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In this talk, based on joint work with Silvio Reggiani,we
would like to draw the attention to some concept that we
call index of symmetry is(M) of a Riemannian manifold Mn

0 ≤ is(M) ≤ n

One has that M is symmetric if and only if is(M) = n

We are, of course, interested on non-symmetric spaces
with positive index of symmetry. In this case one has that
is(M) ≤ n − 2, as we will see later (in other words the
co-index of symmetry is at least 2).

These examples are known homogenous spaces but
endowed with a very particular Riemannian metric.
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We are able to classify the spaces with small co-index of
symmetry, after proving a bound on the dimension n of the
space, for a fixed positive co-index of symmetry k (for
irreducible spaces, since the product by a symmetric space
does not change the co-index of symmetry, but increases the
dimension).

The concept of index of symmetry came out from the study
of compact naturally reductive spaces such that the isotropy
has non-trivial fixed vectors (and so the full isometry group
is bigger than the presentation group). For such spaces it is
not hard to prove that the index of symmetry is al least the
dimension of the fixed vectors of the isotropy representation.

Recently, with Reggiani and Tamaru, we could prove the
equality, if the space is (irreducible, non-symmetric)
presented with the transvections.
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The subjects of this talk may be regarded as an effort to
explore Riemannian manifolds that are symmetric up to
some defect (in the hope of finding distinguished
non-symmetric homogeneous manifolds).

In some sense, our philosophy is in the direction of the
concept of co-polarity by Claudio Gorodski, that measures
how a representation, orbit like, differ from a symmetric
(isotropy) representation (and also we try to classify those
spaces when the defect is small).
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The index of symmetry.

Let Mn be a Riemannian manifold and denote by K(M) the
algebra of global Killing fields on M.
For q ∈ M, let us define the Cartan subspace pq at q, by

pq := {X ∈ K(M) : (∇X )q = 0}
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The symmetric isotropy algebra at q is defined by

kq := {[X ,Y ] : X ,Y ∈ pq}

Observe that kq is contained in the (full) isotropy subalgebra
Kq(M). In fact, if X ,Y ∈ pq,
[X ,Y ]q = (∇XY )q − (∇Y X )q = 0. Moreover, since pq is
left invariant by the isotropy at q,

gq := kq ⊕ pq

is an involutive Lie algebra.
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The symmetric subspace at q, sq ⊂ TqM, is defined by

sq := {X .q : X ∈ pq} = pq.q

The local version, involving local Killing fields, can be
equivalently defined as follows (from a joint work with Sergio
Console, PAMS 09)

slocq := {v ∈ TqM : ∇k
vR = 0, k = 0, . . . , n +

1

2
n(n − 1)},
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For dealing with the distribution q 7→ sq one needs to regard
Killing fields as parallel sections of the so called canonical
(vector) bundle over M,

TM ⊕ Λ2(TM) ' TM ⊕ so(TM)

where the connection ∇̄ in TM ⊕ so(TM) is given by

∇̄Y (Z ,B) = (∇Y Z − BY ,∇Y B − RY ,Z )

The bijection is given by

Z ↔ (Z ,∇Z )

The curvature tensor R̄ of ∇̄ is given by

R̄X ,Y (Z ,B) = (0, (∇ZR)X ,Y − (B.R)X ,Y )

where B acts on a tensor as a derivation.
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Lemma

Let X ,Y ∈ pq, regarded as Killing fields, and let Z be an
arbitrary tangent field of M. Then

RX (q),Y (q)Z (q) = −[[X ,Y ],Z ](q)

Let q ∈ M and assume that the index of symmetry at q is
positive, i.e. dim sq > 0. Let us consider the Lie subalgebra
gq of the full isometry algebra. One has that

gq = kq ⊕ pq

is an involutive Lie algebra. Let Gq be its associated Lie
subgroup of I (M). One has that the orbit Gq.q is a global
symmetric space, which is a totally geodesic immersed
manifold of M.

The action of Gq on the totally geodesic orbit needs not to
be, a priori, almost effective (only proved if M compact).
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Proposition

If M is compact, then Gq acts almost effectively on the orbit
Gq.q.

Identify Tq(Gq.q) = sq ' pq and decompose

pq = p0 ⊕ p1 ⊕ ...⊕ pr

where p0 corresponds to the Euclidean factor and pi
corresponds to the irreducible factors, in the de Rham local
decomposition of the orbit Gq.q (i = 1, ..., r).
Let, for j = 0, ..., r ,

kj := [pj , pj ].

Then

gj = kj ⊕ pj

is a subalgebra of gq.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Proposition

If M is compact, then Gq acts almost effectively on the orbit
Gq.q.

