Secciones Normales Fórmulas de los Polinomios Hipersuperficies Isoparamétricas Los Polinomios Los últimos casos

Polinomios de Secciones Normales en Hipersuperficies Isoparamétricas

Julio C. Barros - Cristián U. Sánchez email: jbarros@exa.unrc.edu.ar - csanchez@mate.uncor

UNRC - UNC

Encuentro de Geometría Diferencial Rosario 2012

1/31

Sea M una variedad Riemanniana compacta conexa n-dimensional e $I:M\longrightarrow \mathbf{R}^{n+k}$ un embedding isométrico en el espacio euclídeo \mathbf{R}^{n+k} . Se identifica M con su imagen por I.

Sea M una variedad Riemanniana compacta conexa n-dimensional e $I: M \longrightarrow \mathbb{R}^{n+k}$ un embedding isométrico en el espacio euclídeo \mathbb{R}^{n+k} . Se identifica M con su imagen por I.

Una subvariedad del espacio euclídeo \mathbf{R}^{n+k} es llamada full, si no está incluida en ningún hiperplano afín.

Sea M una variedad Riemanniana compacta conexa n-dimensional e $I: M \longrightarrow \mathbf{R}^{n+k}$ un embedding isométrico en el espacio euclídeo \mathbf{R}^{n+k} . Se identifica M con su imagen por I.

Una subvariedad del espacio euclídeo \mathbb{R}^{n+k} es llamada full, si no está incluida en ningún hiperplano afín.

Por <, > se denota el producto interno en \mathbf{R}^{n+k} . Por ∇^E la derivada covariante euclídea en \mathbf{R}^{n+k} y por ∇ la conexión Levi-Civita en M.

Se dice que la subvariedad M is *esférica* si está contenida en una esfera de radio r en \mathbb{R}^{n+k} , la cual se piensa centrada en el origen.

Se dice que la subvariedad M is *esférica* si está contenida en una esfera de radio r en \mathbb{R}^{n+k} , la cual se piensa centrada en el origen.

Por α se denota la segunda forma fundamental del embedding en \mathbf{R}^{n+k} .

Se dice que la subvariedad M is *esférica* si está contenida en una esfera de radio r en \mathbf{R}^{n+k} , la cual se piensa centrada en el origen.

Por α se denota la segunda forma fundamental del embedding en \mathbf{R}^{n+k} .

Se denota por $T_p(M)$ y $T_p(M)^{\perp}$ el espacio tangente y normal a M en p, respectivamente.

Se dice que la subvariedad M is *esférica* si está contenida en una esfera de radio r en \mathbb{R}^{n+k} , la cual se piensa centrada en el origen.

Por α se denota la segunda forma fundamental del embedding en \mathbf{R}^{n+k}

Se denota por $T_p(M)$ y $T_p(M)^{\perp}$ el espacio tangente y normal a M en p, respectivamente.

M se dice extrínsecamente homogénea, si para cualquier par de puntos $p, q \in M$ existe una isometría g de \mathbf{R}^{n+k} tal que g(M) = M y g(p) = q.

Sea p un punto en M y consideremos $X \in T_p(M)$, con ||X|| = 1, se define el subespacio afín de \mathbb{R}^{n+k} por,

Sea p un punto en M y consideremos $X \in T_p(M)$, con ||X|| = 1, se define el subespacio afín de \mathbf{R}^{n+k} por,

$$Sec(p, X) = p + span\{X, T_p(M)^{\perp}\}.$$

Sea p un punto en M y consideremos $X \in T_p(M)$, con ||X|| = 1, se define el subespacio afín de \mathbf{R}^{n+k} por,

$$Sec(p, X) = p + span\{X, T_p(M)^{\perp}\}.$$

Si U es una vecindad suficientemente pequeña de p en M entonces, la intersección $U \cap Sec(p,X)$ es una curva regular, C^{∞} , $\gamma(s)$, parametrizada por logitud de arco, tal que, $\gamma(0) = p$, $\gamma'(0) = X$. Esta curva es llamada una $Sección\ Normal\ de\ M\ en\ p$ en la dirección de X.

Sea p un punto en M y consideremos $X \in T_p(M)$, con ||X|| = 1, se define el subespacio afín de \mathbf{R}^{n+k} por,

$$Sec(p, X) = p + span\{X, T_p(M)^{\perp}\}.$$

Si U es una vecindad suficientemente pequeña de p en M entonces, la intersección $U \cap Sec(p,X)$ es una curva regular, C^{∞} , $\gamma(s)$, parametrizada por logitud de arco, tal que, $\gamma(0) = p$, $\gamma'(0) = X$. Esta curva es llamada una $Sección\ Normal\ de\ M\ en\ p$ en la dirección de X.

Diremos que la Sección Normal γ es *plana* en p si sus tres primeras derivadas γ' , γ'' y γ''' son *linealmente dependientes*.

Sea M una subvariedad esférica compacta. La sección normal γ de M en p en la dirección $X \in \mathcal{T}_p(M)$, es plana en p si y sólo si la derivada covariante de la segunda forma fundamental se anula sobre $X = \gamma'(0)$.

