
EXPONENTIALLY FITTED DISCONTINUOUS GALERKIN SCHEMES
FOR SINGULARLY PERTURBED PROBLEMS

ARIEL L. LOMBARDI 1 AND PAOLA PIETRA 2

Abstract. New Discontinuous Galerkin schemes in mixed form are introduced for sym-
metric elliptic problems of second order. They exhibit reduced connectivity with respect
to the standard ones. The modifications in the choice of the approximation spaces and
in the stabilization term do not spoil the error estimates. These methods are then used
for designing new exponentially fitted schemes for advection dominated equations. The
presented numerical tests show the good performances of the proposed schemes.

1. Introduction

Advection-diffusion problems arise very frequently in applications and it is well known
that their numerical discretization requires special care when advection dominates over
diffusion. This is the case, for instance, in fluidynamic problems with high Reynolds
number, or in semiconductor device simulation under the action of a high electric field.

Here we consider the stationary advection-diffusion model problem

(1.1)


−div (ε∇u− βu) = f in Ω,

u = g on ΓD,

(ε∇u− βu) · n = 0 on ΓN ,

where Ω is a convex polygonal domain in R2 with boundary ∂Ω = ΓD ∪ ΓN , ΓD 6= ∅,
n is the unit outward normal vector, and f, g are given functions, with f ∈ L2(Ω), and
g ∈ H1/2(ΓD). Moreover, ε = ε(x) and β = β(x) are given regular functions on Ω with

(1.2) ∃ ε0, εM such that εM ≥ ε(x) ≥ ε0 > 0.

We assume that there exists a unique solution of (1.1). This is the case, for instance, if β
is a constant, or if there exists b0 > 0 such that div β ≥ b0.

In the present paper we shall consider the case ε� |β| and we shall introduce and analyze
new discretization schemes based on Discontinuous Galerkin methods. DG methods for
advection–diffusion problems have received a lot of attention in the recent years ([25, 26,
8, 34, 32, 38, 13, 35, 20, 31, 30, 1, 28, 4], e.g.) due to their flexibility in dealing with highly
not structured meshes, allowing, for instance, hanging nodes.

Here we consider a stabilizing technique based on the so called exponential fitting pro-
cedure. Following [17]-[19], and [16], where the stabilization is proposed for semiconductor
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device equations in the framework of mixed and hybrid finite element methods, the first
step for designing an exponentially fitted stabilization procedure is to symmetrize the equa-
tion (1.1) by introducing a new variable ρ, which, in the case of ε being constant and β
being the gradient of a scalar function ψ, is defined as

(1.3) ρ = ue−
ψ
ε .

The general case, which makes use of a local transformation of the type (1.3), similar to
the one used in [33] for mixed finite elements, is discussed in details in the second part of
section 4. We point out that, in the framework of semiconductor problems, ψ represents
the electrostatic potential and ρ is known as Slotboom variable. Equation (1.1) can be
rewritten in terms of ρ as

−div (εe
ψ
ε∇ρ) = f in Ω,

ρ = χ on ΓD,(1.4)

εe
ψ
ε
∂ρ

∂n
= 0 on ΓN ,

with χ = ge−
ψ
ε . Then, the symmetric problem (1.4) is approximated by means of suitable

Discontinuous Galerkin schemes, and, finally, a discrete version of the change of variable
(1.3) is used to substitute ρh with the unknown uh. It turns out that the usual Discontin-
uous Galerkin schemes ([3], e.g.) are not appropriate for the control of the exponentials
which enter the formulation both in volume integrals and in edge integrals (see Remark
4.1). New methods for the symmetric problem are introduced, aiming at reducing the
connectivity of the schemes. The reason is twofold. First, when the exponential transfor-
mation is applied to the discretization of (1.4), exponentials on one edge interact only with
exponentials on the two triangles which contain the edge under consideration. Moreover,
the reduced connectivity has the effect to diminish the numerical diffusion. We propose
a “recipe” that we apply to several DG schemes of lower order in mixed form. The pri-
mal formulation is derived, and error estimates are presented, showing that the reduced
schemes keep the same order of convergence as the standard ones.

The paper is organized as follows. In section 2 the notation used throughout the paper
are set. Section 3 deals with the symmetric case. Section 4 contains the scheme for
advection-dominated problems, first for the simpler case when ε is constant and the flux β
is irrotational, and later in the general case. Numerical experiments for the exponentially
fitted Interior Penalty scheme are presented in section 5. The proves of the error estimates
for the symmetric case are collected in section 6.

2. Notation

We collect in this section the notation used in the rest of the paper for describing the new
Discontinuous Galerkin schemes in the general form of [3].

We denote by Th the decomposition of the domain Ω into triangles K, by Γ the union of
all the edges of Th, by E the set of all the edges of Th and by E0, ED and EN the sets of the
internal edges of Th, and the edges on the Dirichlet and Neumann boundary, respectively.
We also set Γ0 = ∪{e : e ∈ E0} , ΓD = ∪{e : e ∈ ED}, ΓN = ∪{e : e ∈ EN} and
Γ = Γ0 ∪ΓD ∪ΓN . Given an element K ∈ Th, nK denotes the exterior normal on ∂K, and
n is the exterior normal on the boundary of Ω.

As usual, the maximum diameter of the elements in Th is h, and we denote by hK the
diameter of an element K. Throughout the paper we assume the mesh to be shape-regular
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[24]. We do not make explicit mention to this assumption in the estimates. We will impose
additional requirements when necessary.

The space of polynomials of degree less than or equal to k on the set S is Pk(S), while
Pk(Th) is the space of piecewise polynomials on Th of degree less than or equal to k.

Let Hr(Th) be the space of functions whose restriction to each element K belong to the
Sobolev space Hr(K). The space of traces of functions in H1(Th) is contained in Tr(Γ),
which is defined as Tr(Γ) := ΠK∈ThL

2(∂K). Thus, functions in Tr(Γ) are double valued
on Γ0 and single valued on ∂Ω. Given an element K, the restriction of a function v to K
is denoted by vK , even when only the value on ∂K is considered.

For scalar functions q ∈ Tr(Γ) and vector functions φ ∈ Tr(Γ)2 we introduce the averages
{q} and {φ}, and the jumps [[ q ]] and [[φ ]] , on Γ (using the subscript e to denote their
restriction to the edge e). Let e be an interior edge shared by two elements K1 and K2,
and let n1 and n2 be the outward normals to K1 and K2, respectively. If qi = q|∂Ki then
we set

{q}e =
1
2

(q1 + q2), [[ q ]] e = q1n1 + q2n2, on e ⊂ Γ0.

We define φ1 and φ2 analogously and we set

{φ}e =
1
2

(φ1 + φ2), [[φ ]] e = φ1 · n1 + φ2 · n2, on e ⊂ Γ0.

Notice that these definitions do not depend on assigning an ordering to the elements K1

and K2. Also note that the jump of a scalar function is a vector parallel to the normal,
and the jump of a vector function is a scalar quantity. On boundary edges we set

{q}e = q, [[ q ]] e = qn, {φ}e = φ, [[φ ]] e = φ · n on e ⊂ ∂Ω,

where n is the exterior normal of Ω.
We also define the projection Πh : H1(Th)→ Tr(Γ) as

Πhv|∂K =
∏
e⊆∂K

Πe,K
0 v,

where the product in the right hand side is taken on the edges e of K, and Πe,K
0 v is

the L2-projection of the trace on e of vK on the space P0(e) of constant functions on e
(explicit dependence on K will not be specified, if it is evident from the context, or when
the projection is single-valued on e, for instance when v ∈ H1(Ω)).

For a function v ∈ H1(Th), ∇hv denotes the function in L2(Ω) given by (∇hv)K = ∇vK ,
and for a vector τ ∈ [H1(Th)]2, div hτ denotes the function in L2(Ω) defined by (div hτ)K =
div τK . Moreover, we define the semi-norm |v|21, h =

∑
K∈Th ‖∇vK‖

2
0,K .

Finally, we introduce the following notation that will be used in section 4. Let C(Th) =∏
K∈Th C(K), where C(K) denotes the set of continuous functions on K. We set vm,K :=

min{vK(x) : x ∈ K} and if e is an edge of K we set vm,e,K := min{vK(s) : s ∈ e}, and
analogously we denote by vM,K and vM,e,K the maximum on K and on e ⊆ ∂K.

We shall also use the standard notation for the mean value of a function f , that is∫
e
− f ds =

1
|e|

∫
e
f ds,

∫
K
− f dx =

1
|K|

∫
K
f dx

on edges e and elements K.
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3. The symmetric problem

We introduce a family of Discontinuous Galerkin schemes for a symmetric elliptic prob-
lem that here we write in mixed form

a−1σ = ∇ρ in Ω
−divσ = f in Ω(3.1)

ρ = χ on ΓD
σ · n = 0 on ΓN

with a ∈ L∞(Ω) satisfying a ≥ a0 > 0 on the domain Ω. When a = εe
ψ
ε , (3.1) is the mixed

form of (1.4).
Let us define the following finite element spaces

Vh = P1(Th), Σh = P0(Th)2.

