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ANISOTROPIC MESH REFINEMENT IN POLYHEDRAL DOMAINS:
ERROR ESTIMATES WITH DATA IN L%(Q)

THOMAS APEL', ARIEL L. LOMBARDI? AND MAX WINKLER'

Abstract. The paper is concerned with the finite element solution of the Poisson equation with
homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes
from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity
of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear
approximation in the Hl(Q)- and LQ(Q)—norms by using a new quasi-interpolation operator. This new
interpolant is introduced in order to prove the estimates for L?()-data in the differential equation
which is not possible for the standard nodal interpolant. These new estimates allow for the extension
of certain error estimates for optimal control problems with elliptic partial differential equations and
for a simpler proof of the discrete compactness property for edge elements of any order on this kind of
finite element meshes.
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INTRODUCTION

We consider the homogeneous Dirichlet problem for the Laplace equation,
—Au=f inQ, u=0 on 0f, (1)

where ) is a polyhedral domain. Note that we could consider a more general elliptic equation of second
order. But by a linear change of the independent variables the main part of the differential operator could
be transformed to the Laplace operator in another polyhedral domain such that it is sufficient to consider the
Laplace operator here.

The aim of the paper is to prove the discretization error estimate

lu = unll 1) < Ch| fllL2o) (2)

for the finite element solution u; € V};, which is constructed by using piecewise linear and continuous functions
on a family of appropriate finite element meshes 7. Note that we assume here not more than f € L?() such
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that the L2-error estimate

lu—unllz2(0) < CR?|| fllz2(0) (3)
follows by the Aubin—Nitsche method immediately. The generic constant C' may have different values on each
occurrence.

If the solution of the boundary value problem (1) was in H?(f2) then the finite element meshes could be
chosen quasi-uniform, and the error estimates (2) and (3) would be standard. However, if the domain Q is
non-convex, the solution will in general contain vertex and edge singularities, that means v ¢ H?(2). In this
case the convergence order is reduced in comparison with (2) and (3) when quasi-uniform meshes are used. As
a remedy, we focus here on a priori anisotropic mesh grading techniques as they were investigated by Apel and
Nicaise in [4]. In comparison with isotropic local mesh refinement, the use of anisotropic elements avoids an
unnecessary refinement along the edges.

The estimate (2) is in general proven by using the Céa lemma (or the best approximation property of the
finite element method),

Ju = unl| g1y < C inf Jlu— vl g1o), @
vR EVR

and by proving an interpolation error estimate as an upper bound for the right-hand side of (4). The particular
difficulty is that when the Lagrange interpolant is used together with anisotropic mesh grading, then the local
interpolation error estimate

|u — Inulwery < herlulw2e ) (5)
does not hold for p = 2 but only for p > 2, see [2]. Hence the classical proof of a finite element error estimate
via

1/2
lw = unl[g1 () < Cllu = Thul[gio) < C ( > hT|U|12qz(T>>
TeTh
does not work. This problem was overcome by Apel and Nicaise, [4], by using (5) and related estimates in
weighted spaces, as well as the Holder inequality for the prize that f € LP(2) with p > 2 has to be assumed in
problem (1). Hence estimate (2) cannot be proved in this way.

For prismatic domains and tensor product type meshes the problem was overcome in [1,6] by proving local
estimates for a certain quasi-interpolation operator. This work cannot be easily extended to general polyhedral
domains since the orthogonality of certain edges of the elements was used there. The aim of the current paper
is to construct a quasi-interpolation operator Dj, such that an error estimate like

lw = Dpul i) < ChllfllL2 @) )

can be proved for the anisotropic meshes introduced in [4].

Quasi-interpolants were introduced by Clément [14]. The idea is to replace nodal values by certain averaged
values such that non-smooth functions can be interpolated. This original idea has been modified by many
authors since then. The contribution by Scott and Zhang [31] was most influential to our work.

The plan of the paper is as follows. In Section 1 we introduce notation, recall regularity results for the solution
u of (1) and describe the finite element discretization. The main results are proved in Section 2. The paper
continues with numerical results in Section 3 and ends with two sections where we describe applications which
motivated us to improve the approximation result from [|u—ul|| g1y < Ch| f|lLr), P > 2, to [Ju—up| g1 0) <
Chl[fllL2(e)- The first one is a discretization of a distributed optimal control problem with (1) as the state
equation. The second application consists in a simpler proof of the discrete compactness property for edge
elements of any order on this kind of finite element meshes.

We finish this introduction by commenting on related work. The idea to treat singularities due to a non-
smooth boundary by using graded finite element meshes is old. The two-dimensional case was investigated by
Oganesyan and Rukhovets [26], Babuska [9], Raugel [28], and Schatz and Wahlbin [29]. In three dimensions
we can distinguish isotropic mesh grading, see the papers by Apel and Heinrich [3] and Apel, Sindig, and
Whiteman [5], and anisotropic mesh grading, see the already mentioned papers [1,2,6] for the special case of
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prismatic domains, and [4] for general polyhedral domains. This work has been extended by Béacuté, Nistor, and
Zikatanov [12] to higher order finite element approximations where naturally higher regularity of the right-hand
side f has to be assumed. Boundary element methods with anisotropic, graded meshes have been considered by
von Petersdorff and Stephan [27]. The main alternative to mesh grading is augmenting the finite element space
with singular functions, see for example Strang and Fix [33], Blum and Dobrowolski [11], or Assous, Ciarlet Jr.,
and Segré [8] for various variants. It works well in two dimensions where the coeflicient in front of the singular
function is constant. In the case of edge singularities this coefficient is a function which can be approximated,
see Beagles and Whiteman [10], or it can be treated by Fourier analysis, see Lubuma and Nicaise [22].

1. NOTATION, REGULARITY, DISCRETIZATION

It is well known that the solution of the boundary value problem (1) contains edge and vertex singularities
which are characterized by singular exponents. For each edge e, the corresponding leading (smallest) singular
exponent A, is simply defined by A\, = 7/w. where w, is the interior dihedral angle at the edge e. For vertices v of
), the leading singular exponent A, > 0 has to be computed via the eigenvalue problem of the Laplace-Beltrami
operator on the intersection of 2 and the unit sphere centered at v. Note that A\, > % and A, > 0. A vertex v
or an edge e will be called singular if \, < % or A\ < 1, respectively. We exclude the case that % is a singular
exponent of any vertex. For a detailed discussion of edge and vertex singularities we refer to [16, Sections 2.5
and 2.6].

As in [4] we subdivide the domain  into a finite number of disjoint tetrahedral subdomains, subsequently
called macro-elements,

L
a-|Jx.
=1

We assume that each A, contains at most one singular edge and at most one singular vertex. In the case that
Ay contains both a singular edge and a singular vertex, that vertex is contained in that edge. Note that the
edges of Ay are considered to have O(1) length. For ¢; # {5, the closures of the macro-elements Ay, and Ay,
may be disjoint or they intersect defining a coupling face, or a coupling edge, or a coupling node.

For the description of the regularity of the solution u of (1), we set )\g) = ), if the macro-element A, contains

the singular vertex v of 2. If A, does not contain any singular vertex we set )\‘(/e) = +o00. Moreover, we set

)\l(f) = A if Ay contains the singular edge e of €2, otherwise we set )\‘(f) = +o00o. Furthermore, we define in each

macro-element A, a Cartesian coordinate system z(¥) = (xgz), xg), x:(f)) such that the singular vertex, if existing,

(6)
3

is located in the origin, and the singular edge, if existing, is contained in the x5 ’-axis. We also introduce by

1/2
rO@) = () +@7)

ROGO) = (@02 + @+ @07) "
)

7O (20
9(5)@(4)) — W’

(6)
3

the distance to the xéé)—axis, the distance to the origin, the angular distance from the x5 ’-axis, respectively.

For k € N and 3,0 € R we define the weighted Sobolev space

V67252(A2) = {’U c D/(AZ) : HUHV;’(?(AE) < OO}
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where

2

2 - B—k+|a| gd—k+|a| Ho
. = R 0 D
HUHV[;*;(AZ) QZ /A ‘ v

|| <k ™5

2

\vﬁ,kf(/\z) = Z/ |RP6° D"
- lal=k Y Ae

Here, we have used the standard multi-index notation to describe partial derivatives, and we have omitted the
index (¢) in R and 6 for simplicity.