Sea M una subvariedad esférica compacta. La sección normal γ de M en p en la dirección $X \in \mathcal{T}_p(M)$, es plana en p si y sólo si la derivada covariante de la segunda forma fundamental se anula sobre $X = \gamma'(0)$. Esto es, X satisface la ecuación:

$$(\nabla_X \alpha)(X,X) = 0.$$

Sea M una subvariedad esférica compacta. La sección normal γ de M en p en la dirección $X \in \mathcal{T}_p(M)$, es plana en p si y sólo si la derivada covariante de la segunda forma fundamental se anula sobre $X = \gamma'(0)$. Esto es, X satisface la ecuación:

$$(\nabla_X \alpha)(X,X) = 0.$$

Proposición Si M es esférica y ω_1 es un campo vectorial unitario, umbilical a M entonces, para $X, Y, Z \in T_p(M)$ se tiene,

Sea M una subvariedad esférica compacta. La sección normal γ de M en p en la dirección $X \in \mathcal{T}_p(M)$, es plana en p si y sólo si la derivada covariante de la segunda forma fundamental se anula sobre $X = \gamma'(0)$. Esto es, X satisface la ecuación:

$$(\nabla_X \alpha)(X,X) = 0.$$

Proposición Si M es esférica y ω_1 es un campo vectorial unitario, umbilical a M entonces, para $X, Y, Z \in T_p(M)$ se tiene,

$$<\omega_1,(\nabla_X\alpha)(Y,Z)>=0.$$

Dado un punto p en la subvariedad M se denota por, $\widehat{X_p}(M)$ el conjunto:

Dado un punto p en la subvariedad M se denota por, $\widehat{X_p}(M)$ el conjunto:

$$\widehat{X_p}(M) = \{ Y \in T_p(M) : ||Y|| = 1, (\nabla_Y \alpha)(Y, Y) = 0 \}$$

Dado un punto p en la subvariedad M se denota por, $\widehat{X_p}(M)$ el conjunto:

$$\widehat{X_p}(M) = \{ Y \in T_p(M) : ||Y|| = 1, (\nabla_Y \alpha)(Y, Y) = 0 \}$$

Para estudiar las secciones normales en p de una subvariedad esférica compacta M en \mathbb{R}^{n+k} , es conveniente considerar los polinomios:

Dado un punto p en la subvariedad M se denota por, $X_p(M)$ el conjunto:

$$\widehat{X_p}(M) = \{ Y \in T_p(M) : ||Y|| = 1, (\nabla_Y \alpha)(Y, Y) = 0 \}$$

Para estudiar las secciones normales en p de una subvariedad esférica compacta M en \mathbb{R}^{n+k} , es conveniente considerar los polinomios:

$$P_i(X) = \langle \omega_i, (\nabla_X \alpha)(X, X) \rangle, j = 1, ..., k$$

Dado un punto p en la subvariedad M se denota por, $X_p(M)$ el conjunto:

$$\widehat{X_p}(M) = \{ Y \in T_p(M) : \|Y\| = 1, (\nabla_Y \alpha)(Y, Y) = 0 \}$$

Para estudiar las secciones normales en p de una subvariedad esférica compacta M en \mathbb{R}^{n+k} , es conveniente considerar los polinomios:

$$P_j(X) = \langle \omega_j, (\nabla_X \alpha)(X, X) \rangle, j = 1, ..., k$$

Donde $\omega_1, ..., \omega_k$ es una base del espacio normal $T_p(M)^{\perp}$.

Dado un punto p en la subvariedad M se denota por, $X_p(M)$ el conjunto:

$$\widehat{X_p}(M) = \{ Y \in T_p(M) : ||Y|| = 1, (\nabla_Y \alpha)(Y, Y) = 0 \}$$

Para estudiar las secciones normales en p de una subvariedad esférica compacta M en \mathbb{R}^{n+k} , es conveniente considerar los polinomios:

$$P_j(X) = \langle \omega_j, (\nabla_X \alpha)(X, X) \rangle, j = 1, ..., k$$

Donde $\omega_1,...,\omega_k$ es una base del espacio normal $T_p(M)^{\perp}$.

$$P_i(X) = 0, j = 1, ..., k, ||X|| = 1$$

Se dice que la subvariedad $M^n \subset \mathbf{R}^{n+k}$ (como se la definió antes), tiene curvaturas principales constantes si, para cualquier campo normal paralelo $\xi(t)$ a lo largo de una curva diferenciable a trozos en M^n , los autovalores del operador forma $A_{\xi(t)}$ son constantes.

Se dice que la subvariedad $M^n \subset \mathbf{R}^{n+k}$ (como se la definió antes), tiene curvaturas principales constantes si, para cualquier campo normal paralelo $\xi(t)$ a lo largo de una curva diferenciable a trozos en M^n , los autovalores del operador forma $A_{\xi(t)}$ son constantes.

Es conocido que las subvariedades con curvaturas principales constantes son isoparamétricas o una sus variedades focales.

Se dice que la subvariedad $M^n \subset \mathbf{R}^{n+k}$ (como se la definió antes), tiene curvaturas principales constantes si, para cualquier campo normal paralelo $\xi(t)$ a lo largo de una curva diferenciable a trozos en M^n , los autovalores del operador forma $A_{\xi(t)}$ son constantes.

Es conocido que las subvariedades con curvaturas principales constantes son isoparamétricas o una sus variedades focales.

Para subvariedades isoparamétricas full, M^n de \mathbf{R}^{n+k} el rango es su codimensión, más precisamente, k.

Sea M una subvariedad isoparamétrica de \mathbf{R}^{n+k} , compact de rango k entonces, M es esférica y se puede pensar centrada en $0 \in \mathbf{R}^{n+k}$ y radio 1.

Sea M una subvariedad isoparamétrica de \mathbf{R}^{n+k} , compact de rango k entonces, M es esférica y se puede pensar centrada en $0 \in \mathbf{R}^{n+k}$ y radio 1.

M es el conjunto de nivel de un mapeo polinomial isoparamétrico $f: \mathbf{R}^{n+k} \longrightarrow \mathbf{R}^k$ el cual tiene componentes $f = (h_1, ..., h_k)$, usualmente se toma, $M = f^{-1}(0)$.