We introduce the Discontinuous Galerkin (DG) schemes in the general formulation of [3]
as follows: Find σh ∈ Σh and ρh ∈ Vh such that for all τ ∈ Σh and v ∈ Vh we have∫

Ω
a−1
h σh · τ dx+

∫
Ω
ρhdivh τ dx−

∑
K∈Th

∫
∂K

ρ̂τ · nK ds = 0,∫
Ω
σh · ∇hv dx−

∑
K∈Th

∫
∂K

σ̂ · nKv ds =
∫

Ω
fv dx,(3.2)

where ah ∈ P0(Th) is a piecewise constant approximation of a (for instance, the L2-
projection, or the approximation defined in (4.10)), and ρ̂ and σ̂ are the numerical fluxes
that will be defined in the sequel and that will identify the different schemes.

We slightly weaken the penalization in the definition of the fluxes introduced in [3].
For the schemes under consideration, the scalar flux ρ̂ is kept unchanged, but we take
σ̂ ∈ P0(E)2 and replace [[ ρh ]] in σ̂ with [[ Πhρh ]] .

3.1. Description of the methods. Now we write the explicit form of the fluxes for
the modified schemes corresponding to Interior Penalty and Local Discontinuous Galerkin
methods.

In the following, χh denotes a piecewise constant approximation of χ on ΓD.
Starting from the Interior Penalty (IP) [2, 29, 37] we choose

ρ̂(ρh)|e =
{
{ρh} if e ∈ E0 ∪ EN
χh if e ∈ ED

(3.3)

σ̂(ρh)|e =

 {ah∇hρh} − µ [[ Πhρh ]] if e ∈ E0

ah∇hρh − µ(Πhρh − χh)n if e ∈ ED
0 if e ∈ EN .

(3.4)

The modified Local Discontinuous Galerkin (LDG) [27] is obtained by choosing

ρ̂(ρh)|e =

 {ρh} − θ · [[ ρh ]] if e ∈ E0

χh if e ⊂ ED
ρh if e ⊂ EN

(3.5)

σ̂(ρh, σh)|e =

 {σh}+ θ [[σh ]] − µ [[ Πhρh ]] if e ∈ E0

σh − µ(Πhρh − χh)n if e ⊂ ED .
0 if e ⊂ EN

(3.6)
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The penalty function µ depends on ah and in both cases, IP and LDG, is taken on each
edge e as

(3.7) µe = ηe
{ah}e
he

where he is the length of e and ηe is a constant on the edge e, uniformly bounded below
as we shall specify later on. The vector θ in LDG is also constant on each edge e and it is
independent of ah.

Remark 3.1. The same “recipe” (i.e. choosing the vector variable space Σh made of piece-
wise constants and introducing the projection Πh in the penalization term) could be applied
to other schemes of DG type. For instance, a modified NIPG [36] could be introduced and
studied in a similar way as done here for modified IP and LDG. We mention that in
[10, 11] the projection Πh is introduced in the penalization term for an over-penalized
NIPG scheme, with the effect of allowing the use of a simple block preconditioner that
keep the condition number at the order O(h−2). Instead, when the modification is applied
to Bassi et al [7] (and to Brezzi et al. [15], resp.) we do not introduce a new scheme,
but the modified IP scheme (3.3)-(3.4) (and the modified LDG scheme (3.5)-(3.6), resp.)
is recovered with special choices of the penalization parameter µ (and θ). Therefore, in
the remaining part of the paper only the modified IP and LDG schemes will be explicitly
presented and discussed.

We also mention that a weak penalization with the projection in the jump has been used
in [5, 6] for a family of IP schemes (symmetric and non-symmetric) given in primal form.

In order to establish the wellposedness and some convergence properties of the schemes
just described, we will make use of their primal formulations, which we introduce next.

Following [3] and taking into account that ah is piecewise constant, and therefore
ah∇hVh ⊂ Σh, we can eliminate the vector variable σh from (3.2) and obtain the pri-
mal formulation of each scheme in the scalar variable ρh. With the same notation as in
equation (3.9) of [3], we have

(3.8) σh = σh(ρh) := ah∇hρh − ahr( [[ ρ̂(ρh)− ρh ]] )− ahl({ρ̂(ρh)− ρh}),

where r : [L2(Γ)]2 → Σh and l : L2(Γ0)→ Σh are the lifting operators defined by

(3.9)
∫

Ω
r(φ) · τ dx = −

∫
Γ
φ · {τ} ds,

∫
Ω
l(q) · τ dx = −

∫
Γ0

q [[ τ ]] ds, ∀τ ∈ Σh.

Then, we obtain the following primal formulation of problem (3.2): Find ρh ∈ Vh, such
that for all v ∈ Vh

(3.10)
∫

Ω
ah∇hρh · ∇hv dx+

∫
Γ
( [[ ρ̂− ρh ]] · {ah∇hv} − {σ̂} · [[ v ]] ) ds

+
∫

Γ0

({ρ̂− ρh} [[ ah∇hv ]] − [[ σ̂ ]] · {v}) ds =
∫

Ω
fv dx.

The primal formulation of the modified methods is obtained using in (3.10) the definition
of the fluxes.
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Consider first the modified IP method. Using definition (3.3)-(3.4) of the numerical
fluxes, equation (3.10) becomes∫

Ω
ah∇hρh · ∇hv dx −

∫
Γ0∪ΓD

( [[ ρh ]] · {ah∇hv}+ [[ v ]] · ({ah∇hρh} − µ [[ Πhρh ]] )) ds

+
∫

ΓD

(χhn · {ah∇hv} − [[ v ]] · µΠhχhn) ds =
∫

Ω
fv dx.

We have ∫
Γ
µ [[ Πhρh ]] · [[ v ]] ds =

∫
Γ
µ [[ Πhρh ]] · [[ Πhv ]] ds.

Therefore, (3.10) takes the form

(3.11) Bh(ρh, v) =
∫

Ω
fv dx−

∫
ΓD

(χhn · ah∇hv − µχhv) ds ∀v ∈ Vh,

with the bilinear form Bh = BIP
h : H2(Th)2 → R given by

BIP
h (ρh, v) =

∫
Ω
ah∇hρh · ∇hv dx−

∫
Γ0∪ΓD

[[ ρh ]] · {ah∇hv} ds(3.12)

−
∫

Γ0∪ΓD

[[ v ]] · {ah∇hρh} ds+
∫

Γ0∪ΓD

µ [[ Πhρh ]] · [[ Πhv ]] ds.

Notice that in this case, formulation (3.11)-(3.12) is equivalent to using the midpoint
quadrature formula for the edge integrals in the primal formulation of the standard Interior
Penalty method.

Now consider the modified LDG method. From definition (3.5)-(3.6) we have

[[ ρ̂− ρh ]] =

 − [[ ρh ]] if e ∈ E0

(χh − ρh)n if e ∈ ED
0 if e ∈ EN

, {ρ̂− ρh} = −θ · [[ ρh ]] if e ∈ E0.

Then, equation (3.10) takes the form (3.11) with Bh = BLDG
h : H2(Th)2 → R given by

BLDG
h (ρh, v) =

∫
Ω
ah∇hρh · ∇hv dx−

∫
Γ0∪ΓD

( [[ ρh ]] · {ah∇hv}+ {ah∇hρh} · [[ v ]] ) ds

−
∫

Γ0

( [[ ah∇hρh ]] θ · [[ v ]] + [[ ρh ]] · θ [[ ah∇hv ]] ) ds(3.13)

+
∫

Γ0∪ΓD

µ [[ Πhρh ]] · [[ Πhv ]] ds+
∫

Γ0∪ΓD

{Υ} · [[ v ]] ds+
∫

Γ0

θ [[ Υ ]] · [[ v ]] ds,

with
Υ = ahr( [[ ρ̂− ρh ]] )− ahl(θ · [[ ρh ]] ).

Notice that in the simplest case of homogeneous Dirichlet boundary conditions on the
entire ∂Ω, we have∫

Γ0∪ΓD

{Υ} · [[ v ]] ds+
∫

Γ0

θ [[ Υ ]] · [[ v ]] ds = −
∫

Ω
Υ · (r( [[ v ]] ) + l(θ · [[ v ]] )) dx

=
∫

Ω
ah(r( [[ ρh ]] ) + l(θ · [[ ρh ]] )) · (r( [[ v ]] ) + l(θ · [[ v ]] )) dx.

We note that the presence of the lifting operators introduces in form (3.13) an explicit
dependence on the space Σh. Therefore, a direct link (via a quadrature formula) between
(3.13) and the primal form of the standard LDG method is not possible.
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Figure 1. Connectivity for modified IP (left) and standard IP (right).

Figure 2. Left: Connectivity for modified LDG (left) standard LDG (right).

