

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Formación Básica Taller de Álgebra Lineal para alumnos en condición intermedia

GUÍA 4: ESPACIOS CON PRODUCTO INTERNO

- 1. Sean $\mathbf{u} = (u_1, u_2, ..., u_n)$ y $\mathbf{v} = (v_1, v_2, ..., v_n)$ vectores de \mathbb{R}^n . Escriba las definiciones de norma o módulo del vector \mathbf{u} ; distancia entre \mathbf{u} y \mathbf{v} ; ángulo entre \mathbf{u} y \mathbf{v} y proyección de \mathbf{u} sobre \mathbf{v} .
- 2. Defina producto punto. Enuncie las propiedades del producto punto y demuéstrelas.
- 3. Enuncie y demuestre:
 - (a) la desigualdad de Cauchy-Schwarz.
 - (b) la desigualdad triangular.
 - (c) el teorema de Pitágoras.
- 4. Enuncie el teorema de la mejor aproximación.
- 5. Escriba las definiciones de conjuntos ortogonales, conjuntos ortonormales, base ortogonal y base ortonormal de \mathbb{R}^n . Dé un ejemplo de cada uno.
- 6. Demuestre que si $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ es un conjunto ortogonal de vectores no cero de un subespacio V de \mathbb{R}^n , entonces S es li.
- 7. Enuncie el proceso de ortonormalización de Gram-Schmidt. Obtenga una base ortonormal para el espacio solución de la ecuación $x_1 + x_2 2x_3 + x_4 = 0$.
- 8. Defina subespacios ortogonales de \mathbb{R}^n .
- 9. Escriba la definición de complemento ortogonal de un subespacio de \mathbb{R}^n . Obtenga el complemento ortogonal del subespacio $S = \{(x, y, z) : 2x y + 3z = 0\}$ de \mathbb{R}^3 e interprete geométricamente.
- 10. Dada una base ortonormal del subespacio S de \mathbb{R}^n y \mathbf{v} un vector de \mathbb{R}^n . ¿Cómo se calcula la proyección de \mathbf{v} sobre el subespacio S?. ¿Cómo nos permite este resultado escribir un vector \mathbf{v} de \mathbb{R}^n ?