Theorem 1.1 (Regularity). The weak solution u of the boundary value problem (1) admits the decomposition
U= Uy + ug (7)
in A, £ =1,...,L, where u, € H*(Q) N H}(Q) and

Bus . aus
W S Vgljaz(AZ)v 1= ]., 2, W < Vﬂlv,oz(Ae),
€T

i L3

for any B, > 0 satisfying B > % — )“(/z) and § > 1 — /\3).

Proof. The assertion follows widely from [4, Theorem 2.10] where u, € H?(A;) was stated. However, when
tracing through the proof in that reference, one easily confirms also the global H?(Q)-regularity. (|

In [4] an anisotropic mesh refinement strategy for general polyhedra was introduced. The idea is to further
decompose the macro-elements according to one of four possible refinement rules described below. By this
technique we obtain a conforming triangulation 7y of Q, i.e.

a- T

T€ETh

We also assume that TNA, # () implies T' C A,. The four refinement rules, which depend on grading parameters
e, ve € (0,1] (see below), are the following:

Type 1 If Ay does neither contain a singular edge nor a singular vertex then 7p|s, is assumed to be isotropic
and quasi-uniform with element size h, see Figure 1, left. The grading parameters are taken as puy =1
and vy, = 1.

Type 2 If Ay contains a singular vertex but no singular edges then 7|, is isotropic and has a singular vertex
refinement, i.e., the mesh is graded towards the singular vertex with a grading parameter v, € (0, 1].
This can be achieved by using a coordinate transformation of the vertices from Type 1, see Figure 1,
the second from the left. In this case we set pp = 1.

Type 3 If A, contains a singular edge but no singular vertex then 7|, is anisotropically graded towards the
singular edge. The grading parameter is pp € (0,1]. To this end, we introduce a family P, of planes
transversal to the singular edge and containing the opposite one. These planes split the macro element
into strips and contain all nodes. In the planes the position of the nodes is achieved by applying a
coordinate transformation to a uniform triangulation, see Figure 1, the second from the right. We take
Vy = 1.

Type 4 If A, contains both a singular vertex and a singular edge then 7|, is graded towards the singular edge
with grading parameter uy € (0,1] and towards the singular vertex with grading parameter v, € (0, 1],
see Figure 1, right. The mesh is topologically equivalent to the mesh of Type 8 but the planes of P, do
not divide the singular edge equidistantly but with a grading towards the singular vertex.
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FIGURE 1. Macro-elements of Type 1, 2, 3 and 4

We point out that anisotropic elements can appear only in Type 8 and Type 4, for which 7T, contains needle
elements near the singular edge and flat elements near the opposite one, see Figure 1. We further observe that
if Ay is of Type 3 or Type 4, the elements in Tp|a, do not intersect any plane of Py.

For each element T" we introduce its lengths hy 7, ha 7, hs,r and hr as follows. Let hr be the diameter of T'.
If T C Ay with Ay of Type 1 or Type 2, then hy 7 = hop = hsp = hy. f T'C Ay with Ay of Type 3 or Type 4
then hs 7 is the length of the edge e3 7 of T parallel to the singular edge, and hir = ho 7 = %(‘617T| + |ea,r|)
where e 7 and e 1 are the edges of T intersecting e3 r and each one of them is contained in some plane of P,.

For the sake of completeness we briefly describe some conditions on the lengths of the elements, and refer
to [4] for the details. If Ay contains a singular edge, and if T' is an element contained in Ay, define

rp = inf {r(e)(w(é)) cx® e Ag} ,
and if Ay contains a singular vertex
Ry = inf {R(Z)(m(z)) 2 e Ag} .

Then the length of an arbitrary element T satisfies the following properties. If py < 1 we have

Sa
)ﬂ
R

{ pYme  ifpp =0 i=1.2

hry i > 0

hi/ve if Rp < Ch'/ve
hRLTY if Ry > hl/ve

hsp =~ hY" if Rp =0,

>
@
N
IN

and if puy =1 then for i =1,2,3

&
ﬂ
IN

hY/ve if Rp < ChY/ve
hRy™ if Ry 2 h'/ve

hip =~ h'* if Rp =0.

We also assume that
pe <1l = pp<wvy.

By classical regularity theory, the solution u of the boundary value problem (1) is continuous, see e.g. [16, page
page 79], such that the Lagrange interpolant u; with respect to the subdivision {A,} is well defined. We consider
the decomposition

U =Ur + UR. (8)
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FIGURE 2. Illustration of the edges o,

It follows that the restriction up|a, has the same smoothness properties as u|s,, see Theorem 1.1. Furthermore,
up vanishes in coupling nodes and on singular edges. We construct now an interpolant Dyugr € V3, which also
vanishes on these nodes such that u; + Dyugr € Vj, can be used to estimate the discretization error via (4).

To this end, let N, N, and N be the set of all nodes of 7y, the set of coupling nodes, and the set of nodes
which belong to some singular edge, respectively. The terminal points of the singular edges are included in M.
For later use, we introduce N := N'NT. The piecewise linear nodal basis on Ty, is denoted by {¢, }nen. We
associate (as specified below) with each n € A"\ (N, UN;) an edge o, of some T € T, having n as an endpoint.
Note that ul,, € L?(0,) since u € H*() with s > 1. Hence the operator Dj, with

Dyu = Z (Ha'nu) (Tl) “Pn (x)a (9)

neN\ (NUN)

is well defined when I1,, : L?(0) — P (o) is the L?(o)-projection operator onto the space of polynomials of degree
less than or equal to one. Note that Dju vanishes on coupling nodes and on singular edges by construction. In
order to impose the boundary conditions and to be able to prove interpolation error estimates we need to select
the edges o, in an appropriate way, compare the illustration in Figure 2. First, we demand that

e for each node n € N'\ (M. UNj), n and o, belong to the same macro-elements.
This requires in particular the following restrictions.
— If n lays on a boundary or coupling face, then o,, is contained in that face.
— If n lays on a coupling edge, then o,, is contained in that coupling edge.

Note that these requirements made the treatment of the coupling nodes via the interpolation on the initial wu;
necessary. Note further that this construction leads to a preservation of the homogeneous Dirichlet boundary
condition.

In order to prove the stability of Dy in the anisotropic refinement regions we also require:

e If n is a vertex of a tetrahedron contained in a macro-element A, of Type & or Type 4, then o, is an
edge contained on some plane of Py.

e In particular, if T’ contains a node in N;\N; then o,, C T for all other nodes of 7.

e Ifny and n(g)b?l;)ng to a macro-element A, of Type & or Type 4 and have the same orthogonal projection

0) (¢

1 T2

onto the = -plane, then the same holds for o,,, and op,.

In order to estimate the interpolation error we need to define for each T' € T}, a set St which should satisfy
the following assumptions.

The set St is a union of elements of 7, (plus some faces) and in particular T' C Sp.
The set St is an open connected domain, and as small as possible.

We have ¢,, C St for all nodes n of T.

If T'C Ay, then St C Ay.
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Ficure 3. Illustration of the cases that have to considered for the interpolation error estimates

o If T'C Ay with Ay of Type 8 or Type 4, then St lays between two successive planes Py. The top and
the bottom face of Sy are contained in these two planes and the other faces of St are parallel to the
singular edge.

The following properties follow from the definitions of the edges ¢, and the sets St.

(1) Let T be contained in a macro-element A, of Type & or Type 4. If T intersects two planes p; and py of
Py, then St intersects exactly the same planes p; and po.
(2) If the node n, n & N UN, belongs to a coupling face, which means that there exist tetrahedra T} C Ay,
and Ty C Ay, with ¢; # l3 and n € Nz, N N, then St N St, = 0 but o, C Sz, N S,.
(3) If T is an isotropic element then all the elements in St are also isotropic and of size of the same order.
The second point is essential for our proof of the approximation properties. It was the target for which we made
the construction as it is.

2. ERROR ESTIMATES

The aim of this section is to derive error estimates for our discretization. They are based on local interpolation
error estimates for our interpolant Dj. For proving these estimates we have to distinguish several cases, see
also Figure 3 for an illustration:

(1) T is an isotropic element without coupling node, u has full regularity,

(2) T is an isotropic element with coupling node, u has full regularity,

(3) T is an isotropic element with coupling node, u has reduced regularity,

(4) T is an anisotropic flat element without coupling node, u has full regularity,

(5) T is an anisotropic flat element with coupling node, u has full regularity,

(6) T is an anisotropic needle element without node on the singular edge, u has full regularity,
(7) T is an anisotropic needle element with node on the singular edge, u has full regularity.

(8) T is an anisotropic needle element with node on the singular edge, u has reduced regularity.