Remark 3.2. We point out that the modified schemes just defined have a reduced connec-
tivity compared with standard IP and LDG methods, as illustrated in Figures 1 and 2. As
it will be done in section 4, the degrees of freedom are taken in the midpoints of the edges,
and the connected degrees of freedom to a given node (visualized with a •) are marked by
×.

3.2. Analysis of the methods. Now we deal with the wellposedness of our schemes, by
proving in the next lemma that the bilinear forms BIP

h and BLDG
h are coercive in Vh × Vh

with respect to a convenient norm.
For a function v ∈ H1(Th), let |v|∗ be the seminorm defined by

(3.14) |v|2∗ =
∑

e∈E0∪ED

{ah}e
he
‖ [[ Πhv ]] ‖20,e .

Then, we define the norm ||| · |||h for functions v ∈ H2(Th) by

|||v|||2h = |
√
ah v|21,h +

∑
K∈Th

h2
K |
√
ahv|22,K + |v|2∗,
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which is actually a norm in H2(Th) since ah ≥ a0 > 0 and ΓD 6= ∅.
In the proof of the next lemma we consider for simplicity the case of homogeneous

Dirichlet boundary conditions, so ΓN = ∅, ΓD = ∂Ω and χh = 0 on ∂Ω.

Lemma 3.1. There exists a constant η0 > 0 depending only on the minimum angle αh of
the mesh Th and on the parameter θ for the LDG method, such that, for µ defined in (3.7)
with ηe ≥ η0 for all e ∈ E, we have

(3.15) Bh(v, v) ≥ Cs|||v|||2h ∀v ∈ Vh
with the constant Cs independent of h, and where Bh is either BIP

h or BLDG
h .

Proof. We have

Bh(v, v) =
∫

Ω
ah|∇hv|2 dx − 2

∫
Γ

[[ v ]] · {ah∇hv} ds +
∫

Γ
µ [[ Πhv ]] · [[ Πhv ]] ds + Ξ,

where for the IP method Ξ = 0, while for LDG we have

Ξ = −2
∫

Γ0

[[ ah∇hv ]] θ · [[ v ]] + a nonnegative term.

Taking into account that ah is piecewise constant, we obtain for v ∈ Vh∣∣∣∣∫
Γ

[[ v ]] · {ah∇v} ds
∣∣∣∣ =

∣∣∣∣∫
Γ

[[ Πhv ]] · {ah∇v} ds
∣∣∣∣

≤

(
2
∑
e∈E

ah,e
he
‖ [[ Πhv ]] ‖20,e

) 1
2
(∑
e∈E

he‖{
√
ah∇v}‖20,e

) 1
2

.

Now ∑
e∈E

he‖{
√
ah∇v}‖20,e ≤ C(αh)

∑
e∈E

∑
e⊂T
‖
√
ah∇v‖20,T

≤ C(αh)|
√
ahv|21,h.

Therefore ∣∣∣∣∫
Γ

[[ v ]] · {ah∇v} ds
∣∣∣∣ ≤ C(αh)|

√
ahv|1,h|v|∗.

In a similar way, we have∣∣∣∣∫
Γ0

[[ ah∇hv ]] θ · [[ v ]]
∣∣∣∣ ≤ C(αh, θ)|

√
ahv|1,h|v|∗.

Thus, for both methods considered we have

Bh(v, v) ≥ |
√
ahv|21,h + η|v|2∗ − C(αh, θ)|

√
ahv|1,h|v|∗.

Using the arithmetic-geometric inequality with λ > 0 we have

C(αh, θ)|
√
ahv|1,h|v|∗ ≤ C(αh, θ)

λ

2
|
√
ahv|21,h + C(αh, θ)

1
2λ
|v|2∗

Taking λ = 1
C(αh,θ)

, we have

Bh(v, v) ≥ 1
2
|
√
ahv|21,h +

(
η − C(αh, θ)2

2

)
|v|2∗,

which gives (3.15) for η ≥ η0 with

η0 =
1
2

+
C(αh, θ)2

2
.
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and Cs = 1
2 . �

Lemma 3.1 implies immediately existence and uniqueness of the solution of problem
(3.11). Then, existence and uniqueness of σh follows from (3.8).

The next result contains error estimates for both methods, when ρ ∈ H2(Ω). We
postpone its proof to section 6.

Theorem 3.2. Let ρh and σh be the approximate solutions obtained using the modified IP
or modified LDG schemes with the penalization parameter µ as in (3.7) with ηe ≥ η0 for
all e ∈ E, as stated in Lemma 3.1. Then, we have

|||ρ− ρh|||h ≤ Ch|ρ|2,Ω
‖σ − σh‖0,Ω ≤ Ch|ρ|2,Ω

where the constant C depends on η0 and on the regularity of the mesh, and on θ for LDG,
but it is independent on h and ρ.

Similarly to the standard LDG case, wellposedness of the modified LDG scheme is still
verified when the penalization parameter µ is taken as

(3.16) µ = ηe{ah} on e ∈ E ,
rather than as (3.7). Here ηe is a positive constant for each edge e [22, 23]. Indeed, the
mixed formulation (3.2) with the LDG numerical fluxes (3.5)-(3.6) takes the form: Find
(ρh, σh) ∈ Vh × Σh such that for all (v, τ) ∈ Vh × Σh∫

Ω
a−1
h σh · τ dx+ b(ρh, τ) =

∫
ΓD

χh τ · nds(3.17)

−b(v, σh) +
∫

Γ0∪ΓD

µ [[ Πhρh ]] · [[ Πhv ]] ds =
∫

Ω
fv dx+

∫
ΓD

µΠhχh v ds,(3.18)

where b is the bilinear form defined by

(3.19) b(v, τ) =
∫

Ω
vdiv hτ dx−

∫
Γ0

({v} [[ τ ]] − θ · [[ v ]] [[ τ ]] ) ds−
∫

ΓN

v τ · nds.

We check uniqueness. In fact, if f = 0 and χh = 0, taking v = ρh in (3.18) and τ = σh
in (3.17), and adding the resulting equations, we obtain∫

Ω
a−1
h σh · σhdx+

∫
Γ0∪ΓD

µ [[ Πhρh ]] · [[ Πhρh ]] ds = 0.

This implies that σh = 0 in Ω and that ρh is continuous at the midpoints of the interele-
ments and vanishes at the midpoints of the Dirichlet edges. Thus, (3.17) gives b(ρh, τ) = 0
for all τ ∈ Σh. It follows that

∫
Ω∇hρh · τ = 0 for all τ ∈ Σh, and therefore ∇hρh vanishes

in Ω. Since ΓD 6= ∅, ρh must be identically zero. So, we proved the following Lemma.

Lemma 3.3. If the penalization parameter µ is taken as in (3.16) with ηe > 0 for all
e ∈ E, then the modified LDG method defines a unique solution (ρh, σh) ∈ Vh × Σh.

In order to obtain error estimates, it is convenient to introduce, for v ∈ H1(Th), the
seminorm

(3.20) |v|? =

(∑
e∈E

ηe‖Πhv‖20,e

) 1
2

.

The reader should not confuse it with the seminorm | · |∗ defined in (3.14).
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Theorem 3.4. Under the same conditions of Lemma 3.3, we have the error estimate

‖σ − σh‖0,Ω + |ρ− ρh|? ≤ Ch
1
2 |ρ|2,Ω.

Finally, we report the L2–error estimates for the methods considered here.

Theorem 3.5. For the modified IP or LDG schemes with µ defined by (3.7), we have

(3.21) ‖ρ− ρh‖0,Ω ≤ Ch2|ρ|2,Ω.
For the modified LDG with µ defined by (3.16), and assuming a quasiuniform mesh, we
have

(3.22) ‖ρ− ρh‖0,Ω ≤ Ch|ρ|2,Ω.

Notice that we lose half power of h in the error estimate for σ, and one power of h
in the L2 error estimate for ρ when the parameter µ is taken as in (3.16). However, the
suboptimality of the convergence order is in accordance with similar results for the standard
LDG scheme (see [21] and Table 1 of [23]).

The proofs of Theorems 3.4 and 3.5 are given in section 6.

4. Exponentially Fitted DG schemes

We introduce first the exponentially fitted DG scheme using the global transformation
(1.3). In the second part, we shall consider the more general case ε(x) and β(x) piecewise
constant, when (1.3) exists only locally.

4.1. The case β = ∇ψ with ψ continuous. Assume that the function ε(x) is constant
on Ω and that there exists a potential ψ ∈ H1(Ω) ∩ C(Ω) such that β = ∇ψ. Equation
(1.1) can be written in the symmetric form (1.4) and the schemes introduced in section 3
can be applied with a = εe

ψ
ε . Since we are interested in approximating the variable u, we

need to introduce a discrete analogue of the application u → ρ defined by (1.3). Given a
triangle K ∈ Th, we denote by ei, i = 1, 2, 3 the three edges of K. In P1(K) we choose
the basis function ϕiK , i = 1, 2, 3, as the polynomial of degree 1 which takes the value 1 in
the midpoint of the edge ei and the value 0 in the midpoint of the other two edges. For
v ∈ P1(K), we write

vK(x) = v1ϕ1
K(x) + v2ϕ2

K(x) + v3ϕ3
K(x).