Identify Tq(Gq.q) = sq ' pq and decompose

pq = p0 ⊕ p1 ⊕ ...⊕ pr

where p0 corresponds to the Euclidean factor and pi
corresponds to the irreducible factors, in the de Rham local
decomposition of the orbit Gq.q (i = 1, ..., r).
Let, for j = 0, ..., r ,

kj := [pj , pj ].

Then

gj = kj ⊕ pj

is a subalgebra of gq.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Proposition

If M is compact, then Gq acts almost effectively on the orbit
Gq.q.

Identify Tq(Gq.q) = sq ' pq and decompose

pq = p0 ⊕ p1 ⊕ ...⊕ pr

where p0 corresponds to the Euclidean factor and pi
corresponds to the irreducible factors, in the de Rham local
decomposition of the orbit Gq.q (i = 1, ..., r).
Let, for j = 0, ..., r ,

kj := [pj , pj ].

Then

gj = kj ⊕ pj

is a subalgebra of gq.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Proposition

If M is compact, then Gq acts almost effectively on the orbit
Gq.q.

Identify Tq(Gq.q) = sq ' pq and decompose

pq = p0 ⊕ p1 ⊕ ...⊕ pr

where p0 corresponds to the Euclidean factor and pi
corresponds to the irreducible factors, in the de Rham local
decomposition of the orbit Gq.q (i = 1, ..., r).
Let, for j = 0, ..., r ,

kj := [pj , pj ].

Then

gj = kj ⊕ pj

is a subalgebra of gq.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Proposition

If M is compact, then Gq acts almost effectively on the orbit
Gq.q.

Identify Tq(Gq.q) = sq ' pq and decompose

pq = p0 ⊕ p1 ⊕ ...⊕ pr

where p0 corresponds to the Euclidean factor and pi
corresponds to the irreducible factors, in the de Rham local
decomposition of the orbit Gq.q (i = 1, ..., r).
Let, for j = 0, ..., r ,

kj := [pj , pj ].

Then

gj = kj ⊕ pj

is a subalgebra of gq.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

But, if the action of Gq is not almost effective on the orbit
Gq.q, we cannot conclude neither that gq is spanned by
g0, ..., gr

nor that these subalgebras are in a direct sum (and not even
that k0 is trivial or that gi are ideals).

The main point is that we do not know, in the non-compact
case, that Rpi ,pj = 0, for i 6= j , (only we know it is true for
the restriction to the totally geodesic submanifold Gq.q).

Corollary

If M is compact then k0 = 0, [gi , gj ] = 0, if i 6= j and so gq

is the direct sum of the ideals g1, ..., gs . Then

Gq = Gq
0 × ... × Gq

r (almost direct product)

where Lie(Gq
i ) = gi .
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If Mn is compact then, if i ≥ 1, Gq
i is a compact Lie

subgroup of I (M).

Facts: assume that Mn compact.

(a) Gq
i is a compact Lie subgroup of I (M), if i ≥ 1.

(b) If Ru,v |sq = 0, then Ru,v = 0, for any u, v ∈ sq.
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Theorem

Let Mn be a symply connected compact locally irreducible
homogeneous Riemannian manifold, which is not locally
symmetric, and let k := n − is(M) be its co-index of
symmetry. Then there is a subgroup of isometries G ⊂ I(M)
, which acts transitively on M and such that
dim(G ) ≤ 1

2 k(k + 1). Moreover, if the equality holds, then,
up to a cover, G = Spin(k + 1) and G has non-trivial
isotropy, if k ≥ 3.

Corollary

Let Mn, n ≥ 3, be a symply connected compact locally
irreducible homogeneous Riemannian manifold with co-index
of k = 2 . Then M = Spin(3) ' S3 with a left invariant
metric that belongs to one of two families g 1

s , g 2
t described

in the next.
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- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

Examples.

- Left invariant metrics in Spin(3).

Since Ad(Spin(3)) = SO(so(3)) ' SO(3), with respect to
the bi-invariant metric of curvature 1.

any left invariant metric, modulo isometries and rescaling, is
determined by a triple of positive numbers

(1, λ, β)

which corresponds to a diagonal endomorphism, with respect
to the biinvariant metric, in a given orthonormal basis of
so(3).



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

The metrics with co-index of symmetry 2 are given exactly
by the two families of metrics g 1

s and g 2
t associated to the

triples

(1, s, 1− s), 0 < s <
1

2

and

(1, t, t), 0 < t 6= 1

The isometry group for the first family is Spin(3) and for the
second family is Spin(3)× S1 (and the tranvections do not
lie in Spin(3)), if t 6= 1

2 .

Observe that (Spin(3), g 2
t ) is a Berger sphere. Or

equivalently, up to a cover, it is the unit tangent bundle over
the 2-sphere of constant curvature different from 1 (in which
case the metric would be bi-invariant and the space
symmetric).
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- The unit tangent bundle over the sphere of curvature 2.