)
)
)
)
)
)

In Lemma 2.1 we present the general approach for the proof of the local interpolation error estimate by
considering isotropic elements with and without coupling nodes (cases 1 and 2). We proceed with Lemmas 2.2
where we introduce for isotropic elements how to cope with the weighted norms in the case of reduced regularity
(case 3). The interpolated function is only from a weighted Sobolev space but we will see that this even simplifies
some parts of the proof.

For anisotropic elements the use of an inverse inequality (as was done in the previous lemmas) has to be
avoided; instead we use the structure of the meshes in the macro-elements of Types & and Type 4. We start
with a stability estimate of d3Dpu which allows immediately the treatment of anisotropic flat elements (cases
4 and 5) in Lemma 2.4. Then we prove stability estimates for the remaining derivatives and continue with the
interpolation error estimates for needle elements. Lemma 2.8 is devoted to cases 6 and 7, and Lemma 2.10 to
case 8.
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All these local estimates can then be combined to prove the global interpolation error estimate, see Theo-
rem 2.11, and the finite element error estimates, see Corollary 2.13.

Lemma 2.1 (isotropic element, full regularity). If T is an isotropic element then the local interpolation error
estimate

|u — DhU‘Hl(T) < ChT|u|H2(ST) (10)

holds provided that u € H?(St) and u(n) = 0 for all n € N..

Proof. Following the explanations in [31, page 486] and [1, page 1156], an explicit representation of Dju from
(9) can be given by introducing the unique function v, € V4|, with fU Yn¢; = dp; for all j € N such that

(T, u)(n) = / W (1)

and

Dpulr = (/Uuwn>¢n (12)

neNT\N.
Note that
[l Lo () = C lom| ™, (13)
compare [1, page 1157]. (By some calculation one can even specify that C' = 4.) With (12), the inverse
inequality
|6l ry < ChM T2 gnll e (1) < Chp' T2, (14)
the trace theorem, see (65) with p =1, ¢ = 2,

[l 2oy < ClonllSTI™ 2 (ullz2(sp) + brlul g sy + b ula2(sp), (15)

and |St| < C|T| we obtain

IDutliry <C Y ullr o) 1¥nll Lo (o) [énl i (r)
neNr

< Chy'(llull 2csp) + hrlulm sp) + hrlulpzis,))- (16)

If T does not contain a node n € N, we find that D,w = w for all w € P; such that we get by using the
triangle inequality and the stability estimate (16)

|u — Dypu| g7y = |(u —w) — Dp(u—w)| gy Yw € Py
< u—wlm ) + [Dn(u — w) gy (1)

<C (h;1||u — w||L2(ST) =+ |u — w|H1(ST) =+ hT|u‘H2(ST)) .
We use now a Deny—Lions type argument (see e.g. [15])

£
Vue WhP(Sr) Fw e Proy: > hlu— wlwin(sy) < Chiplulwes(sy) (17)
j=0

and conclude estimate (10).
In the case when N7 contains a node n € N, we do not have the property that Dpw = w for all w € Py
but we can use that u(n) = 0. Let o, be an edge contained in T having n as an endpoint, and let ¢,, be the
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Lagrange basis function associated with n. (Note that we deal here with nodes n which are not used in the
definition of Dj. Therefore we can assume that o, is local in Ay.) Consequently, we have with the previous
argument that

lu— (Dpu + (o, w)(n)én)| g1 (1) < Chrlulz(sy)- (18)
Let I7u be the linear Lagrange interpolant of w on 7. Since Irul,, is linear, we have have (I, I7u)(n) = 0.
From this fact and using (11)—(15) as in the derivation of (16) (here with the specific T instead of Sy since
on, CT), we have

|(Ilo,, w) ()l () = |(Io, (u — I7w))(n)dn | 51 (1)
Oh;l (|U, - ITU|L2(T) + hT|U - ITU|H1(T) + h%|u|H2(T))

<
< ChT|u|H2(T)

where we used standard estimates for the Lagrange interpolant in the last step. With (18) and the triangle
inequality we conclude estimate (10) also in this case. t

Lemma 2.2 (isotropic element, reduced regularity). If T is an isotropic element with Ry = 0, then the local
interpolation error estimate

1—
[u— Dyl ey < ChyPllully2a(s,, (19)
holds provided that u € V;ﬁ(ST), B e0,1).
Proof. We start as in the proof of Lemma 2.1 but use the sharper trace inequality from Lemma A.1
[ull 21 (o) < CloallSI™ (lull 21 sy + hrlulwiasy) + b lulw2a(sy)).

With (12), (13), (14), and |St| < C|T'| we obtain

1Dulmry < C > ullz o) [$nll Lo o) @nlm ()
neNr

< C|ST\_1/2(h51||U||L1(ST) + lulwra sy + hrlulweas,))
< C(hpJullna(se + lulmr(sey + 15717 2helulw2a (s,)

and hence via the triangle inequality
u = Dyulgi(ry < C(hy |[ullp2spy + lulmi(spy + 15717 2helulwz(s,))- (20)
Due to the assumed property Ry = 0 we have 0 < R(z) < hy for all x € T, hence 1 < hrR~!, and we obtain
2—-p
lullzacsey < W3 lullyes, (s,
1-p
[ulmrse) < B3 lulyaa (sr-
To estimate the third term we use the Cauchy—Schwarz inequality and again R < hr, to obtain for |a| = 2

D%ulpr(s7) < 1Rl L2(se) IR D ull2(sy) < C1STIY2hz" ulyze s,

where |[R77||12(s5) < C’|S’T|1/2h;ﬁ is obtained by executing the integration and using that 8 < 3. All these
estimates imply estimate (19). (]
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In order to prove interpolation error estimates for the anisotropic elements we derive stability estimates for
D;, where we avoid the use of the inverse inequality. Let z1,z2 and z3 be a Cartesian coordinate system with
the xz3-direction parallel to the singular edge of A. We will estimate separately the L?-norm of the derivatives
of Dhu.

Moreover, the Deny-Lions type argument (17) is not directly applicable for patches of anisotropic elements
and requires an appropriate rescaling. For an arbitrary patch Sp, the coordinate transformation (z1, z2,z3) =
F(%1,%2,%3) := (h1,7%1, ho,7T2, hsr¥3) maps a domain S having edge lengths of order one onto Sy. One
further observes that both, the diameter of the largest interior ball in S and the diameter of S itself are of order
one. Thus, we conclude from [15] that a polynomial w € P,_; exists (an averaged Taylor polynomial) such that
for any multi-index |y| = m the estimate

1D (@ — D)l yyre-mw(gy < C|D7u‘wf—m,p(§) (21)

holds, provided that 0 < m < ¢ and p € [1,00]. On an arbitrary patch St we may now apply the transformation
onto S, where we exploit the property D ~ h.*D®, use the Deny-Lions type argument (21) on the reference
setting and apply the transformation back to S again which leads to

Y WD (u—w)lwmasyy < CIS2MP Y by ID7 (@ = @)llye-mons)

la|=t—m ly|=m
SclsTll/p Z h;’y|D’Y’l’l|W277n,p(§)

[v[=m

<C Z h%|Dau|Wm-,p(ST). (22)

|a|=€—m

Let T be an anisotropic element with the characteristic lengths hy 7 = ho 7 and h3 7. We will not use that
hsr > hjr, j =1,2, in the next lemma in order to use this estimate both for the needle and the flat elements.

Lemma 2.3 (Stability in direction of the singular edge). For any anisotropic element T the estimate

10sDpull2(ry < C1ST|™2 > W |D*Dsul| L1 (s,)
la]<1

holds provided that O3u € W(Sr).

Proof. We observe that T has an edge er parallel to the singular edge, and so, parallel to the z3-axis. Since
Dpu is linear on T, we have O3Dpu|lr = O3Dptler. If er is contained on the singular edge, then d3Dpu|r = 0
since Djule, = tle, = 0 and we are done. Now, consider the case that er is not contained in a singular edge

and denote its endpoints by n; and ng such that ds¢,, |T = —hgflp and O3y, ’T = hg%p Then we have

OsDpu = hg% l/ U, — / uwm]

We observe now that by our assumptions o,, and o,, have the same projection or into the x;xs-plane and
hence form two opposite edges of a plane quadrilateral or triangle which is parallel to the x3-axis and which
we will denote by Fr. We note further that 1,,, and v, can be considered as the same function 1 defined on
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or and [[¢7] Lo (op) = Clor|~'. Moreover, the relation |Fr| ~ hg oy, | holds. With this insight we obtain

/U W, — / W,

no ny

< Chy plor| ™M |0sull L1y < ClFr| ™ |05ull L ()

‘ath’U,‘ = h;l

Ozurpr

Fr

-1
= h3,T

We integrate this estimate over T', apply the standard trace theorem

vl ey < CLER|IST[™ Y WD (s,

laf<1

and obtain the desired estimate. O

We are now prepared to estimate the interpolation error for the flat elements occurring far away from the
singular edge in cases 4 and 5.