Moreover, for K ∈ Th and e edge of K we define

(4.1) E(K, e) =
∫
e
− e−

ψ
ε
|K ds,

where we used the notation introduced at the end of Section 2 for the mean value. Finally,
we introduce the operator T : Vh → Vh such that, for all v ∈ Vh
(4.2) (Tv)K = E(K, e1)v1ϕ1

K + E(K, e2)v2ϕ2
K + E(K, e3)v3ϕ3

K .

The discrete analogue of (1.3) is then defined by

(4.3) ρh = Tuh.

Similarly, we define the boundary value χh, approximation of χ in (1.4), as

(4.4) χh|e := E(K, e)gh|e, ∀e ∈ ED,
gh being the piecewise constant approximation of g defined by gh|e = Πe

0g.
Then, by replacing ρh with Tuh in formulation (3.2) and in the definitions of the nu-

merical fluxes (3.3) and (3.4) for the modified IP scheme, and of the numerical fluxes (3.5)
and (3.6) for the modified LDG scheme, we obtain the exponentially fitted IP (and LDG,
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resp.) scheme for the variables σh and uh: Find σh ∈ Σh and uh ∈ Vh such that, for all
τ ∈ Σh and v ∈ Vh, it holds

(4.5)

∫
Ω
a−1
h σh · τ dx+

∫
Ω
Tuhdivh τ dx−

∑
K∈Th

∫
∂K

ρ̂τ · nK ds = 0∫
Ω
σh · ∇hv dx−

∑
K∈Th

∫
∂K

σ̂ · nKv ds =
∫

Ω
fv dx .

For the IP scheme, the numerical fluxes are given by

ρ̂(Tuh)|e =
{
{Tuh} if e ∈ E0 ∪ EN
χh if e ∈ ED

(4.6)

σ̂(Tuh)|e =

 {ah∇hTuh} − µ [[ ΠhTuh ]] if e ∈ E0

ah∇hTuh − µ(ΠhTuh − χh)n if e ∈ ED
0 if e ∈ EN

,(4.7)

and for the LDG scheme, the numerical fluxes read

ρ̂(Tuh)|e =

 {Tuh} − θ · [[Tuh ]] if e ∈ E0

χh if e ∈ ED
Tuh if e ∈ EN

(4.8)

σ̂(Tuh, σh)|e =

 {σh}+ θ · [[σh ]] − µ [[ ΠhTuh ]] if e ∈ E0

σh − µ(ΠhTuh − χh)n if e ∈ ED
0 if e ∈ EN

,(4.9)

with µ defined by (3.7). We notice that, as for the symmetric case, the numerical fluxes
for the exponentially fitted schemes are single valued.

To complete the definition of the numerical schemes (4.5) we still have to specify the
piecewise constant approximation ah of a. We define

(4.10) ah|K := HK(a) =:
1∫

K− a−1 dx
.

We remark that the presence of exponentials in a (we recall that here a = εeψ/ε) and in
the transformation uh → ρh is a potential source of numerical troubles. However, thanks
to the structure of the DG schemes developed in section 3, as well as to the choice of ah
as in (4.10) and of the operator T as in (4.2), system (4.5) scales well in terms of the
exponentials and no overflow occurs in the implementation. Indeed, in the first equation
of (4.5), for a given K, we can take τ ∈ Σh with τ 6= (0, 0) in K and τ ≡ (0, 0) elsewhere,
and rescale the equation by multiplication with eψm,K/ε (here and in the following we use
the notation of section 2 for the minimum of ψ on an element K or on an edge e of K).
Thus, it is easy to see that only exponentials with negative exponents enter the formula.
This is obvious for the first term and, due to the trivial observation that ψm,K ≤ ψm,e,K ,
also for the second term. This inequality is useful also for the third term. Indeed, since τ is
piecewise constant, only the value in the midpoint of edge e of ρ̂(Tuh) enters the integrals
in the third term. Therefore, since ψ/ε is continuous across e, we have∫

∂K
{Tuh}τ · nK ds =

3∑
i=1

E(K, ei)
∫
ei

{uh}τ · nK ds

and ∫
∂K

[[Tuh ]] τ · nK ds =
3∑
i=1

E(K, ei)
∫
ei

[[uh ]] τ · nK ds,
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so that we can conclude. We point out that the use of the transformation (4.3) in the
discretization of the symmetric problem with standard IP or standard LDG schemes would
produce an overflow at this point, since in that cases the vector variable is a polynomial of
degree 1 on each element K.

In the second equation of (4.5), with σ̂(Tuh) defined in (4.7), the term {ah∇hTuh}|e
contains coefficients of the form E(Ki, e)HKi(a), for the two elements K1 and K2 sharing
the edge e. Using again ψm,Ki ≤ ψm,e,Ki , for i = 1, 2, that product can be rewritten
with exponentials with negative exponents and no overflow occurs. In considering the
term µ [[ ΠhTuh ]] , which appears both in (4.7) and in (4.9), the presence of the projection
Πh and the continuity of ψ/ε across the edge e are crucial. The penalty coefficient µ|e
defined in (3.7) contains the diffusion coefficient ah both on K1 and K2. However, since
E(K1, e) = E(K2, e), the jump term can be simplified to

(4.11) [[ ΠhTuh ]] e = E(K, e) [[ Πhuh ]] e,

where K could be either one from K1 or K2. As above, we have terms of the form
E(Ki, e)HKi(a), which behave well, since we compare the minimum of the function ψKi
on the element Ki with the minimum of ψKi on an edge of Ki. We shall see in the second
part of the section how we can modify the definition of the numerical fluxes in order to
extend the scheme to the case ψ/ε discontinuous across the interelement boundaries.

Remark 4.1. We point out that using the mean value of a instead of the harmonic aver-
age in definition (4.10) may produce overflow in the implementation of the scheme. In-
deed, we would have to rescale the first equation of (4.5) by multiplication with eψM,K/ε,
and, in that case, the second term would take the form E(K, e)e−ψM,K/ε, which scales as
e(ψM,K−ψm,e,K)/ε, where the exponent is positive (and possibly large).

Elimination of the vector variable σh as performed in section 3 leads to the primal
formulation of the schemes (4.5). The primal formulation of the exponentially fitted IP
scheme takes the form: find uh ∈ Vh, such that, for all v ∈ Vh

(4.12) CIPh (uh, v) =
∫

Ω
fv dx−

∫
ΓD

(χhn · {ah∇hv} − µχhn · [[ v ]] ) ds ,

with the bilinear form CIPh : [H1(Th)]2 → R given by

CIPh (uh, v) =
∫

Ω
ah∇hTuh · ∇hv dx−

∫
Γ0∪ΓD

[[Tuh ]] · {ah∇hv} ds(4.13)

+
∫

Γ0∪ΓD

[[ v ]] · {ah∇hTuh} ds+
∫

Γ0∪ΓD

µ [[ ΠhTuh ]] · [[ Πhv ]] ds.

The primal formulation for the exponentially fitted LDG scheme is obtained similarly
and we do not report its explicit form.

Remark 4.2. We point out that the same primal formulation is obtained starting from
the primal formulation (3.11)-(3.12) of the symmetric problem, taking ah as in (4.10) and
substituting ρh with Tuh. In other words, recalling that the degrees of freedom in Vh are the
midpoint of the edges, the algebraic form of (4.12)-(4.13) is obtained performing a change
of variable in the algebraic form of the symmetric problem with a right multiplication by a
diagonal matrix with E(K, e) as entries (and a proper modification of the right hand side
in the part corresponding to the Dirichlet boundary data). The same comment applies
to the LDG case. Moreover, since E(K, e)HK(a) vanishes asymptotically (in ε) when
ψm,e,K > ψm,K , the corresponding entry in the matrix vanishes, and an automatic upwind
effect is produced (see [19] for details in the hybrid and mixed finite element framework).
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Remark 4.3. As pointed out in Lemma 3.1, the penalty coefficients µ must be large in order
to guarantee the coercivity property, or for LDG it must be at least bounded away from
zero. However, the presence of the exponentials could produce degeneracy at Dirichlet
boundary nodes. This is not the case at the inflow Dirichlet boundary, but it could happen
at the outflow boundary. Therefore, we modify the definition of µ as follows. If the edge
e is at the outflow boundary and it is contained in the element K, taking into account
definition (3.7), we choose µ|e such that

µ|eE(K, e) =
ηe
he

max {1, E(K, e)HK(a)} .

With this choice, the numerical flux becomes, for instance, for IP

σ̂ = ah∇hTuh −
ηe
he

max {1, E(K, e)HK(a)} (Πhuh − gh)n.