Sea M una subvariedad isoparamétrica de \mathbf{R}^{n+k} , compact de rango k entonces, M es esférica y se puede pensar centrada en $0 \in \mathbf{R}^{n+k}$ y radio 1.

M es el conjunto de nivel de un mapeo polinomial isoparamétrico $f: \mathbf{R}^{n+k} \longrightarrow \mathbf{R}^k$ el cual tiene componentes $f = (h_1, ..., h_k)$, usualmente se toma, $M = f^{-1}(0)$.

La importancia de las subvariedades isoparamétricas para nuestro estudio es que, los gradientes, $\{\nabla h_j: j=1,...,k\}$ proveen un un marco ∇^\perp - paralelo del fibrado normal de M. Se usará esta base natural de fibrado normal en lugar de $\omega_1,...,\omega_k$.

Propiedades de los polinomios para subvariedades isoparamétricas

Propiedad 1 Sea $e_1,...,e_n$ una base ortonormal de $T_p(M)$ formada por una base ortonormal en cada autodistribucion $H_i(p), i=1,...,g$. Entonces escribiendo $X \in T_p(M), ||X||=1$, como $X = \sum a_i e_i$, en los polinomios $P_j(X), j=1,...,k$, no hay monomios con dos subíndices del mismo $H_i(p)$. En particular no hay cubos ni cuadrados en los polinomios.

Propiedades de los polinomios para subvariedades isoparamétricas

Propiedad 1 Sea $e_1,...,e_n$ una base ortonormal de $T_p(M)$ formada por una base ortonormal en cada autodistribucion $H_i(p), i=1,...,g$. Entonces escribiendo $X \in T_p(M), \|X\|=1$, como $X = \Sigma a_i e_i$, en los polinomios $P_j(X), j=1,...,k$, no hay monomios con dos subíndices del mismo $H_i(p)$. En particular no hay cubos ni cuadrados en los polinomios.

Propiedad 2 Para una subvariedad isoparamétrica compacta M de \mathbf{R}^{n+k} , los polinomios $P_j(X), j=1,...,k$, son armónicos en $T_p(M)$ para cualquier $p \in M$.

En esta sección se verá que los polinomios pueden ser calculados en forma más directa, a partir de: $(h_1,...,h_k)$ que definen a M

En esta sección se verá que los polinomios pueden ser calculados en forma más directa, a partir de: $(h_1,...,h_k)$ que definen a M **Proposición** Si $\gamma(s)$ es una sección normal de M tal que, $\gamma(0) = p$, $\gamma'(0) = X$ entonces,

$$P_j(X) = -X < \nabla^{\mathcal{E}}_{\gamma'(s)}(\nabla h_j(\gamma(s))), \gamma'(s) >$$
 (1)

En esta sección se verá que los polinomios pueden ser calculados en forma más directa, a partir de: $(h_1,...,h_k)$ que definen a M **Proposición** Si $\gamma(s)$ es una sección normal de M tal que, $\gamma(0) = p$, $\gamma'(0) = X$ entonces,

$$P_j(X) = -X < \nabla^E_{\gamma'(s)}(\nabla h_j(\gamma(s))), \gamma'(s) >$$
 (1)

Puesto que se puede tomar h_1 como el polinomio cuadrático que define la esfera unidad en \mathbf{R}^{n+k} . Entonces, $\widehat{X}_p(M)$ está definido por,

En esta sección se verá que los polinomios pueden ser calculados en forma más directa, a partir de: $(h_1,...,h_k)$ que definen a M **Proposición** Si $\gamma(s)$ es una sección normal de M tal que, $\gamma(0) = p$, $\gamma'(0) = X$ entonces,

$$P_j(X) = -X < \nabla^{\mathcal{E}}_{\gamma'(s)}(\nabla h_j(\gamma(s))), \gamma'(s) >$$
 (1)

Puesto que se puede tomar h_1 como el polinomio cuadrático que define la esfera unidad en \mathbf{R}^{n+k} . Entonces, $\widehat{X}_p(M)$ está definido por,

$$P_j(X) = 0, ||X|| = 1, j = 2, ..., k$$
 (2)

Cálculo de los polinomios en Hipersuperficies Isoparamétricas

Sea M una subvariedad isoparamétrica, compacta, full de rango 2 de \mathbb{R}^{n+2} . M es el conjunto de nivel regular de un mapeo polinomial isoparamétrico $f: \mathbb{R}^{n+2} \longrightarrow \mathbb{R}^2$ el cual tiene componentes $f = (h_1, h_2)$.

Cálculo de los polinomios en Hipersuperficies Isoparamétricas

Sea M una subvariedad isoparamétrica, compacta, full de rango 2 de \mathbf{R}^{n+2} . M es el conjunto de nivel regular de un mapeo polinomial isoparamétrico $f: \mathbf{R}^{n+2} \longrightarrow \mathbf{R}^2$ el cual tiene componentes $f = (h_1, h_2)$.

Sea p un punto en M. Se puede pensar h_1 como el polinomio cuadrático que define la esfera unidad de \mathbf{R}^{n+2} y los gradientes $\nabla h_1, \nabla h_2$, proveen un marco ∇^{\perp} -paralelo del fibrado normal.

Cálculo de los polinomios en Hipersuperficies Isoparamétricas

Sea M una subvariedad isoparamétrica, compacta, full de rango 2 de \mathbf{R}^{n+2} . M es el conjunto de nivel regular de un mapeo polinomial isoparamétrico $f: \mathbf{R}^{n+2} \longrightarrow \mathbf{R}^2$ el cual tiene componentes $f = (h_1, h_2)$.