Lemma 2.4 (anisotropic flat element, full regularity). If T is an anisotropic flat element (hsr < h1p = hao 1)
then the local interpolation error estimate

lu — DhU|H1(T) <C Z h%lDamHl(ST) (23)

la|=1

holds provided that u € H?(St).

Proof. The proof for d5(u — Dpu) can be done on the basis of Lemma 2.3. Assume for the moment that the
element T does not contain a coupling node. Similar to the proof of Lemma 2.1 we obtain for any first-order
polynomial w € Py

103(u = Dyu)ll 2 (ry = [103(u — w) = 93 Dn(u = w)ll2(ry < C Y hF[|D*03(u — w)| 2 (s1)-
lo]<1

Applying now the Deny—Lions type argument (22) with £ =1 and m = 0 leads to the estimate

103(u — Dpu)||p2ry < C Z hr||[D*Osull2(s7)-

|a]=1

Note that the polynomial w can be chosen such that it vanishes in three nodes of T'. It is completely described
by choosing the appropriate value at one endpoint of the edge of T' which is parallel to the xs-axis. Since a
possible coupling node is not an endpoint of this edge, the argument above can also be used in the case of
coupling nodes.

For the other directions we can proceed as in the proof of Lemma 2.1. If T' contains a coupling node we
assumed that o,, C T for all n € N7\N.. Thus, we may apply the trace theorem, see (64), which reads in our
setting

[0l 210y < CloalITI72 Y BFID | 12 (ry (24)

o <2
instead of (15). Then we obtain together with [|9;¢, | z2(r) < C’h;%|T|1/2 and [[¢| g (o,) < Clon| ™!

10:Dnollaery < Y0 ol 1¥onll Lo (o) 10in 22 ()
nENT\Nc

< Chip Y h#ID |2y, i=1,2.

la|<2
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Choosing now v = u — I7u and exploiting the fact that [Iru](n) = 0 if n € N, (this implies Dy I7u = I7u)
yields

105 (w — Dp)ull 21y < C [[10i(u = Irw)|| L2y + 18:Dn(u — Iru)| L2(r)]
< Chip Y W D*(u— Iru)| L2(r).

|| <2

On a reference element 7' we may apply the standard interpolation error estimate |& — ITfLHHl(T) < \ﬁ|H2(T»)
and we get

||8i(u— Dh)U”L2(T) < Ch;% Z h%HDauHLz(T) <(C Z h%|D“u|H1(T).
|| =2 |a|]=1

If T does not contain a coupling node, then estimate (24) does not hold, but if the norm over T is replaced
by the norm over the patch St on the right-hand side. Certainly, the property Dpw = w on T holds for an
arbitrary w € P; and the technique from the proof of Lemma 2.1 can be applied again. We then obtain

19:(u = Dyu)ll2ry < Chig D hFID(w = w) sy < Chip Y hFID*ullracry

la]<2 la|=2

by again using the Deny-Lions type argument (22) with £ = 2 and m = 0. With h; r ~ max{h;r, j = 1,2,3}
we get the assertion. O

It remains to prove interpolation error estimates for needle elements such that we will assume h; 7 = ho 7 <
Chs 1 for the next lemmas. Those elements never contain interior coupling nodes.

Lemma 2.5 (Stability in direction perpendicular to singular edge, anisotropic needle element away from singular
edge). Assume that the element T does not contain a node n € Ny and that hyr = her < Chsr. Then for
i =1,2 we have

10: Dyull L2y < C (lulmi(sy) + hs,r|0sul g (sp)) (25)

provided that uw € H'(St) and O3u € H(ST).

Proof. For each node n € N we denote by F), 7 the top or bottom face of the prismatic domain Sz such that
n e F,LT. Observe that we have o, C FmT C St for all n € Np. Observe further that F, 7 is isotropic with
diameter of order hq 1 and recall the standard trace inequality

ol (o) < CloallFarl™ (I0lc1(p, 0y + hrrlvlws i, o) (26)

for all v € WHL(F, ). We need also the trace inequality

[0l 22 (Fozy < ClFarllSTI™" (10l L1 (sp) + a,7l|030] 1 (s5)) (27)

which can be proved by using Lemma A.3 from page 26 and the facts that St is a union of prisms, and F, 1 is
a face of Sp.

Let s be one of the short edges of T' and denote its endpoints by n! and n2. We use the same notation
sp for the direction of this edge in order to denote by ds,v = Vv - sp/|sr| the directional derivative. In the
following we first estimate ||0s, Dpul|r2(ry. After that, the desired estimates (25) easily follow as we will show.
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Notice that if n € Np\{n',n?} we have ds, ¢, = 0, and if n € {n',n?} then ||0s,.¢p| Lo () = |s7|7 < C’hf}.
For all w € Py(St) we have (and here we use that the element does not contain a node n € N, UN)

1057 Drul|L2(7y = [|0sy Di(u — w) | L2 (7)

> |/ =y

neNTNsT

< Chl_,é“lTP/Q Z Hu_lezl(an)HwnHLw(an)

neNrNsT

< ChiplTI72 Y7 onlHlu = wlpo,)- (28)

neNrNsr

IN

105+ Gnll L2 (1)

From the trace inequality (26) we have for each n € N N sy

lu = wllz1(o,) < ClollFoz| ™ (lu = wllz e, r) + hirlulweae, ) -

Since the definition of Fj, 7 implies F,1 p = F,2 ¢ =: Fr, we have

lu ~ |21 o,y < CloallFr| ™ (lu = wllza(r) + harlulwrser)
Now we choose w as the average of v on Fr and use a Poincaré type inequality on Fp to get
lu = wllz1(o,) < Clow|[Pr|™ harlulwia ey
Therefore we arrive at

105 Ditl| 207y < CIT[V2|Fr|~Hulwra oy,
< CITIM21S0 17 (Julwri(sp) + harldsulwr(s,))
< C|Sp| 72 (Julwri(sy) + ha,rlOsulwri(sy)) (29)
< C (Julgr(spy + hsrlOsulmi(sy))

where we used again the trace inequality (27).

Now, let s11 and sg 1 be two different short edges (edge vectors) of T such that the determinant of the
matrix made up of ;1:;', “:Z—:‘;‘ and ez as columns is greater than a constant depending only the maximum
angle of T. Note that this is possible due to the maximal angle condition, see [18]. Then, if the canonical vector

e;, 1 = 1,2, is expressed as

S1,T 52,7
€ = Cli7— tC2i—— T C3€3,
|s1,7] |s2,7]
it follows that ¢y, c2; and c3; are bounded by above by a constant depending only on the maximum angle
condition. Since
0; = ¢1,i0s, 7 + 2,105, 7 + 3,103

we obtain (25) from (29) with sy = s1 7 and sp = so. 1, Lemma 2.3, and recalling that hy 7 = hor < Chgp. O

Lemma 2.6 (Stability in direction perpendicular to singular edge, anisotropic needle element at the singular
edge, full regularity). Assume thatT € Tp, is an element belonging to the macro-element Ay touching the singular
edge e; of that macro-element. Define the extended patch

ST = U{ST/ : NT ﬁ./\/‘s ONT/ 75 (D,T’ C Aj with ey C Aj n Ag},
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FIGURE 4. Possible situation where o, for n € N belongs to a different macro-element than 7.
Edge o, is on the boundary.

(A, denotes a macro-element) which may intersect multiple macro-elements. Then for i = 1,2 the stability
estimate

10:Dneilzzzy < C (Il s,y + ha,rlOsul s s, )

holds, provided that v € H*(Sr) N H ().

