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Abstract. We consider the numerical approximation of a model convection-diffusion equation by

standard bilinear finite elements.

Using appropriately graded meshes we prove optimal order error estimates in the ε-weighted

H
1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter.

Finally, we present some numerical examples showing the good behavior of our method.

1. Introduction

As is well known, the numerical approximation of convection-diffusion equations requires some
special treatment in order to obtain good results when the problem is convection dominated due to
the presence of boundary or interior layers. A lot of work has been done in this direction (see for
example the books [4, 5] and their references). There are in principle two ways to proceed: to use
some kind of upwind or to use adapted meshes appropriately refined. This last possibility seems very
reasonable when the layers are due to the boundary conditions and so, their location is known a priori.

In this paper we analyze the approximation of the solution of a model convection-diffusion equation.
We prove that, using appropriate graded meshes, the solution is well approximated by the standard
piecewise bilinear finite element method in the ε-weighted H1-norm ‖ . ‖ε defined as

‖v‖2
ε = ‖v‖2

L2(Ω) + ε‖∇v‖2
L2(Ω).

Precisely, we consider the problem

(1.1)
−ε∆u + b · ∇u + cu = f in Ω

u = 0 on ∂Ω

where Ω = (0, 1)2 and ε > 0 is a small parameter. We prove that, on appropriate graded meshes,

‖u − uh‖ε ≤ C
(log(1/ε)2√

N
,

where uh is the standard piecewise bilinear approximation of u on a graded mesh Th (where h > 0 is a
parameter arising in the definition of the mesh), N denotes the number of nodes, and C is a constant
independent of ε and N .

Observe that this error estimate is almost optimal, i. e., the order with respect to the number of
nodes is the same as that obtained for a smooth function on uniform meshes and, up to a logarithmic
factor, the estimate is valid uniformly in the perturbation parameter.

Consequently, the graded meshes seems an interesting alternative to the well known Shishkin meshes
which provide also optimal order [6]. Indeed, from some numerical experiments the graded meshes
procedure seems to be more robust in the sense that the numerical results are not strongly affected
by variations of parameters defining the meshes.

The rest of the paper is organized as follows. In Section 2 we introduce the graded meshes and
prove the error estimates and in Section 3 we present some numerical results. We end the paper with
some conclusions.
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2. Error estimates

In this section we consider the numerical approximation of problem (1.1). We assume that the
functions b = (b1, b2), c and f are smooth on Ω, and that

(2.1) bi < −γ with γ > 0 for i = 1, 2.

Then, the solution will have a boundary layer of width O(ε log 1
ε
) at the outflow boundary {(x1, x2) ∈

∂Ω : x1 = 0 or x2 = 0} [5]. We also assume the following compatibility conditions

f(0, 0) = f(1, 0) = f(1, 1) = f(0, 1) = 0

∂i+jf

∂xi
1
∂x

j

2

(1, 1) = 0 for 0 ≤ i + j ≤ 2.

Under these conditions it can be proved that u ∈ C4(Ω)∩C2(Ω) and precise estimates of the derivatives
that will be useful for our purposes are known.

Using the graded meshes defined below we will obtain an almost optimal estimate in the ε-weighted
H1-norm for the error between the solution of Problem (1.1) and its standard piecewise bilinear finite
element approximation.

Given a parameter h > 0 and a constant σ > 0, we introduce the partition {ξi}M
i=0 of the interval

[0, 1] given by

(2.2)



















ξ0 = 0

ξ1 = σhε

ξi+1 = ξi + σhξi for 1 ≤ i ≤ M − 2

ξM = 1

where M is such that ξM−1 < 1 and ξM−1 + σhξM−1 ≥ 1. We assume that the last interval (ξM−1, 1)
is not too small in comparison with the previous one (ξM−2, ξM−1) (if this is not the case we just
eliminate the node ξM−1).