Sea p un punto en M. Se puede pensar h_1 como el polinomio cuadrático que define la esfera unidad de \mathbf{R}^{n+2} y los gradientes $\nabla h_1, \nabla h_2$, proveen un marco ∇^{\perp} -paralelo del fibrado normal. Tenemos el polinomio asociado (2) para j=2, $\widehat{X_p}(M)$ y está definido por,

Cálculo de los polinomios en Hipersuperficies Isoparamétricas

Sea M una subvariedad isoparamétrica, compacta, full de rango 2 de \mathbf{R}^{n+2} . M es el conjunto de nivel regular de un mapeo polinomial isoparamétrico $f: \mathbf{R}^{n+2} \longrightarrow \mathbf{R}^2$ el cual tiene componentes $f = (h_1, h_2)$.

Sea p un punto en M. Se puede pensar h_1 como el polinomio cuadrático que define la esfera unidad de \mathbf{R}^{n+2} y los gradientes $\nabla h_1, \nabla h_2$, proveen un marco ∇^{\perp} -paralelo del fibrado normal. Tenemos el polinomio asociado (2) para j=2, $\widehat{X_p}(M)$ y está definido por,

$$P_2(X) = 0, ||X|| = 1$$

Cálculo de los polinomios en Hipersuperficies Isoparamétricas

Sea M una subvariedad isoparamétrica, compacta, full de rango 2 de \mathbb{R}^{n+2} . M es el conjunto de nivel regular de un mapeo polinomial isoparamétrico $f: \mathbb{R}^{n+2} \longrightarrow \mathbb{R}^2$ el cual tiene componentes $f = (h_1, h_2)$.

Sea p un punto en M. Se puede pensar h_1 como el polinomio cuadrático que define la esfera unidad de \mathbf{R}^{n+2} y los gradientes $\nabla h_1, \nabla h_2$, proveen un marco ∇^{\perp} -paralelo del fibrado normal. Tenemos el polinomio asociado (2) para j=2, $\widehat{X_p}(M)$ y está definido por,

$$P_2(X) = 0, ||X|| = 1$$

El conjunto algebraico de secciones normales planas de M en p es

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, existe una función $f: S^{n+1} \to \mathbb{R}$ Tal que,

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, existe una función $f:S^{n+1}\to\mathbb{R}$ Tal que,

(i) f satisface,

$$\|\nabla f\|^2 = g^2 \|X\|^{2g-2} \tag{3}$$

$$\triangle f = c \|X\|^{g-2}, \tag{4}$$

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, existe una función $f: S^{n+1} \to \mathbb{R}$ Tal que,

(i) f satisface,

$$\|\nabla f\|^2 = g^2 \|X\|^{2g-2} \tag{3}$$

$$\triangle f = c \|X\|^{g-2}, \tag{4}$$

donde, $c = \frac{g^2(m_2 - m_1)}{2}$, 0 para g impar. Aquí se denota por m_i la multiplicidad correspondiente a la curvatura principal λ_i .

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, existe una función $f: S^{n+1} \to \mathbb{R}$ Tal que,

(i) f satisface,

$$\|\nabla f\|^2 = g^2 \|X\|^{2g-2} \tag{3}$$

$$\triangle f = c \|X\|^{g-2}, \tag{4}$$

donde, $c = \frac{g^2(m_2 - m_1)}{2}$, 0 para g impar. Aquí se denota por m_i la multiplicidad correspondiente a la curvatura principal λ_i .

(ii) f es de un polinomio homogéneo de grado g en S^{n+1} .

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, existe una función $f: S^{n+1} \to \mathbb{R}$ Tal que,

(i) f satisface,

$$\|\nabla f\|^2 = g^2 \|X\|^{2g-2} \tag{3}$$

$$\triangle f = c \|X\|^{g-2}, \tag{4}$$

donde, $c = \frac{g^2(m_2 - m_1)}{2}$, 0 para g impar. Aquí se denota por m_i la multiplicidad correspondiente a la curvatura principal λ_i .

- (ii) f es de un polinomio homogéneo de grado g en S^{n+1} .
- (iii) Recíprocamente, para cada polinomio homogéneo f de grado g, que satisface (3,4), las hipersuperficies de nivel de $f\mid_{S^{n+1}}$ forman una familia isoparamétrica.

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, $g \in \{1, 2, 3, 4, 6\}$

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, $g \in \{1, 2, 3, 4, 6\}$

Observación El número g de curvaturas principales distintas de una hipersuperficie isoparamétrica coincide con los valores de g para las hipersuperficies isoparamétricas homogéneas de la lista de Takagi y Takahashi.

Teorema Si M es una hipersuperficie isoparamétrica de S^{n+1} con g curvaturas principales distintas entonces, $g \in \{1, 2, 3, 4, 6\}$

Observación El número g de curvaturas principales distintas de una hipersuperficie isoparamétrica coincide con los valores de g para las hipersuperficies isoparamétricas homogéneas de la lista de Takagi y Takahashi. En todos los casos las subvariedades son órbitas de la representación isotrópica de ciertos espacios simétricos.

• Encontrar el punto base que denotamos por E.

- Encontrar el punto base que denotamos por E.
- Encontrar el espacio normal y tangente de M en el punto E.