Proof. As pointed out in the proof of Lemma 2.5, it is enough to estimate 0, for two different short edges sr
of T. For nodes on the singular edge, n € N NN, we define a corresponding o, as a short edge with n € &,
and o, C 9Q (note that we did not define o,, for n € N on page 6). If n € N NN} is a singular vertex
(belonging to a singular edge) then we further assume that o, is a short edge of some element belonging to a
macro-element that shares the singular edge e, with the macro-element Ay containing 7. In any case, we have

on C S'T. Throughout the proof we write

Dpu = Dpu + Z (I, u) - @n. (30)
neNTNN;

We point out that Dj, may change with T. Let s denote a short edge having endpoints n € NV and ny € N \Ns.
Note that Lemma 2.5 would hold for the interpolant Dh if o, and o0,,, would belong to the same macro-element.
Since this is not always the case in the present situation we show that we can reduce it to the case where Lemma
2.5 is applicable. For simplification we consider the special case depicted in Figure 4, and one easily confirms
that the following technique holds also for more general cases. We may decompose the derivative along st as
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follows:

||8STDhu||L2(T) = |8T|71||1~)hu(n1) - Dhu(n)HLZ(T)
= |sz| 7TV Dyu(ni) — Dyu(n)|

3
< Clsr|™! <Z I Ti1 |2 Dyu(ni) — Dyu(niga)| + | T5|"? Dyu(ng) — Dhu(n)|>

=1

3
<C (Z ||anini+1Dhu||L2(Tq‘,+1) + ||ann4DhuL2(T5)> ) (31)

=1

where T;41 is an element having n,n; and n;; as nodes and contained in the macroelent A;;;. We remark
that, if n and m are nodes of an edge s, we denote by 9y, a derivative in the direction of s. Since o, and o,
(resp. o4 and o,) belong to the same macro-element A; ;1 (resp. As) we obtain using the same arguments as
in the proof of Lemma 2.5

100nimcss Dtz ey < C ([l g1 gy + horl0stl g s ) - (32)
Analogously, this estimate also follows for ||y, Dpul| L2(1y)- Inserting (32) into (31) leads to the desired estimate

for Dy,. Due to u € H(Q) we have Dju = Dpu and the proof is finished. O

Lemma 2.7 (Stability in direction perpendicular to singular edge, anisotropic needle element at the singular
edge). Assume that the element T contains at least one node n € Ny and that hir = har < Chzr. Then we
have fori=1,2

_ h T a a
10: Dyull 2¢ry < C1STI™2 | Julwra(s,) + ﬁ||33u||Ll(sT) + ) WD ulwr sy (33)

jal=1

provided that u € W(Sr).

Proof. For each node n € NN N7 we select one short edge o, with an endpoint at n and contained in the same
macro-element as T such that we can apply estimate (29) from the proof of Lemma 2.5 (note that we did not
define o, for n € N; on page 6). We have for i = 1,2

0; (Dh,u+ Z (Hanu)(n)(bn)

neN;NNr

S ClST|71/2 (|U|W171(ST) + h3,T|33U|W1‘1(sT)) . (34)
L*(T)

Now we deal with |0;[(I15, u)(n)®y]|| 127y Which is first estimated by

10:[(ILo, w) (n) bl L2(ry < ClOinllL2(r)lonl ™ ull L1 (35)

for each n € Ny N Nr.

Let n € Ny NN and be F,, v be the face of St having o,, as an edge and another edge on the singular
edge. Let P, 1 be the greatest parallelogram contained in F), r and having o, as an edge. So, P, r is parallel
to the xz-axis, and its area is comparable with the area of F), r since opposite edges of the trapezoid F;, v have
equivalent length. Using a trace inequality we have

lullzi(o,) < Cloul|For ™ (lullr(p, r) + harll0sulicp, 2)-
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But, since u = 0 on the edge of P,, r contained on the singular edge we can use the Poincaré inequality to obtain

lull 21 (0) < ClonllFor |~ (0nl00, ull 1P, r) + ha,r 105l L1, 1))-

From Lemma A.4 we have for all v € W11(Sy)
vl 1Py < ClEazlISTI7! ([0l i(se) + 51,7110, 2 0l L1 (s7) + 52,7 11055 20l 1579 -
Using twice (37) we obtain from (36)

Jull (o) < Clon?1S7|™" (106, ull L2 (sp) + 151,20105, 100, wll L1 (50) + [52,0 11055 1 0o, ull 1(57)) +
+ Clol|Stl™ har (10sull L1 (7)) + 151,7/105, 2 O3ull L1 57y + |52,7/10ss 1 O3ttl| L1 (519 -

With the estimates

0o, ullLi(sry < |ulwia(sy)s
||8Si,T80'nu||L1(ST) S |u|W2’1(ST)’ = 17 2a
0s; 7 0sullL1(spy < [Osulwinsyy, — i=1,2,

the inequality
10:bnlr2¢r) < Chyp| T,
and |o,| ~ h; 7 (¢ = 1,2) we obtain from (35)

10:[(Mor, ) ()]l L2 (1) < CISTI2 (Julwr(sp) + (har + ho)|ulw2i(s,))
_ h
+C|Sr| 712 (if’z||33U||L1(sT)+h3,T|53u|W1’1(ST)) -
()
Finally, taking into account that, since hy 7 = ho g < Chs 1, we have

(hl,T + h27T)|U|W2,1(ST) + h3,T|63u‘W1v1(ST) <C Z h%|l)o‘u|w1,1(ST)7
|a]=1

inequality (33) follows from (34) and (39).

We are now prepared to estimate the interpolation error for needle elements.

(36)

(37)

Lemma 2.8 (anisotropic needle element, full regularity). If T is an anisotropic element with hip = hop <

Chsr and NsNNp =0, then the local interpolation error estimate

|u — Dhu|H1(T) <C Z h%|Dau|H1(ST)

lo]=1

(40)

holds provided that uw € H*(St). Assume T touches the singular edge, that is Ny NNt # (0. Let Sr be the

patch defined in Lemma 2.6, then the estimate

|u — Dhu|H1(T) <C Z h%|Dau|H1(§T)

Jal=1

holds, if u € H*>(Sr) N HA ().
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Remark 2.9.

(1) The estimate (40) does not hold for the Lagrange interpolant, see [2].

(2) This lemma will be applied in the proof of Theorem 2.11 in two situations: for the singular part of the
solution of the boundary value problem and away from the edge, but also for the regular part of the
solution for all 7.

Proof. (Lemma 2.8) We have full regularity and in case that T does not touch the singular edge, we may apply
the stability estimates of Lemmas 2.3 and 2.5 which leads to

\Dhu|H1(T) < C Z h%||Da83uHL2(ST) + C (|U|H1(ST) + hS,T|83u|H1(ST))

laf<1

<C Y BFID Ul (o)

lo|<1
We exploit that Dpw = w for an arbitrary w € P;. Consequently, we get

lu — DhU|H1(T) = |(u—w) — Dp(u — ’LU>|H1(T)
< |u—w|grry + [Dn(u — w)| g1y

S C Z h% |Da(u — w)'Hl(ST)-

l<1

We use now again the Deny—Lions type argument (22) with ¢ = 2 and m = 1, and conclude the desired estimate.

For the case that T touches the singular edge we use the modified interpolant (30) and replace St by Sr in
the above considerations. Moreover, the stability estimate of Lemma 2.6 has to be used then in the first step
of this proof. With Dyu = Dju for u vanishing on the boundary we get the desired estimate. O

Lemma 2.10 (anisotropic needle element, reduced regularity). Let T' be an anisotropic element with hyr =
hor < Chsr and let St have zero distance to the singular edge. Then the local interpolation error estimate

2
lu— Dyulgry < Chi Y 10:ully2 25,y + Char03ullyaz s, (41)

=1

holds provided that u has the reqularity demanded by the right-hand sides of the estimates and § € [0,1). If T
is an element with hy 1 = ho 7 < Chs r and St has zero distance to both a singular vertex and a singular edge
then the local interpolation error estimate

2
1-5—6 -
lu — Drulgr () < ChLTﬁ hg Z ||‘9i“Hv;;§(sT) + Ch1,§h3,THasuﬂvl;_g(sﬂ (42)
i=1 ’

hold provided that w has the regularity demanded by the right-hand sides of the estimates and 3,6 € [0,1),
B+06<1.

