In [HbVBO5], the authors show that if the
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Upper Bound on Undermodelling Error

35 T T T T T T
A
3| — A: Poles-at {0,0} (FIR) : : s
— — B: Poles at {-0.2,-0.2} (Laguerre)
—-- C: Poles at {-0.6,-0.2} /
251 : : /-
— — D: Poles at {-0.7,-0.3} /

0 0.5 1 15 2 2.5 3
Frequency w [rad/s]

Figure 4.1: Upper Bound on the Undermodelling Error for different choices
of the poles

dynamics of the inner function generating the orthonormal system G,(z) and
the dynamics of the system to be identified G(z) approach each other, then the
convergence rate of the series expansion representation of the system becomes
very fast. This implies that the number of coefficients to be estimated in order
to accurately model the system becomes smaller. An upper bound of this
convergence rate is given in Theorem 4.3.2, adapted from [VHB95, HbVB95].

Before presenting this result, we need to introduce some notation. Let
{Bi ()} be a set of orthonormal bases generated from an inner transfer function
G;(z) as in Theorem 3.4.1. Then any causal, stable system G(z) € Hy(T) has
a unique series representation as in (3.13), i.e.

G(z) = Ziegsi,k(z)zzfje;;e?vk(z)

k=0 i=1 k=0 i=1
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p—1 00
= Y LiVi(z) + ) LiVi(2)

= Gol2) + Y LiVi(2), (4.12)
k=p
where L, = [0}, 62, - ,07<] € £*"*(N,), and G,(z) is the best L, approximation

to G(z) with respect to the basis functions {8;;(z)}.

Theorem 4.3.2. [VHB95, HbVBO5| Let the transfer function G(z) of the sys-
tem have poles u;, (i =1,--- ,ng), and let the inner function G,(z) generat-
ing the orthonormal system {B;x(z)} have poles p;,(j =1,---,n,). Denote

Proof: See [VHB95, HbVB95]. In the proof, the authors exploit the algebraic
structure of the bases

Bim(2)Bin(2) = Bio(2) B (min)(2) (4.13)

to establish a transformation of signal and systems (the so-called 'Hambo’ trans-
form [VHB94a, VHB94b, VHB95, HV96]) so that the system in the transform
domain can be obtained by a simple variable transformation from the original
system represented with the standard trigonometric bases {z "}. The result
then follows by using known properties of Fourier series approximation. |

The previous theorem implies that when the two sets of poles converge to
each other, A will tend to zero, and the upper bound on the 2-norm of the
tail of the series expansion will decrease drastically, reducing in this way the
undermodelling error.

4.4 Noise Induced Error

Our interest is now in the quantification of the component of the frequency re-
sponse estimation error that is induced by the measurement noise (the ‘variance
error’). Since the analysis for finite data is too complicated, we follow the work
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of other authors [Lju85, LY85, Wah91b, Wah94b| and consider an asymptotic
analysis when the data-length N tends to infinity. Since we are interested here
only in the noise induced error, we will also allow the model order p to tend
to infinity to avoid the presence of undermodelling error. The quantification
of the frequency response noise induced error can be achieved by using known
results [Lju87] on the asymptotic statistics of the parameter estimation error
and by noting that the frequency response estimate is linearly related to the
parameter estimate.

Using the results in [Lju87] (as summarized in Theorems 2.2.1 and 2.2.2) we
can draw the following conclusions on the asymptotic (as the number of data
N tends to infinity) statistics of the parameter estimate (4.7):

e Asymptotic Estimate: For fixed model order p

0250, as N — oo

where
0, = aggerlgin {% /_T; |G(e”) — G(e”, 0)‘2 D, (w) dw} (4.14)
e Asymptotic Distribution of the parameter estimate: For fixed model order
p
\/N(g—e*)ﬂN(O,Pp) as N — o
where
B, & RQR
R, £ lim Ry(N)= lim E{V}(6,)},
Q = lim NE{Vy(0,)"Vi(6.)},

Notice now that the transfer function estimate (4.5) can be written as

—

G(z,0) 2 N 0By (2) =TT (2) 6, (4.15)

0

i

where we have defined
Ly(2) 2 [Bo(2), Bi(2), -, By ()] (4.16)

This linear relationship between the transfer function estimate and the param-
eter estimate, together with the above results on the statistics of the parameter
estimate, allows us to give the following frequency domain characterization of
the asymptotic distribution of the (transfer function) estimate:
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e Asymptotic Distribution of the Frequency Response Estimate: For fixed
model order p

VN | ¢le.0)

(c.0)

G — G, 0,)
G — G(e?2,0,)

p

] D4 N0, A (wy, ws))

as N — oo, with

[T ], [T T

, p— . .
Ap((-Uly (-U?) - 1-\1])"(6](‘;2) Fg(ejwz)
if wy; # wq, and where -* denotes the conjugate transpose.

A measure of the transfer function estimation error induced by the noise is
then given by the covariance matrix A/ (wi,ws). The exact expression for the
covariance matrices P, and A;,(wl,wg) will depend on the particular choice
for the orthonormal basis. Unfortunately, these exact expressions for a fixed
(finite) model order p are so complicated that they have no practical util-
ity. As mentioned before, the standard approach in the literature (see for
instance: [LY85, Lju85] for FIR basis, [Wah91b| for Laguerre basis, [Wah94b]
for Kautz basis, [VHB95| for OBGIF, and [NHG97a] for OBFP) has been to
provide an approximate quantification of the noise induced error by considering
an asymptotic analysis when both the model order p and the number of data
N are allowed to tend to infinity.

4.4.1 The FIR case

Historically, the first results regarding the quantification of the noise induced
error in this identification setup were obtained by Ljung and Yuan [L'Y 85, Lju85]
for the case of FIR model structures. The FIR variance results are summarized
in the following theorem.

Theorem 4.4.1. [LY85] Let G(z,0) be represented as in (4.4) and let {By(z)}

be the standard FIR basis. Let G(ei) be defined as
G() 2 G(“,0) — G(, 6,).

Then provided that p — oo as N — oo,

[E e =xo382)

as N — oco. In addition

p

N Cov [G().G()} - { B, ()

as N — oo.
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Proof: See [LY85]. |

The theorem implies that the variance of the tranfer function estimate at a
particular frequency w, and for large model order and data-length can be ap-
proximated by

Var {G(ejw,g)} A % i:g;;’ (4.17)

which is the noise-to-signal ratio with a weighting factor which is the ratio
between model order and data-length.

4.4.2 The Fixed Denominator case

Our interest now is to determine if the FIR result in Theorem 4.4.1 can also be
applied for the case of a fixed denominator model structure. We can write

-~ C(q.0
yr = G(q,0)up + v = (,9)

Uk + v, (4.18)

where the poles in D(q) are fixed (and known), and the unknown parameters

~

are the coefficients of the numerator polynomial C'(q, ). We can then write

~

e = C(q,0) <%uk> + v = C(q, 0) i + v, (4.19)

where

is a filtered version of u;. The fixed denominator model structure estimation
problem (4.18), being then by (4.19) really an FIR estimation problem with pre-
filtered input u;, should be amenable to FIR variance analysis by Theorem 4.4.1
to lead to the conclusion that for a given frequency w, and for large model order
and data-length we can approximate the numerator variance as

Var {C(ej“’,é\)} ~ % ?I;:EZ;’

and then considering that

Dy (w)
2il) = 1D

we have

i 3\ o PID(E)P @y (w)
Var{C(e ,9)} ~ N D)
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Therefore, the variability of the full frequency response estimate could be ex-
pected by Theorem 4.4.1 to be approximated as

Var{G(ej“’,é\)} Var{C(ejwaa)}

1
| D(e)[?
which is (4.17), and therefore that in the general fixed denominator case, the
estimation variance does not appear to depend on the location of the poles in
the model structure.

This line of reasoning is, however, flawed. The problem is that the filter
D(e?) is changing as the model order p increases, and therefore the spectrum
®;(w) is also changing with p, so that we are applying a result (Theorem 4.4.1)
which was derived assuming a fixed input spectrum to a case where this spec-
trum is not fixed.

The remedy for this problem turns out to be to reparameterize the problem
in a special orthonormal form which is specifically adapted to the fixed denom-
inator being used. Developing these methods consume the remainder of this
chapter.

4.4.3 Variance error using OBFP

Let {Bk(z)} be a set of orthonormal bases with fixed poles {¢;} as defined in
(3.14), and let us assume that a system G(z) € H,(T) is identified using these
bases and least squares techniques as described in Section 4.2. The asymptotic
(in model order and data-length) distribution of the transfer function estimate
for this case is as follows.

Theorem 4.4.2. Let the input spectral density ®,(w) have a finite dimen-
sional spectral factorization, and let the poles {&} be chosen to satisfy the
completeness condition

> (1 —1&l)
k=0
Then for N — oo and p — o0

JE l (@) 0 ) }”2 24N (0, Awr, wn))

0 Yw G(e2,0) — G(el*2, 0,)
where
q)llgwlg 0 i
P, (w
A U 1
(w1, ws) ) B, (w)
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Zf w1 7é wa, and

1

T(w) £ Kp(w,w) = ) [B(e)[".
0

S

=
Il

Proof: The main difficulty encountered in the proof of these asymptotic re-
sults has been that the bases (3.14) employed here do not have the algebraic
structure (3.1), so that the problem can not be reduced to the FIR one by
a change of variables. Fundamental in the analysis will be the derivation of
some results regarding the convergence properties of generalized Toeplitz-like
matrices. These results are summarized in Appendix 4.B, and their derivation
proceeds based only on the orthonormality of the bases and the Christoffel-
Darboux formula for the reproducing kernel associated with them. The proof
is given in Appendix 4.A. [

As a corollary of the previous theorem we have the following quantification of
the noise induced error in the transfer function estimate.

Corollary 4.4.3. Under the same conditions of the previous theorem, but
with the strengthened requirement that E {ef} < co then

D, (w)

P, (w)

lim lim
p—00 N—oo ’yp (w)

E{|G(c™,8) - G(c*,0,)]*} =
Proof: Follows along the same lines in the developments in Appendix 9B
of [Lju87]. |

These results imply that the variance of the transfer function estimate at a given
frequency w, and for large N and model order p, can be well approximated by

e foa) 12

(4.20)

which is the noise-to-signal ratio weighted with a frequency dependent factor
that is determined by the basis functions. This variance expression explicitly
shows (through the factor v,(w) £ K,(w,w)) how the choice of the poles of
the basis functions (the poles in the fixed denominator model) affects the noise
induced error. In Figure 4.2, the factor v,(w) is plotted for model order p = 4
and for various pole choices.

In addition, this result generalizes similar results available for FIR model
structures [Lju85, LY85], Laguerre basis [Wah91b], and Kautz basis [Wah94b].
For example, the FIR model structure corresponds to the choice &, = 0,V £ for
the poles of the bases, and in this case the factor v,(w) = p, so that the variance
expression (4.20) becomes

Var {G(ej“’,é\)} ~
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Factor gamma_p(w) for Various Pole Choices

6 T T T T T T T T

All real poles at {0.1,0.15,0.2,0.25} RN
5L All-real poles at 0.1:(Laguerre basis) k N |

,,,,,,,,,,,,,,,, L \
>\
N
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4+ 3
3 - e - N -

Mixture of real-and complex poles
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Figure 4.2: Reproducing kernel v,(w) = K,(w,w) as a function of frequency
w, and for model order p = 4 and various pole choices.

which is the same result of Ljung and Yuan [Lju85, LY85] as summarized in
Theorem 4.4.1. The Laguerre basis instead corresponds to the choice & =€ €
R,V k for the poles, so that the variance expression (4.20) becomes

w Al P (1-8) 2w
Var {G(e ’9)} T N — 2 d,(w)’

which is exactly the result obtained originally by Wahlberg [Wah91b].

A result of the same nature as Theorem 4.4.2 has been derived by Van den
Hof and co-workers [VHBO5] for the orthonormal bases generated from inner
functions of Section 3.4. The authors exploit the algebraic structure (4.13)
of the bases in order to establish a transformation of systems (the ‘Hambo
Transform’) so that the system in the transformed domain can be obtained by
a simple change of variables from the original system represented with the FIR
bases {z7%}. See [VHBO95] for the details.

The following theorem summarizes these variance results.

Theorem 4.4.4. [VHBO5] Assume that the input spectral density ®,(w) 1s
bounded away from zero and sufficiently smooth. Then, for N,p — oo,
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p?/N — 0

0 for G,(e“) # G, (e“?)

N o 5 i 7 | “jory o (wi)
w1 w2 T (eiwr “i L
pnxC()v{G(e ,HN),G(BJ ,HN)} — ‘/6 (€J )Vb(e J )CI) (wl)

for w; = ws

(4.21)

where Cov G(ejwl,@\N),G(ejW,aN)} 15 the cross-covariance matriz in the
joint distribution of

[G(ej““, Oy) — G(1,0,), G(é2, By) — G(é,8,)]
and where ®,(w) is the measurement noise spectral density.

Proof: See [VHBO5|. The key idea of the proof is to exploit the algebraic
structure (4.13) of the bases in order to establish a transformation of systems
(the ‘Hambo Transform’) so that the system in the transformed domain can
be obtained by a simple change of variables from the original system repre-
sented with the standard trigonometric basis {# *}. The use of convergence
results available for FIR model structures [Lju85, LY85] together with asymp-
totic properties of Toeplitz matrices [GS58| then gives the result. [ |

As pointed out in [VHB95], the interpretation of the previous theorem is that
the variance of the transfer function estimate at a given frequency w, and for
large N and model order p, can be approximated by

Var { G (e, ) | ~ B2V () Vi (e ) (4.22)
which is the noise-to-signal ratio weighted with a frequency dependent factor
that is determined by the basis functions. This result also generalizes the avail-
able FIR, and Laguerre results in [Lju85, LY85], and [Wah91b], respectively.
See [VHBO5] for the details.

This thesis, via Theorem 4.4.2 has developed a result in a similar vein,
but with one very important difference - it is asymptotic in the number of
poles, not asymptotic in the number of repetitions of poles as the pre-existing
result of Theorem 4.4.4 is. This difference is considered very substantial, since
the point of results such as Theorem 4.4.4 or our Theorem 4.4.2 is to allow
the progression to approximations like (4.22), and this can only be done by
assuming that convergence has occurred in results like Theorems 4.4.4 and 4.4.2.
If, as commonly occurs in practice, one is using a model with all the poles
different (so as to distribute them as much as possible in the hope of minimizing
the undermodelling induced error), then there has been no repetition of poles,
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and it cannot be argued that convergence in Theorem 4.4.4 is likely to have
occurred, and hence for (4.22) to be a realistic approximation.

In contrast, in this same scenario of all poles being different, but using new
and completely different analysis techniques to those used in deriving Theo-
rem 4.4.4, the new result of Theorem 4.4.2 is relevant since, provided there
is a reasonable number of fixed poles (5 or more appears ‘reasonable’ in our
experience), then it can be argued that convergence may have approximately
occurred in Theorem 4.4.2 and hence that an approximation like (4.20) can be
reasonably argued to be appropriate.

4.5 Bias/Variance Trade-off

The variance expression (4.20) together with the upper bound on the under-
modelling error (4.11) provides a complete characterization of the accuracy of
the estimates. The results show the well known trade-off that exists in the
choice of model order p with regard to the relative size of both error compo-
nents. Specifically an increase in model order to reduce the undermodelling
error will be at the cost of an increase of the variance error.

The results also show how the estimation accuracy is influenced by the
choice of the poles of the basis functions. Here, an until now unappreciated
phenomenom is manifested, namely, a trade-off in the choice of the poles of the
bases regarding the magnitude of the bias and variance errors. More specifi-
cally, assuming that the noise induced error and the undermodelling error are
uncorrelated we can write

1

Use of Theorems 4.3.1 and 4.4.2 then allows us to upper bound the frequency
response estimation error as follows

E {‘G(eiw,é) —G(e?)

2} _E {‘G(e”“’ﬁ) —G(e,0,)

+ E{[G(e*,0,) - G(e)["}

E{‘G(ej“’ 5)—G(ejw)2} < Ti Qy Mi—[l Yo — &k 2+’yp(w)<1>,,(w)
| = Tl ] A-E] TN R

We can see that if we want to decrease the undermodelling error for a given
model order, the poles of the bases have to be chosen close to the true poles,
but then the noise induce error cannot be reduced at the frequencies of the
poles (due to the presence of the factor 7,(w)). On the other hand, if we want
to reduce the noise induced error for a fixed model order, the poles of the bases
have to be chosen well below the frequency at which the noise is dominating,
but then if the true poles are not at these frequencies, the undermodelling error
will be incremented. The following example illustrates this phenomenom.
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Example 4.5.1. Let the true system be given by

0.1548¢ + 0.0939 0.7871 0.6323

Gl0) = 1 =0.6065)(q— 0.3679) ~ (¢ —0.6065) (g —0.3679)"

and let us consider that NV = 1000 samples are available for the estimation in
the identification setup of Section 4.2. It is assumed that the measurement
noise is a zero mean Gaussian white noise process of variance o2 = 0.01, and
that the input is a Gaussian white noise process with variance o> = 0.1.

X107 Bias and Variance Error dependence on pole position
5 T T T T T
45F — - Bias Error B
— — Variance Error
ar —— Total Error h
351 B

0 0.1 0.2 0.3 0.4 0.5
Laguerre Pole Position

Figure 4.3: Illustration of Bias/Variance trade-off with respect to the choice
of Laguerre pole position.

Figure 4.3 shows the dependence on the fixed pole position of the variance
error, the bias error, and the total error at a frequency w = 0.1 rad/s, when
using an 8th order Laguerre model structure. v

4.6 Conclusions

In this chapter we have studied the problem of identification, from input-output
data in the time domain, of discrete-time single-input, single-output linear sys-
tems using rational orthonormal bases and least squares techniques. The focus
of the chapter has been the derivation of results concerning the accuracy of
the estimation for the case of using orthonormal bases with fixed poles. The
results generalize previous works corresponding to FIR, Laguerre and Kautz
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bases. The way the location of the poles in the orthonormal structure affects
the two components of the estimation error has been determined. This shows
a new phenomenom of bias/variance trade-off regarding the choice of the pole
locations.

APPENDICES

4.A Proofs for Chapter 4

Proof of Theorem 4.3.1 Using the Christoffel-Darboux formula for the repro-
ducing kernel (equation (3.17)), and the partial fraction expansion for G(z) in
(4.10) we can write

G(n) — Gylp) = (G(2), K(2,p) — Kp(2, 1))
— <G(z), 1+ M>

i —1

= (G(»), )+ <G(z>, M>

i —1

@p(z)%pp(ﬂ)
— <G(Z); ﬁ>
ol fOCRET
— ) 5 § T

r—1

= Yo 5 ) .

/Aa—
— 2 Jr (2= )z —p)

In passing to the fourth line, use was made of the fact that due to Cauchy
Residue Theorem and the analyticity of G(z) outside the unit circle, then

G, 1y = = e,

2m) Jr z

Considering now that
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we can write appealing once again to Cauchy Residue Theorem

G - Gyln) = —gpla Za - f T Z‘j’;)(l_zg_wdz

-y - &

— (e — 1) 1 — ek

Now, the result follows by computing the previous equation on the unit circle
(u = &%), taking the module on both sides of the equation, considering that
|¢p(e)| =1, and using triangle inequality. |

Proof of Theorem 4.4.2 As mentioned at the beginning of Section 4.4, by ap-
pealing to the results in [Lju87] it is possible to give the following frequency
domain characterization of the asymptotic distribution of the transfer function
estimate.

e Asymptotic distribution of the transfer function estimate. For fixed model
order p

G(e1,0) — G, 9,)

N PN :
VN G(e?,0) — G(e2,0,)

] L N0, A (wr,wp))

as N — oo, with

Mo = [TH00 | B [ |

if w; # w9, and where

U
>

R;IQPR;I
R, = lim Ry(N)= lim E{V{(0.)},

: ! T !
lim NE{VR(0.) VR (6.)} -

O
S
|

It is then straightforward to conclude that, for fixed model order p

Al

0 7p (w2

G(é“1,0) — G(e1,0,)

G(e2,0) — G(GJWQ,G*)]iN(O’AP(Wlawz))

(4.A.1)

as N — oo, where now A,(w;,w,) is defined as

Ay (wr,wp) 2 {vp(gn) %(ow)]l/? ) {%(wl) 0 2)]1/2.
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After some matrix manipulation, A,(w,w2) can be written as

F;(ejwl)Ppr(ejwl) F;(ejwl)Ppr(ejm)

_ (i) 7' (w1) % (w2)
Aolion@a) = puen P () e By (0) (142)
@)’ (w2) H(w2)

It is now clear that in order to analyze the asymptotic distribution (4.A.1) when
p tends to infinity, we need only to study the asymptotic behaviour of the term

GG

1/2 1/2
7p/ (Wl)%/ (

To proceed with this analysis, we will provide a frequency domain expression
for the matrix P,.

We introduce first some notation. For any positive function f : [-m, 7] —
(0,00) we define the p x p matrix M,(f) as

. 4.A3
o) (4.A.3)

(02 5 [ Tyl (4.A.4)
We will call M,(f) a Toeplitz-like matrix on account of the fact that for the
case of the basis functions being the FIR ones, then M,(f) has effectively a
Toeplitz structure.' [GS58].

Considering the expression of R,(/N) in equation (4.8), the matrix R, can
be written as

N-1
.1 T
Rp=ngr;oﬁk2_%E{¢k¢k}-
Using now Parseval’s Theorem (in the form given by equation (2.3)), and the
definition of M,(f) in (4.A.4), R, can be written as

LI N () oy —
szﬁ/ [, (e) @, (W) (e)dw = M, (D).

-

The derivation of a frequency domain expression for the matrix (), is more
difficult. In [NHG974a] it is shown that (), can be written as

Qp = Mp(q)uq)l/) + Apa

LA matrix is said to be Toeplitz if its i, j-th entry depends only on the difference (i — j) of
the indices. Some basic properties of Toeplitz matrices are:

e A Toeplitz matrix is constant along its diagonals.

e A lower (upper) triangular Toeplitz matrix is completely specified by the elements of
the first column (row).
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where A, is given by
By = 5= [ Tole)Bw)IG () PTy e de
with
Go(e) 2 G(e) — G(e”,0,).

It can be also proved [NHG97a] that?

lim ||A,|]2 = 0.

p—00
Finally, a frequency domain expression of the matrix P, is then given by

Py = M (@) My (@) M (D) + M, (o) A M (D).

The term (4.A.3) can then be written as

F;(ejwl)Ppr(ejwz) _ F;(ejwl)ngl((PU)MP((PUCI)V)MJI(QU)Fp(ejwz)
7;/2(011)7;/2(002) . 7;/2(011)7;/2(012) ,
Term 1
L (e Y MY (DA, M (DT, (el
+ p( ) pl( ) D p ( ) p( ) (4A5)
/2 172
Yp (Wl)’Yp (W2)
Term 2

Now, the asymptotic analysis when p — oo can be carried out by resorting to
the results on convergence of Toeplitz-like matrices in Appendix 4.B. It can
be proved that for any choices of w; and w,, Term 2 on the right hand side of
equation (4.A.5) tends to zero as p — oco. On the other hand, as p — oo, Term 1
tends to @, (w)/®,(w) for w; = wy = w, and tends to zero for w; # wy. We refer
the reader to [NHG97a, NHG97b] for the remainder details of the proof. |

4.B Convergence of Toeplitz-like Matrices

Although for general orthonormal bases the matrix form A, (f) defined in
(4.A.4) will not have a Toeplitz structure, some results on convergence of
Toeplitz matrices can be extended to this form. For the orthonormal bases
with fixed poles introduced in Section 3.5, these convergence results are as
follows.