In practice it is natural to take hi := ξi − ξi−1 to be monotonically increasing. Therefore, it is
convenient to modify the partition by taking hi = h1 for i such that ξi−1 < ε and starting with the
graded mesh after that. In this way we obtain the following alternative partition,

(2.3)



















ξ0 = 0

ξi = iσhε for 1 ≤ i < 1
σh

+ 1

ξi+1 = ξi + σhξi for 1
σh

+ 1 ≤ i ≤ M − 2

ξM = 1

with M as in the other case.
For any of these choices of ξi we introduce the partitions Th of Ω defined as

Th = {Rij}M
i,j=1,

where Rij = (ξi−1, ξi) × (ξj−1, ξj).
Associated with Th we introduce the standard piecewise bilinear finite element space Vh and its

corresponding Lagrange interpolation operator Π.
First, we have to prove some weighted a priori estimates for the solution u. The following pointwise

estimates are immediate consequences of Theorem 2.1 of [6]:
∣

∣

∣

∣

∂ku

∂xk
1

(x1, x2)

∣

∣

∣

∣

≤ C

(

1 +
1

εk
e−

γx1
ε

)

0 ≤ k ≤ 2,(2.4)

∣

∣

∣

∣

∂ku

∂xk
2

(x1, x2)

∣

∣

∣

∣

≤ C

(

1 +
1

εk
e−

γx2
ε

)

0 ≤ k ≤ 2,(2.5)

∣

∣

∣

∣

∂2u

∂x1∂x2
(x1, x2)

∣

∣

∣

∣

≤ C

(

1 +
1

ε
e−

γx1
ε +

1

ε
e−

γx2
ε +

1

ε2
e−

γx1
ε e−

γx2
ε

)

.(2.6)

for all (x1, x2) ∈ Ω and 0 ≤ k ≤ 2.
For the proof of our error estimates we will need to decompose Ω as Ω = Ω1 ∪ Ω2 ∪ Ω3, where



3

Ω1 =
⋃

{

Rij : ξi−1 < c1ε log
1

ε

}

,

Ω2 =
⋃

{

Rij : ξi−1 ≥ c1ε log
1

ε
, ξj−1 < c1ε log

1

ε

}

,(2.7)

Ω3 =
⋃

{

Rij : ξi−1 ≥ c1ε log
1

ε
, ξj−1 ≥ c1ε log

1

ε

}

,

with a constant c1 > 1/2γ.
As a consequence of the estimates (2.4), (2.5), and (2.6) we obtain the following lemma.

Lemma 2.1. There exists a constant C such that we have the following a priori estimates

(2.8) ε
3
2

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

L2(Ω)

≤ C and ε
3
2

∥

∥

∥

∥

∂2u

∂x2
2

∥

∥

∥

∥

L2(Ω)

≤ C,

(2.9) ε
1
2

∥

∥

∥

∥

x1
∂2u

∂x2
1

∥

∥

∥

∥

L2(Ω)

≤ C and ε
1
2

∥

∥

∥

∥

x2
∂2u

∂x2
2

∥

∥

∥

∥

L2(Ω)

≤ C,

(2.10)

∥

∥

∥

∥

x
3
2

1

∂2u

∂x2
1

∥

∥

∥

∥

L2(Ω)

≤ C and

∥

∥

∥

∥

x
3
2

2

∂2u

∂x2
2

∥

∥

∥

∥

L2(Ω)

≤ C,

(2.11) ε
1
2

∥

∥

∥

∥

x
1
2

1

∂2u

∂x1∂x2

∥

∥

∥

∥

L2(Ω)

≤ C and ε
1
2

∥

∥

∥

∥

x
1
2

2

∂2u

∂x1∂x2

∥

∥

∥

∥

L2(Ω)

≤ C,

(2.12) ε

∥

∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

∥

L2(Ω)

≤ C,

(2.13)

∥

∥

∥

∥

xi

∂2u

∂xi∂xj

∥

∥

∥

∥

L2(Ω3)

≤ C if c1 > 1/2γ , i, j = 1, 2.

Proof. Let us prove for example the first inequality in (2.11). From (2.6) we have,
∫

Ω

x1

∣

∣

∣

∣

∂2u

∂x1∂x2

∣

∣

∣

∣

2

dx1 dx2 ≤ C

∫ 1

0

∫ 1

0

x1

(

1 +
1

ε2
e−

2γx1
ε +

1

ε2
e−

2γx2
ε +

1

ε4
e−

2γx1
ε e−

2γx2
ε

)

dx1 dx2

≤ C

(

1

2
+

∫

∞

0

se−2γs ds +
1

ε

∫

∞

0

e−2γs ds+

+
1

ε

∫

∞

0

se−2γs ds

∫

∞

0

e−2γs ds

)

≤ C

(

1 +
1

ε

)

,

obtaining the desired inequality.
For inequality (2.13) with i = 1, j = 2 we have also from (2.6)