- Encontrar el punto base que denotamos por E.
- Encontrar el espacio normal y tangente de M en el punto E.
- Calcular $P_2(X)$ por la fórmula (1).

g=1 En este caso M resulta un Ecuador de S^{n+1} y se puede definir como, sea $v \in S^{n+1}$ fijo entonces, $M = \{X \in S^{n+1} : \langle X, v \rangle = 0\}$

g=1 En este caso M resulta un Ecuador de S^{n+1} y se puede definir como, sea $v \in S^{n+1}$ fijo entonces, $M = \{X \in S^{n+1} : \langle X, v \rangle = 0\}$

g=2 Variedades de Clifford. Sean p,q números naturales tales que, $1 \le p, q \le n, p+q=n$, entonces,

$$M_{p,q} = \left\{ X \in S^{n+1} : \sum_{i=1}^{p+1} x_i^2 - \sum_{i=p+2}^{n+2} x_i^2 = 0 \right\}$$

g=1 En este caso M resulta un Ecuador de S^{n+1} y se puede definir como, sea $v \in S^{n+1}$ fijo entonces, $M = \{X \in S^{n+1} : \langle X, v \rangle = 0\}$

g=2 Variedades de Clifford. Sean p,q números naturales tales que, $1 \le p, q \le n, p+q=n$, entonces,

$$M_{p,q} = \left\{ X \in S^{n+1} : \sum_{i=1}^{p+1} x_i^2 - \sum_{i=p+2}^{n+2} x_i^2 = 0 \right\}$$

Denotamos $P_2(X)$ por, $\mathbb{P}(X)$. En los dos casos (g=1,2) resulta,

g=1 En este caso M resulta un Ecuador de S^{n+1} y se puede definir como, sea $v \in S^{n+1}$ fijo entonces, $M = \{X \in S^{n+1} : \langle X, v \rangle = 0\}$

g=2 Variedades de Clifford. Sean p,q números naturales tales que, $1 \le p, q \le n, p+q=n$, entonces,

$$M_{p,q} = \left\{ X \in S^{n+1} : \sum_{i=1}^{p+1} x_i^2 - \sum_{i=p+2}^{n+2} x_i^2 = 0 \right\}$$

Denotamos $P_2(X)$ por, $\mathbb{P}(X)$. En los dos casos (g=1,2) resulta,

$$\mathbb{P}(X)=0$$

En este caso se tienen las Hipersuperficies de Cartan. Recordamos que F_R , F_C , F_H y F_O son banderas completas en los planos proyectivos RP^2 , CP^2 , HP^2 and OP^2 (real, complejo, cuaterniónico y Cayley), respectivamente.

En este caso se tienen las Hipersuperficies de Cartan. Recordamos que F_R , F_C , F_H y F_O son banderas completas en los planos proyectivos RP^2 , CP^2 , HP^2 and OP^2 (real, complejo, cuaterniónico y Cayley), respectivamente.

Resumimos la información para las Hipersuperficies de Cartan.

Hipersuperficie	dimM	g	m_i
$F_R = SO(3)/(Z_2 \times Z_2)$	3	3	1
$F_C = SU(3)/T^2$	6	3	2
$F_H = Sp(3)/(Sp(1))^3$	12	3	4
$F_O = F_4 / Spin(8)$	24	3	8

Los polinomios que definen estas cuatro variedades fueron especificados por Cartan y por Ozeki y Takeuchi. Consideremos

$$f: \mathbb{R}^{n+2} \to \mathbb{R}^2$$
, $f = (h_1, h_2)$, $h_1 = ||X||^2 - 1$

Los polinomios que definen estas cuatro variedades fueron especificados por Cartan y por Ozeki y Takeuchi. Consideremos

$$f: \mathbb{R}^{n+2} \to \mathbb{R}^2$$
, $f = (h_1, h_2)$, $h_1 = ||X||^2 - 1$

 $y h_2$

$$h_2(u) = z_2^3 - 3z_2z_1^2 + \frac{3}{2}z_2(n(x_1) + n(x_2) - 2n(x_3)) + \frac{3\sqrt{3}}{2}z_1(n(x_1) - n(x_2)) + \frac{3\sqrt{3}}{2}t(x_1x_2x_3)$$

Se toma E y ϑ

$$E = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} , \ \vartheta = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Se toma E y ϑ

$$E = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} , \ \vartheta = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Si $\langle u, v \rangle = \frac{1}{4} tr (uv + vu)$ entonces,

$$||E|| = 1, \quad h_2(E) = 0, \quad \langle \nabla h_2(E), E \rangle = 0$$

Se toma E y ϑ

$$E = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} , \ \vartheta = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Si $\langle u, v \rangle = \frac{1}{4} tr (uv + vu)$ entonces,

$$||E|| = 1, \quad h_2(E) = 0, \quad \langle \nabla h_2(E), E \rangle = 0$$

Usando la fórmula (1), el polinomio de secciones normales resulta.

$$\mathbb{P}(X) = -9\sqrt{3}Re(x_1x_2x_3)$$
$$x_j \in F = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, j = 1, 2, 3$$

caso g=4

En este grado hay un camino para generar el polinomio h_2 usando *Sistemas de Clifford* como el definido por Ferus-Karcher-Münzner. Si embargo, hay un par de ejemplos que no pueden ser obtenidos por este camino.

caso g=4

En este grado hay un camino para generar el polinomio h_2 usando *Sistemas de Clifford* como el definido por Ferus-Karcher-Münzner. Si embargo, hay un par de ejemplos que no pueden ser obtenidos por este camino.