2Here || - ||» stands for the matrix induced 2-norm or spectral norm (i.e. the maximum
singular value).
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Theorem 4.B.1. Suppose f(w) is a real valued and continuous function on
[—7,m]. Then provided

Z(l — &) =

k=0

the following limit result holds

i PO _ )
p—=00 'Yp(w)
Proof: [NHG97b]
Fp(ejw)*Mp(f)Fp(ejw) =
p—1 p—1
= > Bul@)Bu() My (i
m=0 n=0 p -
= o [ 0T T BB )8 (B o
m:O n=0

~ 5 [ SO Kol do

Therefore, for any 6 > 0

L r;<ew>ﬂépg)>rp<ew> ) -
= 525 ML) ()1 (@)],
- mi(w) [ (10) — @) 1Ko as).
< /[ 1y U0 = FD (o) do] +
s / iy U@ = TRy 0) o

Now, since f(w) is continuous, then for § sufficiently small
|f(o) = f(w)| <€ on [w— 6w+ d].

and hence
1
21y (w)

/ [w—8,w40] (f(o) = f(w) [Kp(w, o) do| <

€

m/ |K,(w,0)]*do = e.
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Also, since [ is continuous on compact [—7, 7] then f is bounded by some
M/2 < co. Therefore

1 / )
P, (f(o) = f(w)) [Ky(w,0)]"do| <
27Yp(W) | Jogo—swt0] !
M
7/ |K,(w, 0)|? do.
27 Yp(w) o@[w—6,w+0)
This gives
L |G E) fw)] <et = i / |Kp(w, o) do
2m Yp(w) 21%p(w) Joglw—s,0+4]

Using the result in Lemma 4.C.1 and considering that ¢ is arbitrary then com-
pletes the proof. [ |

Theorem 4.B.2. Suppose f(w) € Ly([—m, 7]) 15 positive definite and has finite
dimensional spectral factorization. Then provided

Y (- l&]) =

00
k=0

the following limit result holds

MO
]}Lrgj To(w) =/ W)

Proof:
Fp(ejﬂ)*Mp(f)ilrp(ejw) _ Fp(ejﬂ)*Mp(l/f)Fp(ejw) i
Yo (W) . Yo (W) _
N Ty (&) My (f) I — My(f) My(1/£)ITp(e*)
(W)

Now by construction, the elements of the vector I'(e/*) are bounded in mag-
nitude by some finite number K, as defined in Lemma 5.E.2. Similarly, by
Lemma 4.C.3 the elements of the vector M,(f) 'T',(¢/) can also be bounded
by some finite number K. In this case, using Lemma 4.C.2 gives that for some
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Inl <1
0y (@) My(£) 1 = My(F)M,(1/ DIEy(w)] <
< Z [Ty @) M, (1)1, X
» TM:(f)Mp(l/f)]m,n = M (D] [T ),
< K\K? :10 ::(n”’" +0") 0" +0")
_ KK? <11__7Z7p>2 (1 +1)? < 0.

But by Lemma 5.E.3

DN =

S Jal) < ().

so that under the conditions of the lemma
Fp(w)*Mp(f)_l[[ — Mp(f)Mp(l/f)]Fp(w)

lim =0.
P00 ”Vp(w)
Therefore, by using Theorem 4.B.1
r *M. -ir r *M, (1/ )
lim p(w) p(f) p(w) — lim p(w) p( /f) p(w) _ fﬁl(w).
P—00 'yp(w) p—00 'yp(w)

4.C Technical Lemmas

Lemma 4.C.1. [NHGO7b] Let K,(w,0) denote the reproducing kernel of the
OBFP {By} introduced in Section 3.5. Then

1" — "
2r | NEp(@,0)do =3 |Bu(e)” £ (w).
- m=0

Furthermore, for any § > 0, provided

o0

> (1= &%) =0,

k=0
then

1
lim / |K,y(w,0)>do = 0.
p—00 Vp(w) o¢|w—0,w+4]
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Proof: See [NHG97D]. |

Lemma 4.C.2. Let f,g € Ly([—m, 7]) have finite dimensional spectral factor-
1zations. Then there exists |n| < 1 and K < co such that

[(My(£)Mp(9)] e = [Mp(f )] | < K"~ +0™)(0P™" +0").
Proof: See [NHGY6]. |

Lemma 4.C.3. Suppose f € Ly(|—m,7]) has a finite dimensional spectral fac-
torization. Then dK < oo which 1s independent of p such that

p

LT @] < K, | [V (T )], | < K.

Proof: See [NHGY6]. |



3

MIMO Identification using Orthonormal
Bases

In this chapter the idea of using orthonormal bases and PEM (least squares
techniques) for the identification of discrete-time linear time-invariant systems
will be extended from the SISO to the MIMO (Multiple-Input Multiple-Output)
setting. It will be shown how the rational orthonormal bases with fixed poles
introduced in Section 3.5 (or the corresponding MIMO bases generated as in
Section 3.6) can be used to linearly parameterize any multivariable fixed de-
nominator model structure. The use of these bases will allow the incorporation
in the identification process of prior knowledge about dominant dynamics of
the system, and will facilitate the analysis of the estimation accuracy. As done
for the SISO case, the accuracy of the estimation will be quantified by deriv-
ing expressions for an upper bound on the undermodelling error and for the
asymptotic (in data-length and model order) covariance of the transfer ma-
trix estimate (noise induced error). The asymptotic covariance analysis will be
based on the derivation of convergence properties of some block Toeplitz-like
matrices. The recently popular Subspace-based State Space System IDentifica-
tion (4SID) methods for multivariable systems [Vd96| will be briefly reviewed,
and through simulation experiments, their performance will be compared with
that of the orthonormal basis-based methods proposed here.

5.1 Introduction

To the best of our knowledge, except for the well known special case of FIR
multivariable model structure studied in [YL84, Zhu89, Zhu94], the use of more
general bases in MIMO system identification has not been studied to date except
for the work in [HbVB95] and work by Ninness, the current author and co-
workers in [NnGW95, NG96|.

Following the SISO paradigm for identification using orthonormal bases and
least squares techniques described in the previous chapter, the obvious exten-
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sion to the MIMO setting would be to construct general orthonormal bases for
the space Hy"*"(T) of (m X n) transfer matrices whose elements are in H,(T),
and then to parameterize the transfer matrix of the system as a series expan-
sion in terms of these bases. The identification would then be performed by
estimating a finite number of expansion coefficients using least squares tech-
niques. However, in contrast to the SISO case, several parameterizations of
the system using orthonormal bases are possible in the MIMO context. For in-
stance, in [YL84], Yuan and Ljung use the standard FIR scalar bases {2 *} to
parameterize the (m x n) transfer matrix of the system as a linear combination
of the bases, where the coefficients are (m x n) matrices (the impulse response
matrices or Markov (matriz) parameters).

This idea of using scalar bases in identification of MIMO systems is applied
here for the case of the more general orthonormal bases studied in Section 3.5.
In addition, it is shown that the parameterization of the MIMO system using
scalar bases (with matrix coefficients) is equivalent to the parameterization
using matrix bases (generated from the scalar ones via Theorem 3.6.1) with
scalar coefficients.

As mentioned in the introduction of the previous chapter, some emphasis has
been placed in the literature [Wah91b, Wah94b, Wah91a, Oli95a, Bod95] on the
use of orthonormal model structures as an implementational tool with certain
numerical properties ensuring the well-posedness of the least squares estimation
problem. In this chapter, an upper bound on the condition number of the least
squares estimation will be derived. This guarantees a worst case numerical
conditioning of the estimation using orthonormal structures. However, it will be
shown that since this upper bound is completely specified by the input spectral
density and is not affected by the particular bases chosen (as far as they are
orthonormal), the numerical conditioning can still be very bad depending on
the nature of the input.

In consideration of this, and as has already been mentioned, the approach in
this thesis, following [NHG97a], is to consider the orthonormal structure as an
analysis tool rather than an implementational tool. We will show that any mul-
tivariable fixed denominator model structure can be linearly re-parameterized
using rational orthonormal bases with the same fixed poles. The analysis of the
estimation accuracy can then be carried out on the orthonormal structure in a
more tractable way by exploiting the orthonormality property of the bases.

In this chapter, we extend the single-input, single-output results concerning
the accuracy of the estimation presented in [Wah91b, Wah94b] for Laguerre and
Kautz models, and in [VHB95, NG97, NHG97a] (as summarized in Sections 4.3
and 4.4) for more general models, to the multivariable setting; and also the
multivariable results in [YL84] from the FIR setting to more general model
structures which encompass the FIR structure as a special case.

The main contribution of the chapter is the extension of the asymptotic
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FIR results of [YL84] to the case of using general orthonormal bases with fixed
poles. More specifically, in [YL84] the variance of the FIR transfer function
matrix estimate was shown to be approximately (for large data-length N and
large model order p) equal to

P

N
where &, (w) is the input spectral density, ®,(w) is the output measurement
noise spectral density, and ® is the Kronecker matrix product (see Appendix A
for the definition and properties). In this chapter we show that for the OBFP
described in Section 3.5, the above expression should be changed to

?,' (W) ® Oy (w)

B 01 0) @ 0, ).

where v,(w) £ Y070 |Bi(e)|? (see Figure 4.2). Note that for FIR models
vp(w) = p so that the new expression contains the previously known FIR model
structure result [YL84] as a special case. The expression is also in formal analogy
with the single-input, single-output result of Theorem 4.4.2. The derivation,
however, is considerably more complicated. A first difficulty (inherited from
the SISO case) is that the OBFP we use in this thesis do not have the algebraic
structure that would allow to reduce the problem to the FIR case. A second
difficulty is that in the MIMO case several quantities do not conmute. Fun-
damental for the analysis will be the derivation of some results concerning the
convergence of block Toeplitz-like matrices.

The rest of the chapter is organized as follows. The identification problem
is stated in Section 5.2. In that section we also show how the orthonormal
basis with fixed poles introduced in Section 3.5 can be used to linearly re-
parameterized any multivariable fixed denominator model structure. In Section
5.3, it is shown that the parameterization of the MIMO system using (matrix)
orthonormal bases (with scalar coefficients) is equivalent to the parameteri-
zation using scalar bases with matrix coefficients. The MIMO identification
problem using orthonormal bases and least squares techniques is solved in Sec-
tion 5.4. The numerical robustness of the identification algorithms is analyzed
in Section 5.5. In Section 5.6 we analyze the undermodelling induced error
that results from the parsimony of the model structure (due to a finite number
of expansion terms), which is too simple to exactly represent the system. In
Section 5.7, the main contribution of the chapter is derived. Namely, an ex-
pression for the asymptotic (in number of observed data and in model order)
covariance of the transfer matrix estimate is obtained. This expression is used
to quantify the estimation error induced by the presence of measurement noise.
The derived result is consistent with that presented in [YL84] for the partic-
ular case of FIR multivariable model structures, and indicates that the noise
induced error is asymptotically proportional to the (generalized) noise-to-signal
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ratio. The analysis is based on new results concerning the convergence of block
Toeplitz-like matrices. For the purposes of comparison with the orthonomal
basis-based identification method proposed in this chapter, a brief review of
Subspace-based State Space System IDentification (4SID) methods for multi-
variable systems is given in Section 5.9. Finally, some simulation examples are
presented in Section 5.10, and some conclusions in Section 5.11.

5.2 Problem Formulation

We address the problem of identification of Discrete-Time Linear Time-Invariant
MIMO systems from observed input-output data in the time domain. To be
more specific, it is assumed that the system has n inputs and m outputs and
that N samples of n input sequences {u}}, {uz},..., {u}}, as well as m output
sequences {y.}, {y2},...,{y"} are available for the identification. We assume
also that the data are related according to

vh = Y Gii(@)ul,+ Y Hisg)ei, (5.1)
j=1 s=1

with:=1,2,--- ,m.

The scalar transfer functions {G;;(¢q)} and {H;;(¢)} describe respectively the
unknown (assumed stable) system dynamics and the disturbance model that
are to be identified. A notational simplification is possible by vectorizing:

e = WU

T— (u,lc,uﬁ,...,u};)T,

T (e,lﬁ,ez,...,e?)T,

gn(Q) gu(Q) gln(Q)
Gui(q) Gm2(q) - Gun(9)
Hi(q) Hix(g) ... Hin(q)
Hy Hs ... Hyp

H(q) = E(q) E(Q) E(q) |

Hui(¢) Hma(q) - Hum(q)

so that (5.1) can be rewritten in matrix form as

yr = G(q) up + H(q) er, = G(q) ug + v (5.2)



5.2 Problem Formulation 85

Here {e;} is assumed to be a stationary (zero mean) white noise vector processs
with covariance matrix E {ekef} = A. In this case, the disturbance term v, =
H(q) ey, is also a stationary process with spectral density [Lju87]

d,(w) = H(*)ANH*(e"). (5.3)

A standard approach is to provide the model (5.2) with a finite dimensional
parameterization

so that the system can be identified by estimating the (finite dimensional)
parameter vector 6.

There are many options available for the estimation of G(¢,0) and H(q, )
within this problem setting. For example, a general prediction error tech-
nique (as described in Chapter 2) using a multivariable Box—Jenkins [BJ76]
or a state-space model structure could be employed [Lju87] (see [Lju91] for
an example of identification of arbitrarily parameterized state-space models
within the framework of the System Identification Toolboz [Lju95| for use
with MATLAB![Mat94]). Unfortunately, as mentioned in Chapter 2, apart
from the various difficulties concerning identifiability of these model struc-
tures [Lju87, GW74, Gui75, Gui8l], this strategy may also result in a numeri-
cally intensive iterative (possibly nonlinear and nonconvex) optimization proce-
dure. In addition, the analysis of the (finite data) estimation accuracy becomes
very difficult (sometimes intractable) for this case.

Another possibility is to employ one of the recently popular Subspace-
based State-Space System IDentification (4SID)? methods for multivariable sys-
tems [Vd96], such as the N4SID [Vd94a, Vd94b, Vd9la, Vib94, Vib9o5, OV94,
VOWL93, VOWL91], MOESP [Ver91, VD91b, VD92], and CVA [Lar90, Lar94]
methods. These schemes provide accurate state-space models for multivariable
systems directly from input-output data, and have the advantage that no itera-
tive procedures are involved. Instead, they employ reliable numerical algorithms
such as Singular Value Decomposition (SVD), and QR-decomposition [GV89].
Work is still progressing on quantifying the estimation error involved with the
use of such methods [VWO97, DPS95, DPS94].

In this thesis, our interest is not on the estimation of the model for the
additive output noise (that is, on the estimation of H(q,#)), whose second
order statistics will be assumed to be known, but only on the estimation of the
transfer matrix G(q, §) describing the system dynamics. We concentrate then
on the parameterized model

yr = G(q,0) ug + v, (5.5)

IMATLAB is a registered trademark of The MathWorks, Inc.
2Pronounced ‘force it’.
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rather than on (5.4).

Furthermore, and for the sake of ease of error quantification, lack of iden-
tifiability problems and small computational load, we will focus on the study
of prediction error methods with a quadratic criterion and with a particular
model structure that has fixed poles that are chosen according to prior knowl-
edge about the system. To facilitate the analysis of estimation accuracy we will
further re-parameterize this model structure using orthonormal bases with the
same fixed poles.

The particular model structure we will consider is given as

p—1
G(q,8) = D,'(q) Y Bed", (5.6)
k=0
p—1
Dy(q) = [[la—&), (5.7)
(=0
where 0, € R™*", k =0,---,p — 1, are matrices of parameters to be estimated

(namely, the coefficients of the numerator polynomials of the individual transfer
functions {G;;(¢q)}), and {&, &, - ,& 1} are the poles chosen by the user to
reflect prior knowledge about the true system G(¢). The advantage of this
model structure is that it allows the input-output relationship to be easily cast
in linear regressor form as

i = Bk + v, (5.8)
with

BT £ (ﬁo,ﬁla'“ 75])—1) ) (59)

[ D), ]

9D, " (a)In

vy = CIQIDITI(C])]n w, = Y, (q) ug, (5.10)

D o)
TP(Q) = [D;l(q)[n,qul(q)[n, v Jqpilppil(q)In]Ta (511)

so that if a quadratic criterion is used, the resulting least squares estimate can
be found in a computationally cheap manner. It is well known that the least
squares estimate can be written in closed form as

1 1T N_1

B = (Z Z%) > ik (5.12)

k=0
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Our main interest is now to quantify the accuracy of the resulting transfer
matrix estimate

G(q,8) = B" T,(q), (5.13)

and particularly to study how the estimation error is affected by the choice of
the poles {&} in D,(q).

To undertake this study let us first notice that since via equations (5.6),
(5.7), (5.9), (5.11), and (5.12) the estimate G(q, 3) is linear in the data, then it
is invariant under linear re-parameterization of the model structure (5.6) (See
Lemma 5.E.1 in Appendix 5.E). This implies that the same transfer matrix

estimate G(q, B) is obtained if one instead chooses the model structure

G(0,0) = S0l Bulg) = 67 T, (a). (5.14)

where the transfer functions {8B(¢q)} are the orthonormal bases with fixed poles
(OBFP) introduced in Section 3.5, with the same poles as in D,(¢), and where
now

o2 [0, 67, ,9,?,1]T,
with 87 € R™", and T)(q) 2 [Bo(¢)In, B (q) I, -, Bp_1(q) )"

Although the two formulations (5.6)-(5.7) and (5.14) are equivalent in the
sense that the obtained tranfer matrix estimates are identical (i.e. G(q,©) =
G(q, B)), the latter structure (5.14) is much preferable from an analytical point
of view, since the basis functions {B,(¢q)} are orthonormal, and this property
can be exploited in the quantification of the estimation accuracy. Due to this
equivalence, it is not difficult to see that the bias and variance error properties
of the estimates derived from the two model structures are also identical. How-
ever, since the orthonormal structure (5.14) is more tractable, this is the model
structure we will employ for the analysis in this chapter, keeping in mind that
the results of this analysis can also be applied to the model structure (5.6)-(5.7)
or any other linearly equivalent one.

As mentioned in the introduction of the chapter, several parameterizations
using orthonormal basis are possible in the MIMO framework. Besides the
model structure (5.14) that corresponds to the case of scalar bases {B(z)} (i.e.
bases of the space H,(T)) with matrix coefficients ] € R™*"  we will also con-
sider an orthonormal structure corresponding to (m xn)-matrix bases (i.e. bases
of the space H;"*"(T), as the ones introduced in Section 3.6) with scalar coef-
ficients #7 € R . In the following section we prove that both parameterizations
are equivalent.
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5.3 An equivalent MIMO parameterization

Let {B;J(z)}zo (i =1,...,m;j = 1,...,n) be an orthonormal basis for the
space Hy"*"(T) generated from the scalar bases {By(z)},-, as in Theorem 3.6.1.
Then any stable causal tranfer matrix G(z) in H)"*"(T) can be approximated
by a linear combination of a finite number of elements of the orthonormal set,
that is

p—1 m n

G(2,0)=> 3" 0/B/(2). (5.15)

=0 i=1 j=1

The following Lemma shows that, for the appropriate definition of the param-
eter matrices 6, the above expression is equivalent to

—_

G(2,0) = 3 0; By(2). (5.16)

0

~
Il

Lemma 5.3.1. Let {BY(2)}%,,(i=1,...,m;j =1,...,n) be an orthonormal
basts on HY'*"(T) generated from the scalar basts {B,(z)}3°, as in Theorem
3.6.1. Then the following identity holds

n p—1

DD 0B (2) =) 0 Bu(2),

=0 i=1 j=1 =0
where the parameter matrices 0, are defined as

o .. g
eTé . .

¢ (5.17)

ot e
Proof: See Appendix 5.A. |

Remark 5.3.1. This result means that the two orthonormal structures we have
considered thus far (given by equations (5.16) and (5.15)) are completely equiv-
alent, so that we can use any of them indistinctively to represent the transfer
matrix of the system. Most of the analysis of the following sections will be
carried out for the parameterization with scalar bases and matrix coefficients
(5.16). However, when convenient, the parameterization with matrix bases will
also be used. ¢
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5.4 Parameter Estimation

The representation in (5.14) leads to the convenient linear regressor form

u = Gl(g,0)uy + vy,

1,8(q)
1,B1(q)
— (67,67, 0T ) : wp + i,
1,By-1(q)
= 07 (B,(¢) ® I,) uy + wy,
= O T,(q) u + v,
= 07 ¢ +u, (5.18)
where we have defined?
®T = (957 0?: e 10;?—1) ) (519)
By(g) = [Bola), . Bpa(@)]" (5.20)
Ty(g) £ Bylg) ® 1y, (5.21)
or = Tp(q) up (5.22)
With the above definitions for © and I',(¢), the transfer matrix is given by
G(q,0) = ©" T, (q). (5.23)

With the system in linear regressor form (5.18), the most obvious scheme for
estimating the parameter matrix © is the least squares method. The least
squares estimate O of © is the minimizing argument of the quadratic criterion

Vi(©) = Tt {Z gk(@)gf(@)} , (5.24)

k=0

where £4(0) = yr — G(¢, ©)uy. That is

0= argel)rnin{VN(@)} = argénin {%Tr {Z_ 5;6(@)5{(@)}} : (5.25)

k=0

It is well known [Lju87] that this optimization problem has an explicit solution
given by

) . -1 N N L V!
e = (N ; ¢k¢£> <N ; ¢kykT> =R,'(N) (ﬁ ; ¢kyl:cr) . (5.26)

3Please don't confuse B,(g) (a column vector of tranfer functions), with B,(g) (a scalar
transfer function).
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where we have defined
_ 1 N—-1
R,(N) £ <N ¢k¢{> : (5.27)

Adopting the vectorized notation

YT = (y07y17"'7yN71)7
(I)T = (¢07¢17"'7¢N71)7

VT = (V()al/la"'aVN—l)a
the model for the N point observed data record can be written as:

Y =90+7V, (5.28)

so that the estimate © defined in equation (5.25) can be written in a more
compact form as

0 =o'y, (5.29)

where ®' is the Moore-Penrose pseudoinverse of ®. If there is sufficient input
excitation for the indicated inverse to exist this will be given by

ot = (7®)"'o7, (5.30)
The frequency response estimate is then given by
G(”,0) = 07T, (¢*). (5.31)

Remark 5.4.1. Although the proposed identification scheme can be used with
any orthonormal basis {B,(z)} € H,(T), we will restrict the analysis of esti-
mation accuracy to the generalized orthonormal basis with fixed poles (OBFP)
introduced in Section 3.5 (or the equivalent MIMO version generated via Theo-
rem 3.6.1), keeping in mind that these bases allow the representation of a more
extensive class of models. In particular, they can be used to represent the mul-
tivariable fixed denominator model structure with arbitrary poles in (5.6)-(5.7).
This is not the case with other orthonormal bases such as FIR, Laguerre, Kautz,
or the more general OBGIF, where the poles are restricted either to be all the
same, or to come from the same set which is repeated cyclically as higher model
orders are assumed. ¢

In the following sections we analyze the numerical properties of the proposed
identification algorithm, as well as the accuracy of the estimation (bias and
variance errors).
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5.5 Numerical properties

The numerical robustness of identification algorithms is particularly important
in the context of multivariable systems where large numbers of parameters
need to be estimated [Vd94a, Vib94|. Furthermore, it is well known [GV89]
that when least squares procedures are employed, these numerical properties
are strongly governed by the condition number of the ‘covariance’ matrix R,(N)
(defined in (5.27)) in the normal equation (5.26).

For the single-input, single-output case this condition number has been up-
per bounded in terms of the input spectral density ®,(w) when particular or-
thonormal basis model structures are employed [Wah91b, Wah94b, VHB95,
NHG97b, GS58].

This result can be extended to arbitrary orthonormal bases and to the mul-
tivariable setting. This is done in the following Lemma, where (as in [Wah91b,
Wah94b, NHG97b]) we compute lower and upper bounds on the singular values
of the asymptotic (in data-length N) covariance matrix ]:?p defined as

N—-1
R, % lim R,(N)= lim (%Zmﬁ) —E{osr}-
k=0

Lemma 5.5.1. Let the set of singular values of ﬁp be denoted as a[ﬁp] and let
o[®,(w)] and 7[®,(w)] denote the smallest and the largest singular values
of the input spectral density ®,(w), respectively. Then

olfy] € [infolo, )] supale, ()]

Proof: See Appendix 5.A. [

Using this lemma, the condition number /{[ép] of ]:?p may be straightforwardly
upper bounded in terms of the singular values of the input spectral density as
=1 _ sup,, 0[Py (w)]

1 <k[R)] <

< = Tnf, o[®y (@) (5.32)

This upper bound provides a guaranteed worst-case limit for the numerical
conditioning. Notice however that since the upper bound depends exclusively
on the input excitation, the numerical conditioning can be very bad depending
on the nature of this input. For the particular case of white input, the input
spectral density ®,(w) is constant, so that equation (5.32) implies

k[R,] =1,

which means that the least squares estimation using the orthonormal structure
is perfectly numerically conditioned.
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Notice that the way the numerical conditioning is affected by an increas-
ing model order (which is the case where the numerical issue is more impor-
tant [GV89]) or by the particular choices for the poles of the bases, is not
reflected by the upper bound we have derived.

As already mentioned, this guarantee of the worst—case numerical condition-
ing appears to have been one of the main motivations for using orthonormal
bases in a system identification setting. However, to the best of our knowledge,
there is no theoretical evidence to suggest that an orthonormal structure will
necessarily provide a better numerical conditioning when compared with the
one obtained with an equivalent non-orthonormal structure. In the following,
lower and upper bounds on the ratio between the condition numbers using
orthonormal and non-orthonormal model structures are derived.

Let the transfer matrix of the system be represented as a truncated series
expansion in terms of the orthonormal basis {B:(q)}?_t . This representation
leads to the linear regressor form of equation (5.18), or its vectorized form (5.28).
The asymptotic (in data-length) numerical conditioning of the least squares
estimation is then given by the condition number of the matrix E {¢;¢ }.