4.2. The general case. We conclude the section introducing the exponentially fitted
schemes for a general class of convection–diffusion equations. Here, we allow ε(x) and β(x)
to be piecewise constant functions. A global transformation of the form (1.3) does not exist
in the present case. However, there exists a piecewise linear ψ whose gradient coincides
with the constant βK on the element K (i.e., βK = ∇ψK). Then, we define transformation
u −→ ρ only locally as

(4.14) ρK = uKe
−ψ
ε
|K , inK.

One can define again the operator T : Vh −→ Vh as in (4.2), but in this case the function
ψ/ε is discontinuous across the interelement boundaries, and the schemes (4.5) may exhibit
overflows in the third term of the first equation and in the penalization term in the second
equation, as already pointed out in section 4.1.

In order to be able to deal with the generic case of ψ/ε piecewise linear, we change the
definition of the numerical fluxes. We replace definitions (4.6) and (4.7) for the IP scheme
with

ûK(uh)|e =
{
E(K, e){uh} if e ∈ E0 ∪ EN
χh if e ∈ ED

(4.15)

σ̂(uh)|e =

 {ah∇hTuh} − µ̃ [[ Πhuh ]] if e ∈ E0

ah∇hTuh − µ̃(Πhuh − gh)n if e ∈ ED
0 if e ∈ EN ,

(4.16)

and we replace definitions (4.8) and (4.9) for the LDG scheme with

ûK(uh)|e =

E(K, e)({uh} − θ · [[uh ]] ) if e ∈ E0

χh if e ∈ ED
E(K, e)uh if e ∈ EN

(4.17)

σ̂(uh, σh)|e =

 {σh}+ θ · [[σh ]] − µ̃ [[ Πhuh ]] if e ∈ E0

σh − µ̃(Πhuh − gh)n if e ∈ ED
0 if e ∈ EN

.(4.18)

The new penalization parameter µ̃ is taken as

(4.19) µ̃|e =
η̃e
he
, with η̃e =

1
2
(
E(K, e)ah|K + E(K ′, e)ah|K′

)
,

for e = K ∩K ′, and with the obvious changes for boundary edges (see Remark 4.3).
Notice that, for both schemes, the definition of ûK(uh) is linked to the definition of

numerical flux for the scalar variable in the symmetric problem through

(4.20) ûK(uh)|e = E(K, e)ρ̂(uh).
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Moreover, the lack of continuity of ψ/ε across the interelement boundaries implies that the
numerical flux û is double valued on the internal edges.

The exponentially fitted Discontinuous Galerkin schemes can be written in the mixed
compact form as follows: Find σh ∈ Σh and uh ∈ Vh such that for all τ ∈ Σh and v ∈ Vh
it holds ∫

Ω
a−1
h σh · τ dx+

∫
Ω
Tuhdivh τ dx−

∑
K∈Th

∫
∂K

ûKτ · nK ds = 0(4.21) ∫
Ω
σh · ∇hv dx−

∑
K∈Th

∫
∂K

σ̂ · nKv ds =
∫

Ω
fv dx .

One can easily check that overflow does not occur when the new definitions of the
numerical fluxes are used.

Remark 4.4. We point out that when ψ/ε is continuous, the scheme (4.21) with the fluxes
defined by (4.15) and (4.16) ((4.17) and (4.18), resp.) coincides with the scheme (4.5), with
the fluxes given by (4.6) and (4.7) ((4.8) and (4.9), resp.). Although ûK(uh)|e is different
from ρ̂(Tuh)|e, even for a continuous ψ/ε, the integrals on the edges of the scalar fluxes
against constant functions coincide (and τ · n ∈ P0(e)).

In order to eliminate the variable σh for writing the primal formulation, we follow the
same procedure as in section 3 (see (3.8)), but here the definition of the lifting operators
needs some extra care.

Let us introduce the function Ẽ ∈ Tr(Γ), which is double valued on each interior edge
and single valued on ∂Ω, as follows. Let e be an interior edge shared by two elements K1

and K2. Then, on e, we define Ẽ taking the values Ẽi = E(Ki, e), i = 1, 2. We introduce
the lifting operators r̃ : [L2(Γ)]2 → Σh and l̃ : L2(Γ0)→ Σh defined by

(4.22)

∫
Ω
r̃(φ) · τ dx = −

∫
Γ
φ · {Ẽahτ} ds, ∀τ ∈ Σh,∫

Ω
l̃(q) · τ dx = −

∫
Γ0

q [[ Ẽahτ ]] ds, ∀τ ∈ Σh.

Similar arguments like the ones discussed in section 4.1, show that the exponentials in
Ẽah are well balanced.

When considering the mid–term in the first equation of (4.21), we can integrate by parts
on each triangle to obtain∫

Ω
Tuhdivh τ dx = −

∫
Ω
∇hTuh · τ dx+

∑
K∈Th

∫
∂K

Tuh τ · nK ds

= −
∫

Ω
∇hTuh · τ dx+

∑
K∈Th

∫
∂K

uh Ẽτ · nK ds

= −
∫

Ω
∇hTuh · τ dx+

∫
Γ

[[uh ]] · {Ẽτ} ds+
∫

Γ0

{uh} [[ Ẽτ ]] ds,

where, from the first to the second line, we used τ ·n ∈ P0(e) and the equality (ΠhTuh)K |e =
E(K, e)Πhuh|e. Similarly, the third term in the first equation of (4.21) becomes∑

K∈Th

∫
∂K

ûKτ · nK ds =
∫

Γ
[[ ρ̂(uh) ]] · {Ẽτ} ds+

∫
Γ0

{ρ̂(uh)} [[ Ẽτ ]] ds,
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where we used (4.20). Therefore, from the first equation of (4.21) we have that for all
τ ∈ Σh

(4.23)
∫

Ω
a−1
h σh · τ dx−

∫
Ω
∇hTuh · τ dx+

∫
Γ

[[uh − ρ̂(uh) ]] · {Ẽτ} ds

+
∫

Γ0

{uh − ρ̂(uh)} [[ Ẽτ ]] ds = 0.

Taking τ = ahϕ for all ϕ ∈ Σh in (4.23), we can eliminate σh obtaining

(4.24) σh = ah∇hTuh − r̃( [[ ρ̂(uh)− uh ]] )− l̃({ρ̂(uh)− uh}),

where the liftings r̃ and l̃ are defined in (4.22).
Plugging (4.24) into the second equation of (4.21) we obtain the primal formulation of

the methods: Find uh ∈ Vh such that, for all v ∈ Vh, it holds

(4.25)
∫

Ω
ah∇hTuh · ∇hv dx+

∫
Γ
( [[ ρ̂(uh)− uh ]] · {Ẽah∇hv} − {σ̂} · [[ v ]] ) ds

+
∫

Γ0

({ρ̂(uh)− uh} [[ Ẽah∇hv ]] − [[ σ̂ ]] · {v}) ds =
∫

Ω
fv dx.

Using the definition (4.15)-(4.16) of the numerical fluxes as done in section 3, in the case
of the IP scheme equation (4.25) becomes

(4.26)
∫

Ω
ah∇hTuh · ∇hv dx−

∫
Γ0∪ΓD

[[ v ]] · ({ah∇hTuh} − µ̃ [[ Πhuh ]] ) ds

−
∫

Γ0∪ΓD

[[uh ]] · {Ẽah∇hv} ds+
∫

ΓD

(
ghn · {Ẽah∇hv} − [[ v ]] · µ̃ghn

)
ds =

∫
Ω
fv dx.

Therefore, (4.25) takes the form

(4.27) C̃h(uh, v) =
∫

Ω
fv dx−

∫
ΓD

(
ghn · {Ẽah∇hv} − µ̃ghv

)
ds ∀v ∈ Vh,

with the bilinear form C̃h = C̃IPh : [H1(Th)]2 → R given by

C̃IPh (uh, v) :=
∫

Ω
ah∇hTuh · ∇hv dx(4.28)

−
∫

Γ0∪ΓD

(
[[uh ]] · {Ẽah∇hv}+ [[ v ]] · {ah∇hTuh}

)
ds

+
∫

Γ0∪ΓD

µ̃ [[ Πhuh ]] · [[ Πhv ]] ds.
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Taking into account the new definition of the liftings (4.22), in the case of the LDG
scheme, (4.25) takes the form (4.27), with C̃h = C̃LDGh : [H1(Th)]2 → R defined by

C̃LDGh (uh, v) :=
∫

Ω
ah∇hTuh · ∇hvdx(4.29)

−
∫

Γ0∪ΓD

(
[[uh ]] · {Ẽah∇hv}+ {ah∇hTuh} · [[ v ]]

)
ds

−
∫

Γ0

(
[[ ah∇hTuh ]] θ · [[ v ]] + [[uh ]] · θ [[ Ẽah∇hv ]]

)
ds

+
∫

Γ0∪ΓD

µ̃ [[ Πhuh ]] · [[ Πhv ]] ds

+
∫

Γ0∪ΓD

{Υ̃} · [[ v ]] ds+
∫

Γ0

θ [[ Υ̃ ]] · [[ v ]] ds,

where
Υ̃ = −r̃( [[uh ]] )− l̃(θ · [[uh ]] ).