∫

Ω3

x2
1

∣

∣

∣

∣

∂2u

∂x1∂x2

∣

∣

∣

∣

2

dx1 dx2 ≤
∫ 1

c1ε log 1
ε

∫ 1

c1ε log 1
ε

x2
1

(

1 +
1

ε2
e−

2γx1
ε +

1

ε2
e−

2γx2
ε +

+
1

ε4
e−

2γx1
ε e−

2γx2
ε

)

dx1 dx2

≤ C





1

3
+

2

ε

∫

∞

c1 log 1
ε

e−2γs ds +

(

1

ε

∫

∞

c1 log 1
ε

e−2γs ds

)2




≤ C,

if c1 ≥ 1/2γ.
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For inequality (2.13) with i = j = 1 we have from the estimate (2.4) that

∫

Ω3

x2
1

∣

∣

∣

∣

∂2u

∂x2
1

∣

∣

∣

∣

2

dx1 dx2 ≤ C

∫ 1

c1ε log 1
ε

x2
1

(

1 +
1

ε4
e−

2γx1
ε

)

dx1

≤ C

(

1

3
+

1

ε

∫

∞

c1 log 1
ε

s2e−2γs ds

)

= C

[

1

3
+

1

8γ3

(

4γ2c2
1 log2 ε + 4γ log

1

ε
+ 2

)

ε2γc1−1

]

≤ C

whenever c1 > 1/2γ.
The other inequalities follow by similar arguments and so we omit the details. �

We can now prove the error estimates for the Lagrange interpolation on our graded meshes.

Theorem 2.1. Let u be the solution of Problem (1.1). If Th are the meshes given by the partitions
(2.2) or (2.3) then,

‖u − Πu‖L2(Ω) ≤ Ch2 and, ε
1
2 ‖∇(u − Πu)‖L2(Ω) ≤ Ch

with a constant C independent of h and ε. In particular,

(2.14) ‖u − Πu‖ε ≤ Ch.

Proof. For simplicity we give the proof for the case of the partitions given in (2.2). However, it is not
difficult to see that the same arguments apply in the other case.

Recalling that Rij = (ξi−1, ξi) × (ξj−1, ξj) for 1 ≤ i, j ≤ N and hi = ξi − ξi−1 we have, from
standard error estimates (see for example [2]),

(2.15) ‖u − Πu‖L2(Rij) ≤ C

{

h2
i

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

L2(Rij)

+ h2
j

∥

∥

∥

∥

∂2u

∂x2
2

∥

∥

∥

∥

L2(Rij)

}

.

Now, we decompose the error as

‖u − Πu‖2
L2(Ω) =

N
∑

j=1

‖u − Πu‖2
L2(R1j)

+

N
∑

i=2

‖u − Πu‖2
L2(Ri1)

+

N
∑

i,j=2

‖u − Πu‖2
L2(Rij)

.

Then, using (2.15) and the definition of the mesh we have

‖u − Πu‖2
L2(R11)

≤ Ch4

{

ε4

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

2

L2(R11)

+ ε4

∥

∥

∥

∥

∂2u

∂x2
2

∥

∥

∥

∥

2

L2(R11)

}

,

‖u − Πu‖2
L2(R1j)

≤ Ch4

{

ε4

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

2

L2(R1j)

+

∥

∥

∥

∥

x2
2

∂2u

∂x2
2

∥

∥

∥

∥

2

L2(R1j)

}

for j ≥ 2,

‖u − Πu‖2
L2(Rij)

≤ Ch4

{

∥

∥

∥

∥

x2
1

∂2u

∂x2
1

∥

∥

∥

∥

2

L2(Rij)

+

∥

∥

∥

∥

x2
2

∂2u

∂x2
2

∥

∥

∥

∥

2

L2(Rij)

}

for i, j ≥ 2,

and

‖u − Πu‖2
L2(Ri1)

≤ Ch4

{

∥

∥

∥

∥

x2
1

∂2u

∂x2
1

∥

∥

∥

∥

2

L2(Ri1)

+ ε4

∥

∥

∥

∥

∂2u

∂x2
2

∥

∥

∥

∥

2

L2(Ri1)

}

for i ≥ 2,

and therefore, putting all together and using the a priori estimates (2.8) and (2.10) we obtain

‖u − Πu‖L2(Ω) ≤ Ch2.