Similarly, the transfer matrix can be represented as a linear combination of
the elements of a (non-orthonormal) set { A, (¢)}?_,, spanning the same space as
{Bi(q)}2_;. For example, for the case of {B;(q)},_, been the OBFP introduced
in Section 3.5, a possible non-orthonormal set spanning the same space is given
by the functions Ay(q) = 1/(¢ — &), with the same poles as in the set {Bx(q)}.
The representation of the system using the non-orthonormal set also leads to a
linear regressor form

e = G(q, a)uy, + v, = oYy, + vy,

where a € R"*™ ig the parameter matrix to be estimated, and where

wk é Tp(q Uk,
TP(Q) = Ap(Q) ® Ina
Ap(q) 2 [AO (Q)a e aApfl(Q)]T-

In vectorized form we can write

Y = Ya+V,

YT £ (y07y17"' 7yN71)7
\IJT = (¢07¢17'“ 7¢N—1)7
vt £ (Vo,Vla"‘ ,VN—1)-

In this case the asymptotic (in data-length) numerical conditioning of the least
squares estimation of the parameter matrix « is determined by the condition
number of the matrix E {4, ] }.
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Our objective is now to relate the matrices E {¢;¢] } and E {¢;1){ } in order
to compare the numerical conditioning of the estimation using orthonormal
and non-orthonormal model structures. To proceed with this, notice that since
Ai(2) € Span {{By(2)}?_;} we can write

A = YD (AL B2 By (o)

= [(Ax(2),Bo(2)) ;- (Ar(2), Bp-1(2))] By(2).

S

o

Then A,(z) and B,(z) are related according to
Ap(2) = T'B,(2),

where J € RP*P is the nonsingular matrix

-1

(Ao(2),Bo(2)) -+ (Ao(2), Bp-1(2))
7o : .

(Aps (20, Bo(2)) + (Aper(2), By (2))

Based on this it is not difficult to show that the regressors ¢, and ¢, are related
according to

Ve = (J7' @ 1) o, (5.33)
and then
E{ol} = (T '@ L)E{ewdl} (J'® 1), (5.34)

which is the relation we were looking for. Considering now that for a given
norm and matrices A and B of appropriate dimensions [GV89]

K[AB] < k[A]x[B],
from equation (5.34) we can write

L eE{wl)]

The above equation shows that it is not necessarily true that the use of or-
thonormal model structures represents an improvement on the numerical con-
ditioning of the estimation with respect to the case of using non-orthonormal
model structures. The following example illustrates this fact.
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Example 5.5.1. Let us consider the scalar case where the orthonormal functions
{Bi(z)} are the Laguerre bases

Bk(z)z(m> <1_§Z>k k>0, (5.36)

z—=£ z=£
and where the non-orthonormal functions {.Ax(z)} are given by

1 .
(Z _ §)k+1 ’

with the same fixed pole &, and spanning the same space as {B;(z)} . For the
case of model order p = 3, matrix J is given by

[ JI— & 0 0 1
J=1| /1€ (1-&)/1-¢ 0 .
[52\/1—52 26(67 —1)y/1 - €2 \/1—52(1—§4+2§2(52—1))J

Figure 5.1 shows the upper bound «[(J ® I,,)]* in equation (5.35) as a function
of the pole location (&) for this case.

Ap(z) = k>0, (5.37)

Upper bound on K_nonortho/K_ortho
500 T T T T T

450 ,
— Model order p=3

400

350

300

250

200

150

100

50

L | 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Pole Location

Figure 5.1: Upper bound on the ratio between the condition
numbers for the mnon-orthonormal and the orthonormal structures
([E {vet] }1/K[E {dkof }]) as a function of the pole location &, and for
model order p = 3.
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The left hand plot of Figure 5.2 shows the condition numbers x[E {4y} }]
(dashed line) and x[E {¢; ¢} }] (solid line) corresponding to the non-orthonormal
and the orthonormal structures respectively, as a function of the model order
p, for the case £ = —0.1. The right hand plot of the figure shows the ratio
k[E {¢rf }]/K[E {¢ro} }] between these conditions numbers. The simulations
were performed with a unit amplitude, square wave input signal of fundamental
frequency 0.01 Hz.

Numerical Conditioning - Poles at xi=-0.1 K_nonortho/K_ortho
T T T T T T T T T

. T T
—— Orthonormal’ (Laguerre)
350 |- = Non Ofthonormal b AN — Poles at xi=-0.1 i

Condition Number

0.5

0.41

0 | . I | | I | 0.3 | I
6 7 8 9 10 2 3 4
Model Order

Figure 5.2: Left hand figure shows the condition numbers s[E {¢yf }]
(dashed line) and k[E{¢p¢f}] (solid line) corresponding to the mnon-
orthonormal and the orthonormal structures respectively, as a function
of the model order p for the case £ = —0.1. Right hand figure shows the
ratio K[E {¢p] }]/K[E{ord} }] as a function of p for this case.

The simulations show that for the case p = 3 and £ = —0.1 the upper
and lower bounds on the ratio between the condition numbers of the non-
orthonormal and orthonormal covariance matrices are

k[(J®1,)]> = 1.5688 IO~ 0.6374,
while the value of this ratio is
M = 0.6698
k[E {oro} }]

It is clear from the plots in Figure 5.2 that, in this case, the use of the
orthonormal structure (5.36) instead of the more natural non-orthonormal form
(5.37) results in a deterioration of the numerical conditioning rather than in an
improvement. v
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5.6 Undermodelling Error

In this section we derive results regarding the quantification of the compo-
nent of the transfer matrix estimation error that is produced by the restricted
complexity of the model used to represent the system. For the single-input,
single-output case, the result of Theorem 4.3.1, in the form of an upper bound
on the undermodelling error, shows that the flexibility in the choice of the poles
of the bases can be exploited in order to provide a more accurate estimation. A
similar result can be established for the multivariable case ‘mutatis mutandis’
from the single-input, single-output result in Theorem 4.3.1.

Let G(z) denote the best H5"*"(T) approximation to G(z) with respect to the
pmn basis matrices {B§',--- By, - ,B)L,, .-+, B} defined by equations
(3.28)-(3.14) . Namely

—1 n

22NN (G.BY)B(2) (5.38)

0 =1 j=1

S

ES
Il

where (-,-) stands for the inner product in the space H,"*"(T) as defined in
(3.29). Considering the definition of B)/(z) in (3.28), equation (5.38) can be
written as

p=1 | (G.B) - (G, B)
G(z) = E 2 By(2)
k=0 <GaB;cn1> <GvBlZm>

Then, the 7, j-th component @ij(z) of G(2) is given by

Using again the definition of B}/ (2), it is straightforward to show that
(G,B]) = (Gij, By),

where in the RHS, the symbol (-,-) stands now for the inner product in the
space H,(T) as defined in (3.27)*. Substituting back in equation (5.39), the
expression for G;;(z) becomes

"?
L

Gij(2) =Y (Gij, Bi) Bi(2), (5.40)

0

=
Il

4The fact that the same symbol is being used to denote both the inner product in H»(T) and
in H**"(T) should lead to no confusion, since the meaning becomes clear from the context.
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which is the best H,(T) approximation of G;;(z) with respect to the p basis
functions {By(z), Bi(2),- - ,By—1(2)}. In similar way, it can be proved that the
i, j-th component G;;(z) of the true transfer matrix G(z) is given by

k=0

We are now able to quantify (component-wise) the error between the true trans-
fer function G,;(z) and the restricted complexity approximation G;;(z). The
result is summarized in the following theorem.

Theorem 5.6.1. Let the i, j-th component G,;(z) of the transfer matric G(z)
of the system have partial fraction expansion

rii—1 ij
Qy

Gij(z) = Z ij

=0 Z Ve

where all the poles satisfy |7§j| < 1. Let @m(z) denote the i, j-th com-
ponent of best Hy"(T) approzimation G(z) to G(z) with respect to the
pmn basis matrices {Bg',--- By, --- ,B)L,,--- ,Br™} defined by equations

(3.28)-(3.14), with fized poles {&x}(k=0,---,p—1) . Then

rii—1

<X

£=0

p—1

(11

w _ A
el Ve k=0

Qy Yo — &k

——. (5.42)
1— fk')/g]

Giy(e) = Gig(eh)

Proof: Considering the derived expressions for G;;(z) and @”(z) in equations
(5.41) and (5.40) respectively, it becomes clear that the proof proceeds in an
identical way as that of Theorem 4.3.1 for the single-input, single-output case,
and therefore it is omitted. [

The same comments made on page 60 in relation to the result in Theorem 4.3.1
also apply component-wise to this case. The theorem indicates that the ap-
proximation error that results from the use of the restricted complexity model
structure (5.38) can be reduced by choosing the poles {¢;} of the bases close
to the true poles {7,’} of the system, since this minimizes the product term in
the upper bound in (5.42).

Theorem 5.6.1 can also be used to provide a quantification of the undermod-
elling induced error in the least squares estimate G(¢, ©) by noting that under
the given assumptions, by the results in [Lju87] (as summarized in Theorems

2.2.1 and 2.2.2)

0250, as N — oo,
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where

O, = argmin {J}l_r)r;o %Tr {Z E {5k(@)5;€(@)}}} )

OcRmXxnp —0
with
er(©) £y — G(g, ©)ur = (G(q) — G(g, ©)) ug + 4.

Using Parseval’s Theorem (in the form given in equation (2.3)), and neglecting
terms independent of © then allows ©, to be re—expressed as

O, — argmin {% / Tr {B(w, O)} dw} , (5.43)

eeRanp T

where
P;(w, 0) = (G(e) — G(,0)) @, (w) (G() — G(e,0))".

In the special case of white input excitation where &, = I, this gives the
asymptotic estimate as

1 m n T . .

O, = argmin —ZZ/ 1Gre(¢) — Gre(e”,0)2dw .
eeRanp 27T k:l Z:l -

This criterion is satisfied by the solution

O, = [GOT,--- or ]

y Yp—1
with
<Ga Bli1> T <G7 Blin>

so that the result of Theorem 5.6.1 implies

rid—1 ij p—1 ij
. . o Ye — &
|Gij(e) — Gy(e“,0,)] < —Lt =, (5.44)
’ ’ ; ek — kl]o L=&

which provides quantification (which applies with probability one) of the asymp-
totic undermodelling induced error in the case of white input excitation.

The case of non—white input is more difficult. Nevertheless, for such cases it
is still possible to derive frequency dependent upper bounds on the undermod-
elling error similar to that possible for the white input case (5.44), but that are
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not as tight or as explicit. To present them, it is necessary to recall that since
{B/} is complete in Hy"*"(T) then any G(e) € Hy"*"(T) may be expanded as

n

1 m
pz >N 0787 () + Z Z Z 0 B (1) (5.45)

=0 i=1 j=1 l=p i=1 j=1

where 9,? £ < G,sz > are the generalized Fourier coefficients. Appealing to
Lemma 5.3.1, equation (5.45) can be written as

G(e”) ZGZBZ ) + ZHZBZ ). (5.46)
where 6, € R™*" are defined in equation (5.17). When G(z) is finite dimen-
sional, a simple argument using Cauchy’s Residue Theorem shows that these
parameters decay exponentially as |#)/| = o(n*) as k — oo for some || < 1.

In terms of these decaying parameters, and a possibly coloured input spec-
trum &, (w), a frequency dependent bound on the undermodelling induced es-
timation error may then be given as follows.

Lemma 5.6.1. Let K, be defined as

1 + maxr
K = w/%, (5.47)

where &,q, denotes the pole with mazimum module in the set {&.}. Then,
with probability one:

[G(e) = G(,00)]i] <
K imax‘@ij‘ sup v, (w)\/mw 41
e o 7 inf, o[ @, (w)] '
Proof: See Appendix 5.B. -

The chief use for this result is in the derivation of the main result of this
chapter (Theorem 5.7.1) where it is used to show that as the model order
grows, a particular component of the estimation variance expression decays to
zero uniformly in frequency.

A less explicit characterization of the nature of the undermodelling induced
estimation error is given by the following Lemma.

Lemma 5.6.2. The frequency response is on average (over frequency) un-
der—estimated in the sense that

/ T {G(,0,) 8, ()G, 0,)} dw < / Tr {G(*), ()G ()} dw.
Proof: The proof is analogous to the one corresponding to the single-input,
single-output case given in [Nin96|, and can be found in Appendix 5.B. [ |
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5.7 Noise Induced Error

In this section, the main result (Theorem 5.7.1) of the chapter, regarding the
quantification of the component of the frequency response estimation error that
is induced by the measurement noise, is derived. The result is the extension
to general multivariable model structures with fixed poles of several asymp-
totic variance expressions that have been derived in the literature in the single-
input, single-output context [L'Y85, Wah91b, Wah94b, VHB95, NHG97a], or in
the multivariable framework but only for FIR model structures [YL84]. The
result is built on earlier work that applies only to single-input, single-output
systems [NHG97a], as summarized in Section 4.4.

Here again, as in the SISO case, a quantification of the noise induced error
is given by the covariance matrix of the transfer matrix estimate G(e, ).
However, since it is desiderable to be able to quantify the error in each individual
component G;;(e/, ©) of the matrix G(e), ©) it is more convenient to use the
methods in [YL84, Zhu89, Zhu90] and deal with a vectorized form of G (e, ©).
This vectorized form is obtained by stacking the columns of G(¢i, ©) on top
of each other, that is by applying the vec-operator (see Appendix A for the
definition and some properties) to the matrix G(¢, ©) to obtain

g(6,0) £ vec G(“, 0).

Analyzing the distribution of the estimate g(e/, (:)) then provides information
about the noise induced error in each component of G(¢i, ©).

We start the analysis by re-defining the parameter matrix in such a way
that the vectorized transfer matrix is still a linear function of the parameters,
so that the linear regressor form of the model (5.18) is preserved and therefore
a closed form solution for the least squares estimation can also be obtained for
this case. Considering the linear regressor model in equation (5.18), and using
properties of the Kronecker products and vec-operator (see Appendix A) we
can write

ye = O ¢+ v,

vec {@T ¢k} + v,

= (¢f ® L) vec O + 1y,

= Y n+w, (5.48)

where
n = vec O (5.49)
is the new parameter vector, and

k= O ® I, (5.50)
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is the new regressor matrix. It is clear that the new parameter vector » linearly
parameterizes the vectorized transfer matrix g(el, ©), since

g(6%,0) = vec{OTT,(e")},
= (T} (") ® I,,) vec O,
= TI(e¥) (5.51)

where the definition
Tp(e*) £ Ty(e) @1,

has been made.
It is not difficult to prove (see Lemma 5.C.1 in Appendix 5.C) that the least
squares estimate 7 of 7, given by the well known expression

| Nl -1 | Nl
n= (N > ww?) (ﬁ > %%) ; (5.52)
k=0 k=0

and the least squares estimate O of © in equation (5.26), are related according
to

7 = vec or.
The vectorized transfer matrix estimate is then given by
g(e,7) =Ty () 7.

We undertake now the derivation of the main result of the chapter regarding
the asymptotic (in data-length and model order) distribution of the (vectorized)
transfer matrix estimate. Fundamental in this analysis will be some results
concerning the asymptotic properties of what we will call Block Toeplitz-like
matrices. These results are presented in the following subsection.

5.7.1 Convergence of Block Toeplitz-like Matrices

In this subsection and the following ones we consider positive definite real matri-
ces M,(F,W) of dimensions nmp x nmp, defined by two real symmetric positive
definite matrix valued functions F'(w) and W (w) (of dimensions nxn and m xm
respectively) as

M,(F, W) 2 % / "L (@) F(@)Tw) @ W(w) dw. (5.53)

—T
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Here, for the sake of notational simplicity, we have used the notation I',(w) as
a shorthand for [',(¢/*) as defined in (5.21), viz

T,(w) = Ty(e¥) 2 [I,By(e), LB (%), -, 1B, 1(e*)]",

where {B;(z)} are orthonormal basis functions in H,(T).

We refer to M, (F, W) in (5.53) as a Block Toeplitz-like Matriz, since for the
case of {By(2)} being the standard FIR (or trigonometric) bases { By (z) = 27*},
M, (F, W) has effectively a block Toeplitz structure® [GS58]. To see this, let us
consider the explicit expression of M, (F, W) for this case. Using properties of
the Kronecker product (see Appendix A) we can write

M W) & 1/WH@WWWN®®WWN%

% —T
= L[ (e 1) Fw) By @ 1) W) e,
= 3 | BB (F) @ W) de

That M,(F, W) has a block Toeplitz structure now follows from the fact that for

the case of FIR basis, the matrix (B, (e})B%(ei)) has itself a Toeplitz structure,
since it is given by

1 v ei2e L. ellpDw ]

e v 1 v co. ellp—2)w

By(e)Bi(e) = | e e i 1 R (S
eiP-0 -2 mip-w ... ]

For arbitrary orthonormal bases {Bj(z)} the matrix form (5.53) will in gen-
eral not have a Toeplitz structure. However, some asymptotic properties of
Toeplitz matrices [GS58, HN77, HW89] will also hold for the form (5.53), what
justifies the name Toeplitz-like we are using. In particular, the following Lemma
provides a result concerning the convergence of a quadratic form of the block
Toeplitz-like matrix (5.53) as the model order p tends to infinity, for the case
of {Bk(z)} being the OBFP introduced in Section 3.5.

Lemma 5.7.1. Let M,(F,W) be the (mnp x mnp) block Toeplitz-like matric
defined in equation (5.53), where F(w), and W(w) (of dimensions (n x n)
and (m x m) respectively) are assumed to be positive definite, Lipschitz
continuous in [—m, |, and with finite dimensional spectral factorizations.

5 A matrix is said to be block Toeplitz if its ¢, j-th block entry depends only on the difference
(i — j) of the indices.
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It is also assumed that all the poles {&} of the basis functions are chosen
in the open unit disc D. Then the following limit result holds

(I3 (1) ® L) My (F,W)(Ty(w) ® Iny) _ { Fw)W(w) ; p=w

lim

Py %' (@) () 0 P nFw
where
p—1
Bw) 2 Ky(w,w) =3 [Be(e)|]
k=0
Proof: See Appendix 5.D. [

Lemma 5.7.2. Let M,(-,-) be the (mnp x mnp) block Toeplitz-like matriz de-
fined in equation (5.53), and let W(w) > 0, X (w) > 0, Z(w) >0 and U(w) > 0
be spectral densities (of dimenstons (n x n), (m xm), (nxn) and (m x m),
respectively) with finite dimensional spectral factorizations. Then there
exists |n| < 1 and K < co such that

(M, (W, X) M,(Z,U)] - [M,(WZ, XU)]

smn+y,tmn-+x smn+y,tmn-+x

<mnI2 (P +n°) (Pt + )

Proof: See Appendix 5.D. [ |

5.7.2 Asymptotic Distribution of the (Vectorized) Tranfer Matrix
Estimate

Based on the convergence results of the block Toeplitz-like matrices of the
previous subsection, we are now able to analyze the asymptotic (in data-length
and model order) distribution of the vectorized transfer matrix estimate. The
result is given in the following theorem.

Theorem 5.7.1. Let ®,(w) and ®,(w) be the input and measurement noise
spectral densities, respectively, and let ®,(w) have a finite dimensional
spectral factorisation. If the poles {&} of the bases (8.14) are all chosen
within the open unit disc D, then as N — oo and p — oo

N [ Blwr) 0 }{@ , [ g(e,7) — g(e*, o) } st
0 7;0(002) i g(ejuua 77) - g(ejuua 770)
BN (0, A(wy, ws))
where

Awr, ws) = [ O (w) ® By (wn) 0 }

0 ! (wa) ® Dy (wo)
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Zf w1 7é wa, and

) 2 Kyww) = 3 [Be(c).

S

=
Il

Proof: By appealing to the results in [Lju87] as summarized in Theorems 2.2.1
and 2.2.2, it is possible to conclude that under the given assumptions

VN (7 =n) 5N (0, P) as N — oo,

where
P, £ R'Q,R,",
Rp é E{V]G(n*)}a
Q £ lim NE{Vi(n) (Vi(n)"},
1 N—-1
Vn(n) = ¥ Z Tr {(yx — (01 @ Ln)n)(yk — (0, @ L))" } .
k=0

Therefore, since
g(e”, ) =T, ()7,
where fp(w) £ I'p(w) ® I, it is possible to conclude that, as N — oo,

—1/2 j n jw1 .
¢N{%wo 0 ] 2, lg@%m—me,m}gg
7y L g€, m) — g(e?, )
dist

— N (O, Ap(wl, CUQ)) ,

where
N '}/p(wl) 0 _1/2 fg(wl) X
Ap(wr,wn) = ([ 0 vp(wz)] ®Imn) [fg(“&)]
—-1/2
&

§§QH*<P%?)%&a] “J'

After some matrix manipulation, A,(w;,ws) can be written as

X

B

[ Th(w)Blp(wi)  Thw)Bply(ws) ]

Yp(wr) ! 2 (wi) 1’ (ws)
Ap(wl,wQ) = _ _ _ _ )
[ (w2) PTp(wi) T (ws) Bplp(w2)

L @)n (@) wlen)
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so that it becomes clear that in order to analyze its asymptotic behavior when
the model order p tends to infinity, we need only to study the asymptotic
behavior of the term

Dy () Bl (wn)
% w1 (w2)

We first provide a frequency domain expression for the covariance matrix P,.
Considering the definition of the matrix I?,, simple algebra gives

(5.54)

' 1 N-1
RPZJ&LI%ON;E{¢IC¢Z®[”1}.

Using now Parseval’s Theorem, and the definition in (5.53), the following fre-
quency domain expression for R, is obtained

1 T

R, =—
P o

() 0y ()T () @ Iy dw = My (®y, I,y). (5.55)

The derivation of a frequency domain expression for (), is more difficult. By
Lemma 5.E.4 and the definition (5.53) (), may be expressed as

1 4 .
Qp = o /_7T Fp(w)(I)u(w)Fp(w) ® P, (w) dw+A, = My(Py, D) + Ay,
— My (By,8,)
where
A 2 o / IE30) © Gy ) ()G ) o,
Gylw) 2 Gle) - G(e™,n,)

Finally, matrix P, can then be written as

P, = M, (D, I,) (My(®,, ®,) + Ay) M, (Do, ),

p

= M, (P, L) My (@, D) M, (Do, Tn) + M, (B, ) Ay M, H (D, ).

p

With this expression for P, the term in (5.54) becomes

[ (w2) Pyl (wi) _ F;(wl)Mp’l(@u,Im)Mp(éu,@V)Mljl(@u,lm)f‘p(wg) N
1/2 1/2 - 1/2 1/2
W' (W)’ (w2) W' (W) (we)
T (w1) M (@, L) Ay M (@4, 1) Ty (w
o DM @0 ) 8V @ b))

w2 (w)? (ws)
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We analyze first the asymptotic behavior of the second term on the RHS of
equation (5.56). For the i, j-th component we have®

’Y;/Q (wl)W;/Q (w2)

f;(wl)Mp—l(@u, L)AM (D, I)T,(w2)
’Y;/Q (wl)W;/Q (w2)

< HMI:I(CDu,Im)H; 1Al

[f;(wnM;l(@u,fmmpM,:l(cbu,fmﬁp(wz)] g
2]

2

where in passing to the second line use was made of the fact [GV89] that for a
given matrix A = (a; ;)

max [a;| < [|All2, (5.57)

and in passing to the last line of the fact that, by Lemma 5.E.6,

I @)llz = /7 (w)-

Considering now that by Lemma 5.E.8, | M, (®.,, Iy)||, is bounded above, and
that ||A,|l, = 0 as p — oo (see Lemma 5.E.9), we can conclude that
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Let us analyze now the asymptotic behavior of the first term on the RHS of
equation (5.56). We can write

= 0. (5.58)
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6Here the symbol ||-||, stands for the matrix induced 2-norm or spectral norm (i.e. the
maximum singular value), not to be confussed with the Hy-norm induced by the inner product
denoted by ||| or [|-[|, -
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We will prove that the last two terms on the RHS of the above equation
(terms (5.60) and (5.61)) both tend to zero as p tends to infinity, and that the
first term (5.59) tends, for w; = wy = w, to ®;'(w) ® ®,(w) when p tends to
infinity.

To proceed with this, let us consider first the term (5.60). By construction,
the elements of the matrix fp(w) are bounded in magnitude by some finite
number K (as defined in equation (5.47)), i.e.

[fp(w)]i

To see this, recall that the elements of this matrix are either equal to zero, or
equal to By(el), and that by Lemma 5.E.2, | By (/)| < K,. Furthermore, by
appealing to the relation (5.57), Lemma 5.E.6, and Lemma 5.E.8 we can write
[F;(wl)Mp—l(cbu,Im)]
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In this case, using Lemma 5.7.2 gives that for some |n| < 1
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so that under the conditions of the theorem we can conclude that for any choice
of w; and w,

f;(wl)ngl(@ua Im)[Mp(Ina ®,) — Mp(q)ua Im)Mp(q)lea (DV)]fp(WQ)

lim =0
bmree ! (wi) ! (w2)
Using an identical argument for the term (5.61) we can conclude that
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Finally, by applying Lemma 5.7.1 to the term (5.59) we have
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what completes the proof. [

As a direct consequence of the previous theorem we have the following corollary.