Remark 4.5. We point out that, once µ̃ is chosen as in (4.19), in principle, the projection
Πh is not needed in the primal formulation for controlling the exponentials in that term.
However, numerical experiments show that the corresponding scheme exhibits a stronger
artificial diffusion (see Remark 5.1).

5. Numerical examples

We present some numerical tests of the methods proposed in the previous section in
the IP case. The examples below refer to a constant diffusion coefficient with the value
ε = 10−6. The transport β is chosen irrotational in the first three tests and scheme (4.12)-
(4.13) has been used in the code. The last experiment has been designed to assess the
performance of the scheme (4.27)-(4.28).

Test 1. In this first test, we deal with a boundary layer case. We present an example
for which we know the exact solution, in order to study the convergence of the scheme
numerically. Equation (1.1) is considered in the domain Ω = (−1, 1)2 with β = [1, 1], with
homogeneous Dirichlet boundary condition on ∂Ω and with the right hand side f given by

f(x, y) =
1 + e−

2
ε − 2e

x−1
ε

1− e−
2
ε

+ x+
1 + e−

2
ε − 2e

y−1
ε

1− e−
2
ε

+ y.

The exact solution is then

u(x, y) =

(
1 + e−

2
ε − 2e

x−1
ε

1− e−
2
ε

+ x

)(
1 + e−

2
ε − 2e

y−1
ε

1− e−
2
ε

+ y

)
.

The numerical solution, shown in Figure 3, exhibits sharp boundary layers, with no wiggles
and virtually without numerical diffusion. We point out that the boundary conditions are
well treated even at the outflow boundary, thanks to the choice of µ as in Remark 4.3.

In the Table 1 we study the numerical order of convergence in norm L2 for both variables
u and σ. The orders of convergence obtained are 0.49669 and 0.48668 respectively. An
optimal order of convergence (with respect to h) is not to be expected here, because of the
singularly perturbed behavior of the exact solution.
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Figure 3. Test 1.

Figure 4. Left: Test 2 with β = [2/3, 2] and an unstructured mesh; Right:
Test 2 with β = [0, 1] and a mesh aligned to the transport direction.

Test 2. We study here a propagation of a boundary discontinuity in the case of a
constant transport vector. In the domain Ω = (−1, 1)2 we take β = [2

3 , 2], f = 0 and
ΓD = ∂Ω. The boundary condition is

g(x, y) =
{

1 if x = −1 or x < −1
3 and y = −1

0 elsewhere.

The solution is displayed in Figure 4 (left). The proposed scheme suffers of a quite strong
crosswind diffusion. This unpleasant behavior, however, does not appear when the mesh
is aligned to the transport direction. Figure 4 (right) shows the solution for β = [0, 1] and

g(x, y) =
{

1 if x = −1 or x < −1
3 and y = −1

0 elsewhere.

Test 3. This test is taken from [16]. The problem is partly advection dominated, and
partly diffusion dominated. Moreover, the right hand side f varies abruptly in the advection
dominated portion of the domain. We solve equation (1.1) in the domain Ω = (−1, 1)2
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with β = ∇ψ, where

ψ = ψ(r) =

 0 if r < 1.5
2(r − 1.5) if 1.5 ≤ r < 1.9,

0.8 if 1.9 ≤ r

with r2 = (x+ 1)2 + (y + 1)2, and f given by

f = f(r) =


0 if r < 1.6

1
2ε1016 if 1.6 ≤ r < 1.8.

0 if 1.8 ≤ r
The Dirichlet boundary is ΓD = [0.6, 1]× {y = 1} ∪ {x = 1} × [0.6, 1] ∪ [−1,−0.6]× {y =
−1}∪{x = −1}× [−1,−0.6] and we consider homogeneous Neumann condition on the rest
of the boundary ΓN = ∂Ω− ΓD. The Dirichlet condition is given by

g(x, y) =
{

1017 if (x, y) ∈ [0.6, 1]× {y = 1} ∪ {x = 1} × [0.6, 1]
103 if (x, y) ∈ [−1,−0.6]× {y = −1} ∪ {x = −1} × [−1,−0.6].

We point out that the mesh used for this example is not adapted to the solution. We can
see in Figure 5 that no oscillation occurs and that the internal layers are well reproduced,
without appearance of numerical diffusion. We remark also that the undershooting along
the arc r = 1.5 is present in the actual solution and is not due to numerical pollution.

Test 4. Now we explore the case of a rotating flow transporting a boundary sharp
profile. In the domain Ω = (−1, 1)× (0, 1) we consider the equation (1.1) with

β(x, y) =
(
2y(1− x2),−2x(1− y2)

)
, and f = 0.

We also have ΓD = ∂Ω and the Dirichlet condition is

g(x, y) =
{

1 + tanh(10(2x+ 1)) if x ≤ 0 and y = 0
0 elsewhere.

In this case we have to apply scheme (4.27)-(4.28) . For each triangle K in the triangu-
lation we approximate β|K ∼ ∇ψ|K , where

ψ|K = 2yK(1− x2
K)x− 2xK(1− y2

K) y,

where (xK , yK) is the barycenter of K.

Figure 5. Test 3, in semilogarithmic scale.
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Figure 6. Test 4.

Figure 7. Tests described in Remark 5.1.

We display the obtained solution in Figure 6. As in Test 2, crosswind diffusion shows
up in this case. We can then say that this behavior is intrinsic to the exponential fitting
procedure, and not to the piecewise constant approximation of the transport vector (see
also the numerical test presented in [18, 19]).

Remark 5.1. At the end of section 4 we pointed out that with choice of µ as in (4.19) the
projection could be removed. However, in this case, the larger connectivity (the same as for
the standard IP scheme for the symmetric case) has the effect to introduce extra numerical
diffusion. This is apparent comparing Figure 3 with Figure 7 (left), which presents the
solution for Test 1, when the projection is dropped. It is even more evident, comparing
Figure 4 (right) with Figure 7 (right).

6. Error estimates for the symmetric problem

We collect in this section the proofs of Theorems 3.2, 3.4 and 3.5. For shortening the
presentation, we consider the simplest case a = 1, ΓD = ∂Ω, and χ = 0 (corresponding to
Laplace equation with homogeneous Dirichlet boundary conditions). The convexity of the
domain Ω implies the elliptic regularity of the solution ρ.
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The proof of the error estimates for |||ρ − ρh|||h is based on the primal formulation
(3.10) of the discrete problem, and it follows from the standard ingredients of consistency,
stability and boundedness of the discrete bilinear form. For reader’s convenience, we report
here the discrete primal formulation in the simplified setting. Find ρh ∈ Vh such that

Bh(ρh, v) =
∫

Ω
fv dx ∀v ∈ Vh,

where Bh : H2(Th)2 → R is given by

(6.1) Bh(ρh, v) =
∫

Ω
∇hρh · ∇hv dx−

∫
Γ

( [[ ρh ]] · {∇hv}+ {∇hρh} · [[ v ]] ) ds

+
∫

Γ
µ [[ Πhρh ]] · [[ Πhv ]] + Ξ(ρh, v)

where for the IP method we have Ξ = 0, while for LDG we have

Ξ(ρh, v) = −
∫

Γ0

( [[∇hρh ]] θ · [[ v ]] + [[ ρh ]] · θ [[∇hv ]] ) ds

+
∫

Ω
(r( [[ ρh ]] ) + l(θ · [[ ρh ]] )) · (r( [[ v ]] ) + l(θ · [[ v ]] )) dx.

Consistency of the scheme can be easily checked by using integration by parts and the
H2(Ω)-regularity of the exact solution ρ to get

(6.2) Bh(ρ, v) =
∫

Ω
fv dx ∀v ∈ H2(Th).

On the space H2(Th) we consider the norm ||| · |||h defined in section 2.
In order to prove boundedness of the bilinear form Bh(·, ·) the following standard trace

inequality will be useful: for all K ∈ Th and e edge of K it holds

(6.3) ‖q‖20,e ≤ C
(
h−1
e ‖q‖20,K + he|q|21,K

)
∀q ∈ H1(K),

where the constant C depends only on the minimum angle of Th. Also we have the Poincaré
type inequality

(6.4) ‖q −Πe
0q‖0,K ≤ ChK |q|1,K ∀q ∈ H1(K).

From these two inequalities we obtain

(6.5) ‖ [[ q −Πhq ]] ‖20,e ≤ Che
∑

K∈Th:e⊆∂K
|q|21,K .

We also need the following Lemma. Here, the function hT is defined as hT (x) = hK , for
x in the interior of the element K ∈ Th. In what follows, θ is a piecewise constant function
on Γ, as in the definition of the fluxes for the modified LDG scheme.