Now, to bound the other part of the norm we use the known estimate (see for example [1]),

(2.16)

∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

L2(Rij)

≤ C

{

hi

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

L2(Rij)

+ hj

∥

∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

∥

L2(Rij)

}

.
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Then, proceeding as in the case of the L2 norm we can easily obtain
∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

2

L2(R11)

≤ Ch2

{

ε2

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

2

L2(R11)

+ ε2

∥

∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

∥

2

L2(R11)

}

,

∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

2

L2(R1j)

≤ Ch2

{

ε2

∥

∥

∥

∥

∂2u

∂x2
1

∥

∥

∥

∥

2

L2(R1j)

+

∥

∥

∥

∥

x2
∂2u

∂x1∂x2

∥

∥

∥

∥

2

L2(R1j)

}

for j ≥ 2,

∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

2

L2(Rij)

≤ Ch2

{

∥

∥

∥

∥

x1
∂2u

∂x2
1

∥

∥

∥

∥

2

L2(Rij)

+

∥

∥

∥

∥

x2
∂2u

∂x1∂x2

∥

∥

∥

∥

2

L2(Rij)

}

for i, j ≥ 2,

and
∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

2

L2(Ri1)

≤ Ch2

{

∥

∥

∥

∥

x1
∂2u

∂x2
1

∥

∥

∥

∥

2

L2(Ri1)

+ ε2

∥

∥

∥

∥

∂2u

∂x1∂x2

∥

∥

∥

∥

2

L2(Ri1)

}

for i ≥ 2, .

Therefore, multiplying by ε, summing up, and using the a priori estimates (2.8), (2.9), (2.11), and
(2.12), we obtain

ε
1
2

∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

L2(Ω)

≤ Ch.

Clearly, a similar estimate holds for ∂(u−Πu)
∂x2

and so, the theorem is proved. �

Now we consider the numerical approximation of problem (1.1). The weak form of this problem
consists in finding u ∈ H1

0 (Ω) such that

a(u, v) =

∫

Ω

fv dx ∀v ∈ H1
0 (Ω),

where

a(v, w) =

∫

Ω

(ε∇v∇w + b · ∇v w + c vw) dx.

Assume that there exists a constant µ independent of ε such that

(2.17) c − div b

2
≥ µ > 0.

Observe that, as pointed out in [5, page 67], this is not an important restriction because, under the
assumption (2.1), a change of variable u → eη·xv, for suitable chosen η, leads to a problem satisfying
(2.17).

It is known that the bilinear form a is coercive in the ε-weighted H1-norm uniformly in ε [5], i. e.,
there exists β > 0, independent of ε, such that

(2.18) β‖v‖ε ≤ a(v, v) ∀v ∈ H1
0 (Ω).

However, the continuity of a is not uniform in ε and this is why the standard theory based on Cea’s
lemma can not be applied to obtain error estimates valid uniformly in ε.

The finite element approximation uh ∈ Vh is given by

a(uh, v) =

∫

Ω

fv dx ∀v ∈ Vh.

In the following theorem we prove an almost optimal error estimate in the ε-weighted H1-norm. The
constants will depend on the coercivity constant β, on the constants in the estimates given in Lemma
2.1, on the L∞- norms of b and c, on the constant σ introduced in the definition of the meshes, and on
the constant γ appearing in the estimates (2.4), (2.5) and (2.6) (also on the c1 used in the partition of
Ω introduced in (2.7), but this constant depends only on γ). We will not state all these dependencies
explicitly.

Theorem 2.2. Let u be the solution of Problem (1.1) and uh ∈ Vh its finite element approximation.
If Th are the meshes given by the partitions (2.2) or (2.3) then,

(2.19) ‖u − uh‖ε ≤ Ch log
1

ε
with a constant C independent of h and ε.
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Proof. Let e = uh − Πu ∈ Vh. In view of Theorem 2.1 it is enough to bound the norm of e. Again,
we consider only the case of Th given by (2.2). In the other case the result can be obtained by simple
modifications.

From (2.18) and using the error equation a(u − uh, e) = 0 we have

β‖e‖2
ε ≤ a(e, e) = a(u − Πu, e) ≤ C

{

‖u − Πu‖ε‖e‖ε +

∫

Ω

b · ∇(u − Πu)e

}

≤ C‖u − Πu‖2
ε +

β

2
‖e‖2

ε + C

∫

Ω

b · ∇(u − Πu)e,

where we have used the generalized arithmetic-geometric mean inequality. Then, it is enough to prove
that

(2.20)

∣

∣

∣

∣

∫

Ω

b · ∇(u − Πu)e

∣

∣

∣

∣

≤ Ch2 log2 1

ε
+ δ‖e‖2

ε

for a small δ to be chosen.
To prove this estimate we use the decomposition of Ω introduced in (2.7). Since e vanishes at the

boundary, we know from the Poincaré inequality that

‖e‖L2(Ω1) ≤ Cε log
1

ε

∥

∥

∥

∥

∂e

∂x1

∥

∥

∥

∥

L2(Ω1)

.