Corollary 5.7.2. Under the same conditions of the previous theorem, but
with the strengthened requirement on the sequence {e;} of having bounded
eighth moments, then

lim Tim ——Cov {g(e“ )} =&, () ® P, (w).
p—0o N—o0 ’)/p (u)) w
Proof: The result follows by appealing to the results in Chapter 9 of [Lju87]
(as summarized in Theorems 2.2.1 and 2.2.2) and using the same arguments as
in the proof of Theorem 5.7.1. [ |

Theorem 5.7.1 and its corollary provide a generalization to the multivariable
and arbitrary fixed pole setting of the asymptotic results available for single-
input, single-output systems [LY85, Wah91b, Wah94b, VHB95, NHG96], and
for multivariable systems with FIR model structures [YL84].

Apart from this generalizing aspect, the previous theorem and corollary also
have significant utility in providing an approximate expression for the covari-
ance matrix of the (vectorized) transfer matrix estimate. For large model order
and data-length, this covariance matrix can be approximated by

Cov{g(e, )} ~ % P Hw)® P, (w). (5.62)

This approximate expression implies the following component-wise quantifica-
tion of the noise induced error in the frequency response estimate

E {|Gié(€jw) - Gié(ejwv 77*)|2} ~ # [q)zzl(w)]gg [q)V(w)]u :
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The generalizing aspect above mentioned can be demonstrated explicitly by
noting that for the particular case of FIR model structures the factor ,(w) is
given by

-1

p—1
T(w) &Y IB()P =Y [P =p,
0 k=0

S

=
Il

so that the covariance expression reduces to
o~ p B
Cov {g(e, )} ~ % @, (w) @ @, (w),

which is the same expression as that derived in [YL84] where only the FIR
model structure case is studied.

A significant aspect of the approximate covariance expression (5.62) is that
it explicitly shows how the choice of the fixed pole locations affects the noise
induced estimation error. Specifically, equation (5.62) expresses the already
known principle that the noise induce error is proportional to the ’noise-to-
signal’ ratio and the model order, and inversely proportional to the number of
observed data. In addition, it also shows a new phenomenom, viz, that the
choice of the poles affects the noise induced error via the frequency dependent
factor v,(w) (See figure 4.2, where the factor v,(w) is plotted for model order
p = 4 and for various pole choices. It can be noted from this diagram that
for the case of all the poles at the origin, which corresponds to an FIR model
structure, then v,(w) =p = 4.).

5.8 Bias/Variance Trade-off

The results in Theorems 5.6.1 and 5.7.1 provide a complete characterization of
the estimation accuracy and show, as in the SISO case, two different phenomena
of bias/variance trade-off: the well known trade-off with respect to model order
selection, and an until now unrecognized phenomenom of trade-off with respect
to the choice of the poles of the basis functions. The comments we made in
Section 4.5 apply also here component-wise.

5.9 Intermezzo: Brief Overview of Subspace-Based Iden-
tification Methods

For the purposes of comparison with the multivariable identification technique
we propose in this chapter, a brief overview of a class of methods that also pro-
vide MIMO estimates in closed form is presented in this section. The methods
are known as Subspace Identification Methods.
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5.9.1 Introduction

State-space models of the type introduced in Subsubsection 2.1.1.3 are very
convenient to represent multivariable systems for the purposes of control design
and simulation. This is so since many control problems can be solved more
elegantly in the state-space domain, while the solution to these problems is
sometimes more involved, or not so elegant with other representations (such
as transfer functions or matrix fraction descriptions (MFD) [Kai80]). State-
space models have been successfully used to provide accurate descriptions of
many industrial processes. In addition, or rather as a consequence of the above
comments, most of the available CACSD" software packages (e.g., the Control
System Toolbox [GLLT92] for use with MATLAB ®) can handle this type of
models, although most of them also allow some other system representations
such as transfer function models.

Even though traditional PEM can be used for the estimation of state-space
models, typically the parameters in this model structure appear in a nonlinear
fashion so that the minimum of the cost function cannot be computed analyt-
ically. Instead, the estimation will usually involve a computationally intensive
(possibly nonlinear and non convex) iterative optimization procedure, with the
inherent problems associated with these techniques, such as existence of local
minima of the cost function, initialization problems and no guaranteed con-
vergence. Another difficulty of the use of prediction error methods for the
estimation of state space models is the large number of parameters that need
to be estimated (for example consider the case of a fully parameterized state
space model [McK94, McK95]). The number of parameters could be reduced by
resorting to a canonical parameterization (see [Kai80]); however, as pointed out
in [Vib94, Vd94a], the problem of finding a numerically reliable canonical pa-
rameterization for multivariable systems is not trivial and is, to a large extent,
unsolved.

In recent years considerable amount of research has been devoted to the de-
velopment of new identification methods that are able to deliver reliable state-
space models of multivariable dynamical systems directly from input-output
data, and that require only a modest computational complexity without the
need of iterative optimization procedures. These techniques have become col-
lectively known as Subspace-based State-Space System IDentification (4SID)
methods (see for instance the recent book [Vd96] for a unified description of the
different subspace algorithms, and the survey paper [Vib95]), and have their ori-
gin in state-space realization theory as developed in the sixties [HK66, Kun78].
The main computational tools employed by subspace methods are QR and
singular-value decompositions [GV8&9].

All 4SID methods involve at some stage the computation of the extended

"CACSD stands for Computer Aided Control System Design.
8MATLAB is a registered trademark of The MathWorks, Inc.
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observability matrix from input-output data. In [Vib94, Vib95|, subspace meth-
ods are grouped into the following two sub-classes:

e Realization-based 4SID Methods: in which an explicit estimate of the
impulse response coefficients is obtained as a previous step of the esti-
mation of the extended observability matrix [HK66, ZM74, Kun78, LS91,
Liu92].

e Direct 4SID Methods: in which the estimate of the extended observ-
ability matrix in obtained directly from the input-output data [DVM*88,
Ver91, VD91b, VD92, VOWL93, MR93, Ver94, OV94, Vd91la, Vd93, Vd94a,
Vd94b, Vd95a, Vd95b, CV97, Lar90, Lar94|.

The various algorithms, with particular names attached to them, are then
classified according to the way the observability matrix is estimated from input-
output data, and how it is used to compute the system matrices.

In the following Subsection the fundamental concepts of realization theory
will be reviewed and the basic realization-based 4SID methods will be presented.

5.9.2 Realization-based 4SID Methods

We consider the state-space description introduced in Subsubsection 2.1.1.3
(equations (2.8) and (2.9)), which is repeated here for convenience

Tht1 — A$k+Buk, (5.63)
ye = Cxp+ Duy, (5.64)

where x;, € R, y, € R™, u;, € R" are respectively the state, the output and the
input vectors at time k£, and A € R"»*"», B € R*™*" C € R™*"* and D € R™*"
are the system matrices. It is assumed that the pair (A, B) is controllable and
the pair (C, A) is observable (in the sense given by Definitions 2.1.4 and 2.1.5,
respectively), which implies that the realization in minimal with McMillan de-
gree n,.

As already mentioned in Chapter 2, the realization (A, B,C, D) uniquely
defines the input-output properties of the system via

Y = Z g(ﬁ) Uk—¢,
=0

where

D, r=0
9(0) = { CA='B,  £>0

are the impulse response coefficients.



112 5. MIMO Identification using Orthonormal Bases

Classical realization theory [HK66| deals with the estimation of the system
matrices (A, B, C, D) from the impulse response coefficients {¢(¢)}. Most of the
realization algorithms are based on the fact that the impulse response block
Hankel matrix H;; (constructed from the impulse response coefficients as in
equation (2.12)), can be factorized as

Hij = OC;, (5.65)

where O; and C; are respectively the extended observability and controllability
matrices, and that these matrices always have rank n,. Then, if any full rank
factorization of #H;; of the form

Hi; = O,C;, (5.66)

is available, the matrices O; and CAJ in this factorization can be interpreted
as the extended observability and controllability matrices for some realiza-
tion (A, B,C, D) of the system (which will be equivalent to the realization
(A,B,C,D) in (5.63)-(5.64), modulo a similarity transformation). The fact
that #;; has rank n, can be used to infer the unknown system order. The
problem then is the computation of the system matrices from the factorization
(5.66) of the Hankel matrix. Considering the definitions of the extended observ-
ability and controllability matrices in equations (2.10) and (2.11) respectively,
it is clear that the matrices C and B can be  recovered by taking the first block
row of O;, and the first block column of C;, respectively. Furthermore, the
matrix D is readily available from the impulse response coefficient ¢(0).
Regarding the matrix fT, there are several ways to compute it from the
factorization (5.66) of ,;. Before presenting them we introduce some notation.

For a given block matrix H, H will denote the matrix obtained by deleting the
first block row of H, while H will denote the matrix obtained by deleting the
last block row of H. B

One of the methods for computing fT, proposed by Zeiger and McEwen
in [ZM74], follows from the observation that

Hz'j = 6Z121\é;,
so that A can be computed as
A= 0H;C,

where (-)* denotes the right pseudo-inverse’.

9The right pseudo-inverse of the (non square) matrix A is defined as A* £ AT(AAT)~'. Not
to be confused with the left (Moore-Penrose) pseudo-inverse defined as AT £ (AT A)1AT.
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Another possibility, proposed by Kung in [Kun78] (see also [JP85]), is to note
that the observability matrix O; enjoys the so-called shift-invariant property,
reflected by the identity

The matrix A can then be computed by solving (in the least squares sense) this
equation to obtain

A=0, 0,

A dual result can be obtained by exploiting the shift invariant property of the
controllability matrix C;.

This completes the basic deterministic realization-based algorithm. In prac-
tice, however, it is more desiderable to start the algorithm directly from input-
output measurements. This raises the question of how the impulse response co-
efficients can be estimated from input-output data. Several methods have been
proposed in the literature for achieving this. For instance, in [L.S92] a method is
proposed where the response of the system to impulse input signals is directly
measured. Another possibility is to use correlation analysis [Lju87, SS89] to es-
timate the input-output cross-covariance function from which a finite number
of impulse response coefficients can be estimated.

A fundamental aspect of the realization algorithms not considered yet is
the way the factorization (5.66) of the (estimated) impulse response Hankel
matrix is performed, as well as the rank determination needed to estimate the
system order. This issue is important for the case in which the impulse re-
sponse is corrupted by noise (or it has been estimated from noisy data) because
the rank determination of a matrix is very sensitive to perturbations on its
entries [GV89]. Both the Zeiger-McEwen [ZM74] and the Kung [Kun78| algo-
rithms employ the singular-value decomposition (SVD) [GV89] to factorize the
impulse response Hankel matrix.

The SVD of H;; is defined as:

Hij = [U1Us) [201 202] {“2;] : (5.67)

where U = [U,Us] and V' = [V}V;] are orthogonal matrices whose columns are
respectively the left and right singular vectors of H;; , and where

X 0
== [0 2
is a diagonal matrix containing the singular values of H;; in non-increasing
order, with 3; containing the n, largest, and ¥, the (min(i, j) — n,) smallest.
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For the case in which the impulse response is not corrupted by noise, H;; has
rank n, and then ¥, = 0. In this case equation (5.67) can be written as

Hz] — Ulzl‘/lT — <U12}/2> <E}/2‘/1T) ,
which provides the factorization (5.66) by choosing

= U121/27
= o?y7

S O

When the available measurements of the impulse response are noisy, the
matrix H,; will in general have full rank and therefore a rank reduction step will
be necessary. This rank reduction is provided by the SVD, but the user must
decide which is the number of significant singular values or equivalently which
is the system order. Once the system order is given, a low-rank approximation
of H,; can be computed as

Hy = (U@}/?) (2}”#) ,

but now 7:22']' will in general not be a Hankel matrix, neither the estimates of @
and é\] will have the shift invariant property. As a consequence, the algorithms
will provide only approximate estimates of the system matrices. Some results
concerning the quantification of the error induced by the noise corruption of
the impulse response data are given in [Kun78] and [DD87].

5.9.3 Direct 4SID Algorithms

In the direct 4SID algorithms, the impulse response Hankel matrix is not re-
quired for the estimation of the extended observability matrix that can be
computed directly from the input-output data. This represents an advantange
with respect to the realization-based algorithms, since in practice the impulse
response coefficients are difficult to measure.

We describe the basic direct 4SID algorithms corresponding to two different
cases, namely:

e Deterministic Case, where the unknown system is assumed to have only
deterministic inputs (uy).

e Combined Deterministic-Stochastic Case, where the unknown system is
assumed to have both deterministic (u;) and stochastic (wy, and vy ) inputs.
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5.9.3.1 Deterministic Case

We consider that the unknown system has the state-space representation given
in (5.63)-(5.64). The identification objective is to estimate the model order n,,
and the system matrices A, B,C and D in (5.63)-(5.64) from N samples of the
inputs u;, and the outputs y,. Before presenting the basic deterministic 4SID
algorithm we introduce some notation adapted from [Vd96]. The input block
Hankel matrix is defined as

UO U’l PR U’jfl
U1 (%) s Uj
UO- A Ui Us crr Ujyg—2 Y |-U£7-| Y |-Up-| (568)
2 ui o uin oo g | (U] U]
Uivr  UWig2 -t Uity
LU2—1  Ug; = Ukyj—2]

where:

e The superscript in the matrices Ugm-, Ui[fj and Uii’j denotes the subscript of
the first element of the first row, the first subscript denotes the number
of block rows, and the second subscript, the number of (block) columns
of the block Hankel matrix.

e The input Hankel matrix Ugm- is partitioned off into two parts of ¢ block

rows each. Somewhat arbitrarily, the upper part U, = Ui?j will be called
the past inputs (with the subscript ‘p’ standing for ‘past’), while the
bottom part U; = Uii’j will be called the future inputs (with the subscript
‘f’ standing for ‘future’).

e The number of block rows 7 has to be larger than the expected order of
the system to be identified.

e Typically, the number of columns j is such that all the available data is
used. That is, if /V is the total number of data, then j = N — 21 + 2.

The output block Hankel matrices V7, ;,

The state sequence matrix is defined as:

Y, and Y} are defined in similar way.
XJO £ [l‘o,l’l,"' ,l‘jfl], (569)

where the superscript denotes the subscript of the first element of the state
sequence, and the subscript denotes the number of columns. To be consistent
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with the definitions of the past and future inputs and outputs we define the
past state sequence as

X, = X7,
and the future state sequence as
Xy £ X1
The block lower triangular Toeplitz matrix H; is defined as
[ D 0 0 0]
CB D 0 0
H, 2 | CAB CB D 0,
: : : o0
_CAi”B CA*3B CA™B ... D]

where the subscript indicates the number of block rows of the Toeplitz matrix.
With these definitions, the following matrix input-output relations can be
derived from the state-space representation (5.63)-(5.64)

YQ[z',j OQiX](') + HQing"ja (5.70)
Y, = OX,+ HU, (5.71)
Yf = Oin —i—HiUf. (5.72)

Furthermore, the following ‘state equation’ relating the past and future state
sequences can also be derived from (5.63)-(5.64)

X;=A'X, + C["U,, (5.73)

where CI¢ is the reversed extended (deterministic) controllability matriz de-
fined as

c/ £ [AT'B,A*B,--- ,AB, B],

with the subscript 7 denoting the number of block columns, the superscript r
standing for ‘reversed’ and the superscript d standing for ‘deterministic’.

From equations (5.73) and (5.71), the future state sequence matrix X, can
be written as a linear combination of the past input U, and past output V),
Hankel matrices. To see this, we compute X, from (5.71) and substitute into
(5.73), to obtain

X; = AO!(y, - HU,) +CU,,
= (crt—aolm) v, + a0k,

_ [(C{d—AiOZTHi) Aioj] lgﬂ

= Ly i Wy, (5'74)
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where in passing to the last line we have defined the block Hankel matrix of
past inputs and outputs W, = W2, = [U] YpT]T (with the subscripts and
superscript in W), having the same meaning as in U/?;), and the matrix L,
relating the past inputs and outputs with the future states

Ly 2 [(C;d —Aiojﬂi) Aioj] .

From these equations it is possible to compute the extended observability
matrix O; and the future state sequence matrix X, based only on the input-
output data. The main tool employed is the singular value decomposition
(SVD). The basic deterministic algorithm proceeds as follows.

Algorithm 5.9.1 (Deterministic Algorithm).

1. Perform the full SVD of the Hankel matrix of future inputs Uy

T T
Up=2[2 0] |gb| = oxef.
Now notice that since ¥ = [¥; 5] is an orthogonal matrix, then ¥7'¥ =
I, so that
T, =0,
and then
U0, = 0.

We can then define the orthogonal complement of U as
Up £,

Multiplying the input-output equation (5.72) from the right by U fL then
gives

YiU; = O XUy (5.75)

Substituting the expression for X, in (5.74), in the previous equation we
obtain

YiUj = O;L,,;W,U;,
so that we can write

OiLy; = ViU (WUH) .
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Finally, multiplying both sides of the above equation from the right by
W, yields

0, X; = Y;Uf (W,UH)' W, (5.76)

Now the matrices O; and X can be obtained by performing the SVD of
the matrix on the right hand side of the equation above. Note that this
matrix depends only on the available input-output data. It can be proved
that the matrix on the right-hand side of equation (5.76) is equivalent to
the obligue projection of the row space'® of the future outputs Y} along
the row space of the future inputs U, onto the row space of the past inputs
and outputs W), defined as

T
P& (v; = YpUF (UUF) 0p) (W, = WoUT (UsUF) U ) W,

. Perform the SVD of the matrix P; = Y;U} (WprL)i W, to obtain

s, 0] [V
P, = O:X; = [hT)] {01 EJ [V;T} (5.77)

In the noise free case, ¥> = 0, and then

P =Y;UF (W,UF) W, = 0:Xy = UiV = (Uisy?) (S1/70).

The order n, of the system (5.63)-(5.64) is given by the number of singular
values different from zero in (5.77), i.e. by n, = rank ().

The extended observability matrix is given by

O; = (U@}ﬂ) .

The future state sequence is given by
Xy = (zv).

System Matrices: The system matrices can be computed basically in two
different ways. One of the methods uses the extended observability matrix
O;, and the other one uses the future state sequence X;. We describe here
the first method.

10The row (column) space of a matrix A is the space spanned by the rows (columns) of A.
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e Matrix A can be computed by exploiting the shift-invariant property
of O;, as in the realization algorithm by Kung [Kun78|, as described
in Subsection 5.9.2, i.e.

A=00;.

e Matrix C' can be computed by taking the first block row of O,.

e Matrices B and D. With matrices A and C' known, matrices B and
D can be computed from the input-output equation (5.72) as follows.
Compute a full row rank matrix O;" such that O;*O; = 0. A natural
candidate for O;" is the matrix U] in (5.77). This is so since matrix
U = [Uy U] is an orthogonal matrix and then U] U; = 0, which
implies U] O; = 0.

Multiplying the input-output equation (5.72) from the left by O;,
and from the right by U}, we obtain

0, Y;U} = O} H,, (5.78)

which is a set of linear equations in the matrices B and D (provided
that matrices A and C are known). The system is typically overde-
termined (for the case of noisy data) and it can be solved for B and
D in the least squares sense (see [DVM™'88], or [Vd96] for details).

This concludes the basic deterministic 4SID algorithm. At several points in the
algorithm some matrices are assumed to have full rank or to be nonsingular. In
order for this to be ensured, the following assumptions have to be made [Vd96]

i. The input u, is persistently exciting of order 27, in the sense given by
Definition 2.1.3.

ii. The intersection of the row space of Uy and the row space of X, is empty.

¢

5.9.3.2 Combined Deterministic-Stochastic Case

We consider now that the unknown system has both stochastic (wy, and v;) and
deterministic (uy) inputs. A state-space representation of the combined system
was introduced in Subsubsection 2.1.1.3, in equations (2.5), (2.6) and (2.7). For
the reader’s convenience, we rewrite these equations here.

Tpt1 — Al‘k + Buk —+ Wk (579)

((m)en)-($ ) om
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The identification objective for this case is to estimate the system order n,, the
system matrices A, B,C and D, and the second order statistics of the process
and measurement noise defined by the covariance matrices (), S and R, from N
samples of the inputs u; and outputs y.

Before presenting the algorithm we need to introduce some notation. The
system (5.79)-(5.80) can be regarded as the superposition of two subsystems:
one reflecting the influence of the deterministic input (uy), which will be called
the ‘deterministic subsystem’, and the other one reflecting the influence of the
stochastic inputs (the noise sequences wj and v;), which will be called the
‘stochastic subsystem’. The state variable x; and the output ¥, can accordingly
be written as the superposition of a deterministic and a stochastic component,
as follows

T, = T+ 7], (5.82)
Yk = Ui+ (5.83)
where the superscript d denotes ‘deterministic’ and the superscript s denotes
‘stochastic’. The deterministic subsystem is then given by
i, = Ax{+ Bu,
yl = Caf 4 Duy,

while the stochastic subsystem by

i, = Axp 4wy,
vp = Cuxj +vy.
It is assumed that the pair (4, C) is observable, and that the pair (4, [B Q'/?])
is controllable, which implies that all the modes of the system are excited either
by the deterministic input u; or by the process noise wy.

The processes w; and v, are assumed to be zero mean white noise vector
sequences independent of =}, which implies that

E {va,{} = 0,
E{zjw.} = 0.
It is also assumed that the process {z]} is stationary, so that
E{z}}
E {z}(a1)"}
where the stochastic state covariance matrix ¥, is independent of the time k. It

is not difficult to show that ¥, satisfies the following Lyapunov equation [Vd94a,
Vdos]

0,
ZIJ

> 1l

Y, = AS, AT + Q. (5.84)
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The stochastic output covariance matrices are defined as

A = E{yia(n) ) (5.85)
and the cross-covariance matrix between stochastic outputs and states as
G 2 E{aj, ()"} (5.86)

It is straightforward to show that the following identities hold:

Ao 2 E{yi(y))"} =CZ,C" + R, (5.87)
G = A% CT+ S, (5.88)
and, forz=1,2,---,
A, = CATG, (5.89)
A, = GT(ATHTCT. (5.90)

The reversed ezxtended stochastic controllability matriz C;° is defined as
cr £ [AVG, ATG, .-+, AG, (],

where the subscript ¢ denotes the number of block columns. The following block
Toeplitz matrices can be constructed from the output covariance matrices A;

A Ay Ais e A

M, o2 Ai.—l—l Az Ai.—l A.Q — 0, cr, (5.91)
Mo Aois Aoy oo A,
Mo Ay A - A

N; £ A.l A.O A._l N A%_i (5.92)
A Ae A oo A

Consistently with equation (5.82) are defined the deterministic X jd and the
stochastic X" state sequence matrices as

>

-d
i d d d
Xj [xia Tii1s 't xi—i—j—l] )

X]Z:S < [‘Tzsa xf—l—l) T xf—l—j—l} .
It is obvious that these matrices satisfy

i d s
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Similarly as we did for the deterministic case in Subsubsection 5.9.3.1, we define
the past and future deterministic and stochastic state sequences as

d & 04 d & it
Xp_Xj ’Xf_Xj’

s A y0° s Ayl
Xp_Xj ’Xf_Xj’

and the past and future deterministic and stochastic block Hankel output ma-
trices as

LIAYG LYY

4,77
VEYS VAV
The matrix input-output equations for this case, analogous to equations (5.71)
to (5.73) in the deterministic problem, become

Y, = O:X]+HU,+Y,;,
Yy = O X{+ HU;+Yj},
d __ i yvd rd
X; = AX;+ (U,
The algorithm for this combined deterministic-stochastic case is based on
the computation of the extended observability matrix O, and a non-steady state

Kalman filter estimate of the state sequences (we will denote this estimate by
X JZ) from input-output data. The system matrices are then recovered from O;

and Xi.
J
The non-steady state Kalman filter estimate 7, of the state x;, given the
input and output measurements wug, uy, .-, ur_y and yo,y1, -+, Yp_1, 1S given

by the following recursive expressions (see [Vd94a, Vd96] for the proof of this
result)

T = Axp_ + Ki_q (yk—l — CTp_y — Duk_l) , (5.93)
Kiq = (G— AP ,CT) (Ag—CP,,CT) 7", (5.94)
P, = AP AT+ (G — AP, ,.CT) (Ag— CP, ,CT) ™' (G — AP, ,CT)",

(5.95)

with initial state estimate 7y, = 0, and initial covariance of the state estimate
P,. The Kalman filter estimate can be explicitly written as

- A~ -

xo

Ug

B o= [AP -0 | G- H | Q) |we |, (5.96)
Yo

| Yk—1
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where the matrix €, is defined as
Q2 (Cpf — A*ROT) (N, — O ROT) ™"

Equation (5.96) shows that the Kalman filter state estimate 7y, is a linear com-
bination of the past inputs and outputs ug, uq, -+, ug_1,v0, 1, , Yx_1, and the
initial state estimate 7. We can then compute the Kalman filter state estimate
sequence matrix as

.