Se resume la información de los ejemplos que se obtienen por construcción FKM.

case g=4 FKM Cuaterniones

Se toma $X \in T_E(M)$ y E el punto base,

$$X = ((\alpha, B), (C, \delta)) \ B, C \in \mathbb{H}^{n-1}\alpha, \delta \ cuaterniones \ puros$$
 $\alpha = a_1i + a_2j + a_3k$
 $\delta = d_1i + d_2j + d_3k$
 $B = (u_2, ..., u_n), \quad C = (v_1, ..., v_{n-1})$
 $u_s = b_{s,0} + b_{s,1}i + b_{s,2}j + b_{s,3}k, \quad s = 2, ..., n$
 $v_r = c_{r,0} + c_{r,1}i + c_{r,2}j + c_{r,3}k, \quad r = 1, ..., n-1$
 $E = (A_0, B_0) = ((t_1, ..., 0), (0, ..., t_2))$

case g=4 FKM Cuaterniones

Se toma $X \in T_E(M)$ y E el punto base,

$$X = ((\alpha, B), (C, \delta)) \ B, C \in \mathbb{H}^{n-1}\alpha, \delta \ cuaterniones \ puros$$
 $\alpha = a_1i + a_2j + a_3k$
 $\delta = d_1i + d_2j + d_3k$
 $B = (u_2, ..., u_n), \quad C = (v_1, ..., v_{n-1})$
 $u_s = b_{s,0} + b_{s,1}i + b_{s,2}j + b_{s,3}k, \quad s = 2, ..., n$
 $v_r = c_{r,0} + c_{r,1}i + c_{r,2}j + c_{r,3}k, \quad r = 1, ..., n - 1$
 $E = (A_0, B_0) = ((t_1, ..., 0), (0, ..., t_2))$

Con la precedente notación g=4 $F=\mathbb{H}$ $m_1=4$ $m_2=4n-5$ resulta,

case g=4 FKM Cuaternión

$$\frac{1}{96}\mathbb{P}(X) =$$

case g=4 FKM Cuaternión

$$\begin{split} \frac{1}{96}\mathbb{P}(X) &= \\ & (t_1c_{1,0} + t_2b_{n,0}) \left(a_1c_{1,1} + a_2c_{1,2} + a_3c_{1,3} + d_1b_{n,1} + d_2b_{n,2} + d_3b_{n,3}\right) \\ &+ \left(t_1c_{1,0} + t_2b_{n,0}\right) \sum_{r=2}^{n-1} \left(b_{r,0}c_{r,0} + b_{r,1}c_{r,1} + b_{r,2}c_{r,2} + b_{r,3}c_{r,3}\right) + \\ & \left(-t_1c_{1,1} + t_2b_{n,1}\right) \left(a_1c_{1,0} - a_2c_{1,3} + a_3c_{1,2} - d_1b_{n,0} + d_2b_{n,3} - d_3b_{n,2}\right) \\ &+ \left(-t_1c_{1,1} + t_2b_{n,1}\right) \sum_{r=2}^{n-1} \left(-b_{r,0}c_{r,1} + b_{r,1}c_{r,0} - b_{r,2}c_{r,3} + b_{r,3}c_{r,2}\right) + \\ & \left(-t_1c_{1,2} + t_2b_{n,2}\right) \left(a_1c_{1,3} + a_2c_{1,0} - a_3c_{1,1} - d_1b_{n,3} - d_2b_{n,0} + d_3b_{n,1}\right) \\ &+ \left(-t_1c_{1,2} + t_2b_{n,2}\right) \sum_{r=2}^{n-1} \left(-b_{r,0}c_{r,2} + b_{r,1}c_{r,3} + b_{r,2}c_{r,0} - b_{r,3}c_{r,1}\right) + \\ & \left(-t_1c_{1,3} + t_2b_{n,3}\right) \left(-a_1c_{1,2} + a_2c_{1,1} + a_3c_{1,0} + d_1b_{n,2} - d_2b_{n,1} - d_3b_{n,0}\right) \end{split}$$

case g=4 FKM Complejo

En este caso g=4 $F=\mathbb{C}$ $m_1=2$ $m_2=2n-3$ y reduciendo las variables necesarias, se obtiene,

case g=4 FKM Complejo

En este caso g=4 $F=\mathbb{C}$ $m_1=2$ $m_2=2n-3$ y reduciendo las variables necesarias, se obtiene,

$$\frac{1}{96}\mathbb{P}(X) = (t_1c_{1,0} + t_2b_{n,0})(a_1c_{1,1} + d_1b_{n,1}) \\
+ (t_1c_{1,0} + t_2b_{n,0})\sum_{r=2}^{n-1} (b_{r,0}c_{r,0} + b_{r,1}c_{r,1}) \\
+ (-t_1c_{1,1} + t_2b_{n,1})(a_1c_{1,0} - d_1b_{n,0}) \\
+ (-t_1c_{1,1} + t_2b_{n,1})\sum_{r=2}^{n-1} (-b_{r,0}c_{r,1} + b_{r,1}c_{r,0})$$

22 / 31

case g=4 FKM Real

Caso
$$g = 4 \ F = \mathbb{R} \ m_1 = 1 \ m_2 = n - 2$$
,

case g=4 FKM Real

Caso
$$g=4$$
 $F=\mathbb{R}$ $m_1=1$ $m_2=n-2$,
$$\frac{1}{96}\mathbb{P}(X)=(t_1c_{1,0}+t_2b_{n,0})\sum_{r=2}^{n-1}b_{r,0}c_{r,0}$$

23 / 31

Esta es una subvariedad homogénea como lo indica en sus notas Ferus.

Esta es una subvariedad homogénea como lo indica en sus notas Ferus.

Para este ejemplo se tiene,

$$dim M = 30$$
 $g = 4$ $m_1 = m_3 = 9$ $m_2 = m_4 = 6$ $m_1 + m_2 + 1 = 16$

24 / 31

Esta es una subvariedad homogénea como lo indica en sus notas Ferus.

Para este ejemplo se tiene,

$$dim M = 30$$
 $g = 4$ $m_1 = m_3 = 9$ $m_2 = m_4 = 6$ $m_1 + m_2 + 1 = 16$

Punto base

$$E = (A_0, B_0) = \left(\begin{bmatrix} t_1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & t_6 \\ 0 & 0 \end{bmatrix} \right)$$

Esta es una subvariedad homogénea como lo indica en sus notas Ferus.