The distribution of symmetry s, of the unit tangent bundle
M2n−1 of the sphere Sn

2 of curvature 2, coincides with the
vertical distribution ν. In particular, is = n − 1, where
is = dim(s) is the index of symmetry (or equivalently, the
co-index of symmetry is equals to n).
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- Naturally reductive spaces whose isotropy has fixed vectors

Let M = G/H be a homogeneous compact Riemannian
manifold with a G -invariant metric 〈 , 〉.
The space M is said to be naturally reductive if there exists
a reductive decomposition

G = h⊕m,

where G = Lie(G ), h = Lie(H), Ad(H)m ⊂ m, such that the
geodesics by p = [e] are given by

γX .p = Exp(tX ).p

for al X ∈ m. In other words, the Riemannian geodesics
coincide with the ∇c -geodesics, where ∇c is the canonical
connection, which is a metric connection, of M associated to
the reductive decomposition. This is in fact equivalent to the
property that [X , · ]m : m→ m is skew-symmetric, for all
X ∈ m (m ' TpM).
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the reductive decomposition. This is in fact equivalent to the
property that [X , · ]m : m→ m is skew-symmetric, for all
X ∈ m (m ' TpM).
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The Levi-Civita connection is given by

∇v w̃ = 1
2 [ṽ , w̃ ]p,

and

∇c
v w̃ = [ṽ , w̃ ]p,

where, for u ∈ TpM, ũ is the Killing field on M induced by
the unique X ∈ m such that X .p = u (i.e. ũ(q) = X .q).
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The difference tensor between both connections is given by

Dvw = ∇v w̃ −∇c
v w̃ = −1

2 [ṽ , w̃ ]p = −∇v w̃ .

The tensor D is totally skew, i.e. 〈Dvw , z〉 is a 3-form.

Let M be a compact locally irreducible (non-symmetric)
naturally reductive space. Let now, keeping the previous
notation,

m0 ⊂ m ' TpM

be the set of fixed vectors of the isotropy at q.
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Let ŵ denote the G -invariant vector with ŵ(q) = w ∈ m0.
Such a field is parallel with respect to the canonical
connection. In fact, any G -invariant tensor is ∇c -parallel.
Then, for any v ∈ m ' TpM, w ∈ m0,

(∇v ŵ)q = Dvw

Observe, since D is totally skew, that ŵ satisfies the Killing
equation and hence it is a Killing field.

Remark. There are no more new Killing fields in M, since
the canonical connection is unique (unless M is round
sphere, or a Lie group, with a bi-invariant metric). This is by
making use of the so-called skew-torsion holonomy theorem
(O.- Reggiani, Crelle’s 2011)

Lie(I (M)) = g⊕ m̂0

(direct sum of ideals).
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On the other hand, from the previous formulae,

(∇v w̃)q = −Dvw

Hence the Killing field

v̄ =
1

2
ṽ +

1

2
v̂

satisfies

(∇v̄)q = 0, v̄(q) = v

Therefore, m0 ⊂ sq, and thus the distribution of symmetry is
non-trivial.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

On the other hand, from the previous formulae,

(∇v w̃)q = −Dvw

Hence the Killing field

v̄ =
1

2
ṽ +

1

2
v̂

satisfies

(∇v̄)q = 0, v̄(q) = v

Therefore, m0 ⊂ sq, and thus the distribution of symmetry is
non-trivial.



The index of
symmetry and

naturally reductive
spaces

Carlos Olmos

Introduction

The index of
symmetry

The dimension
bound

Examples

Open questions

On the other hand, from the previous formulae,

(∇v w̃)q = −Dvw

Hence the Killing field

v̄ =
1

2
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Theorem (O.-Reggiani-Tamaru). Let M be a simply
connected compact homogeneous naturally reductive
space. Then the index of symmetry of M coincides with
the dimension of the fixed vectors of the isotropy of the
group of transvections.

Corollary (O.-Reggiani-Tamaru) Let M = G/H be a
simply connected compact normal homogeneous space.
Then the index of symmetry of M coincides with the
dimension of the fixed vectors of the isotropy H.
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Open questions.

Assume that Mn is a compact simply connected irreducible
Riemannian manifold with a positive index of symmetry.
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(or equivalently, is the flat factor compact?).
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– If n > 3, does the metric on M projects down to the
quotient by the symmetric foliation? (if the space is locally
irreducible) The situation, for n > 3, seems to be very rigid.

– Find new examples.

– Classify the case of co-index of symmetry equals to 3 and
4 (in which case de dimension is at most 6 or 10).

Or, more generally, classify the compact simply connected,
irreducible, Riemannian homogeneous manifolds with a
positive index of symmetry.
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