) A A~ ~ ~
Xj = [xi: Titls " xi+j71],

— i O.(). rd _ (). F. . 5(:0
— [A-0 | [C Qm|smwmy

where )A(o is the sequence of initial states. This equation can be interpreted as
a bank of Kalman filters working in parallel in each of the columns of the block
Hankel matrix of past inputs and outputs W,,.

We are now able to present the basic combined deterministic-stochastic al-
gorithm. The algorithm proceeds as follows:

Algorithm 5.9.2 (Combined Deterministic-Stochastic Algorithm).

1. From the input-output data compute the oblique projection of the row
space of Y along the row space of U; on the row space of IV,

T
P& (v; = YpUT (UUF) 0p) (W = WoUT (UsUF) U ) W,

In [Vd94a, Vd96| it is proved that in the limit when the number of mea-
surements N — oo (and consequently j — oo), the matrix P; equals the
product of the extended observability matrix OJ; and the Kalman filter
state sequence estimate X;, ie.

P = O:X},

where the Kalman filter is run from particular values of the initial esti-
mates Xy and Py, which are computed from the input-output data. The
interested reader is referred to [Vd94a, Vd96] for the details.

2. Perform the SVD of the matrix P; to obtain

i ¥ o] [viF 1/2 1/2
%z@ﬂfﬂ%%ﬂo J%&]:@vh)(&xf) (5.97)

3. The system order n, is equal to the number of singular values different
from zero in (5.97). That is n, = rank (3;).
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4. The extended observability matrix is given by

Oi - UIE}/2

5. The Kalman filter state estimate sequence matrix is given by

i 1/2
Xi=wVI.
6. System matrices: As in the purely deterministic case, there are several

ways to compute the system matrices from the extended observability

matrix and the Kalman filter state estimate sequence matrix. We don’t
analyze this topic here and refer the interested reader to [Vd96|.

¢

The N4SID! algorithms [Vd94a], MOESP!? algorithms [Ver94], and CVA!?
algorithms [Lar90, Lar94| are variations of Algorithm 5.9.2, where the matrix P;
is weighted with different matrices for each case, before the SVD is performed
(see [Vd94a, Vd96] for details).

5.10 Simulation Examples

In this section, the proposed method for identification of multivariable systems
using OBFP is illustrated with a brief simulation study.

An underlying continuous time multivariable system, with m = 2 outputs
and n = 2 inputs and with transfer matrix representation given by:

0.le”5 1
Gls) = (s + 1())F.291+ 0.1) (s +O???2(2j50.5) (5.98)

(s+0.7)(s+0.3) (s+0.4)(s+0.8)

is considered. It is assumed that there is available an observation of N = 2000
samples spaced 1 second apart of the outputs {y.}, {y?} of G(s) when the in-
puts {u}}, {u?} are unit amplitude square waves of fundamental frequencies
0.02 Hz and 0.05 Hz respectively. The output data is corrupted with station-
ary and white Gaussian distributed noise of variances o2, = ¢% = 0.001 and
with colouring filter H(q) = I. Based on this observed data, the identification
objective is to estimate the dynamics of the zero order hold equivalent [AW84]

N4SID stands for “Numerical algorithms for Subspace State Space System IDentification”.
I2MOESP stands for “Multivariable Output-Error State sPace”.
I3CVA stands for “Canonical Variate Analysis”.
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discrete time system

(0.03552 + 0.0247) (0.23642 + 0.1038)
B |2z = 0.0048)(z — 0.3679) (= — 0.6065)(z — 0.1353)
G(2) = ZOHA{G(s)} = | ™ (0.07602 + 0.0545) (0.1087z + 0.0729)
(z— 0.7408)(z — 0.4966) (2 — 0.6703)(z — 0.4493)
(5.99)
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imag
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-0.5 0 0.5 1 15 -0.5
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imag
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Figure 5.3: Left hand figure shows the true (solid line) and estimated (dash—
dotted line) frequency response. The estimate was obtained using a fized
denominator structure and a least squares criterion with N = 2000 samples.
The four plots shown are the four possible responses from the 2 inputs to
the 2 outputs. The right hand figure shows the true poles as crosses and
the a-priori guesses as circles.

In the left hand diagram of Figure 5.3 we show the results as true and
estimated Nyquist plots (for each of the four scalar entries of the estimated
transfer function matrix) when using the least squares estimation methods of
Section 5.4, and the fixed denominator model structure of (5.16)-(3.14). Five
estimates based on five different noise realizations are shown as dash—dotted
lines while the true frequency responses are shown as solid lines. The poles in
the structure (5.16)-(3.14) where chosen at

{&} = {0.2231,0.8187,0.0498, 0.3329, 0.2466, 0.5488, 0.5220, 0.2019} .

These choices correspond to an eighth order model and 32 scalar parameters
being estimated. The choice of the pole locations is of limited accuracy as
illustrated in the right hand diagram of Figure 5.3 where the true pole locations
are shown as crosses, and the above choices are shown as circles.

Another estimation approach was also investigated whereby a state space
model structure was found using a standard prediction error identification
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True and Estimated G11(jw) True and Estimated G12(jw) True and Estimated G11(jw) True and Estimated G12(jw)
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Figure 5.4: Left hand figure shows estimation results over five different
noise realizations when using an 8th order state-space model structure and
a prediction error estimation method. The right hand figure shows the
results using the same five noisy data records and the same model structure,
but using an N4SID method to obtain the estimates. In both cases the
true response is the solid line and the estimates are the dash—dot lines.
(N = 2000 samples)

algorithm, implemented with The Mathworks’s System Identification Tool-
box [Lju95] along the lines suggested in [Lju91]. In this case, an eighth order
model was used to capture the eight different poles in (5.98). This implies
(after a suitable canonical form for the state space model structure is selected)
the estimation of 48 parameters. The same data used to provide the estimates
shown in Figure 5.3 were used to derive the prediction error method estimates.

The results are shown in the left hand diagram of Figure 5.4. As can be
seen, the results are more accurate than for the fixed denominator structure,
but as reference to Table 5.1 shows, they involve two orders of magnitude
more computation. On the other hand, the derivation of the state—space model
structure estimate does not require approximate prior knowledge of the location
of system poles.

Finally, a sixth order state-space model was estimated using the Subspace
State Space System Identification (N4SID) algorithm proposed in [Vd94a] (see
the combined deterministic-stochastic algorithm in Section 5.9). The results
are shown in the left hand diagram of Figure 5.4. The results are as accurate as
for the prediction error method estimates, but as reference to Table 5.1 shows,
they involve an order of magnitude less computation.

To complete the simulation example, this set of identification experiments
was repeated with the only change being that the amount of observed data
was decreased by 80% to 400 samples. The results are shown in Figures 5.5—
5.6. The key point to notice is that the variability of the parameter estimates
increases only slightly (as compared to the 2000 sample case) when using the
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‘ Method ‘ # of Parameters ‘ Flops ‘ Order ‘ Addit. Inform. ‘
OBFP 32 4.59 x 10° 8 Guesses for Poles
PEM 48 1.42 x 10® 8 Obs. Indices: [4 4]
N4SID | 72 (D=0; X0=0) | 3.92 x 10" 6 Aux Order: 10

Table 5.1: Computational Load of different Identification Methods (N=2000
samples)

True and Estimated G11(jw) True and Estimated G12(jw) True and Estimated G11(jw) True and Estimated G12(jw)
0.5 0.5 0.5

0 : - 0
W
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Figure 5.5: Same experiment as shown wn left hand diagrams of Figures 5.3
and 5.4 but with only 20% the amount of observed data (400 samples).
Fized denominator model structure on the left and state—space structure
estimated using prediction error method on the right.

fixed denominator structure, but increases very markedly when estimating a
state-space model structure with a general prediction error method or with a
subspace method. This deterioration of performance for relatively small amount
of observed data comes to no surprise for the case of subspace methods which
provide accurate estimates only when the number of data is large (when N —

Together, these examples suggest that if prior knowledge of pole positions
is available, and specially if only short data records are available or if compu-
tational load is a serious concern, then estimation using a fixed denominator
model structure (re-parameterized using Orthonormal Bases with Fixed Poles)
can yield improved results when compared to state-space structure estimates
using prediction error or subspace methods. However, if no prior information
is available, (and if the calculation of confidence regions valid for finite data is
not required) then it is likely that Subspace Methods will yield better results.
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Figure 5.6: Same experiment as shown in right hand diagram of Figure 5.4
but with only 20% the amount of observed data (400 samples). State—space
model structure estimated by N4SID methods.

5.11 Conclusions

In this chapter we have studied the problem of identification, from input-output
data in the time domain, of discrete-time linear multivariable systems using
fixed denominator model structures and least squares techniques. The esti-
mation accuracy has been analyzed by quantifying the undermodelling error
and the noise induced error. Fundamental in this analysis has been the re-
parameterization of the fixed denominator model structure using rational or-
thonormal bases with the same fixed poles. The main contributions of the
chapter have been the extension to the multivariable setting, and to the case of
using general orthonormal bases with fixed poles, of some single-input, single-
output FIR results concerning the asymptotic (in model order and data-length)
distribution of the frequency domain estimation error. Fundamental in the
derivations were some results on convergence properties of block Toeplitz-like
matrices that were also established in the chapter. As in the SISO case, a new
phenomenom of bias/variance trade-off with respect to the choice of the poles
in the model structure could also be recognized in the multivariable setting of
this chapter.

The numerical robustness of the proposed identification scheme was also ana-
lyzed, and it was shown that the estimation with an orthonormal structure does
not necessarily guarantee a better numerical conditioning when compared with
the estimation using an equivalent (with the same fixed poles) non-orthonormal
structure, the exception being the case of white input in which the estimation
with an orthonormal structure is perfectly numerically conditioned.

For the purposes of comparison with the orthonormal basis-based estima-
tion method proposed here, a brief overview of Subspace Methods, which also
provide closed form estimates, was presented in this chapter. The simulation
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results showed that both methods have a similar performance, specially when
prior information about the system dynamics is available and a relatively small
amount of data is observed.

APPENDICES

5.A Proofs for Lemmas 5.3.1 and 5.5.1

Proof of Lemma 5.3.1 From the definition of the bases {B}/(z)} in equation
(3.28) we can write

0 ... 0 ... 07
Bi(z)= Bi(z) |0 ... 1 ... 0| «i
L0 ... 0 ... 0]
T
J
so that
[0 0 07
0B (2) = Bu(z) |0 ... 07 ... 0| <i
L 0 0 0 ]
/]\
J
Then
m n o, ... o
Yo BI() = | i i | Buz) = 6] Bu(2)
=1 j=1 ot ..o
and the result follows straightforwardly. [ |

Proof of Lemma 5.5.1 Using Parseval’s Theorem, Ep can be given the following
frequency domain representation

R, = % / "L ()@ ()TH () do, (5.A.1)

—T
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where [',(¢/) is defined in equations (5.20) and (5.21). Then, appealing to the
orthonormality of the bases we can write

™

B, > infol@w)] 5 [ T do

m
= infg[®,(w)]lnp-

—T

Using a similar argument for the upper bound we obtain

ﬁp < sup [Py (w)] % /Tf ()5 (e) dw

w ™

= Ssup E[(bu (w)]]np-

w

The result now follows straightforwardly. [

5.B Proofs for Lemmas 5.6.1 and 5.6.2

Proof of Lemma 5.6.1 Let the true system be represented by

ye = G(q) ug, + vy,

where
Glq) =Y OeB(a),
k=0
and let ©g £ [07,6],--- 67 ] be the *true’ truncated parameter matrix, and )

the least squares estimate as given in equation (5.26). Then the error between
the parameter estimate and the true truncated parameter matrix is given by

0206 -0,
Considering equation (5.26) in the limit when N tends to infinity, we can write

E{6:0f} 6 =E{owy/}, (5.B.2)

where the notation
1 N-1
_ s 1
E o} & Jim 5 D> B fon)
k=0
due to Ljung [Lju87] has been used. Now, since

e = 006+ > 0] By(q)ur = O ¢y + 2,
L=p
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where 2z, £ [G(q) — G(q,O0)]uy = > e, 07 Be(q)ux, then

E{owyi } = E{ono} } O0 + E {p7 } .

Equation (5.B.2) can then be written as

E{¢0]} © =E{¢40]} 00+ E{dp] },

so that the error between the parameter estimate and the true truncated pa-
rameter matrix is given by

O =RE{¢sl}, (5.B.3)

where the definition R, 2 E {¢,¢7 } has been used.
Therefore, the error in the transfer matrix estimate is given by

-~

G(e) — G(e,0) = E {2l } R, T, () +29T5’g el),

{=p

and then

i’j

“G(ej“’) _ G, @)]

_ [E {2k0p } By 'Ty(e) + > 07 By(el)

l=p i
< [E{zkasz}é;lrp(em]” >
< |E Tn(e) H2+Z\9” [Bi(e)]

V(W HE{Zk¢T}H2 ZW’HB @) (5.B.4)

inf, o(®P,

Now, by Parseval’s Theorem, we can write



132 5. MIMO Identification using Orthonormal Bases

so that
[E i}, < Sl g7 [ B momieas]
< LIl / Bt @)l 3006, o
< Kisupo(® ZWHQZ / V@),
< Kivmnsup /(@) sup (@ Zmax 1071,

with the constant K defined in the statement of the lemma. Substituting back
in equation (5.B.4) then yields the result. |

Proof of Lemma 5.6.2 Equation (5.43) can be interpreted as the norm mini-
mization problem

0, = argmln{HG (e) — G(e, 0 H }
OeRnPXM

where ||-||, stands for the norm on the Hilbert space H,"*"(T) induced by the
inner product

(F W), = 2i /_ T {F(69) B, (w0) () dw.

™

Now, since G(e, ©) is in the subspace of (Hy*"(T), ||-||,) spanned by the basis
functions {B,(e)} 4, then by the Projection Theorem

<G(ej“’) — G(e,0,),G(, @*)>u =0
so that
jw jw jw 2
<G(eJ ), G(€ ,@*)>u = HG(@J ,@*)Hu.
Use of Cauchy-Schwarz inequality then gives the result. [

5.C Relation between the estimates 77 and O

Lemma 5.C.1. Let O be defined as in equation (5.19) and n as in equation
(5.49), then the least squares estimate 1) of ) is related to the least squares
estimate © of © according to

n=vec O

14To be precise, by the matrix bases {B;;:j(ej“)}.
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Proof: The least squares estimate 7 of 1 is given by

-1 N1

N-1
n= (Z ¢k¢kT> Zwkyk (5.C.5)
k=0 k=0

Considering that v, = (¢ ® I,,) we have
Oy = (0r ® L) (9f © L) = iy, ® Iy

and then
N-1 N-1
Zwkwk = (rd ®In) = (Z qbkqﬁf) ® In
k=0 k=0
so that
N-1 -1 N-1 -1
(Z Yy ) = (Z askas,f) ® I,
k=0 k=0
Furthermore

N—1
Zwkyk Z r @ L)Y
k=0

Equation (5.C.5) can then be written as

N-1 -1 N-1
0= (Z qﬁkqﬁf) ® I | > (0% © Im)ui (5.C.6)
k=0 k=0

On the other hand, the least squares estimate O of O is given by

(X mk)T (Sot) -

-t N-1
¢k¢T> ® I | vec {Zykqﬁ{} (5.C.7)
k=0

so that

2

vec BT (
vec {

=
i

0

But

=

-1 N—
yk¢f} = ZVGC {yedy }

=
Il
[e=)
=
o

=

= (¢k ®Im) vec Y,

=
I
=)

=

= (0 ® Im) Y

=
I
=)
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In this case equation (5.C.7) can be written as

vec T = Nz_lqﬁ or 1®I Nz_l(¢ ® Ip)
- kP m k m)Yk- (5.C.8)
k=0

The result then follows by noting that the right hand sides of equations (5.C.6)
and (5.C.8) are equal. |

5.D Proof of Convergence of Block Toeplitz-like Matrices

Proof of Lemma 5.7.1 Let B,(w) denote

B,(w) = B, (") £ [By(¢"), Bi(e), -, B, 1(e¥)]" . (5.D.9)
Then
Ip(w) = By(w)® I,
T(w) = Byw)®I,® I, =By(w) ® Lum,
so that

L )Ty(o) = ( »(1) @ 1)(Bp(0) @ 1),
= ( )By(0) @ In,

= ZBk(ej”)Bk(ejg) ® I,
k=0
= KP(O', N) ® I, = Kp(O', N)Ina
and similarly

[ (o) (w) = Ky(w, 0)In,

where K,(-,-) is the Reproducing Kernel associated with the orthonormal sys-
tem {Bi(z)}. Now we can write

T () My (F, W)Ly (w) =
1 ™

= 5 | [T @ L) (Ty(0)F(0)T5(0) @ W(0)) (Ty(w) @ I)do
— o [ T @ F eI @) © W o)ds

_ %/_:KP(U,M)K,,(M,U) (F(0) ® W(0))do (5.D.10)
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Considering the case ¢ = w the previous expression becomes

zg B

Fy My (F. W) = 5 [ 10 (F (o) © W(o) do

Therefore, using Lemma 4.C.1, we have

f;(N)Mp(Fa W)fp(w)
(W)

—Flw)@W(w) =

1/~ -
- fyp(w) (Fp(ﬂ)Mp(Fa W)Fp(w) - 7p(w)F(w) & W(w))
1 T )
= 557 | o)l (o) 0 Wio) = Flo) 8 W(w) do

Considering now the 7, j-th component of the above matrix difference, we have

f;(ﬂ)Mp(Fa W)fp(w)
Yo (W)

— F(w)® W(w)] <

(]

1 m )
: 21y (w) /W Kp(w, o)l ‘[F(J) ® W(U)]i,j —[Flw)® W(w)]i,j do
1 2
— 2mp) /(,EQ Kp(w,0)” |[F(o) ® W(0)];; — [F(w) ® W(w)];| do +
1 2
+%ﬂ®lmmwwm[mw®w@m—ww®wwmda
(5.D.11)

where Q = [w — d,w + ¢], for some 0 > 0. Now, since F(w) and W (w) are
assumed (component-wise) continuous, then for an arbitrary ¢ > 0 there is a ¢
sufficiently small such that

F@)@W(©@), — [FWw) e WW),| <=

i,j
for 0 € Q). Therefore, using this and Lemma 4.C.1 the first term on the RHS
of equation (5.D.11) can be bounded as

1

_ do <
21 (w)

| ol [P o W, - Fw) e W,

"o [ o) de =

<
N 271—710 (w) -

On the other hand, since F(w) and W (w) are continuous on compact [—, 7],
then [F(w) ® W(w)]; ; is bounded by some constant M /2 < co. Therefore, the
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second term in the RHS of equation (5.D.11) can be bounded as

1

S ) o o [IF @) @ W, — P @ Wl e <

M
<o | Ke0) o
27"71!7((")) o¢Q

We finally have

f;(ﬂ)Mp(Fa W)Ly (w)
Yo (W)

— Fw)® W(w)] <
M "

€+7/ K)(w,o >do
27T’YP(CU) J¢Q| p( )|

Using Lemma 4.C.1 and the fact that ¢ is arbitrary then gives the result for

H=w.
|

Proof of Lemma 5.7.2 The (smn +y, tmn + z)-th element of matrix M, (W, X)
is given by
| Y —
[MP(VV’ X)]smn-i-y,tmn-i-x = %/ BSBt[W(w) ® X(w)]y@dw
= <Bs, Bt[W X X]y,x> .
Therefore

(M, (W, X)M,(Z,U)] =

smn—+y,tmn+x

[MP(M/? X)]smn—l—y,kmn—l—r [MP(Z’ U)]kmn—l—?",tmn-i-fc

(BJW & X1, Bi) (Bi[Z @ Uly, Br) (5.D.12)

On the other hand
1 [
[Mp(WZ,XU)] = — B, B, [WZ®XU]W dw

smn+y,tmn-+x o .
| Y A —
_ —/ BB, (W e X)(ZeU)],. du
2 o Y,

Considering that

mn

(WeX)(ZaU),, =Y WeX],,[ZeU.

r=1
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we can write

mn 1 - L
[MP(WZJ XU)]smn—l-y,tmn—l-x = Z % / Bth[W X X]y,r [Z (%9 U]mdu)
r=1 -
= N (BIW®X],, BlZ®U],.) (5.D.13)
r=1

Now, from equations (5.D.12) and (5.D.13), and Lemma 5.E.10 we have

M,(WZ,XU)]

smn+y,tmn+zx - [ smn+y,tmn+tz =

[0, (W, X)0,(2,0)]

>

r=1

Z S[W @ Xy, Br) (B[ Z @ Uly, Bi) — (Bs[W @ X1y, Be[Z @ Uly.)
Pt

mn |p—1
< Z Z B [W @ X]y T > <Bt[Z ® U]rmBk) - <BS[W @ X]y,rvBt[Z ® U]r,x>
k=
< WXy, — Vo, [Z®Ulpy — Jra . (5.D.14)
where
p—1
Vyr(Ww) = (B[W @ X1y, Br) Bi(w)
k=0
and
p—1
(B Z @ Ulyz, Bi) Br(w)
k=0
But by Lemma 5.E.11, for some K < oo and |n| < 1 we have
W@ Xy =Vl < KGP +7)
‘ Bt[Z ® U]r,:r - :];,z S K(npit + 77t)
Ho>
Substituting this into (5.D.14) then gives the result. |

5.E Technical Lemmas

Lemma 5.E.1. Invariance of LSE under linear re-parameterization. Let the pa-
rameterized model be given by

yk = G(q, O)ug + v, = O7 ¢y + 14 (5.E.15)
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where
G(g,0) £ OT(B,(q)®1,) (5.E.16)
By(q) £ [Bolg),Bi(q), -, Bpi(q)]” (5.E.17)
o = (Bp(q) ® In)uy. (5.E.18)
Let
G(g,8) = BT(A(q) ® 1) (5.E.19)
Ay(a) £ JBy(q), (5.E.20)

be a linear re-parameterization of the transfer matriz of the system, where
J 18 a mnonsingular matriz of appropriate dimensions. Then, the least
squares estimates of the parameter matrices © and 3 are related according
to

b=(1"®1)"'6,
so that the corresponding transfer matriz estimates are the same, i.e.
G(q,0) = G(g,0).

Proof: The re-parameterization (5.E.19)-(5.E.20) leads to the linear regressor
form

yr = G(q, B)ur + vk = BTy, + v, (5.E.21)

where the new regressor matrix v is related to the original one, ¢;, according
to

Yk = (J @ 1) . (5.E.22)

Adopting the vectorized notation

YT (yOJyla"' 7yN71)7
VT = (Z/Oal/la"' 7VN—1)7
(I)T = (¢07¢17"' 7¢N71)7

v o= (¢0,¢1,"',¢N—1)a

the model for the N point observed data record can be written as:
Y =90+V, (5.E.23)
or in re-parameterized form

Y = U3+ V. (5.E.24)



5.E Technical Lemmas 139

Now, the least squares estimate B of the parameter matrix [ is given by
B=(v"w) vy,
Based on equation (5.E.22), simple algebra gives
U=0(J"®I,),

so that B can be written as

(Tw) ™ 0Ty,
(J& I, c1>T<1>(J®I ) (J @ L)®TY,

= (JRL)T(®T®) " (Je L) (J® L)Y,
(
(

Q)
|

J®I,)” (@Tcp) "oy,
JoI,) T

It remains now to prove that the transfer matrix estimates with both parame-
terizations are the same. We have

G(a,0) = B"(Aya) ® L),
O7(J® 1,)7(J® L)(B,(g) ® L),
= 07(B,(0) ® 1),
= G(q, @))
[ |
Lemma 5.E.2. Let {B;} be a set of OBFP defined as in equation (8.14) from

the set of poles {&.}, and let &, denote the pole with mazimum module
in this set. Then

1— |§max| I+ |€max|
” B e’“’ <\ / 2K <oo
1 + |€max| | k |€max| !

By(e)| = ( 1_|€k|2>1:[ ew)‘

Proof:

=0 l
R VA Rl T  DRVA Bl S
v — &, el — & |

Now, since by assumption is |£| < |€maz| < 1, we have

(1= |&maz]) < (L= &]) < | = &] < (1 + &) < 1+ [&mazl)

and the result follows straightforwardly. [
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Lemma 5.E.3. Let v,(w) be defined as

() 2 Ky (0,0) = 3 |Bu(e)

and let &, denote the pole with mazimum module in the set {{;} of poles
of the basis functions {By}. Then the following inequalities hold

p—1

b 1 1+ ¢
D (1~ ael) < 2 S0~ [6al) < pl) < patlomee]
2 2 k=0 1- |€max|
Proof: The result is a direct consequence of Lemma 5.E.2. m

Lemma 5.E.4. Let Q, and G,(w) be defined as

Q £ lim NE{Vi(t) (Vi (60) }

N—00
Gy(w) 2 G(e¥) = G(e, 0).