Lemma 6.1. We have, for all q ∈ Tr(Γ),

‖r( [[ q ]] )‖0,Ω ≤ C|q|∗, ‖l(θ · [[ q ]] )‖0,Ω ≤ C|q|∗∥∥∥∥h 1
2
T r( [[ q ]] )

∥∥∥∥
0,Ω

≤ C|q|?,
∥∥∥∥h 1

2
T l(θ · [[ q ]] )

∥∥∥∥
0,Ω

≤ C|q|?.

where C depends only on the minimum angle of the mesh, on the function η (appearing in
the definition (3.20) of the seminorm | · |?) and on θ.
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Proof. We prove the third inequality, the others follow analogously. Fix the element K.
We have

‖r( [[φ ]] )‖20,K =
∫
K
r( [[φ ]] ) · r( [[φ ]] ) dx =

∫
Ω
r( [[φ ]] ) · τ dx

where τ is the function verifying τ(x) = r( [[φ ]] ) if x ∈ K and vanishing outside K. Notice
that τ ∈ Σh = P0(Th)2. Then, from the definition (3.9) of the lifting r, it follows

‖r( [[φ ]] )‖20,K = −
∫

Γ
[[φ ]] · {τ} ds = −

∫
Γ

[[ Πhφ ]] · {τ} ds

≤
∑

e∈E:e⊆∂K
h
− 1

2
e ‖ [[ Πhφ ]] ‖0,e‖r( [[φ ]] )‖0,K

≤ Ch
− 1

2
K ‖r( [[φ ]] )‖0,K

∑
e∈E:e⊆∂K

‖ [[ Πhφ ]] ‖0,e.

So, h
1
2
K‖r( [[φ ]] )‖0,K ≤ C

∑
e∈E:e⊆∂K ‖ [[ Πhφ‖0,e. Therefore,∥∥∥∥h 1

2
T r( [[φ ]] )

∥∥∥∥2

0,Ω

=
∑
K∈Th

hK‖r( [[φ ]] )‖20,K

≤ C
∑
K∈Th

 ∑
e∈E:e⊆∂K

‖ [[ Πhφ ]] ‖0,e

2

≤ C|φ|2?,

as we wanted. �

Proposition 6.2. Let Bh(., .) be the bilinear form introduced in (6.1) either for the IP or
LDG schemes, with the penalization parameter µ given by (3.7). Then, we have

(6.6) |Bh(w, v)| ≤ Cb|||w|||h |||v|||h ∀w, v ∈ H2(Th)2.

with Cb a constant depending only on the regularity of the mesh, on the function η and,
for the LDG scheme, on the parameter θ .

Proof. For w, v ∈ H2(Th) we have

Bh(w, v) =
∫

Ω
∇hw · ∇hv dx−

∫
Γ
( [[w ]] · {∇hv}+ [[ v ]] · {∇hw}) ds+A1 +A2,

where, for the IP method,

A1 = 0, A2 =
∫

Γ
µ [[ Πhw ]] · [[ Πhv ]] ds,

and for LDG we have

A1 = −
∫

Γ0

( [[∇hw ]] θ · [[ v ]] + [[∇hv ]] θ · [[w ]] ) ds

A2 =
∫

Γ
µ [[ Πhw ]] · [[ Πhv ]] ds+

∫
Ω

(r( [[w ]] ) + l(θ · [[w ]] )) · (r( [[ v ]] ) + l(θ · [[ v ]] )) dx.

Clearly, using Lemma 6.1, we have easily

|A2| ≤ C|w|∗|v|∗.
Then, it is enough to estimate terms of the form∫

Γ
[[ v ]] · {∇hw} ds
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and of the form ∫
Γ0

[[∇hv ]] θ · [[w ]] ds.

We shall estimate only the first one. The second term can be analyzed analogously.
Let e be an internal edge, with e = K ∩K ′, and let v ∈ H2(Th). Then we have∫

e

∂wK
∂n

(vK − vK′) ds =
∫
e

∂wK
∂n

Πe
0 (vK − vK′) ds

+
∫
e

∂wK
∂n

((vK − vK′)−Πe
0 (vK − vK′)) ds.

Since Πe
0(vK − vK′) = [[ Πhv ]] · n+ and vK − vK′ = [[ v ]] · n+ it follows that∣∣∣∣∫

e

∂wK
∂n

(vK − vK′) ds
∣∣∣∣ ≤ h 1

2
e

∥∥∥∥∂wK∂n
∥∥∥∥

0,e

(
h
− 1

2
e ‖ [[ Πhv ]] ‖0,e + h

− 1
2

e ‖ [[ v −Πhv ]] ‖0,e
)
.

From (6.5) we have
h−1
e ‖ [[ v −Πhv ]] ‖20,e ≤ C(|v|21,K + |v|21,K′)

and, using the trace inequality (6.3), we have∣∣∣∣∫
e

∂wK
∂n

(vK − vK′) ds
∣∣∣∣ ≤
C
(
|w|21,K + h2

K |w|22,K
) 1

2
(
h−1
e ‖ [[ Πhv ]] ‖20,e + |v|21,K + |v|21,K′

) 1
2 .

Similar estimates hold for the boundary edges, so that summation over all e ∈ E gives∣∣∣∣∫
Γ
{∇hw} · [[ v ]] ds

∣∣∣∣ ≤ C

|w|21,h +
∑
K∈Th

h2
T |w|22,K

 1
2 (
|v|21,h +

∑
e∈E

h−1
e ‖ [[ Πhv ]] ‖20,e

) 1
2

≤ C |||w|||h |||v|||h.
Now (6.6) follows collecting the previous estimates. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We proceed in the standard way [3]. Indeed, let ρI ∈ Vh be the
usual continuous interpolant of ρ which satisfies

|||ρ− ρI |||2h = |ρ− ρI |21,h +
∑
K∈Th

h2
K |ρ− ρI |22,K ≤ Cah2|ρ|22,Ω.

Then, using the stability (3.15), consistency (6.2), boundedness (6.6) and the above ap-
proximation property, we have

|||ρI − ρh|||h ≤
CbCa
Cs

h|ρ|2,Ω.

Thus, the first estimate of the statement is a consequence of the triangle inequality.
It remains to estimate the error for σ. Since σ = ∇ρ we have, using expression (3.8),

σ − σh = ∇(ρ− ρh) + r( [[ ρ̂(ρh)− ρh ]] ) + l({ρ̂(ρh)− ρh}).
Then, for IP it follows

σ − σh = ∇(ρ− ρh)− r( [[ ρh ]] )
while, for LDG we have

σ − σh = ∇(ρ− ρh)− r( [[ ρh ]] )− l(θ · [[ ρh ]] ).
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Now, from Lemma 6.1 we have

‖r( [[ ρh ]] )‖0,Ω ≤ C|ρh|∗
‖l(θ · [[ ρh ]] )‖0,Ω ≤ C|ρh|∗.

The proof ends by noting that |ρh|∗ = |ρ−ρh|∗, and by using the estimate for |||ρ−ρh|||h. �

In order to prove Theorem 3.4 we shall use the mixed formulation (3.17)-(3.19) intro-
duced in section 3.

It is useful to rewrite the scheme (3.17)-(3.19) in a compact form as follows

A(σh, ρh; τ, v) =
∫

Ω
fv dx, ∀(v, τ) ∈ Vh × Σh

with

A(σh, ρh; τ, v) =
∫

Ω
σh · τ dx+ b(ρh, τ)− b(v, σh) +

∫
Γ
µ [[ Πhρh ]] · [[ Πhv ]] ds.

From the consistency of the scheme, which can be easily checked, we have

A(σ − σh, ρ− ρh; τ, v) = 0 ∀(τ, v) ∈ Σh × Vh.

Proof of Theorem 3.4. Let σI be the L2-projection of σ on Σh, and let ρI be the continuous
piecewise linear interpolant of ρ. Then, we need to estimate ‖σh − σI‖0 + |ρh − ρI |?.

By the definition of A and the consistency of the scheme we have

(6.7) ‖σh − σI‖20,Ω + |ρh − ρI |2? = A(σ − σI , ρ− ρI ;σh − σI , ρh − ρI).

To estimate the right hand side of this equality, we need to consider the following eight
terms (which contribute to (6.7) after using the usual integration by parts in the div -term)

I1 =
∫

Ω
(σ − σI) · (σh − σI) dx, I2 =

∫
Ω
∇(ρ− ρI) · (σh − σI) dx,

I3 =
∫

Γ
[[ ρ− ρI ]] · {σh − σI} ds, I4 =

∫
Γ0

θ · [[ ρ− ρI ]] [[σh − σI ]] ds,

I5 =
∫

Ω
∇h(ρh − ρI) · (σ − σI) dx, I6 =

∫
Γ

[[ ρh − ρI ]] · {σ − σI} ds,

I7 =
∫

Γ0

θ · [[ ρh − ρI ]] [[σ − σI ]] ds, I8 =
∫

Γ
µ [[ Πh(ρ− ρI) ]] · [[ ρh − ρI ]] ds.