Therefore, since b is bounded, we have
∫

Ω1

|b · ∇(u − Πu)e| ≤ C‖∇(u − Πu)‖L2(Ω1)ε log
1

ε
‖∇e‖L2(Ω1)

≤ Cε log2 1

ε
‖∇(u − Πu)‖2

L2(Ω1)
+ δε‖∇e‖2

L2(Ω1)

and so, using Theorem 2.1, we obtain

(2.21)

∫

Ω1

|b · ∇(u − Πu)e| ≤ Ch2 log2 1

ε
+ δε‖∇e‖2

L2(Ω1)
.

Clearly, the same argument can be applied to obtain an analogous estimate in Ω2.
Finally, for Rij ⊂ Ω3, we have shown in the proof of Theorem 2.1 that

∥

∥

∥

∥

∂(u − Πu)

∂x1

∥

∥

∥

∥

2

L2(Rij)

≤ Ch2

{

∥

∥

∥

∥

x1
∂2u

∂x2
1

∥

∥

∥

∥

2

L2(Rij)

+

∥

∥

∥

∥

x2
∂2u

∂x1∂x2

∥

∥

∥

∥

2

L2(Rij)

}

,

and
∥

∥

∥

∥

∂(u − Πu)

∂x2

∥

∥

∥

∥

2

L2(Rij)

≤ Ch2

{

∥

∥

∥

∥

x1
∂2u

∂x1∂x2

∥

∥

∥

∥

2

L2(Rij)

+

∥

∥

∥

∥

x2
∂2u

∂x2
2

∥

∥

∥

∥

2

L2(Rij)

}

,

and so, using (2.13), we obtain
∫

Ω3

|b · ∇(u − Πu)e| ≤ Ch2 + δ‖e‖2
L2(Ω3)

.

Therefore, putting together the estimates in Ω1, Ω2, and Ω3 we obtain (2.20), and the proof concludes
by choosing δ small enough depending on the coercivity constant β. �

To show that the error estimate is almost optimal we have to restate the inequality (2.19) in terms
of the number of nodes in the mesh. This is the objective of the following corollary. As we mentioned
before, the use of the partition given in (2.2) may produce too small intervals in the boundary layer
region increasing the number of nodes in an unnecessary way. Therefore, in practice it is more natural
to use the meshes based on the partitions given in (2.3) and so, we will consider only this case.

Corollary 2.3. Let u be the solution of Problem (1.1) and uh ∈ Vh its finite element approximation.
If Th are the meshes given by the partitions (2.3) and N is the number of nodes in Th then,

‖u − uh‖ε ≤ C
log2(1/ε)√

N

with a constant C independent of h and ε.
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Proof. We have to show that

h ≤ C
log(1/ε)√

N
.

Let M1 be the number of points ξi in the partition given in (2.3) such that ξi ≤ ε and M2 be the
number of points such that ξi > ε.

Clearly M1 is bounded by C/h. To bound M2, let us call ξk the smallest of the points such that
ξi > ε. Assuming σh ≤ 1 we have

M2 − 2 =

M−2
∑

i=k

(ξi+1 − ξi)
−1

∫ ξi+1

ξi

dξ =

M−2
∑

i=k

(σhξi)
−1

∫ ξi+1

ξi

dξ ≤
M−2
∑

i=k

2(σhξi+1)
−1

∫ ξi+1

ξi

dξ

=
2

σh

M−2
∑

i=k

∫ ξi+1

ξi

ξ−1dξ ≤ 2

σh

∫ 1

ε

ξ−1dξ =
2

σh
log

1

ε
.

Therefore, the proof concludes by recalling that M = M1 + M2 and N = M2. �

Observe that the estimate given in the corollary is almost optimal. Indeed, the order is the same as
that obtained in the approximation of a smooth function by piecewise bilinear elements on a uniform
mesh and the factor log(1/ε)2 is not significant in practice.