Then
1

Q=5 /_ﬁ L) () B, ()T (@) ® B, (w) d + A,

where
A, & % / W ) () B (@) T3 (w) ® Cip(w) By (10) G () o

Proof: By the definition of @),

N—-1N-1

where ¢ is defined in (5.22) and
£ = IG(q) — Gp(q, 90)]“134'1%-

-~

2k
Therefore, using Lemma 5.E.5
| NoIN-1
. T
Q = Jim 52D (e @ TnE{m]} (67 @ 1) +

k=0 £=0

1 —-1N-1

+ lim ; ok ® In)E {212] } (6] @ )
k=0 (=0
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Lemma 5.E.5.

N-1N-1

]&Eﬁoﬁ%; 01 ® In)E {1 } (6] © In)

_ %/W ) () B0 ()T (w) ® By () dw.

Proof: Since {v,} is a stationary process with an associated spectral density
®, (w) then

1 g .
E {VkVéT} £ R,(k—1) = 2—/ (I>,,(w)e_1“’(k_£> dw.

L ——
Therefore,
| NoIN-d
N (k@ L) E {wiry } (¢ © L) =
k=0 £=0
1 » N—-1N—1
= N DN (36 ® L)y (¢] © Ln)e * 0 dw
T T k=0 £=0
1 » N-1N—1
= — [ YD (dwsf @3, (w)) e 0 dw
2rN T k=0 ¢=0
1 - (N—lN—l
= —— Z ¢k¢£Tejw(kZ)> ® ¢, (w)dw
27N ) k=0 ¢=0
= =
= % (N askasz;) 9 B, (w) du
- T=1-N k=0 ,
Ry (T)
= < Z Ry (T)e J“”) ® ¢, (w)dw (5.E.25)
T=1-N

where use has been made of the change of variable £ — / = 7 and it has been
assumed that u;, = 0 for £ < 0. Since uy; is a quasi-stationary signal, then also
¢r = T,(q)uy, is quasi-stationary, and then its covariance matrix is given by

Ry(7) £ lim _Z¢k¢k r = lim Ry (7)

N—oco N
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and the spectral density by

Oy(w) & Y Ry(r)e

T=—00

Now, the result follows by taking the limits when NV tends to infinity in equation
(5.E.25), and considering that

By (w) = Tp(w)Pu(w)T(w)

Lemma 5.E.6. Let I',(w) and fp(w) be defined as

[Bo(e4), By (), - - - ,Bp,l(ejw)]T I,
Iy(w)® I,

N
S
EE

>l

respectively. Then
ITp(@)ll2 = ITp(w)l2 = 1/ (w)

Proof: Let B,(w) be defined as in equation (5.D.9), so that I',(w) and fp(w)
can be written as

Fp(w) = Bp(w)®[n
Ipw) = Bp(w) ® I ® Iy = By (w) @ Tnm,

respectively. Then

(>

r
o Izl

20 |2l
\/x*l“;(w)l“p(w)x
= sup
z#£0 Trr
V (Bh(w) © 1) (By(w) ® L)z
= s
I‘ilg Va*x

BRI

T#0 Va*x

where the last equality follows considering that B}(w)B,(w) = 7,(w). In similar
way it can be proved that ||T',(w)|l2 = /7p(w)- |

1Ty ()]




5.E Technical Lemmas 143

Lemma 5.E.7. Let R, be defined as in equation (5.55), and let \(R,) denote
the eigenvalues of R,, and o(®,(w)) and 7(®,(w)) denote the minimum and
mazimum singular values of ®,(w), respectively. Then

igf (P, (w)) < A(R,) < SIip 7 (Dy(w)) (5.E.26)
and

<sup E(@u(w))>1 < \#;") < (inf g(@u(w))>1 | (5.E.27)

w w
Proof: For any p, R, can be written as

1 T . jw
R, = o / Tp(e) (T = (T, — By (@))) Th(el) ® Iy dw
1 [7 o iw
= 37 | TEILT(E) @ Indo -

1 /WFp(ej“’)(uIn—@u(w))F;(ej“’)(X)Imdw

o ),

Now choose y = sup, 7(®,(w)). Since ®,(w) > 0, then (ul, — &, (w)) > 0, and
then

2

1 / () (4l — B (@) THE) © I dor > 0

—T

so that we can write

1 " jw jw
R, < %/_ﬂ Ly ()L, Th(e) @ Iy dw

= swo@,w) (5 [ T a) o,

w -7

= sup o(Py(w)) Lnnyp

where in passing to the last line the following identity was used
1 " jw jw
e Ly ()0 () dw = 1oy,

On the other hand, R, can be written as

1 ™ ) .
Ry = oo [ )l + (@u(w) — L)) THE) © T do
1 ™

= 0/ T, () ul,Th(e?) ® I, dw +

+ L /7r Fp(ej“’) (D, (w) — puly) F;(ej“’) ® I, dw

o ),
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Now choose y = inf,, o(®,(w)). Since ®,(w) > 0, then (P, (w) — ul,) > 0, and
then

L / ") (@u(w) — uI) THE) © L dw > 0

o ),

so that we can write

Y

1 & . .
R, —/ Ly ()L, Th(e) @ Iy dw

1 [7 : :
@) (5 [ e a) e,
(@) Ty

Finally, we have

inf 0(®y,(w)) Imnp < Ry < sup 7(Py(w)) Linp (5.E.28)

so that

w w

1 1
<sup a(cpu(w))> Ly < By' < (inf o(®, (w))) Ly (5.E.29)
and the result follows straightforwardly. [

Lemma 5.E.8. Let R, be defined as in equation (5.55). Then

17, ], = 144, (@ 1), < (inf a(@uw))

w

Proof: The result follows directly from Lemma 5.E.7 considering that the 2-
norm equals the maximum singular value. [

Lemma 5.E.9. Let A, be defined as

A, & % T (@) B (@)THw) ® G () B () G5 (w) dw

-

Then

Jim |4, =0
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Proof:

Il < o [ rp(w><bu<w>r;(w>®ép<w>cbu<w>é;<w> do
= ] LY ()G, dw
< 5 [ NI Ie @I ~(w)HZdw
< 5 [ ) @ |G, ao

< () (swrye) 5 [ ép<w>\\idw

— <sgp E(CI’u(w)))Z(S“p (W > HG

Here, || - || stands for the Frobenius'® matrix norm, while || - ||z, stands for the
H,y-norm!® induced by the inner product. Finally, the result follows under the

H>

~ 2
assumption that HGp (w)H decays to zero faster than 1/7,(w), so that
H>

2

lim <sup Yp(w ) HG = 0.
p—00 H,y
|
Lemma 5.E.10. [NHG96| For f,g € Ly(T), let f and g be defined as
p—1
k=0
p—1
~ A
g = <ga Bk> Bk
k=0
respectively. Then
p—1
> (B0 BY— (f9) < | =T Ng=l.,.
k=0 ?
Proof: See Lemma C.3 in [NHG96]. |

15The Frobenius norm of the matrix A = (a;;)mx, is defined as ||A||%Z £ S - iy il
'6The H,-norm induced by the inner product is given by [|G(w)|}, =< G G >=
o [T TH{G ()G ()} dw = 5 [T (G ()17 dw.
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Lemma 5.E.11. [NHG96] For f € Ly(T), let h be defined as

-1
2SN (Bnf, By By
0

=

B
Il

Then if f has a finite dimensional spectral factorization there exists K <
00, |n| <1 such that for m <p

lowr 1

<K@ +n™)
Lo

Proof: See Lemma C.4 in [NHG96]. |



0

Adaptive Tracking Performance Analysis
using Orthonormal Bases

A fundamental problem in control and signal processing is to track the time-
varying parameters of a system or the properties of a signal as they vary with
time. In recent years, considerable effort has been devoted to the derivation
and analysis of a variety of adaptation algorithms for their use in recursive iden-
tification, adaptive filtering and control. In this chapter, a frequency domain
analysis of the tracking performance of several adaptive algorithms for the re-
cursive identification of time-varying linear systems will be carried out for the
case in which the system is represented by a fixed denominator model struc-
ture. As done in the preceding chapters, to facilitate the analysis these model
structures will be re-parameterized using the orthonormal bases with fixed poles
introduced in Section 3.5. We concentrate on the study of the trade-off between
disturbance rejection and tracking ability. This trade-off will be illustrated by
showing how the quality of the adaptive estimation is influenced by such things
as input and noise spectral densities, step size of the adaptive algorithms, and
the choice of the fixed pole locations in the model structure.

6.1 Introduction

The derivation of a mathematical model for a system from observation data is
the topic of System Identification. When dealing with time-invariant systems,
the identification can be carried out off-line, which means that the parameter
estimation is performed once the whole set of data is collected from the system.
This cannot be done when the system properties vary with time. In this case
the identification has to be performed on-line, which basically means that the
estimate of the unknown parameters is updated each time a new data becomes
available. This leads us to the field of Recursive Identification, where a consir-
able amount of research has been carried out in recent years (see for instance the
books [You84, GS84, WS85, CG91]). In this context, identification algorithms
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have to adapt themselves to track the changes in the system, and for this reason
they are called adaptive algorithms or (adaptive) tracking algorithms.

At this point, a question that arises is what characteristics of the algorithms
should be considered to evaluate their performance. In general, one is interested
in the following aspects of the algorithm

e Stability: exponential stability of the algorithm is necesary to guarantee
boundedness of the tracking error, and is a pre-requisite for the practical
applications and the analysis. The general conditions for stability of the
algorithms we consider here have been established by Guo and Ljung
in [GL95a], and therefore this issue is not studied in this chapter.

e Transient Response: the dominating dynamics governing the behaviour
of the adjusted parameters when there is an abrupt change in the true
system, or after an initialization.

e Steady-State Response: the variability of the estimated parameters with
respect to the ‘true’ parameters, after a long period of time, when the
system is assumed to be time-invariant (or slowly time-varying).

We concentrate in this chapter only in the analysis of the last two issues, viz.
the transient response and the steady-state response of the algorithms.

A second question that arises is how to quantify the quality of the estima-
tion. For instance, Guo and Ljung in [GL95b, GL95a] consider a general family
of tracking algorithms, and quantify the quality of the estimation in the param-
eter space. The quantification is done in terms of the covariance matrix of the
parameter tracking error (the so-called Mean Squares Error of the parameter
estimate). Since the exact expression for this error is, in general, very compli-
cated, the authors propose a simple expression that provides a good approxima-
tion when the adaptation rate of the algorithm is small. In this chapter, we use
these results but, following the suggestions in [EJLW92, RJL96, Joh95, Joh93]
about the utility of analysis of adaptive algorithms in the frequency domain,
the quality of the estimate is analyzed here in terms of the covariance matrix of
the frequency response estimation error rather than in terms of the covariance
matrix of the parameter error. These frequency domain expressions are still
too complicated to be of any practical utility. Drawing inspiration from the
work in [GL89, LG90, LY85, Gun88] we derive more tractable expressions by
considering high model orders.

Recent work in the areas of Adaptive Filtering [Wil95, Wil93a, WZ96] and
Recursive Identification [GW90], suggesting the use of new model structures
-as an alternative to the popular FIR structures- in adaptive algorithms has in-
spired us to use the fixed denominator model structures we consider in this chap-
ter. Specifically, the fixed poles adaptive filters (FPAF) proposed in [Wil93a],
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the Gamma filters in [Pdd93], the adaptive IIR filters in [WZ96], and the re-
cursively identified Laguerre models in [GW90], can all be regarded as fixed
denominator model structures. All these model structures can be represented
in a unified way by re-parameterizing them using the OBFP introduced in
Chapter 3 (Section 3.5). As mentioned several times in this thesis, these fixed
denominator model structures can be regarded as generalizations of the FIR
structure, where the poles need not all be fixed at the origin. As pointed out
in [Wil95, WZ96, GW90], the use of these structures can lead to many improve-
ments in terms of estimation accuracy, and implementation and computational
complexity, while still retaining the desirable convergence properties enjoyed
by adaptive FIR schemes.

This chapter provides a frequency domain analysis of the tracking perfor-
mance of some standard adaptation algorithms when used to track time-varying
systems represented by these ‘generalized FIR’ structures. Both a transient,
and a steady state analysis of the behavior of the frequency response estima-
tion error are performed. The analysis shows that there is an important design
compromise between tracking ability and noise sensitivity of the algorithms,
and it makes explicit how this trade-off is influenced by input and noise spec-
tral densities, choice of step size (or adaptation rate) of the algorithm, and
(what is a main focus here) the choice of the fixed pole positions in the model
structure.

The material in this chapter is closely related with the work of Gunnarsson
and Ljung [GL89, LG90, Gun88| who studied adaptive FIR algorithms in the
frequency domain. Specifically, we borrow from [GL89, Gun88| the main idea
of this chapter which is to simplify error expressions by considering large model
order, and small adaptation rate. The results of this chapter specialise to some
of those in [GL89, Gun88] when all the poles of the orthonormal bases are
chosen at the origin.

These ideas, together with the use of recent results by Guo and Ljung [GL95b]
that provide approximations to the parameter covariance for a general class of
adaptive algorithms under mild assumptions, constitute the base upon which
our results are constructed. An important tool employed in the derivation of
these results is the re-parameterization of the fixed denominator model struc-
ture into the orthonormal form studied in Chapter 3 (Section 3.5), in order to
facilitate the theoretical analysis.

6.2 Motivation

A result derived by Gunnarsson and Ljung [GL89, Gun88| that has proved to
be of great utility in the intuitive understanding and design [EJLW92, RJL96,
Joh93, Joh95]| of certain adaptive tracking schemes, is that the variability of a
recursively computed p-th order FIR transfer function estimate G(e/“, 5) may
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be approximated (for time invariant systems) by the simple expression

Var{G(e”,0)} ~ p% (6.1)

where « is some constant, y is the step size, o2 is the white measurement noise
variance, ¢, (w) is the input excitation spectral density, and r = 1 for Recursive
Least Squares (RLS), » = 1/2 for Kalman Filtering and r = 0 for the Least
Mean Square (LMS) algorithm.

In assessing the utility of the idea of implementing adaptive filters with
arbitrary fixed poles, a natural question arises as to how (6.1) should be mod-
ified from the FIR case so as to describe Var{G(ej“,é\)}. The most obvious
course is to conclude that these new ‘fixed denominator’ model structures are
really just the old FIR ones with an input {u;} pre-filtered by an all-pole filter
F(q) = 1/D(q) where D(q) = [[’_y(q — &) with {,} being the user chosen
guesses as to the true pole locations. This would imply that the variability
of the FIR ‘numerator’ part is then given by the expression (6.1) with the
substitution

P, (w)

O, (w) = [F ()P, () = D(e5)P (6.2)

made. The frequency domain variability of the whole model structure, being the
FIR numerator part divided by the frequency response of the fixed denominator
part, should then be (6.1) with the substitution (6.2) and then divided by
|D(e’?)|?. Clearly the |D(e’*)|? terms will cancel, and the conclusion will ensue
that the variability of Var{G(e/*,#)} is invariant to the choice of fixed pole
location.

This can be tested on a simple example wherein the true system is

0.1548¢ + 0.0939

0 = = 0.6065)(q - 0.3679)

and a p = 10’th order model is fitted using RLS when the input {w;} has
spectral density ®,(w) = 10(1.25 — cosw) ™", the output measurements {y,} are
corrupted by white noise of variance o2 = 0.01, and the algorithm is run for
N = 2000 data samples. In this case, the true variability can be estimated
by the sample average over 200 Monte-Carlo simulations with different input
and noise realizations. This can then be compared to the approximation (6.1).
For the case of all the {,} being at the origin (so that a true FIR structure
is employed), then the results of such a comparison are shown in the top plot
of figure 6.1 - the approximation (6.1) being the dash-dotted line, and the
Monte-Carlo estimate of true variability being the solid line. The agreement is
excellent.
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«10° True Variability vs Theory - FIR case
T

T
1 True Variability
-== New Theory
08 —— - FIRTheory
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X107 True Variability vs Theory - Non FIR case
T
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0sll ‘= — - FIR Theory

Figure 6.1: Comparison of (solid line) true variability to (dash-dotted line)
FIR based theoretical approzimation (6.1). Top plot is case of all poles at
origin (FIR case), bottom plot is case of all poles away from origin. The
dashed line 1s the improved new approximation presented in this chapter.
In the top plot, the dash-dotted line showing the pre-ezxisting approzimation
(6.1) obscures the new approrimation because the new and old approzxima-
tions are identical for the FIR case.

However, if all the poles are chosen away from the origin, five at & = 0.2
and five at & = 0.8 then when examining the theoretical prediction (6.1) and
the true variability as shown in the bottom plot of figure 6.1, the agreement
between the two has disappeared.

Clearly, the previous heuristic reasoning that tried to adapt the FIR result
(6.1) to a situation for which it is prima-facie applicable is flawed, and this
indicates the need for custom analysis of fixed denominator model structure
estimation.

Such is the purpose of this chapter, and pertaining to this note in the bottom
diagram of figure 6.1 the good agreement between the true variability and the
dashed line, which is a plot of the new ‘extended’ approximation presented in
this chapter. This new approximation is the old one (6.1) with the model order
term p replaced with a frequency dependent function 7,(w). However, in order
to develop the ideas that lead to this and other enhanced approximations, a
more formal problem definition is required.

6.3 Problem Formulation

We consider the (recursive) identification of linear slowly time-varying systems
from observed input-output data. We assume that the underlying model relat-
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ing the observed input {u;} and output {y.} sequences is given by

where {v;} is a zero mean white noise process with variance E {v?} = 02 < o0
and where Gy (q) represents the transfer function of the time-varying linear
system at time k&

Gela) =3 gelm)g™

with square summable impulse response sequence {gix(n)} € ¢;. In order for
this representation to make sense we have of course to assume that the time
variation is slow so that G (¢) can be given the usual interpretation of transfer
function describing the input—output properties of the system.

It is assumed that the input signal {u;} is a bounded, deterministic, and
quasi-stationary sequence in the sense of [Lju87], as summarized in Chapter 2
(page 6).

We also assume that the input sequence {u;} is weakly uncorrelated with
the noise {14} in the sense that |E {uvx—.} | — 0 as 7 — oo, and that the input
spectral density has a finite dimensional spectral factorization and it is positive
definite ®,(w) > 0 for almost all w, what guarantees that the input signal is
persistently exciting of any order [Reg95] (c.f. Proposition 2.1.1).

Our interest is on the (recursive) estimation of the (assumed unknown) time
varying dynamics Gy (¢q) by means of the observations of inputs {u;} and out-
puts {y;}. Of the many approaches available in the literature to solve this
estimation problem [SK95, GS84, Lju87, CG91], a common choice that facili-
tates the analysis of the adaptive algorithms, is to express the model (6.3) in
linear regression form

Y = ¢£9k + 147 (6.4)

where the ‘regression vector’ ¢, depends in general on past outputs and inputs,
and 0, € R’ is a vector of p parameters in a model structure G(q,6;) that
attempts to describe the true dynamics Gy (¢q). An estimate of Gy (¢) can then be
computed as G(g, @k) where the parameter estimate 0, is obtained recursively.
In this context, several well-known adaptive algorithms such as Least Mean
Squares (LMS) (see [WS85] and the references therein), Recursive Least Squares
(RLS) [GS84, You84], and the Kalman Filter (KF) [Kal60, KB61, Guo90| can
be used for the estimation.

We restrict the analysis in this chapter to the three above mentioned adap-
tation algorithms, namely the LMS, RLS, and KF algorithms, which can be
represented in a unified way by the general adaptation law [GL89]

§k+1 =B, + Li(yr — ank), (6.5)
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where L, is a gain vector that is computed in different ways, according to the
particular algorithm. For instance, when the gain vector is given by

Ly = :U’¢k: JURS (07 1)7 (66)

then the update law (6.5) is the ‘gradient-type’ algorithm known as Least Mean
Squares [WS85]. The case

Ly = Pty (6.7)

where P, satisfies

1 Py 16x¢5, Pr
P.=—-<P._1 — A 0,1 6.8
k )\{ k—1 )\+¢£Pk71¢k ) G( ) ) ( )

initialized with some positive definite matrix P, corresponds to the Recursive
Least Squares algorithm, where the constant A\ is known as the ‘forgetting
factor’. Finally, the case

_ PPy 10y, (6.9)
02 + pdl Pp_1 ¢y
where P, satisfies the Riccati equation
P._ I'p,_

02 + pdpl Pp_i i

with ¥ > 0 and symmetric matrix, corresponds to the Kalman Filter algo-
rithm. The KF gives an estimate of the parameter vector A, when its time
variation is modeled via a random walk as

Opi1 = 0p + pwy (6.11)

where wy, is a stationary zero mean vector white noise process with covariance
matrix E {wkwkT} = (). The estimate is optimal in a mean-square sense under
Gaussian assumptions if = p,0? = 02 and ¥ = Q. In the sequel it is assumed
that {w;} is weakly uncorrelated with {u;} in the sense that |E {uywy -} | — 0
as 7 — 00.

The design variables of the three algorithms are the gain p for the LMS
algorithm, the forgetting factor )\ for the RLS algorithm, and the matrices o2
and ¥, and the gain p for the Kalman Filter.

A central question when using these algorithms is the accuracy of the es-
timate. The most common way to quantify this accuracy is to compute the
so-called Mean Square Error (MSE) of the transfer function estimate

Mean Square Error = E {|Gk(q) — G(q, é\k)|2} , (6.12)
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as a measure of how well the estimate G(q, é\k) approximates the ‘true’ transfer
function Gi(g). To do that, we need first to examine the accuracy of the pa-
rameter estimate 6 itself [SK95, GS84]. This may be achieved by defining the

parameter estimation error #; as
0, 2 0, — 0. (6.13)

where 0, represents the true parameter vector that allows the model structure
to exactly describe the underlying time varying dynamics as G(q, ;) = Gk(q)-
Of course this can only be done if the system belongs to the model set. In the
general case, the model structure G(q, ;) will be too simple to exactly describe
the true dynamics Gx(¢q) for any value of 6, and so there will be no ‘true’
parameter 0,. However, as pointed out in [GL89, LY85], we still can define 0
as the ‘best’ approximation (for example in L, sense) of a given order, and use
this value to calculate 6. In this case, the true transfer function Gj(q) can be
expressed as

Gr(q) = G(q,0k) + Ap(q)

where A,(¢) represents the undermodelling error. As the model order increases
to infinity this error tends to zero (A,(¢) — 0 as p — o0). It is reasonable then
(following [GL8&9, LY85]) to perform an analysis asymptotic in model order.
Since this analysis will involve deriving expressions that are asymptotic in p,
there is no point in continually include the term A,(¢) (that tends to zero as
p goes to infinity) throughout the derivations, and so we will ignore this term
from the beginning. The validity of this strategy is confirmed by simulation
example in Section 6.7. For the case in which G(q¢) is represented using the
orthonormal bases with fixed poles of Section 3.5, the rate at which A, (el*)
tends to zero with increasing model order p is established via Theorem 4.3.1.
Substituting (6.13) into the general update equation (6.5), and considering
that the time-variation of the parameters is given by the random walk (6.11),
gives that the parameter error satisfies the following difference equation [GL95b]

§k+1 = (I — Lkgﬁ{) gk + PWE — kak- (614)

Equation (6.14) could now be used to calculate the covariance matrix of the
parameter error E {ﬁlﬁ,{} as a preliminary step for the computation of the MSE

of the transfer function estimate, which ultimately is the magnitude we have
chosen to measure the quality of the estimation. Unfortunately, as pointed out
in [GL&9, GL95b, Gun88, LG90|, the exact expression for this covariance will
be very complicated except in very special circumstances. To obtain simple
expressions approximating this covariance matrix we resort to the main result
of [GL95b] which establishes that, under certain assumptions on the regressors
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{ér} (the so-called ¢-mixing condition), and on the noise v, and parameter
drift wy, the covariance E {5;{5{} may be approximated by the matrix II; given
by the linear deterministic difference equation

M1 = (I — pSpR)IL(I — pSpR)" + 1202S, RSy, + p*Q (6.15)

where R = E {¢,¢] } and Sy is defined as

LMS:
Sp =1, (6.16)
RLS:
Sy = (14 u)Sk1— Sk 1RSk_1; Sy = P, (6.17)
Kalman Filter:
Se=Si1 — Sk RSk + 4 Sy= %po, (6.18)

The degree of the approximation is quantified in [GL95b] by a result of the
form!