Proof. As in the proof of Lemma 2.8 we distinguish between the derivatives d5Dpu and the derivatives along
directions perpendicular to the x3-axis. From Lemma 2.3 we obtain by using the triangle inequality and
S|~ 2(105ull Li(sp) < |00l L2(my

105 (w — Dpu)llz2(r) < |9sullz2cry + CISr[ 72 > AG|ID*Osu 1)
[a]<1

< Clldsullp2(s7) + CISr|? Y7 hGID*Osul| 1 (51)-

|a]=1
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For the estimate of 0;Dpu, i = 1,2, we use Lemma 2.7, from which we conclude that

10;(u — Dpu)||z2(7)

< Clulgi(s,) + C|Sr| /2 ||33U||L1(ST) + Z R | D% ulwra(sy)
la]=1

These two estimates can be summarized to

|u — Dh’u,‘Hl(T)

< Clulgr(syy + C|Sp|/? ||33u||L1<sT) + Y BEIDulwra sy | - (43)

la|=1

It remains to estimate the terms against the weighted norms. In case that Sp touches the singular vertex we
have

2
uli(sp) < Y IR0 RPN 0ul| 2y + |IRTP0 - ROT107 O L2

=1

2
_ =5 _
< Znéile syl ||aiu||vg;§(ST) + Hé?le & ||a3“||vl§j§(ST)‘
i=1

With R17891—90 = pl-dR-BRS < pl-F—0RS < Ch%TTﬁ*éhg’T (where we used the assumption §+ ¢ < 1) and
R'-P < h1 b < hy Th3 7 we derive

2
1-p5=6;6 —
[l sey < i Wr D _110sullyz2 s,y + ChyphsrlBsullyras, -
i=1

With R'=991=0 = 19 < Chl7? (using that the exponent is positive) we derive also

2
ul sy < Ch}f Z ||8iu||v5{f(sT) + ChS,T\|53U||VO{b2(sT)~
=1

In the other case that T' intersects the singular edge, but no singular vertex, we have

hs,r
i 05ullLr(sp) < h ||C7:’>u||v1 25 Il L2(s7) < Ps T|5T|1/2H53UHV1 257"

T

If T has also a singular vertex, then we have with R#~1~1 = RAy~1

ha,r 3,7 _ _
I < EHasu”v;;g(sT)HR 1l 2sr) < hs,Th1,?|5T|1/2Haw”vf};g(sT)

) )

where we used that
IR™P7]|z2(spy < 1P Pl z2(sy) < Chy A | ST (44)



TITLE WILL BE SET BY THE PUBLISHER 19

which can be obtained by integration. The second derivatives in estimate (43) are treated in a similar way. For
1=1,2,3 we get

10ssull i (sr) < IR 225 IR Dusull sy < hielSrlY29sully1 s,

8,0

For 7,7 = 1,2 and supposing that T" does not have singular vertices we have

hirllOijullir sy < hirllR°07°| po(sp IR0 05ull r2(sy)

< hi?j’ﬂST‘l/z|8iu|V51.*62(ST)a

where we used again an argument as in (44). If T has a singular vertex, then
hir|Ogullisyy < harlR7707° 12 (op) | RP0°0i5ul L2 (51 )-

Note that R707° = R=A+9p=0 < ROp=F=0 < hgTr*ﬁ*‘s hold due to 8+ ¢ < 1. The norm [|r=?7%||12(g,) can
be computed exactly by executing the integration which leads to

—Bpy—6 5 —B—6 —B-816
IR0 2y < B rllr™lua(sey < Chyg” "B rlSr[V/2.
Hence we have
1-8—-6;6
hir |0igull L (sey < Chyg” "Wl Sl 2|0l yre s,
Therefore, the desired estimates are proved. O

Theorem 2.11 (global interpolation error estimate). Let u be the solution of the boundary value prob-
lem (1) with f € L*(), and let ur,ur be the functions obtained from the splitting (8). Assume that the
refinement parameters pg and vy satisfy the conditions

e < )\g), (45)
1

Vy < A\(,e) -+ 5, (46)

1 1 1
-+ — Agf>—)>1, 47
Ve o e < 2 (47)

£=1,...,L. Then the global interpolation error estimate
lur = Dnhurlmra,) < Chlfll2 (48)

18 satisfied.

Proof. The estimation of the global error can be reduced to the evaluation of the global error to each macro-
element Ay. So we will consider such a subdomain Ay with one singular edge and one singular vertex. The other
cases are treated in an even simpler way. We will omit the index /.

In view of Theorem 1.1 and the decompositions (7) and (8) we have ur = (u, —ur)+us with u, —uy € H?(A),
so we need to consider the interpolation error for both the regular part, which we denote now by w := u, — uy,
and the singular part us. Note, that the choice of ugs is not unique and it is possible to guarantee the property
us(n) = 0 for all n € N.. This implies w(n) = 0 for n € N which is used later.

We begin with an estimate for the regular part w. Since

lw — thﬁ{l(/\) = Z lw — thﬁIl(T) (49)
TCA
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we can use the local interpolation estimates from Lemma 2.1 when T is isotropic, Lemma 2.4 when T is flat,
and Lemma 2.8 when T is a needle element away from the singular edge, which yields

|w — th|H1(T) < ChT‘w|H2(ST) = thur‘H2(ST) (50)
for all these cases. For those T" which touch the singular edge the local estimate of Lemma 2.8 reads now
|w — th|H1(T) = |ur — DhuT|H1(T) S ChT|uT|H2(5’T)' (51)

Here, we have a patch Sr on the right-hand side which may be contained in multiple macro-elements. Inserting
now (50) and (51) into (49) yields

lw — Dpwlinay < Ch?|urlf2 gy < Ch2(|fl172(q);

where we used that hy(= diam(T)) < h for all T € T;, and that the Sz and S may overlap only a finite number
(independent of h) of times.

Now consider the estimate of [us — Dpug|g1(ay. Firstly, denote by Tr the set of all elements 7" C A whose
patches St are away from the singular edge and from the singular vertex. This also implies

Ry > hMY, rp > hMH, (52)

We further set Ap = U{T : T € Tg}. Since us € H?(St) on these elements we use Lemma 2.1, 2.4 or 2.8 as
appropriate to have

|uS — Dhus|H1(T) < Z h% |DauS|H1(ST)
lal=1

Due to the mesh condition we have h; 7 < Chr;j‘ < hr(z)'=# for i = 1,2 and har < ChR1T7” < hR(x)'"v

for all z € St and thus the estimates

hi T |8iuS|H1(ST) < h|uS‘V1142,L,1_,L(ST)’ for i =1,2, and

h3,T |83Us|H1(5T) < h|uS‘V11;2V,0(ST)

follow. Notice that due to our assumptions upon g and v the inequalities

1 1
1—p>1- A, 1—V>§—)\V7 and 1—,u>§—)\v (53)

hold, where the last estimate is equivalent to

1 1 1
" 2
which follows from (47) taking u < v into account. Due to the estimates (53) Theorem 1.1 can be applied and
we obtain
ulyrs oy <Clfls@y lulyaz o < Cllflisa.

Then summing up all the elements T' € Ty we arrive at

lus — Dpus| i (ag) < Chl fllLz(o).-
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Secondly, let Tg be the set of elements T" which are away from the singular vertex, i.e. Ry > RV, but such
that St intersects the singular edge, and set A = U{T : T' € Tg}. We use inequality (41) of Lemma 2.10
(which is valid when T is isotropic too) with 6 = 1 — . Due to hgr < ChRfl{V on St, we get

hS,THGBUSHVOl,bQ(ST) < h”aSUsHVllfV‘U(ST)-

As in the previous case we now sum up all elements T' € Tr and apply Theorem 1.1 exploiting the properties
(53) again. This leads to

IN

C||fHL2(Q)7 1= 1727

103usllviz npy < Clfllza,

||aiu5||V11;2“,1_“(AE)

and as a consequence we obtain
lus — Dpus|gr(ag) < Chllfllr2(0)-
Finally, we denote by T the set of all the elements T such that S contains the singular vertex, and by Ag
the union of all such elements. If 7' is one of these elements, we have hy r = hyp < ChY/# and hyp < Ch'/".
So using inequality (42) of Lemma 2.10, we obtain
1-8=6,35 1_B8
s = Disli ngy < OB 5% (J0rulysaca) + 10sllys ) + O

5

a3us||V;;§(A) (54)

for 5,0 € [0,1) with 8+ < 1. Let us now construct feasible weights 5 and § which satisfy the assumptions
of Theorem 1.1 and yield the expected convergence rate. We set 8 = 1/2 — A, + ¢ for some ¢ > 0 which is
sufficiently small such that the estimates (55)—(57) below hold. Due to p < v and (46) we get

1-p8- 1-— 1/2 —
f-0 0 18 124 —e (55)
W v v v
Moreover, with the definition of 8 and (47) we get
1 1 1/1
SRR N -
voopuo v u\2 I

Furthermore, we have to confirm that a feasible § exists, which means that the inequalities § < 1—-8 = 1/2+\,—¢
and 6 > 1 — A have to hold simultaneously. A suitable choice of § is possible since Ay > 0, A > 1/2 and

1/2 < X + Ay — . (57)
Inserting now (55) and (56) into (54) and and applying Theorem 1.1 yields
|us = Dpus| i (as) < Chl[fllo-

Since A = Ar UAg U Ag the proof is complete. O

Remark 2.12. The refinement conditions (45)—(47) were discussed in [4] already: The conditions (45) and
(46) balance the edge and vertex singularities. The third condition, (47), follows from (46) in the case pp = vy;
only in the case py < vy it imposes a condition between pp and v, limiting the anisotropy of the mesh. For the
Fichera example treated in Section 3 we have /\\(,Z) ~ 0.454 and Aff) = % With the choice vy = 0.9 the conditions
(45) and (47) imply the choice 0.414 < iy < Z. For vy = 0.8 we would get the weaker condition 0.184 < i, < 2.