Remark 2.4. Some slight variations of the meshes Th could be more convenient. For example, the
following grading giving a lower number of nodes can be used,

ξi+1 = ξi + σhξα
i with α = 1 − 1

log 1
ε

.

Of course, also in this case we can take a uniform partition at the beginning and start with the grading
after ε.

With this choice of α the same error estimates can be proved by a simple modification of our
arguments assuming that α > 1/2 (which is valid for small ε), using now the estimates

ε
1
2

∥

∥

∥

∥

xα
1

∂2u

∂x2
1

∥

∥

∥

∥

L2(Ω)

≤ Cεα−1 , ε
1
2

∥

∥

∥

∥

xα
2

∂2u

∂x2
2

∥

∥

∥

∥

L2(Ω)

≤ Cεα−1,

and
∥

∥

∥

∥

xi

∂2u

∂xi∂xj

∥

∥

∥

∥

L2(Ω3)

≤ C if c1 > 3/2γ.

which can be proved using the same arguments of Lemma 2.1, and observing that εα−1 = e−1.

3. Numerical experiments

In this section we present some numerical examples which show the good behavior of the stan-
dard piecewise bilinear finite element method on graded meshes for convection-diffusion equations.
Although, for simplicity, we have restricted the analysis in the previous section to Dirichlet boundary
conditions, in our examples we have considered more general boundary conditions. Also, we have in-
cluded two examples which do not satisfy condition (2.17) (Examples (1) and (2)) to test the method
in cases not covered by the theory.

We have solved the problem

−ε∆u + b · ∇u + cu = f in Ω

u = uD in ΓD

∂u

∂n
= g in ΓN ,

with different choices of coefficients b and c, and data uD and g, namely,

(1) b = (0,−1), c = 0, ΓD = [0, 1] × {0, 1}, ΓN = {0, 1} × [0, 1], uD = 0, g = 0 and f = 1,

(2) b = (0,−1), c = 0, ΓD = [0, 1]×{0, 1}, ΓN = {0, 1}× [0, 1], uD = 0 on {0}× [0, 1] and uD = 1
on {1} × [0, 1], g = 0 and f = 0,

(3) b = (− 1
2 ,−1), c = 2, ΓD = ∂Ω, uD = 0, and f = 1,
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(4) b = (1 − 2ε)(−1,−1), c = 2(1 − ε), ΓD = ∂Ω, uD = 0 and

f(x, y) = −
[

x −
(

1 − e−
x
ε

1 − e−
1
ε

)

+ y −
(

1 − e−
y

ε

1 − e−
1
ε

)]

ex+y.

For the examples (1) and (2), which present a boundary layer only on 0 × [0, 1] we have used meshes
graded only along the x1 axis.

We have made several experiments using the gradings giving in (2.2) and (2.3) and the variant
explained in Remark 2.4. Also, we have considered different values of the constant σ appearing in the
definition of the meshes and we have observed that the results do not change significantly for values
of σ of the order of 1, therefore we have taken σ = 1 for our examples.

No significant differences were observed with the different choices of meshes and, in all cases,
no oscillations in the approximate solutions have been observed (see Figure 1 where the numerical
solutions obtained in the four cases for ε = 10−6 are shown). Therefore, we will show only results
obtained with the meshes graded with α = 1 − 1

log 1
ε

defined in Remark 2.4 and starting the grading

after ε.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
 x

0 0.2 0.4 0.6 0.8 1
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1
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0.4

0.6

0.8

1

1.2

1.4

 x
 y
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1

0

0.2

0.4

0.6

0.8

1

 y

 x

(3) (4)

Figure 1

For the example (4) we know the exact solution which is given by

u(x, y) =

[(

x − 1 − e−
x
ε

1 − e−
1
ε

)(

y − 1 − e−
y

ε

1 − e−
1
ε

)]

ex+y,

therefore, we know the exact error and so the order of convergence in terms of the number of nodes
can be computed.
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In Table 1 we show the ε-weighted H1-norm of the error for different values of N for Problem (4)
with ε = 10−4 and ε = 10−6. The orders computed from this tables is 0.513738 for the first case and
0.507040 for the second one as predicted by the theoretical results.