[e{mar} - < vt

where x(p) is a bounded function that tends to zero as i tends to zero, where
1 is a measure of the step size of the algorithm.

However, as mentioned earlier in this section, our interest is not in the
quantification of the accuracy in the parameter space, but in quantifying how
close the estimated model G(g, 6) is to the true system G (¢q) in terms of the
error

Grl(e®) 2 G(e”, 0),) — Gr(e®)

in the estimated frequency response, and ultimately in terms of the MSE of the
transfer function estimate (6.12).

In order to be able to compute this frequency response estimation error, we
need to relate it with the error in the parameter space. Since we are assuming
a linear regression model for the system, we are restricted to considering model
structures G(q, 0) for which the estimated frequency response depends linearly
on the estimated parameters, i.e. of the form

G(e,0,) = TT ()0, (6.19)

'Here || - || stands for the 2-norm of matrices or operator norm
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where

Tp(q) £ [Bo(q), Bi(q), -+, Bpa(g)]” (6.20)

is a vector of p rational-stable-causal transfer functions B,(¢). For example,
B,(q) = ¢~ corresponds to an FIR model structure.

Using equations (6.15), (6.19) and (6.20), an approximate expression for
the Mean Square Error (MSE) of the transfer function estimate can then be
computed as

E {|ék(ej“’)|2} — I'%(e)E {5,@{} Ty () ~ T(e) 1T, () (6.21)

This MSE of the transfer function estimate can then be used as a frequency
domain quantification of the performance of the adaptive algorithms. Unfor-
tunately again, this expression will in general be too complicated to give any
practical insight. Following the ideas in [GL89, LY85, Gun88|, we will derive
simple approximations for (6.21) that are increasingly accurate for increasing
model order p. Through simulation experiments we will show that the simpli-
fied expressions are good approximations even for relatively small model order.

To be able to proceed with this asymptotic analysis we need to be more
explicit about the expression for I',(ei) in (6.21). That is, to be more specific
on the exact formulation of the transfer functions {8,(¢)} determining the
model structure Gy(q, ).

6.4 Model Structures

In recent years, in an adaptive filtering context, Williamson and co-workers
have proposed and studied, in a series of papers [Wil95, Wil93b, Wil93a, WZ96],
a new class of Infinite Impulse Response (IIR) adaptive filters that have been
termed ‘Fixed Pole Adaptive Filters’ (FPAF), or more generically ‘Vector Space
Adaptive Filters’ (VSAF). For the case of real poles, these adaptive filters can
be formulated as

Gt =t [ = LB A, (622

where the ‘fixed poles’ {§n}ﬁ;é are chosen to reflect the available prior informa-
tion about the likely pole positions of the true time varying system Gy(q), and
where 0}, (n) are adjustable filter parameters. In passing to the last equality we
have defined

n

. 1
Ao =1 =5
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To contemplate the case of complex conjugate poles, the formulation is modified
to

p—1 n

Gla0) = 3 (0itm)a + ) [T 7 5_)1@ =

(6.23)

A special case of the structure (6.22) arises when all the poles {¢,} are chosen
at the origin in which case (6.22) is an FIR model structure.

Although IIR filters have several advantages over FIR filters when used
to model very long impulse responses, FIR models have been preferred almost
exclusively for the adaptive applications [WS85], mainly due to the fact that the
global convergence of the adaptive algorithms can be ensured, in contrast to IIR
filters for which theoretical guarantee of global convergence is difficult to provide
due to the possibility of existence of multimodal error surfaces? [WS85, Reg95].

Williamson and co-workers [WZ96] show that the FPAF structure (6.22)-
(6.23), though being an ITR model structure, preserves the global convergence
characteristics of FIR filters. They also provide some simulation results showing
that significant improvements in the estimation accuracy can be achieved if the
prior information about the dominant modes of the system is used to chose
the fixed poles in the model structure close to these dominant poles. Later
in this chapter, we will give some theoretical support to this observations by
resorting to the results on the undermodelling error for the OBFP we presented
in Theorem 4.3.1.

In spite of the above mentioned advantages of the model structure (6.22),
its generality (as compared to an FIR structure) makes the frequency domain
analysis of the adaptive algorithms much more difficult. To overcome this
difficulty and make the analysis more tractable, we replace the model structure
(6.22) with an orthonormal re-parameterization of the form

p—1

G(q,0%) =Y _ 0(n)Bu(q) (6.24)

n=0

where {B,,(¢)} are the Orthonormal Bases with Fixed Poles introduced in Sec-
tion 3.5, whose formulation we rewrite here for convenience,

Bl - (7W> i (L=5). (6.25)

¢=& )i\ a— &

As shown for the time-invariant case in Chapter 4, the model structure

2This basically means that the surface describing the mean square tracking error in the
(adaptive) parameter space may have multiple local minima.
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(6.24) can be written in the linear regression form (6.4) by defining

o = Ty (q)ur, (6.26)
Fp(q) = [Bo((]), Bl (q)a e aBp—l(Q)]Tv (627)
Gk = [9]9(0), 0};(1), Tty Qk(p — 1)]T (628)

Before going further with the analysis, a natural question we should answer is
the following: How do the estimates with the orthonormal re-parameterization
(6.24) relate to the estimates with the original model structure (6.22), when
using the different adaptive algorithms?

To answer this question, let us notice first that since the poles of the model
structures (6.24) and (6.22) are identical, we can always find a nonsingular
(constant) matrix J € RP*? such that the matrices I',(¢) and I',(¢) associated
with each parameterization are related according to

Ty(q) = JTT(q), (6.29)
with T',(¢) defined in (6.27), and where I, (¢) is defined analogously as

T} () = [Aog), Ai(a), -, Apr (@)

It is then clear that the regressor vectors ¢, and ¢} associated respectively to
the model structures (6.24) and (6.22), are related according to

o = J" ¢ (6.30)

Based on this observations, we are now able to prove the following result show-
ing that the estimations using RLS and KF algorithms are invariant under the
linear re-parameterization (6.29), while the estimation using LMS algorithm is
not.

Lemma 6.4.1. The RLS and KF' algorithms are invariant under the linear
re-paramaterization (6.29), which means that the estimates corresponding
to the model structures (6.24) and (6.22) are related according to

0. = Joy, (6.31)

provided that the initialization 1s consistent with the linear re-parameter:-
zation, 1.e.

Py = JPJ"
for the RLS algorithm, and
Y =JnJt

for the KF. On the other hand, the LMS algorithm 1is not invariant under
linear re-parameterization and consequently equation (6.81) doesn’t hold
for this case.
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Proof: See Appendix 6.A. [ |

It is clear now that, since the RLS and KF algorithms are frequency domain in-
variant to linear model re—parameterization, the analysis using the orthonormal
structure will provide results that are valid for any fixed denominator model
structure such as (6.22). Unfortunately, the LMS algorithm is not invariant un-
der linear re-parameterisations [EJLW92, Wil95], and so any subsequent results
for this algorithm will only pertain to the orthonormal model structure (6.24).
This is not considered a significant limitation, since for the LMS algorithm
the orthonormal structure (6.24) is attractive from the viewpoint of numerical
robustness and enhanced convergence rate under white noise excitation.

6.5 Transient analysis

In this section, we study the transient behavior of the frequency response esti-
mation error for the Least Mean Squares algorithm.

The dynamic behaviour of the frequency response estimation error can be
studied by using the approximation (6.21) substituted into (6.15) to obtain

E{|Gri(e)P} ~ Tp(e)(I = pSeR)IL(I — pSR) Ty(ek)
+ 2ol (e) SRS, Ty (62)
+ p’T () QTp(e™). (6.32)

As the reader can see, this is a very complicated expression from which it is
difficult to extract useful design insights. However, if the model order p is
assumed to be large, then equation (6.32) can be simplified considerably.

Here again, an important réle in the analysis will be played by the repro-
ducing kernel v,(w) £ K,(w,w) associated to the orthonormal bases with fixed
poles {B,(¢)} in (6.25). We recall that v,(w) can be computed as

p—1

T(w) = |Bale)]. (6.33)

n=0

For the case of FIR model structures, it is well known that the error in the
estimated models induced by the measurement noise is inversely proportional
to the model order p. This has been rigorously proved by Ljung and Yuan
in [LY85] for off-line identification in the time-invariant case, and by Gunnarsson
and Ljung in [GL89] for the case of recursive identification. The frequency
dependent quantity v,(w) will serve to capture how this phenomenon generalizes
to the fixed—denominator model structures (6.22),(6.24). As pointed out in
Chapter 4, for the case &, = 0 that corresponds to (6.24) being an FIR model
structure, the factor ,(w) equals p.
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It is also necessary to define a quantity which reflects the time varying nature
of the system Gi(¢) in the frequency domain, and is also commensurate with
the parameter space model for this time variation (6.11). Following [GL89],
this may be achieved by using the linear relationship (6.19) in combination
with (6.11) to obtain the model for the time variation as

Gri1(e7) = Gi(e?) + pT () u
so that
E{|Geri(6¥) — Gu(é?)]”} = pT5(e)QT, () = %5, w). (6.34)
where we have defined
5,(w) £ T(*)QT, (). (6.35)

In the sequel, simplifications for equation (6.32) will be obtained by considering
increasing model order p. To facilitate this analysis it is necessary (as in [GL&9))
to assume that as p grows, the covariance matrix () is extended accordingly in
such a way that it is always positive definite and of bounded norm. In this case,
the limit

() £ lim i’; EZ) (6.36)

~—

exists and is non-zero. Given these definitions, the following theorem provides
a simple frequency domain characterisation of the tracking characteristics of
the LMS adaptation scheme when using the general fixed denominator model
structure (6.24).

Theorem 6.5.1. For the LMS algorithm and the model structure (6.24), then
using the approzimation (6.15) for the covariance matriz of the parameter
estimation error, the following limit result can be established

lim
p—)OO

B G @1
- (PR {id e r ) + oo + o) )| <0
Proof: See Appendix 6.A. [ |

The interpretation of this result is that for large model order p, the equation
governing the behaviour of the MSE of the tranfer function estimate for the
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LMS algorithm and fixed denominator model structures can be approximated
by the following first order difference equation

E {[Ghr ()} ~

~ 1= p® (@) PE {|Gi(e) P} + 120200 (@) () + p5() ().
(6.37)

The transient response is then governed by the homogeneous part of this dif-
ference equation. That is

E{|Ghi ()12}~ [1 = pu@u ()PE {|Ga() 1} (6.38)

which for small 1 can be approximated by

E{|Grn(e)} ~ [1 - 20, () E {|Gu(e¥) 1P} (6.39)

and it is then characterized by the (frequency dependent) time constant for the
decay of the MSE

T(w) = [1 = 2u®, (w)].

From equation (6.39) it is clear that the condition on the stepsize u for stability
of the algorithm for all w is

1

sup, @, (w)’ (6.40)

p<
These results are similar to the ones presented in [GL89, Gun88| for the FIR
case. A substantial difference between the MSE expression (6.37) and those
in [GL89, Gung88, EJLW92], is the presence of the factor 7,(w) in the driving
terms, making explicit how the tracking error is affected by the choice of poles
in the model structure (6.24).

Similarly to the results in [GL89, Gun88], equation (6.37) shows the design
trade-off (for the LMS algorithm) between the tracking ability and the noise
rejection properties of the algorithm. To be more specific, from (6.37) it can
be seen that the tracking error decays like [1 — pu®, (w)]?* ~ [1 — 2ud,(w)]*, so
that tracking would be better at frequencies where ;1 ®,(w) is large, but at these
frequencies the ‘noise driving’ term o24*®,(w)v,(w) would also be large. How-
ever, unlike the expressions in [GL89, Gun88|, the presence of the modulation
factor 7,(w) in the driving terms in (6.37) suggests that the tracking perfor-
mance could be improved, but not necessarily at the expense of a deterioration
in the noise rejection properties of the algorithm, by an appropriate choice of
the poles in the model structure.
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In order to be able to apply these results —which are asymptotic in model
order— in practical problems we need to evaluate the accuracy of the approxi-
mation (6.37) for the low model orders likely to be used in these cases. This
is examined in Section 6.7 where for small enough step size yu, (6.37) is shown
to faithfully predict the frequency domain convergence properties of the LMS
algorithm — see figure 6.7.

6.6 Steady State Analysis

In this section we are interested in the quantification of the steady state behavior
of the frequency response estimation error. That is, we are interested in the

error E {|ék(ej“)|2} for large values of k. In order to compute this steady-state

error we need first to analyze the limiting behavior of the solution IT; of (6.15)
for large k; that is

lim IT; £ IL

k—o00
Of course, for this limit to exist (and indeed for the approximation (6.32) to
hold) it is necessary that the adaptive algorithm (6.5) be stable. As mentioned
in the introduction to this chapter, sufficient conditions for the exponential sta-
bility of the general adaptation algorithm (6.5), for any of the choices (6.6),(6.7)-
(6.8), or (6.9)-(6.10) have been established by Guo and Ljung in [GL95a]. These
conditions are very technical but can be summarized as follows:

e Persistency of excitation: the sum of the covariance matrices of the re-
gressors E {qﬁmf} over a finite time span of arbitrary length has full rank.
In general this condition is satisfied if the input spectral density ®,(w) is
positive definite for almost all frequencies w. That is, if the input sequence
is persistently exciting of any order.

e Weak dependance of the regressors: the dependance between the regres-
sors ¢ and {¢;,v; 1, w;} decays to zero as the time distance (k — i) tends
to infinity. This is the so-called ‘¢-mixing condition’ [GL95a, GL95b].

e The measurement noise {v;} and the parameter drift {w,} are zero mean
white noise sequences.

Once the stability of the algorithm has been ensured, the steady-state parameter
error Il may be evaluated by determining the steady-state solutions

k—o00
of (6.16)—(6.18) and then substituting them into (6.32) before examining its
own steady state solution with terms of order p?II discarded [GL95b]. The
results of this strategy for the three adaptive algorithms are as follows.
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LMS: Here S = I so that II is the solution of the Lyapunov equation

2
[IR + RII = po?R + %Q. (6.41)

RLS: Here S = R~! so that II is given by

2 2
MO-V —1 1Y
IT = R —Q). 6.42
5 + 2MQ (6.42)

Kalman Filter: This case is more difficult. S is the solution of

0’SRS =%,
which may be expressed as
S— L R (RPSR) R (6.43)
Vo? ’ '
so that II is given by the solution of
2 2
SRII + IIRS = “U";z + %Q. (6.44)

For the special case of ¥ = () this system has solution

2

o o2
II=— L4+ 1S 6.45
: (%2 ; M) (6.45)

with S given in (6.43).

Based on these expressions for the steady-state parameter error IT together with
equation (6.21) it is now possible to quantify the steady state estimation error
in the frequency domain as

E {|C~¥(ej“)|2} £ Jim E {|ék(ej“)|2} ~ T ()T, (). (6.46)

However, the resulting expression is so complicated that it is difficult to extract
useful design insight from it. As in the previous section, we will perform an
asymptotic analysis with increasing model order p in order to simplify (6.46).
The resulting expressions will be more tractable, and will provide some insight
on how the steady-state estimation error is affected by factors such as the step
size, the measurement noise energy, the input spectral density, and perhaps
most interestingly, the choice of fixed pole position. The effect of this choice of
poles will be quantified by the term v, (w).

The simplified error equations for the LMS, RLS and KF algorithms are
presented in Theorems 6.6.1, 6.6.2 and 6.6.3 respectively.
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e LMS Algorithm: In this case, the simplified error quantification is as

follows.

Theorem 6.6.1. For the LMS algorithm and the model structure (6.24),
the following limit result holds,

| o ,  pPo(w
i e (0@ =5 et

Proof: See Appendix 6.A. [

The interpretation of this theorem is that for large model order p, and
after the algorithm has converged (large k), the steady-state MSE can be
approximated by

E {|ék(ej“’)|2} ~ Vpg“’) l,uaz + Z;i(&))} . (6.47)

For the case of all the poles {&,} in the model structure (6.24) chosen at
the origin, then 7,(w) = p and the above expression specializes to that
derived in [GL89, Gung8| (although in [GL8&9], only the case p = 1 is con-
sidered). However, an important difference with the results for the FIR
case in [GL89, Gun88], is the presence of the frequency dependent factor
7p(w) in the expression of the MSE (6.47) showing how pole choices other
than FIR influence the frequency domain estimation error. As well, (6.47)
illustrates that for time-invariant systems (corresponding to p = 0), then
the error is proportional to the step size ;. and the measurement noise
variance o2, while for time varying systems (p # 0), another error com-
ponent arises due to the parameter drift, which is inversely proportional
to step size, and is also inversely proportional to input spectral density
®,(w). In this latter case, we have a compromise in the choice of the step
size 11, since a small value of ;4 will reduce the contribution of the measure-
ment noise to the MSE, but simultaneously will increase the contribution
of the parameter drift to that error.

A fundamental question that now arises is one concerning the reliabil-
ity of using the approximation (6.47) —that has been derived considering
large model order— for the relatively small model orders used in practical
applications. The most suitable way to deal with this issue would be to
quantify the convergence rate in Theorem 6.6.1. This appears to be ex-
tremely difficult. Instead, the approach used in [GL8&9] is taken wherein
the validity of (6.47) for finite p is examined via a simulation study. This
is done in Section 6.7 , where it is shown (see Figures 6.3 and 6.5) that for
a tenth order model, (6.47) is quite an accurate approximation; in fact, as
shown in Figure 6.4, this holds even for as low as a fourth order model.
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e RLS Algorithm: The same sort of analysis can also be performed in this
case, with the results as follows.

Theorem 6.6.2. For the RLS algorithm and the model structure (6.22)
or (6.24), the following limit result holds

) . 1 MO.2 p2 :|
1 EJ|G(E))?} == z —0 cpu=1—=A\
tim {16} = 5 |+ Lol

Proof: See Appendix 6.A. [ |

A similar interpretation to the previous theorem can be given also in
this case. Namely, this theorem means that for large model order p, and
after the algorithm has converged (large k), the steady state MSE can be
approximated by

E{|Gu() ) ~ %g‘” [ @Z((ji) + %25(@] | (6.48)

Comparing this approximation to (6.47) illustrates a fundamental differ-
ence between the steady state behavior of LMS and RLS in terms of how
the input spectral density affects the noise and tracking performance.
Specifically, (6.48) shows that for stationary systems (p = 0), the RLS
estimation error is inversely proportional to the input spectral density
®,(w), while (6.47) shows that the LMS estimation error is invariant to
the size of this spectral density; see Figure 6.5 for a simulation study vali-
dation of this phenomenon. Conversely when p # 0, (6.47) shows that for
LMS the tracking ability increases with increasing input spectral density,
while for RLS the tracking ability is invariant to this factor, and only
depends on step size.

These observations, in the context of FIR model structures have already
been made in [GL89, Gun88], and as per the LMS case, when all the poles
are chosen at the origin and hence 7,(w) = p, then (6.48) is identical to
the expressions for RLS steady state error presented in [GL89, Gun88].
However, again as per the LMS case, the inclusion of the frequency de-
pendent factor v, (w) in (6.48) shows how the choice of fixed denominator
pole position in the model structure G(q,0) affects the estimation error
in the frequency domain (Figure 4.2).

The question of the validity of using an asymptotic result as a finite data
and model order approximation in (6.48) again arises, and again this is
dealt with in Section 6.7 via a simulation study. For example in Figure 6.4,
(6.48) is shown to be quite accurate even for only a fourth order model
and 300 data points.
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e Kalman Filter Algorithm: The same strategy of considering large model

order can be used in this case. However, as already mentioned, there are
particular difficulties in solving for the steady state parameter covariance
IT, and this leads to the treatment of only a specialised case in which

2= Q.

Theorem 6.6.3. For the Kalman Filter algorithm, the model structure
(6.22) or (6.24) and under the assumption that ¥ = Q, then

lim — E{|G(@)P) = 1 <M03 N P_2> 026 (w)

P00 Yp(w) 2\"0? H D, (w)

Proof: See Appendix 6.A. [

Similarly to the previous results, the interpretation of this theorem is that
for large model order p and after the algorithm has converged (large k)
then the MSE can be approximated by

E {|c~¥k(ei“))|2} ~ @ <”Z_§ + %) f;j((j)). (6.49)

In terms of how input spectral density affects noise sensitivity and track-
ing ability, (6.49) shows that Kalman Filter based algorithms sit between
the LMS and RLS algorithms in that instead of being affected separately,
both noise and tracking performance are affected equally (but to a lesser
extent due to the /- operation-see Figure 6.5) by the size of the input
spectral density ®,(w). Again, the accuracy of the approximation (6.49)
is validated experimentally in Section 6.7 to show that in fact it is mean-
ingful for low model orders; see Figure 6.4.

Note that the approximations (6.47), (6.48) and (6.49) can also be used to
calculate the optimal step size ;°P* which will minimise the MSE at a particular
frequency, with the results being

[Pt — P d(w)
o, \| Pu(w)
for the LMS and RLS algorithms, and
9Pt — po
oy

for the Kalman Filter algorithm. It is clear from these expressions that for
the LMS, and RLS algorithms a value p°"* that minimizes the MSE for all
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frequencies can not be obtained. On the other hand, for the Kalman Filter case
the value of ;°* is independent of frequency and so it will minimize the MSE
at all frequencies. For all of these cases, the minimum MSE is

~ jwy |2 _ 6((“))
E{IG()I} | =poumll|5 o5
The presence of the term +,(w) in all these error quantifications shows that the
orthonormal parameterisation (6.24), (6.25) is more than just an essential tool
for the analysis of general fixed denominator model structures. Instead, the
orthonormal ‘basis functions’ {8,(¢)} appear as an intrinsic part of adaptive
estimation with any fixed denominator model structure G(q, 6).

For example, for RLS and Kalman Filtering schemes, then in steady—state
whether or not the fixed denominator model structure is ab—initio cast in the
orthonormal form (6.24), the complete contribution of the fixed pole choice to
the frequency domain error properties is captured by the term -, (w) which via
(6.33) is itself completely described by the orthonormal basis {8, (q)}.

In other words, for any model structure with fixed denominator such as
(6.22) and (6.24), the RLS and Kalman Filter frequency domain error quantifi-
cation depends only on the location of the poles {¢,} and is quantified via the
factor ~,(w) associated with the orthonormal basis functions {B,(q)} .

6.7 Simulation Examples

In this section, the utility of the previous theoretical analysis will be demon-
strated via several simulation studies. In all cases, it is assumed that there is
an underlying continuous time system with transfer function

1
G =
)= GFDaes+ 1)
from which input-output data is collected by sampling every one second. We
begin the study by considering the case of stationary systems, but later on,
time variations away from G(s) will also be analyzed. It is assumed that the
input {u} is stationary and Gaussian with spectral density

o ( ) 10
ulW) = y
1.25 — cosw

and that the observed output {y.} is corrupted by a white Gaussian noise
sequence {v;} of variance o2 = 0.01. Based on this observed data, the identifi-
cation objective is to estimate the zero order hold equivalent [AW84] discrete
time system

(6.50)

1 . .024
G(q):ZOH{ }:( 0.0355¢ + 0.0247

(s +1)(10s + 1) q — 0.9048)(¢q — 0.3679)
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via the model structure (6.24) with poles {¢,} chosen to correspond to continu-
ous time guesses of 0.2 and 0.25 radians per second. Note that these poles, being
far from either of the true poles at 0.1 and 1 rad/s, are particularly bad guesses.
They have been chosen to dispel any suspicion in the sequel that the high ac-
curacy of the approximations (6.47), (6.48) and (6.49) illustrated in Figures 6.3
to 6.7 derives from unreasonable prior knowledge or idealized conditions.

All three algorithms, the LMS with ¢ = 0.001, RLS with A = 0.999 and
P, = I, and the Kalman Filter with ;2 = 0.001,X = 0.1, Py = I and ¢? = 0.01
were employed with a tenth order model structure (p = 10). The parameter
space convergence results are shown in the plots of Figure 6.2, the fast conver-
gence illustrating that these examples do not represent a case of unreasonably
slow adaptation. Again, this choice is made to illustrate the robustness of the
theoretical analysis to the violation of certain assumptions (small p) that it is
performed under. These estimation experiments were performed five hundred

LMS

(o] 20 40 60 80 100 120 140 160 180 200
RLS
T T T T T T
| | | | | |
(0] 20 40 60 80 100 120 140 160 180 200
KF
0-2 T T T T T T T T T
@ _
(o] 20 40 60 80 100 120 140 160 180 200

Sample Number

Figure 6.2: Parameter space convergence for LMS, RLS and Kalman Filter.

times with different realizations for the input and measurement noise. This
allowed the true frequency domain estimation error E {|Gk(ej“)|2} to be esti-

mated by calculating its sample value as an average over the 500 realizations.
This is plotted as the solid line in Figures 6.3 to 6.5. The dash—dotted lines
in these figures are the approximations (6.47), (6.48) and (6.49) derived from
Theorems 6.6.1, 6.6.2 and 6.6.3, respectively.