Clearly we have

I1 ≤ Ch|σ|1,Ω‖σh − σI‖0,Ω, I2 ≤ Ch|ρ|2,Ω‖σh − σI‖0,Ω.

Also, since ρ and ρI are continuous functions in Ω vanishing on ∂Ω we have I3 = I4 = I8 =
0, and since ∇h(ρh − ρI) ∈ P0(Th), it results I5 = 0.

Moreover, we can write I6 as

I6 =
∫

Γ
[[ ρh −Πhρh ]] · {σ − σI} ds+

∫
Γ

[[ Πhρh ]] · {σ − σI} ds =: A+B.

Applying the trace inequality (6.3), we find for B

B ≤ C
∑
e∈E

‖ [[ Πhρh ]] ‖0,e
∑

K∈Th:e⊆K

(
h
− 1

2
e ‖σ − σI‖0,K + h

1
2
e |σ|1,K

)
≤ Ch

1
2 |σ|1,Ω|ρh − ρI |?.
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Using the inequalities (6.4) (with q = ρh − ρ) and (6.3), and taking into account again
that [[ ρ−Πhρ ]] = 0 on Γ (and the regularity of the mesh Th), we have

A ≤
∑
e∈E
‖ [[ ρh −Πhρh ]] ‖0,e‖{σ − σI}‖0,e

≤ C
∑
e∈E

h1/2
K

∑
K∈Th:e⊆K

h
1
2
K |ρh − ρ|1,K

 ∑
K∈Th:e⊆K

h
1
2
K |σ|1,K


≤ Ch

∣∣∣∣h 1
2
T (ρ− ρh)

∣∣∣∣
1,h

|σ|1,Ω.

Then, we need to estimate |h
1
2
T (ρ − ρh)|1,h. Since σ = ∇ρ, and since σh is given by (3.8),

we have

(6.8) ∇h(ρh − ρ) = (σh − σ)− r( [[ ρh ]] ) + l(θ · [[ ρh ]] ).

From (6.8) and Lemma 6.1, we obtain∣∣∣∣h 1
2
T (ρ− ρh)

∣∣∣∣
1,h

≤ h
1
2 ‖σ − σh‖0,Ω + C|ρh|?

≤ h
1
2 ‖σ − σI‖0,Ω + h

1
2 ‖σI − σh‖0,Ω + C|ρh|?

≤ Ch
3
2 |σ|1,Ω + h

1
2 ‖σI − σh‖0,Ω + C|ρI − ρh|?

Hence
A ≤ C(h

5
2 |σ|21,Ω + h

3
2 ‖σh − σI‖0,Ω|σ|1,Ω + h|ρI − ρh|?|σ|1,Ω).

Collecting the estimates for A and B, we get

I6 ≤ C(h
5
2 |σ|21,Ω + h

3
2 ‖σh − σI‖0,Ω|σ|1,Ω + h

1
2 |ρI − ρh|?|σ|1,Ω).

Clearly, it also holds

I7 ≤ C(h
5
2 |σ|21,Ω + h

3
2 ‖σh − σI‖0,Ω|σ|1,Ω + h

1
2 |ρI − ρh|?|σ|1,Ω).

Now we can go back to equation (6.7), obtaining, after applying the arithmetic-geometric
inequality to the terms bounding the Ii’s, i = 1, . . . , 8, that

‖σh − σI‖20,Ω + |ρh − ρI |2? ≤
1
2
‖σh − σI‖20,Ω +

1
2
|ρh − ρI |2? + Ch|ρ|22,Ω,

from which it follows
‖σh − σI‖20,Ω + |ρh − ρI |2? ≤ Ch|ρ|22,Ω.

Now, the triangle inequality and standard interpolation estimates give us the assertion of
the Theorem. �

Notice that Theorem 3.4 together with (6.8) and Lemma 6.1 give us

(6.9)
∣∣∣∣h 1

2
T (ρ− ρh)

∣∣∣∣
1,h

≤ Ch
1
2 |ρ|2,Ω.

Proof of Theorem 3.5. The proof of (3.21) follows by standard arguments [3] using Propo-
sition 6.2 and taking into account that the numerical fluxes ρ̂ and σ̂ are conservative (that
is, [[ ρ̂ ]] = 0 on Γ and [[ σ̂ ]] = 0 on Γ0) and then the modified IP and LDG become adjoint
consistent. We refer to [3] for details.
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Now we prove (3.22) for the modified LDG method with µ given by (3.16). The proof
follows from duality arguments similar to those used in [14]. Let w be the solution of

−∆w = ρ− ρh in Ω
w = 0 on ∂Ω,

and let w̃h be the finite element approximation of w in the conforming piecewise linear
space Ṽh = P1(Th) ∩H1

0 (Ω). We have w ∈ H2(Ω),

(6.10) ‖w‖2,Ω ≤ C‖ρ− ρh‖0,Ω,
and the error estimate

(6.11) ‖w − w̃h‖1,Ω ≤ Ch|w|2,Ω.
Using that −∆ρ = f and that ρh verifies Bh(ρh, w̃h) =

∫
Ω fw̃h dx it is easy to check that∫

Ω
∇h(ρ− ρh) · ∇w̃h dx = −

∫
Γ

[[ ρh ]] · {∇w̃h} ds−
∫

Γ0

[[ ρh ]] θ · [[∇w̃h ]] ds.

Then

‖ρ− ρh‖20,Ω =
∑
K∈Th

−
∫
K

∆w(ρ− ρh) dx

=
∑
K∈Th

(∫
K
∇(w − w̃h) · ∇h(ρ− ρh) dx

+
∫
K
∇w̃h · ∇h(ρ− ρh) dx+

∫
∂K

∂w

∂n
ρh ds

)
=
∫

Ω
∇(w − w̃h) · ∇h(ρ− ρh) dx+

∫
Γ

[[ ρh ]] · {∇h(w − w̃h)} ds

+
∫

Γ0

[[ ρh ]] θ · [[∇h(w − w̃h) ]] ds,

where we used the regularity of w.
Assuming that µ is given by (3.16) and that the mesh Th is quasiuniform, we have∣∣∣∣∫

Γ
[[ ρh ]] · {∇h(w − w̃h)} ds+

∫
Γ0

[[ ρh ]] θ · [[∇h(w − w̃h) ]] ds
∣∣∣∣ ≤

C(θ)|ρ− ρh|?(h−
1
2 |w − w̃h|1,Ω + h

1
2 |w|2,Ω),

and from (6.9) we have |(ρ− ρh)|1,h ≤ C|ρ|2,Ω. Then, using Theorem 3.4 and (6.10)–(6.11),
we get

‖ρ− ρh‖20,Ω ≤ Ch|ρ|2,Ω|w|2,Ω ≤ Ch|ρ|2,Ω‖ρ− ρh‖0,Ω,
obtaining (3.22). �

7. Conclusion

We introduced new Discontinuous Galerkin schemes in mixed form for symmetric elliptic
problems of second order with reduced connectivity with respect to the standard ones. We
proved that the modifications in the choice of the approximation spaces (Σh is made of
piecewise constant functions, while Vh is the usual P1(Th)) and in the penalization term
(an L2-projection on P0(e) is introduced) do not spoil the error estimates. The modified IP
scheme and the modified LDG scheme are discussed in details. Some other schemes in the
family of DG methods reduce, in the present case, either to modifid IP or to modified LDG.
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These methods are then used for designing new exponentially fitted schemes for advection
dominated equations. When the transport term is irrotational and the diffusion coefficient
is constant, it turns out that simple manipulations at the algebraic level are possible for
passing from the symmetric to the non symmetric case (see Remark 4.2). The presented
numerical tests show the good performances of the proposed schemes. The boundary layers
are very well treated: the width of the numerical layers is the best that can be obtained
with a numerical scheme on a quasi-uniform mesh (not adapted to the layers), and the
outflow boundary conditions are correctly imposed. Also internal layers created by sharp
behaviors of the flow and of the right hand side are well captured (see Test 3 in section
5). Instead, the method suffers of crosswind diffusion in the case when a discontinuity is
transported from the boundary, unless the mesh is aligned to the flow.

We conclude pointing out that the general scheme (4.27) can be extended to the case
of unstructured meshes with hanging nodes, as explored by the authors in a work in
preparation.
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h ‖u− uh‖L2(Ω) ‖σ − σh‖L2(Ω)2

0.18898 0.94460 0.91423
0.16667 0.85298 0.83733
0.094491 0.67420 0.65928
0.083333 0.60813 0.59991
0.047246 0.47797 0.47171
0.041667 0.43096 0.42756
0.023623 0.33820 0.33578
0.020833 0.30489 0.30359

Table 1. Errors for Test 1.
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