N Error
324 0.16855
961 0.097606
3249 0.052696
12100 0.025912
45796 0.013419

N Error
676 0.16494
2025 0.094645
6889 0.050256
25281 0.026023
96100 0.013427

ε = 10−4 ε = 10−6

Table 1

With the following results we want to point out an advantage of the graded meshes over the Shishkin
meshes: the graded meshes designed for a given ε work well also for larger values of ε. Indeed, this
follows from the error analysis. This is not the case for the Shishkin meshes as shown by the following
example. This might be of interest if one want to solve a problem with a variable ε.

Table 2 shows the values of the ε-weighted H1-norm of the error for different values of ε solving
the problem with the mesh corresponding to ε = 10−6, using graded meshes and Shishkin meshes.

ε Error
10−6 0.040687
10−5 0.033103
10−4 0.028635
10−3 0.024859
10−2 0.02247
10−1 0.027278

ε Error
10−6 0.0404236
10−5 0.249139
10−4 0.623650
10−3 0.718135
10−2 0.384051
10−1 0.0331733

Graded meshes, N = 10404 Shishkin meshes, N = 10609

Table 2

We consider one more example, similar to tests (1) and (2). Precisely, we take ε = 10−6, b = (−1, 0),
c = 1, and f(x, y) = w(x) + v(y), where

w(t) = 1 − t − e−
1
ε − e

−t
ε

e−
1
ε − 1

;

v(t) = e
2

√

ε

(

e
−

1−t
√

ε − e
−

2−t
√

ε + e
−

1+t
√

ε − e
−

t
√

t

)

+ 1.

The solution of this problem is u(x, y) = w(x)v(y) and it presents exponential boundary layers along
x = 0 of width O(ε log 1

ε
) and along y = 0, 1 of width O(

√
ε log 1

ε
). Although the boundary layers

presented near y = 0, 1 are weaker than the one near x = 0 we have used the grading indicated in
Remark 2.4 for the three boundary layers. Of course, a different refinement with a lowest number of
nodes could be used near the weaker layers but we wanted to show that our procedure works well also
for cases in which the equation becomes reaction dominant. In Table 3 we show the results obtained
in this case. We observe that the numerical order is 0.489546.

Finally, just to see the different structures, we show in Figure 2 a Shishkin mesh and one of our
graded meshes having the same number of nodes. For the sake of clarity we have pictured only the
part of the meshes corresponding to (0, 1/2) × (0, 1/2) and ε = 10−

3
2 .
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N Error
3735 0.0820324
7488 0.0578917
12699 0.0449325
19278 0.0367152
26983 0.0310352
36260 0.0268979

Table 3
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0.4

0.45

0.5

Figure 2

4. Conclusions

We have proved that the optimal order in the ε-weighted H1-norm, up to logarithmic factors, is
obtained using appropriate graded meshes and standard finite element methods of lowest order for
convection diffusion problems. In both, theoretical and numerical experiments, we have worked with
rectangular elements but it is not difficult to see that analogous results can be obtained for linear
triangular elements.

The numerical experiments showed that no oscillations appear in the numerical solution and the
predicted order of convergence is observed.

We believe that graded meshes are an interesting alternative to the Shishkin meshes that have
been widely analyzed for this kind of problems. In particular, numerical experiments show that the
graded mesh method is more robust in the sense that the numerical results does not depend strongly
on parameters defining the mesh, instead the results obtained with Shishkin meshes depend in a
significant way on the parameter defining the point where the mesh change its size, indeed, if this
parameter is slightly moved from its optimal choice the numerical solution may present oscillations.
Also, we have observed that the graded meshes designed for some value of the singular perturbation
parameter work well also for larger values of this parameter while this is not the case for the Shishkin
meshes. This might be of interest in problems with a variable ε.

We have performed the analysis and the numerical experiments for a model problem in a square
domain. However, we believe that similar results could be obtained for more general domains. Also,
similar problems in three dimensional domains can be analyzed in a similar way. However, in that case,
a mean average interpolation should be used to prove the error estimates because, as it is known, the
estimates for the Lagrange interpolation in H1 are not independent of the relations between different
edges of an element in 3D. On the other hand, the graded meshes defined in Remark 2.4 and used in
our numerical experiments satisfy the local regularity conditions required in [3] for the error estimates
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proved in that paper for the mean average interpolant introduced there, and therefore, that operator
could be used for the analysis. These generalizations will be the object of further research.

Acknowledgment: We want to thank Thomas Apel for helpful comments on a previous version of
our results which lead to a considerable simplification and improvement of our paper. In particular
he pointed out to us the argument used in the proof of Corollary 2.3.
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