) )

Note also that in the absence of singularities we have set )\g = oo and/or )\S,g = 0. In these cases we can

set pg =1 and/or v, = 1.
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FiGURE 5. Modification of macro-element of Type 4

Corollary 2.13 (H! and L? finite element error estimate). Let u be the solution of the boundary value
problem (1), and let uyp be the corresponding finite element solution on a finite element mesh as constructed
in Section 1 with grading parameters satisfying the conditions (45)—(47). Then the discretization error can be
estimated by

v = unllmio) < ChllfllL2 (o), (58)
lu = unllL2) < CR*|| fll2(0)- (59)

Proof. We choose vy, = ur + Dpug in estimate (4) and observe that u — v, = ug — Dpug. With Lemma 2.11
we obtain the estimate (58). The L2-error estimate can be derived by the standard Aubin—Nitsche method. [

Remark 2.14. A trivial conclusion from (58) is the stability estimate

llunllm1 ) < Cllfllz2@) (60)

which we will need in Section 4.

Remark 2.15. In macro-elements of Type 4 with uy = vy < 1, Apel and Nicaise suggested in [4] the use of
a more elegant refinement strategy as depicted in Figure 5. Our proof cannot be transfered to this kind of
mesh immediately since there may be elements 7" where St is not prismatic as it was exploited in the proof of
Lemmas 2.5 and 2.7. We conjecture that the assertion still holds but do not pursue this further in this paper.

3. NUMERICAL TEST

As in [4] we consider the Poisson problem (1) in the “Fichera domain” €2 := (—1,1)3\ [0, 1]® and choose the
right-hand side f = 14 R~3/2In"*(R/4) which is in L?(Q) but not in LP(Q) for p > 2. For this problem we
have A\, = 0.45 for the concave vertex [30] and A\, = o= % for the three concave edges. All other edges and
vertices are non-singular.

This boundary value problem was solved on quasi-uniform and on graded meshes with our refinement strategy
using = v = 0.5 < min{A., \, + %}, where Type 1, Type 2 and Type 4 occur. Additionally we include the
strategy where the macros of Type / are replaced by the modified version from Remark 2.15. Pictures of such
meshes can be found in [4]. The refinement strategies and an a posteriori error estimator of residual type [32]
were implemented into the finite element package MooNMD [19]. The estimated error norms are plotted
against the number of unknowns in Figure 6. We see that the theoretical approximation order h! ~ N~1/3
from Corollary 2.13 can be verified in the practical calculation for both refinement strategies. The error with
the second strategy is slightly smaller. We denoted by N the number of nodes.
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FIGURE 6. Plot of the estimated error against the number of unknowns. The labels at the
curve denote the estimated convergence order in terms of h ~ N~1/3. Strategy 1: anisotropic
refinement using Type 1-Type 4; Strategy 2: anisotropic refinement using the modified rule of
Remark 2.15 instead of Type 4

4. DISCRETIZATION ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM

Hinze introduced the variational discretization concept for linear-quadratic control constrained optimal con-
trol problems in [17]. We follow here this concept in a special case. Consider the minimization of

1 o
J(y,u) == QHZ/ — Yall7(q) + 5”“”%2(9),
with the constraint that the state y € H}(€2) is the weak solution of the Poisson problem
—Ay=u in Q, y=0 on JQ, (61)

and, that the control u is restricted by constant bounds u,, u, € R, this means that the set of admissible controls
is defined by

U= {u e L?(Q) tuy < u < up ae. Q)

The regularization parameter « is a fixed positive number and yq € L?(f2) is the desired state. It is well known
that this problem has a unique optimal solution (7, %). There is an optimal adjoint state p € H}(Q2), and the
triplet (g, @, p) satisfies the first order optimality conditions

(Vy, Vu)r2(0) = (@, v)2(0) Vo € Hy(9),
(Vﬁ, V’U)Lz(Q) = (7 — yd,'U>L2(Q) Yv € Hg(Q),
(aﬂ+ﬁ7u_a)L2(Q) >0 Yu € U,
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With the variational discretization concept the approximate solution is obtained by replacing H} () by a finite
element space Vj, C H}(Q) and searching (1, %n, pr) € Vi, x U4 x V, such that

(Vin, Von)r2(0) = (Un, vn)12(0) Vo € Vi,
(Von, Von)r2) = (Un — Ya, vn)2)  Yon € Vi,
(Qtip, + Phyu — Un)r2(0 )20 Yu e U™,

Note that the control space is not discretized; nevertheless @, can be obtained by the projection of —p;,/« onto
U294 see [17]. The discretization error estimate

@ — anll L2+ 117 — FnllL2) + 12 — Pllrzo) < Ch? (|all L2 +|yallL2))

can be concluded from (59) and (60), see [7,17]. With the proof of Corollary 2.13 we have established this result
for anisotropic discretizations of the state equation (61) in the case of three-dimensional polyhedral domains.

5. DISCRETE COMPACTNESS PROPERTY FOR EDGE ELEMENTS

The Discrete Compactness Property (DCP) is a useful tool to study the convergence of finite element dis-
cretizations of the Maxwell equations, both for eigenvalue and source problems. It was first introduced by
Kikuchi [20] and proved for Nédélec edge elements of lowest order on tetrahedral shape regular meshes. We
refer to the monograph by Monk [23] and the references therein for further analysis on isotropic meshes. The
property was also analyzed on anisotropically refined tetrahedral meshes on polyhedra for edge elements of
lowest order by Nicaise [25] (excluding vertex singularities) and by Buffa, Costabel, and Dauge [13].

Lombardi [21] extended this result to edge elements of arbitrary order, also including vertex and edge singu-
larities. The proof is based on two tools: 1) interpolation error estimates for edge elements on meshes satisfying
the maximum angle condition, and 2) interpolation error estimates for a piecewise linear interpolation operator
defined on W2P(Q) N HL(Q), p > 2, preserving boundary conditions. For the latter, the Lagrange interpolation
was used (implying p > 2) together the results of Apel and Nicaise [4], giving some artificial restrictions on the
grading parameters defining the allowed anisotropically graded meshes. Using now estimate (58) of Corollary
2.13 we can extend the result of [21] allowing little more general meshes.

In what follows we define a family of edge element spaces and introduce the DCP for this family. We refer
to [21] for further definitions and notation. First we introduce the divergence-free space

X ={v € Hy(curl,Q) : divv =0 on Q}.

Then we introduce discretizations of this space where the divergence-free condition is weakly imposed. Let I
be a denumerable set of positive real numbers having 0 as the only limit point. From now till the end of this
section, we assume that h € 1. For each h, let 7T be the mesh on the polyhedron Q constructed in Section 1.
Given an integer k > 1, let X}, be the space defined as

Xy = {vin € Hy(curl,Q) : v, |7 € Niu(T)VT € Tr, (VPr, Vi) 12(0) = 0Vpr € Sh}
where N, (T') is the space of edge elements of order k on T', and
Sp = {pn € H{(Q) : pr|r € Po(T)VT € T1,} .

We say that the family of spaces {Xj}rer satisfies the discrete compactness property if for each sequence
{Vh}tnes, J C 1, verifying for a constant C

Vi€ Xn,  Vhel,
||vh||Ho(curl,Q) <C, Vhel,
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there exists a function v € X and a subsequence {vy,, nen such that (for n — co)
Vi, — v in L*(Q)
vp, — v weakly in Hy(curl, Q).

Theorem 5.1. If the grading parameters defining the meshes Ty satisfy the conditions (45)—(47), then the
family of spaces { X }n>o verifies the discrete compactness property.