Para este ejemplo se tiene,

$$dim M = 30$$
 $g = 4$ $m_1 = m_3 = 9$ $m_2 = m_4 = 6$ $m_1 + m_2 + 1 = 16$

Punto base

$$E = (A_0, B_0) = \left(\begin{bmatrix} t_1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & t_6 \\ 0 & 0 \end{bmatrix} \right)$$

Espacio tangente

$$T_{E}(M) = \left\{ \left(\left[\begin{array}{cc} \alpha & \mathsf{a}_{2} \\ \mathsf{a}_{3} & \mathsf{a}_{4} \end{array} \right], \left[\begin{array}{cc} b_{5} & \beta \\ b_{7} & b_{8} \end{array} \right] \right) : \mathsf{a}_{s}, b_{s} \in \mathbb{H} \right\}$$

caso g=4 $m_1 = 9$ $m_2 = 6$ el polinomio

El polinomio en este caso es:

$$\begin{split} &\frac{1}{96}\mathbb{P}\left(X\right) = \\ &\left(t_{1}v_{5,0} + t_{6}u_{2,0}\right)\left[\left\langle\alpha,b_{5}\right\rangle + \left\langle a_{2},\beta\right\rangle + \left\langle a_{3},b_{7}\right\rangle + \left\langle a_{4},b_{8}\right\rangle\right] \\ &+ \left(-t_{1}v_{5,1} + t_{6}u_{2,1}\right)\left[\left\langle\alpha,ib_{5}\right\rangle + \left\langle a_{2},i\beta\right\rangle - \left\langle a_{3},ib_{7}\right\rangle - \left\langle a_{4},ib_{8}\right\rangle\right] \\ &+ \left(-t_{1}v_{5,2} + t_{6}u_{2,2}\right)\left[\left\langle\alpha,jb_{5}\right\rangle + \left\langle a_{2},j\beta\right\rangle - \left\langle a_{3},jb_{7}\right\rangle - \left\langle a_{4},jb_{8}\right\rangle\right] \\ &+ \left(-t_{1}v_{5,3} + t_{6}u_{2,3}\right)\left[\left\langle\alpha,kb_{5}\right\rangle + \left\langle a_{2},k\beta\right\rangle - \left\langle a_{3},kb_{7}\right\rangle - \left\langle a_{4},kb_{8}\right\rangle\right] \\ &+ \left(t_{1}v_{8,0} - t_{6}u_{3,0}\right)\left[\left\langle\alpha,b_{8}\right\rangle + \left\langle a_{2},b_{7}\right\rangle - \left\langle a_{3},\beta\right\rangle - \left\langle a_{4},b_{5}\right\rangle\right] \\ &+ \left(-t_{1}v_{7,1} + t_{6}u_{4,1}\right)\left[\left\langle\alpha,b_{7}i\right\rangle + \left\langle a_{2},b_{8}i\right\rangle + \left\langle a_{3},b_{5}i\right\rangle + \left\langle a_{4},\beta i\right\rangle\right] \\ &+ \left(-t_{1}v_{7,2} + t_{6}u_{4,2}\right)\left[\left\langle\alpha,b_{7}i\right\rangle + \left\langle a_{2},b_{8}j\right\rangle + \left\langle a_{3},b_{5}j\right\rangle + \left\langle a_{4},\beta k\right\rangle\right] \\ &+ \left(-t_{1}v_{7,3} + t_{6}u_{4,3}\right)\left[\left\langle\alpha,b_{7}k\right\rangle + \left\langle a_{2},b_{8}k\right\rangle + \left\langle a_{3},b_{5}k\right\rangle + \left\langle a_{4},\beta k\right\rangle\right] \\ &+ \left(-t_{1}v_{7,0} - t_{6}u_{4,0}\right)\left[-\left\langle\alpha,b_{7}\right\rangle + \left\langle a_{2},b_{8}\right\rangle + \left\langle a_{3},b_{5}\right\rangle - \left\langle a_{4},\beta\right\rangle\right] \end{split}$$

Como se mencionó antes hay dos hipersuperficies isoparamétricas en la esfera las cuales son de grado g=4 pero que no se pueden describir por *Sistemas de Clifford*.

Como se mencionó antes hay dos hipersuperficies isoparamétricas en la esfera las cuales son de grado g=4 pero que no se pueden describir por *Sistemas de Clifford*.

$$M = SO(5)/T^2$$
 ; $dimM = 8$; $g = 4$, ; $m_i = 2, \forall i$

Como se mencionó antes hay dos hipersuperficies isoparamétricas en la esfera las cuales son de grado g=4 pero que no se pueden describir por *Sistemas de Clifford*.

$$M = SO(5)/T^2$$
 ; $dimM = 8$; $g = 4$, ; $m_i = 2, \forall i$

Sea $X = (0, 0, x_3, ..., x_{10})$ el vector tangente, entonces,

Como se mencionó antes hay dos hipersuperficies isoparamétricas en la esfera las cuales son de grado g=4 pero que no se pueden describir por *Sistemas de Clifford*.

$$M = SO(5)/T^2$$
; $dimM = 8$; $g = 4$, ; $m_i = 2, \forall i$
Sea $X = (0, 0, x_3, ..., x_{10})$ el vector tangente, entonces,
 $\mathbb{P}(X) = 96t_1 (x_7x_9x_4 + x_7x_{10}x_6 - x_8x_3x_9 - x_8x_5x_{10}) + 96t_2 (-x_7x_9x_5 - x_8x_9x_6 + x_{10}x_3x_7 + x_{10}x_4x_8)$