To be more specific, in the left hand diagram of Figure 6.3, the LMS approxi-
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x10° Estimate Variability - LMS .5 10° Estimate Variability - RLS
T T T B T T

— Theoretical — - Theoretical
—— Monte Carlo 3t — Monte Carlo

250

05
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Frequency (Normalised) Frequency (Normalised)

Figure 6.3: Comparison of Sample Variability (over 500 experiments) vs
theoretically deriwed approximations. On the left 1s the LMS algorithm vs
the approrimation (6.47). On the right is the RLS algorithm vs the ap-
prozimation (6.48). In all cases a 10th order model and 800 data samples
were used.

mation (6.47) is profiled against the true average error distribution with respect
to frequency, and appears to be highly accurate. This is in spite of the approx-
imation (6.47) being derived from the asymptotic in p result in Theorem 6.6.1,
but being applied in this simulation to only a p = 10-th order model.

Similarly, in the right hand diagram of Figure 6.3, the RLS approximation
(6.48) is profiled against the true error distribution, and is again quite accurate.
Finally, in the left hand diagram of Figure 6.4, the same validity of (6.49) as
an approximant for the error distribution of the Kalman Filter algorithm is
demonstrated.

To illustrate just how robust the approximations can be to the use of a low
model order, the case for the RLS algorithm and a model order of only p = 4
and a data length of only 300 samples is shown in the right hand diagram of
Figure 6.4. The approximation (dash—dotted) line still appears to be a highly
informative indication of the true variability (solid line).

In Figure 6.5, all these tenth order Monte—Carlo simulation results are com-
pared to their theoretical approximants (6.47), (6.48) and (6.49) in one diagram.
The top plots are for the LMS algorithm, the middle ones are for the Kalman
filter and the bottom ones are for RLS. The fact that the RLS variability is
approximately an order of magnitude lower than that for LMS is supported
theoretically by examining the approximants (6.47) and (6.48). Specifically,
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«10° Estimate Variability - Kalman Filter x10™ Estimate Variabilty - RLS
2.5 T T T 2v5 T

— Theoretical
~i ~— Monte Carlo

— Theoretical
— Monte Carlo

15F 15

05 05
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Frequency (Normalised) Frequency (Normalised)

Figure 6.4: Comparison of Sample Variability (over 500 experiments) vs
theoretically deriwved approximations. On the left is the Kalman Filter
algorithm vs the approzimation (6.49). On the right is the RLS algorithm
vs the approximation (6.48). For the Kalman Filter on the left, 10th order
model and 800 data samples were used. For RLS on the right, only 300
data samples and only a 4th order model were used.

(6.47) indicates that for p = 0, the LMS steady state error is unaffected by
input spectral density ®,(w), while (6.48) illustrates that for RLS, this same
steady state error is inversely proportional to ®,(w). Therefore, for stationary
systems, the ratio of LMS error to RLS error should be equal to ®,(w), which
is observed in Figure 6.5.

As well, a comparison of the theoretical expressions (6.49) and (6.48) indi-
cates that the Kalman Filter variability should be larger than the RLS variabil-
ity by a factor /@, (w)d(w)/o, and this is also supported by the larger observed
variability for the Kalman filter in Figure 6.5. Notice also the slower roll-off
at high frequencies of the Kalman filter error as compared to the RLS or LMS
error. This is due to the presence of the /- term in the Kalman filter error
expression (6.49) which is not present in the LMS or RLS expressions (6.47) or
(6.48).

Turning away from steady—state (large k) performance, the LMS (with p
decreased to = 0.0003 and ®@,(w) = (1.57 — 1.75cosw) ') transient analysis
approximation in equation (6.37) was also tested via simulation with the results
|2

shown in Figure 6.7. In this figure, the variance E {|ék(ej“’) was estimated

as the sample variance calculated over 500 simulations with different input and
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- LMS, KF and RLS Variability — Monte Carlo Observed vs Theory
10 F M M R T T T

LMS =~ Theoretical ]
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Figure 6.5: Comparison of observed variability (solid line) vs theory (dash—
dotted line) for LMS (top), Kalman Filter (middle) and RLS (bottom).

measurement noise realisations. This estimate is shown as the solid lines. The
top plot with the faster decay rate is the error at w = 0.1 rad/s, and the
bottom plot with the slower decay rate is the error at w = 0.4 rad/s. The dash-
dotted lines in these two diagrams are the estimates for this transient response
derived from (6.37). Again, the agreement between the observed error and the
theoretical prediction is quite close in spite of the fact that the approximation
(6.37) is derived from an asymptotic in p result and then applied to a small
(p = 10) model order. In particular, note that (6.37) is able to clearly explain
and predict the slower convergence at the higher frequency where the input
spectral density is smaller.

Finally, the validity of the approximations (6.47), (6.48) and (6.49) for the
case of non—stationary plants (p # 0) was tested by starting with the system
(6.50) and then perturbing it according to the random walk model (6.34) with
@ chosen so as to imply a p?d,(w) shown in the right hand diagram of Fig-
ure 6.6. In the left hand diagram of that figure is shown (solid line) the sample
mean square variability of the RLS estimate in steady state (k = 800) versus
that predicted (dash—dotted line) via the theoretically derived approximation
(6.48). As in previous simulations, a tenth order model was used, and also as in
previous simulations the agreement between sample observation and theoretical
approximation is good.

If fact, counter—intuitively the agreement between observation and theory
appears better in the time varying plant case than in the previous time invariant
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case. This can be explained by noting that in the time invariant case, the poles
{&} in the model were deliberately chosen to be far from the true plant poles
in order to test the robustness of the approximations (6.47), (6.48) and (6.49).
In the time varying case under the model (6.50) this is not possible, so that
there is no under-modeling component in the results shown in Figure 6.6.

x10™ Estimate Variability - RLS x10° Frequency domain description of system variation
25— ——— — . : :

6.5

— - Theoretical
— Monte Carlo

15¢

0.5r

= ! 15 I I I I I I
10 10 0 05 1 15 2 25 3

Frequency (Normalised) Frequency (Normalised)

Figure 6.6: Comparison of Sample Variability (over 500 experiments) vs
theoretically derived approzimation for RLS algorithm and non—stationary
plant. On the left 1s the sample estimation error after k = 800 iterations
(solid line) compared to the theoretical approrimation (6.48) as a dash—
dotted line. On the right is the non-stationarity modeled in the frequency
domain by p*0,(w)/ .

6.8 Conclusions

In this chapter, a frequency domain analysis of the tracking performance of
several adaptive estimation schemes has been carried out for the case in which
the system is represented by fixed denominator model structures. The transient,
as well as the steady-state behaviour of the frequency response tracking error
was analyzed. The main contribution of the chapter was to extend known
results for FIR model structures, where the poles are fixed at the origin, to
more general model structures where the poles may be placed arbitrarily. The
key tool in this analysis was to re-parameterize the system using orthonormal
bases with fixed poles that generalize the classical FIR bases. The analysis

35
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Observed and Theoretical Transients at 0.1 and 0.4 rad/s
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Figure 6.7: Transient behavior of LMS at two different frequencies - ob-
served (Monte Carlo Average) vs Theoretical prediction via approrimation

(6.37). Top plot is error E {|ék(ej“’)|2} at w = 0.1 rad/s. Bottom plot 1s
error E {|@k(ej“’)|2} at w = 0.4 rad/s.

showed how the choice of the poles in the orthonormal structure affects the
tracking and noise rejection abilities of the algorithms. A fundamental réle in
this frequency domain error characterization was shown to be played by the
reproducing kernel ,(w) associated with the orthonormal bases. The validity
of using the results derived for infinite model order in a finite model setting
was examined via simulation. The simulation experiments showed that the
results, which are exact for infinite model order were shown to provide good
approximations even for relatively small model orders.

APPENDICES

Throughout the Appendices in this chapter we will use the Toeplitz-like matrix
form M,(f) introduced in Chapter 4, as defined in equation (4.A.4).

6.A Proof for Chapter 6

Proof of Lemma 6.4.1
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e RLS algorithm: The parameter update law is given by

§k+1 = O+ Peow(yr, — ¢{§k): (6.A.1)

1 Py 169}, Pr
P. = —<P._1— DA 0,1). 6.A.2
k )\{ k—1 )\+¢£Pk71¢k ) E( ) ) ( )

Considering that ¢, = J” ¢}, equations (6.A.1) and (6.A.2) can be written
as

§k+1 = §k + PkJT@C(yk — ¢;CTJ§]C), (6A3)
1 Pe oy J" o) TPy
P, — .

P = -
’ A A+ ¢ TP, 1T,

Multiplying equation (6.A.3) on the left by .J, and equation (6.A.4) on
the left by .J and on the right by J7, we obtain

JOper = JOp+ JPITS, (g — #TT0), (6.A.5)
! JP’“JT%%TJP’“JT} . (6.A.6)

JP.J" = =2 JpP._,J" —
’ A { = A G IP T,

(6.A.4)

Now, the result for the RLS algorithm follows by defining P} £ JP,.J".

KF algorithm: The parameter update law in this case is given by
,U’Pk71¢k Th
— ¢ 0,),
0 + pgy Pr 19k (5 = 91.61)
Pr_10w0f P

P = Poy—u >
g o 0% + pg} Pe_1y

Considering that ¢, = J” ¢}, these equations can be written as
P J" ), T 17
— ¢ JO 6.A.7
0_2 + M¢;CTJPk_1JT¢;C (yk ¢k k)? ( )
Py JT Qi TPy
0% + pdy TPy JT
Multiplying equation (6.A.7) on the left by J, and equation (6.A.8) on
the left by J and on the right by .J7, we obtain
MJPk71JT¢2; T 77
— ¢y JOk),
o2 + /L¢;€TJP}¢,1JT¢;€ (yk ¢k k)
TPy JT ¢ TPy J"
% + uof TP 170
Now, the result for the KF algorithm follows by defining P} = JP,J” and
¥ £ JuJT.

Oks1 = Op+

Okr1 = O+

Pk = Pk:—l — U + LLE (6A8)

J§k+1 = Jé\k; +

+ puJSJT.

JPJT = JP, 1 JT —p
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e LMS algorithm: In this case the parameter update law is given by
§k+1 =0, + 1k (Y1 — ¢{§k)
Considering that ¢, = J7 ¢, we can write
On = O + 1" B (g — S TO).

From this equation we can easily conclude that the LMS estimate is not
invariant under the linear re-parameterization ¢y, = J7 ).
[

Proof of Theorem 6.5.1 Considering equation (6.32) with Sy = I, and the def-
inition (6.35), we can write

1 ~ joyi2 |
UG EP) =
1 * [ _jw o o T 6jw
— 'yp(w)rp(e (I — pR)I(I — puR)" Tp(e)
2 o 1 *( jw w 2511(“))
+ u Juvp(w)f‘p(e’ JRL, (") +p —’yp(w)' (6.A.9)

By Parseval’s Theorem matrix R can be given the following spectral represen-
tation

™

R2E{07) = % / ) (65),, (0)TA() duw (6.A.10)

—T

Now, using the notation (4.A.4), equation (6.A.9) can be written as

1 ~ o\ 12
e G =
= UM~ RT(1 = )T ()
2 2 1 * (L jw 6jw 2M
O STHEM(BIT () + 92 (6.A.11)

Finally, taking the limit as p — oo, and applying Theorem 4.B.1, Lemma 6.B.1,
and the definition of §(w) in (6.36), then gives the result. |

Proof of Theorem 6.6.1 Using the formulation (6.A.10) together with the no-
tation (4.A.4) in (6.41) gives that in the limit as £ — oo
2

TIM,(®,) + M, (®,)TT = poM,(®,,) + ”;Q
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so that
D3 (¢4 LM, (@)L (1) T(el*) My(@,)TITy ()
(W) Yp(w)
_ poRTp)M(RIT,(E) 26 (w)
Tp(w) 1yp(w)

Now the result follows by taking the limit of both sides as p — oo while using
Theorem 4.B.1, Lemma 6.B.2 and the definition of 4(w) in (6.36). |

Proof of Theorem 6.6.2 Using the formulation (6.A.10) together with the no-
tation (4.A.4) in (6.42) gives that in the limit as £ — oo

) - e
/LO'E * ([ jw -1 6ju; p2610(w)
2’7})(“)) Fp(e )Mp ((I)U)FP( ) + 2/”7;0(@)

Taking the limit of both sides as p — oo while using Theorem 4.B.2 and the
definition of §(w) in (6.36) then gives the result. |

Proof of Theorem 6.6.3 Substituting the value of S from (6.45) into (6.44) with
Y = @ gives that II is the solution of

2 2

o o2 2\’
IRl = — AT . 6.A.12
1 (uOQ + u) Q ( )

Define two positive definite, p X p dimensional real matrices A, and B, to be
asymptotically equivalent A, ~ B, if they leave quadratic forms with I',(el*)
invariant:

A, ~ B, & lim
P P pooo ”Vp(w)

F;(ejw)(Ap - Bp)Fp(ejw) = 0.

Using the definition

2 2 2\ 2
a?éa_ /*Lo-y_i_p_
4 \ o? 1

and the notation (4.A.4), the matrix

§(w)
aM, ( @u(w)>
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is an asymptotically equivalent solution to IT given by (6.A.12) since using the
representation (6.A.10)

() (TTRTT — 02 My (v/67D,) My (9.) My (\/3]®,) ) Ty(e) =

’Yp( ) ?

= T T(E) (My(6) = My(V/O7P0) My(®) My (V/67D,) ) Ty(eH) +

T (W)
(6.A.13)
+ @) () (Q — M(9)) Tp(e"). (6.A.14)

Now, considering the term (6.A.13), by Theorem 4.B.1 and Lemma 6.B.3
1 %/ iw jw
lim S TH(E) (M,(0) = My (v/570.) My (®,) My (V/67B,) ) Ty (e) =
6(w)
P, (w)

() _
P, (w)

= d(w) — D, (w)

Considering the term (6.A.14), and using the definition of ¢(w) and Theo-
rem 4.B.1

lim

lim —STHER) (@ = ME)Ty(eh) = 3(w) = () =

Therefore, since IT ~ aM,(1/0(w)/®,(w)), then again by Theorem 4.B.1

plgg: Yp(w) E {|é(ejw)|2} - pli—glo Yp(w) F;(ejw)HFp(ejw)
= lim F*(e’“’) »(\/0/®,)T ( “)
p=oo Yp(w) P
B §(w
a P, (w)

6.B Technical Results

Lemma 6.B.1. Let Q, € RP*? be a symmetric, positive definite matriz with
|Qpll2 < oo for all p, and let f(w) be a real valued function, continuous
on [—m, 7| and having a finite dimensional spectral factorization. Suppose
that

> (10— &)
k=0
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Then
L = f2(w) lim L w w
plggo (@ )F (W) My (f)QpMy(f)Tp(w) = f( )pLOO ’Yp(w)Fp( )@pLp(w).

Proof: For simplicity of notation, define the function g(¢) £ f(0)— f(w). Then

\F;f(w)Mp(fmpMp(f)Fp(w) — P W)TH(@)Q,TH(w)] <

Yo (W)
‘F* p(g)QpMp(g)Fp(w)‘ +

p(w
|f(w)]

@) |75 (w) [Qp My () + My(9)Qp]Tp(w)| -

(6.B.15)

+

Considering the first term in this upper bound, we can write

‘F* p(g)QpMp(g)Fp(w)‘ <

IIQpIIz () M2
—r \r )M (9)Tp(w)|

“ﬁpn? | T (@) My (6*)Tp(w) | + (6.B.16)
p

|J}22(p||2 |05 (W) [M2(g) — M, (g%)]T,(w)| - (6.B.17)

Now, by Theorem 4.B.1, the term (6.B.16) tends to zero as p tends to infinity,
since

IN

1 * 2 _ 2w —
lim, ST (@) My(57) () = %) = 0.

For the term (6.B.17) we have that since by construction the elements of
I'y(w) are bounded in magnitude by some finite number K, (as defined in
Lemma 5.E.2), use of Lemma 4.C.2 give us that for some |n| < 1

IT5(w)[M2(g) — My(g?)]T,(w)] <

< Z |[Tp(w)*],, |
< |[M7(9)],,,,, = Mp(g") I || [T ()],
< K K? i i(n”’m +0")" " +0")
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Considering that

‘B

—1
(1= [&]) < n(w),
k=0

NN

then, under the conditions of the theorem, also the term (6.B.17) tends to zero
as p tends to infinity, i.e.

i 191

p—00 fy

7 [T (9) = My (g*)]T, ()] = 0.

Using Lemma 6.B.2 to deal with the remaining term in the upper bound
(6.B.15) then completes the proof. |

Lemma 6.B.2. Let ), € RP*P be a symmetric, positive definite matriz with
|Qpll2 < 0o for all p, and let f(w) be a real valued function, continuous on
[—m,m]. Suppose that

> (=&
k=0

Then

Proof: For simplicity of notation, define the function g(¢) £ f(0)— f(w). Then
‘F;(W)Mp(f)Qpr(w) - f(W)F;(W)Qpr(W)‘ =
1
= T (W) M, (9)QpTp(w) |-

(W)

(W)

Now define the functions g* (o) 2 max[g(c),0] and g~ (o) = min[g(c), 0] so that
g(o)=g" (o) + g‘(a) and hence

e \T* w)@QpMy(9)Tp(w)] <

T‘F* )QpMy(g )p(w)‘+
1
Yp(w)

T3 (@)Qp M, (g7)Tp(w)| - (6.B.18)
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Considering only the first term in this upper bound, note that provided f(w) is
not equal to a constant (in which case the Lemma is trivial since M, (1) = I),
then for z € RP arbitrary

1 ™
Mg =5 [T () do > 0
™ J_

™

so that M,(g") is positive definite and hence

5 \r;(w>@pMp<g+>rp<w>\=
= 5 TV ()M, () QM A (0T
< “fg’”? IT%(w) My (g ().

Finally, using Theorem 4.B.1

: + — () —
lim ST @) My(5 () = () =0

Using the same argument for the remaining term in the upper bound (6.B.18)

then completes the proof. [ |

Lemma 6.B.3. Let f,g € Ly(|—m,7|) have finite dimensional spectral factor-
izations. Then provided Y - (1 — |&]) = oo,

Mp(f)Mp(g)Mp(f) ~ Mp(fQQ) as p — oo.

¢

with the notation
Proof: Using Lemmas 4.C.2 and 4.C.3
Tp(w) [My(f)My(9) My(f) — My(f?9)] Tp(w) =
= (W) My (f) [My(9) Mp(f) — Mp(fg)] Tp(w) +
+5(w) [My(F)My(fg) — My(f9)] Tp(w)

~’ as wintroduced in the proof of Theorem 6.6.3.

< S S ) M [V M) = ()| [T, |+
3 S )] [ )]~ DI [T,
<

p—1 p—1
KNS P ™ 0™ 0r "+ ),
m=0 n=0
— P 2
= K’ (7) (17" +n)* < o0

L—n
Noting that 2v,(w) > S2P_1 (1 — |¢|) then completes the proof. |
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Conclusions

In this thesis we have analyzed several aspects regarding the use of rational
orthonormal bases in identification of discrete-time linear systems from input-
output data in the time domain.

We concentrated on the use of orthonormal bases with fixed poles that gen-
eralize the more common FIR, Laguerre and Kautz bases, and that allows the
incorporation in the identification process of prior information about dominant
dynamics of the system by an appropriate choice of the poles in the orthonormal
structure.

Apart from the well known properties of orthonormal bases leading to linear
regressor forms and guaranteeing worst case numerical conditioning of the least
squares estimation, an aspect we have emphasized in this thesis is the use of
orthonormal bases with fixed poles as an analysis tool that facilitates the quan-
tification of the estimation accuracy of any (multivariable) fixed denominator
model structure. The numerical robustness of the least squares estimation us-
ing orthonormal structures was also analyzed and compared to the case of using
an equivalent non-orthonormal structure.

One of the main contributions of this thesis has been the extension to the
multivariable setting and to general fixed denominator model structures of exis-
tent single-input single-output FIR results quantifying the undermodelling error
and the asymptotic distribution of the transfer matrix estimate (the variance
error). The variance error result establishes that the variance of the transfer
matrix estimate at a given frequency, and for large model order and data-length,
can be approximated by the generalized noise to signal ratio (®,'(w) ® ®,(w))
weighted with a frequency dependent factor (v,(w)/N) that depends on the
particular bases. These results explicitly show how the choice of the poles of
the bases influences the bias and variance errors. In addition, they illustrate an
until now unknown phenomenom of bias/variance trade-off with respect to the
location of the poles of the bases.

Another contribution of this thesis, in the framework of recursive identifica-
tion, is the performance analysis of general adaptive algorithms using orthonor-
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mal bases with fixed poles. Here again, the analysis illustrates how several fac-
tors, such as step size of the algorithm, excitation properties of the input signal
and measurement noise, and choice of the fixed poles in the model structure,
influence the disturbance rejection properties and the tracking ability of the
algorithms.



A

Kronecker Product and vec-Operator

In this Appendix, some basic properties of Kronecker products and the vec-
operator are summarized. A more detailed treatment of these topics can be
found in [Bre78|.

e Kronecker Product: Let A = (a;;) and B = (b;;) be m x n and ¢ x p sized
matrices. Then the Kronecker product of A and B, denoted A ® B, is
defined as the m/ x np sized matrix

auB algB s alnB
A 2 B GJQTB CEQQB s a27-zB
CLmlB CLmQB s amnB

e vec-Operator: is an operator which turns an m x n matrix A into a vector
by stacking the columns of A on top of one another:

vec A = , (m x 1) vector

where A; is the k-th column of A.
e Operations with Kronecker Products: The following identities hold

1. (A® B)(C® D) = AC ® BD
2. (A B)T = AT @ BT
3. (AeB)'=4"9 B!

Finally a useful property of the vec-operator is that when A is m x n and
B is n x { then

vec AB = (I; ® A)vec B = (BT ® I,,,) vec A.
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A. Kronecker Product and vec-Operator

Lemma A.0.4. The eigenvalues of A ® B are \ju; where \; are the
etgenvalues of A and y; are the eigenvalues of B.

Proof: See [Bel60|, Theorem 3, page 235. [ |

Lemma A.0.5. Let o and O'JB denote the singular values of the matri-

ces A and B respectively. Then the matrix A® B has singular values

A_B
o, 0;.

Proof: By definition, the singular values of A ® B are the square root of
the eigenvalues of the matrix (A ® B)(A ® B)*. But

(A® B)(A® B)* = AA* ® BB*

so that the result follows by applying Lemma A.0.4 to the RHS of the
previous equation. [ |

Lemma A.0.6. The following identity holds

1A ® Bl = [|All2/| Bl

Proof: The results follows directly by applying Lemma A.0.5 and consid-
ering that the 2-norm of a matrix equals its maximum singular value. W
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Hy™(T)

{Br(2)}i=
Kp(z, H)

1
0

Notation

forward shift operator .

the open unit disk in the complex plane {z € C: |z| < 1} .
the unit circle {z : |z| =1} .

the open region outside the unit disk {z: |z] > 1} .
complex numbers.

real numbers.

set of integer numbers .

set of non-negative integer numbers.

Hilbert space of (two-sided) square summable sequences with
support in Z .

Hilbert space of (one-sided) square summable sequences with
support in Nj.

Hilbert space of Lebesgue square-integrable functions on the
unit circle.

Hardy space of Lebesgue square-integrable functions on the
unit circle T that are analytic outside the unit circle (i.e.,
analytic on E.

Hardy space of (m x n) transfer matrices whose entries are
in H2 (T)

set of orthonormal functions.

Reproducing Kernel associated with an orthonormal set.



B. Notation

|- 1l
IRl
AT A
Acronyms
FIR

IIR
SISO
MIMO
DT
LTI
OBFP
OBGIF
PEM
rkHs
DFT
BIBO
LMS
RLS
KF
4S1D
N4SID

MOESP
CVA
SVD

inner product (in a Hilbert space).
inner product in Hilbert space H.
norm induced by the inner product.
2-norm of matrices or spectral norm.
Frobenius norm of matrices.

Transpose and conjugate transpose of matrix A.

Finite Impulse Response (filter or model structure).
Infinite Impulse Response (filter or model structure).
Single-Input Single-Output (system).

Multiple-Input Multiple-Output (system).

Discrete Time (system).

Linear Time-Invariant (system).

Orthonormal Bases with Fixed Poles.

Orthonormal Bases Generated fron Inner Functions.
Prediction Error Methods.

reproducing kernel Hilbert space.

Discrete Fourier Transform.

Bounded-Input Bounded-Output (stability).

Least Mean Squares.

Recursive Least Squares.

Kalman Filter.

Subspace-based State-Space System IDentification methods.

Numerical algorithms for Subspace State-Space System
[Dentification.

Multivariable Output Error State sPace.
Canonical Variate Analysis.

Singular Value Decomposition.
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