Proof. Follow exactly the arguments used to prove Theorem 5.2 of [21] taking into account that the inequality
(4.21) of that paper is now a consequence of estimate (58). O

APPENDIX A. PROOF OF TRACE INEQUALITIES
We start from the known trace inequality

||U||LP(&) S C’HUHWlT(ﬁ') Yu € Wl”r(ﬁ‘),

where 1 < p < r < oo, F'is the reference triangle (with vertices (0,0), (1,0) and (0,1)), & is one of its edges and
C is a constant depending only on p and r. It follows for instance from Theorem 4.2 of [24]. If F is a triangle
and o is one of its edges, we obtain by a simple rescaling argument (we assume here r < 00.)

lull ooy < CloMPIFI7H7 (Jlul

L7(F) + |€1|||ag1u| LT'(F)) Yu € Wl’T(F)7 (62)

Lr(F) + [€2] |06, ul

with the constant C' depending only on p and r, and where ¢; and /5 are two arbitrary sides of F.
Similarly, if T" is a tetrahedron, F is one of its faces, ¢;,7 = 1,2, 3 are three non coplanar edges of T', and if
1 <r < g < oo, we have the inequality

3
lull oy < CJEM7|T| 718 (”U”L'I(T) +> I&Iaeiqu(T)> Vu e WH(T), (63)

i=1
with C' depending only on r and ¢. In fact, (63) is obtained by a rescaling argument from the trace inequality

lall gy < Cllullyray — Yue WHI(T)

for a reference element 7' with a face F, taking as reference element either the tetrahedron with vertices at
(0,0,0),(1,0,0),(0,1,0) and (0,0,1) when the edges ¢; are concurrent, or the tetrahedron with vertices at
(0,0,0),(1,1,0),(0,1,0) and (0,0,1) when they are not.

We can now combine inequalities (62) and (63). Let T be a tetrahedron, ¢ one of its edges, and ¢;,i = 1,2,3
three non coplanar edges. Then if 1 < p < g < oo there exists a constant depending only on p and ¢ such that

3 3
[ull 2o () < CloMPITI79 Nl agry + D 1lllOewll agry + Y 1il141110e.e, el oy Vu € W24(T).
i=1 i,j=1
(64)
Clearly, inequality (64) can be written as
[ull 2o (o) < CloMPITI79 |l ogry + hrlulwracy + he Y WD ulwracr) Yu e WHI(T), (65)

le|=1

where the constant C' depends on p, ¢ and the shape-regularity constant of T. However (65) is also valid on
some arbitrarily anisotropic elements with a uniformly bounded constant C, as we state in the next Lemma.
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V3
Yy

FI1GURE 7. Illustration of the prism

Lemma A.1. There exists a constant C depending only on p and q, with 1 < p < g < oo, but independent of
h, such that for all T € Ty, and o edge of T the inequality (65) holds.

Remark A.2. In (65) the derivative D refers to a partial derivative with respect to the local Cartesian system
of the macro-element in which 7" is included.

Proof. The conclusion follows from (64) if we prove that there exists a constant C' independent of h such that
any tetrahedron T € Tj, has three non coplanar edges ¢;,7 = 1,2, 3 with

|€z| S Chi,T, |€z . €j| S Oh]’,T, i,j = 1,2,3. (66)

In the spirit of Remark A.2, e; refers to the unitary vectors of the local cartesian system of the macro-elements
containing 7. This condition is clear on elements contained on isotropic refinement macro-elements (of Type 1
and Type 2). So we need to consider elements contained on macro-elements of Type 3 or Type 4. Let T be one
of those elements. We know that 7" has a vertical edge /3, and has two edges ¢ and /5 contained on one or two
planes transversal to the singular edge of the macro-element (introduced in page 4). Then 1, ¢y and {5 verify
(66). This is a consequence of the results of [4] (see ineq. (3.2)). O

We also need trace inequalities where in the right hand side the presence of some derivatives is avoided. We
have the following results.

Lemma A.3. Let P be a triangular prism with vertices v;, i = 1,...,6, where the face vivovs is opposite to
the face vavsvg, and where the edges viv4, vavs, and v3vg are parallel to the x3-axis, see Figure 7. Denote by F
the face vivaus. Then for all v € WHP(P), p € [1,00), we have

< Creg

oWy < s (Ielluey + PE10501T, )

where hg is length of the shortest vertical edge, and ~y is the angle between the x1x2-plane and the plane containing
the face F'. The constant Cr.q depends only on p and the minimum angle of the face F'.

Proof. We can assume v; = (0,0,0) and vg = (0,0, h3). Suppose va = (az,bs, ¢c2), v3 = (as, b3, c3). Let s,t such
that

a23—|—b2t = C2

as3s +bst = c3.
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It is clear that there exist such s and ¢ since vy, ve, and v3 do not lay on one line. Then the map f(Z) = BZ
with

1 0 0
B = 0 1 0
s t 1

sends P to P where P is a prism with three VerNtical edges and some o£ its vertices are v, = (0,0,0),02 =
(ag, b2,0),03 = (a3, bs3,0) and 04 = (0,0, h3). Let F be the face 010203 of P.
Let 0 be defined by ©(Z) = v(x) if x = BZ. Then we have

1
p — P
900y = 57 191, 5

Now, if CNQ is the right prism with vertices o1, ...,74, (az2,ba, hs) and (as,vs, hs), then we have using a trace
inequality on ) and noting that @ C P that
+ h5[|057)

8117, 7 < Cohz™ (I

P P ~)
Lr(Q) Lr(Q)

< Gz (1912, 5, + W5186512, ) )

p ~
Lr(F)

with €, depending only on p. Therefore, we have

C -
p — p_p—1 =P p ~1|P
o0y = coestia (Il 5y + 5105011, )
Creg

_ -1 r p p
= oo 1B (ol ) + 510501, p,)

where we used that d59(Z) = dsv(x). Since |B| = 1 we obtain the desired result. O

Lemma A.4. Let T be an anisotropic element with the node n on the singular edge and let o, be a short edge.
Let P, C St be a parallelogram of mazximal area having o, as an edge and another edge on the singular edge,
see Figure 8. And let F,, the face of St containing P,. Then |P,| > C|F,|, and for all v € WY1 (St) we have

Wl e,y < CIESrI™ (Illzi(se) + [s1.rl10s, 20l 21 (sp) + s2.2(108 2l 1 (sr)) -

where s1, 7 and sy are two short edges of T

Proof. The inequality |P,,| > C|F,| follows from our assumptions on the mesh, in particular from the comparable
length of opposite edges of F,,. For proving the estimate choose the coordinate system such that n = (0,0,0).
Assume first v is regular. We have

A\

h&Pn |‘7n|
lvllLip,y < C/ / [v((0,0, 2) + to,)| dtdz
0 0

h3,p,
= / / |v|ds dz
0 o(z)

where o(z) is the segment parallel to o, and with the same length and passing through (0,0, z). If £(z) is the
triangle contained in St having o(z) as an edge and being parallel to the bottom face of St, then since we can



28 TITLE WILL BE SET BY THE PUBLISHER

F1cURE 8. Tllustration of the notation used in Lemma A.4. The dotted lines indicate the prism
Q. dashed lines the parallelogram P, while the triangle {(z) is hatched. Note that o(z) =

§(2) N F.

assume vl¢(,) is regular (because v is), by the trace inequality (62) we have

‘Un‘
/( )| v <O+ (|U| + [51,7110s1 V] + |52,7[10s, 2 0])
z

where = |£(0)]. So we have
0] [l
ey < 07 [ /( (o] + 1512119 0] + 15271 By 0])
Bl o
< |Q|/ / (o] + (51,7110 r 0] + [52.7]1Bupr 0]
P,
< Bl o) 1 1s1l10un 0] + 52,2110 20
1@Qnl Jq,
P,
< ||Q |/ (o] + 1512119 0] + 152719y 0])

where @Q,, is the prism formed by the union of {(z) with z € [0, h3 p,] that is contained in Sp. Since |P,| < |Fy|
and, from the assumptions on the mesh, |@Q,| > C|Sr| we arrive at

| Fnl
[l ) SC|S;| g (Il + ls1,7[105, 0| + [s2,7[105, 7 0])-
T

If v € WH1(S7), let {vk}x be a sequence of C* functions converging to v in Wh1(Sz). For each k we have

lvellr ) < CIESTI™ (lokllpr(sey + 1512110, vl L1 (s2) + 152,70/ 10s5 20kl L1 (51 -

Now, the proof concludes by taking limit as k — oo. O
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