Como se mencionó antes hay dos hipersuperficies isoparamétricas en la esfera las cuales son de grado g=4 pero que no se pueden describir por *Sistemas de Clifford*.

$$M = SO(5)/T^2$$
 ; $dimM = 8$; $g = 4$, ; $m_i = 2, \forall i$

Sea $X = (0, 0, x_3, ..., x_{10})$ el vector tangente, entonces,

$$\mathbb{P}(X) = 96t_1(x_7x_9x_4 + x_7x_{10}x_6 - x_8x_3x_9 - x_8x_5x_{10}) +96t_2(-x_7x_9x_5 - x_8x_9x_6 + x_{10}x_3x_7 + x_{10}x_4x_8)$$

El caso SU(5). Sea $X = (0, 0, x_3, ..., x_{10}, y_1, ..., y_{10})$ entonces,

$$\frac{1}{96}\mathbb{P}(X) = t_1 \left(-y_2 x_3 y_6 - y_2 x_6 y_3 + y_2 x_5 y_4 + y_2 x_4 y_5 \right) \\
+ t_2 \left(-y_1 x_3 y_6 - y_1 x_6 y_3 + y_1 x_5 y_4 + y_1 x_4 y_5 \right) \\
+ t_1 \left(x_4 x_7 x_9 + x_4 y_7 y_9 + y_4 x_7 y_9 - y_4 x_9 y_7 \right) \\
+ t_1 \left(-x_3 x_8 x_9 - x_3 y_8 y_9 - y_3 x_8 y_9 + y_3 x_9 y_8 \right) \\
+ t_1 \left(x_6 x_7 x_{10} + x_6 y_7 y_{10} + y_6 x_7 y_{10} - y_6 x_{10} y_7 \right) \\
+ t_1 \left(-x_5 x_8 x_{10} - x_5 y_8 y_{10} - y_5 x_8 y_{10} + y_5 x_{10} y_8 \right) \\
+ t_2 \left(-x_5 x_7 x_9 - x_5 y_7 y_9 - y_5 x_9 y_7 + y_5 x_7 y_9 \right) \\
+ t_2 \left(x_3 x_7 x_{10} + x_3 y_7 y_{10} + y_3 x_{10} y_7 - y_3 x_7 y_{10} \right) \\
+ t_2 \left(-x_6 x_8 x_9 - x_6 y_8 y_9 - y_6 x_9 y_8 + y_6 x_8 y_9 \right) \\
+ t_2 \left(x_4 x_8 x_{10} + x_4 y_8 y_{10} + y_4 x_{10} y_8 - y_4 x_8 y_{10} \right)$$

Caso g=6

En el caso g=6 hay dos hipersuperficies isoparamétricas homogéneas sobre la esfera las cuales tienen dimensión 6 y 12 respectivamente.

Caso g=6

En el caso g=6 hay dos hipersuperficies isoparamétricas homogéneas sobre la esfera las cuales tienen dimensión 6 y 12 respectivamente.

El polinomio g = 6 dim M = 6

Caso g=6

En el caso g=6 hay dos hipersuperficies isoparamétricas homogéneas sobre la esfera las cuales tienen dimensión 6 y 12 respectivamente.

El polinomio $g = 6 \ dim M = 6$

$$\mathbb{P}(X) = 0$$

El caso $g=6 \ dim M = 12$

El polinomio
$$g = 6 \ dim M = 12$$

El caso $g=6 \ dim M = 12$

El polinomio $g = 6 \ dim M = 12$

$$\frac{1}{2160}\mathbb{P}(X) = T(t_6t_8t_9 + t_3t_7t_{11} + t_3t_6t_{14} + t_6t_7t_{10})
+ T(t_9t_{12}t_{14} + 3t_4t_5t_{14} + 3t_4t_8t_{11} + 3t_{10}t_{11}t_{14})
- T(t_5t_7t_9 + t_3t_5t_{13} + t_3t_8t_{12} + t_4t_6t_{13})
- T(t_4t_7t_{12} + t_9t_{11}t_{13} + t_{10}t_{12}t_{13} + 3t_5t_8t_{10})$$

29 / 31

El caso $g=6 \ dim M = 12$

El polinomio $g = 6 \ dim M = 12$

$$\frac{1}{2160}\mathbb{P}(X) = T(t_6t_8t_9 + t_3t_7t_{11} + t_3t_6t_{14} + t_6t_7t_{10})
+ T(t_9t_{12}t_{14} + 3t_4t_5t_{14} + 3t_4t_8t_{11} + 3t_{10}t_{11}t_{14})
- T(t_5t_7t_9 + t_3t_5t_{13} + t_3t_8t_{12} + t_4t_6t_{13})
- T(t_4t_7t_{12} + t_9t_{11}t_{13} + t_{10}t_{12}t_{13} + 3t_5t_8t_{10})$$

Donde el coeficiente

$$T = \frac{1}{18}\sqrt{6}$$

Bibliografía

- Adams J. F., Lectures on Exceptional Lie Groups, The University of Chicago Press, (1996).
- Ferus D. Notes on Isoparametric Hypersurfaces. Escola de Geometria Diferencial. Univ. Estadual de Campinas. (1980)
- Ozeki H., Takeuchi M. On some types of isoparametric hypersurfaces on spheres II. Tohoku Math. Journal 28 (1976) 7-55.
- Sánchez C. U., Algebraic sets associated to isoparametric submanifolds, American Mathematical Society. Contemporary Mathematics, Vol.491 (2009) 37-56.
- \blacksquare Sánchez, C. U. Normal sections of \mathbb{R} -spaces I. Preprint. 2010.

Los casos SO(5) y SU(5) Caso g=6

Muchas gracias por su atención