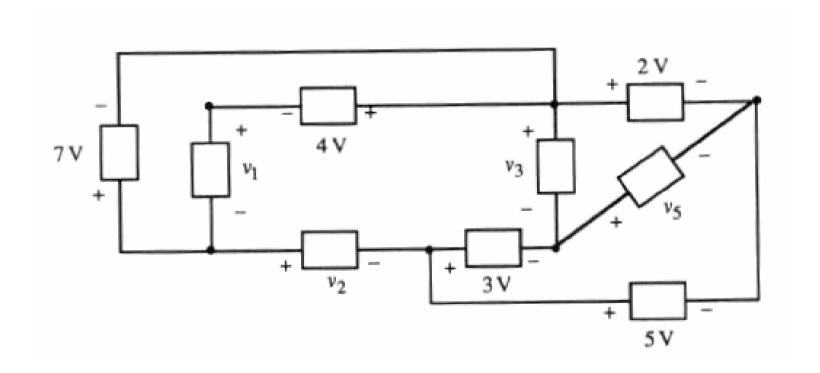

CAPITULO 1

Teoría de Circuitos I 2do Cuatrimestre 2013

El elemento E de la figura absorbe una potencia de 9 W. Hallar la ddp v_E en bornes de dicho elemento y la corriente I_C . Usar el principio de conservación de potencia. Analizar la convención utilizada.



En un circuito se conoce la siguiente distribución de corrientes:

- a) Tomando el nudo "4" como referencia, escribir las ecuaciones de la LKC.
- b) Dadas $I_1 = 1$ A, $I_3 = 3$ A e $I_5 = 5$ A, determinar si es posible, las restantes corrientes.
 - c) Qué hubiera pasado si los datos hubieran sido I₁, I₂ e I₄?

Hallar las diferencias de potencial V₁, V₂, V₃, V₄ y V₅.

a) Si se conocen las siguientes corrientes:

$$i_7 = -5$$

$$i_4 = 5$$

$$i_7 = -5$$
 $i_4 = 5$ $i_{10} = -3 i_3 = 1$

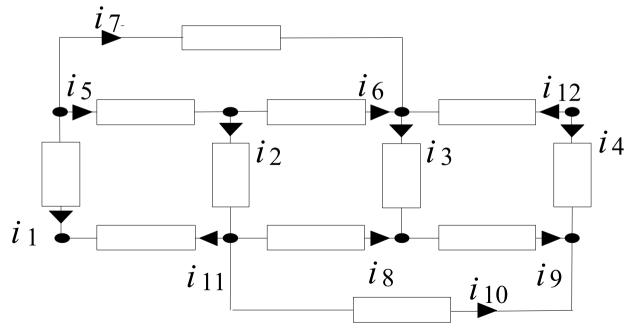
$$i_1 = 2 A$$

es posible determinar las restantes? Determine las que pueda.

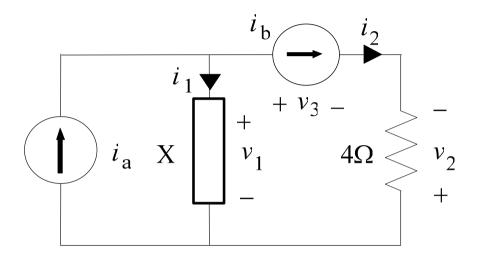
b) Si se miden las tensiones de rama con los sentidos asociados a las corrientes y se obtienen los siguientes valores:

$$V_1 = 10$$

$$V_2 = 5$$

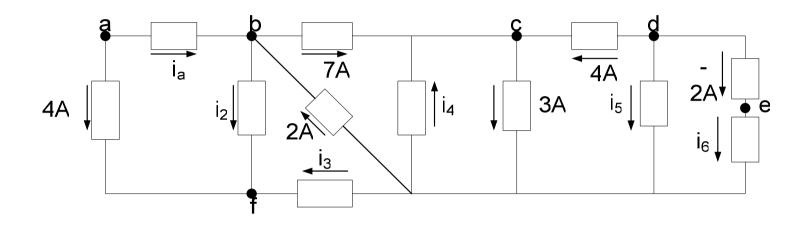

$$v_1 = 10$$
 $v_2 = 5$ $v_4 = -3$ $v_6 = 2$ $v_7 = -3$ $v_{12} = 8$

$$V_6 = 2$$

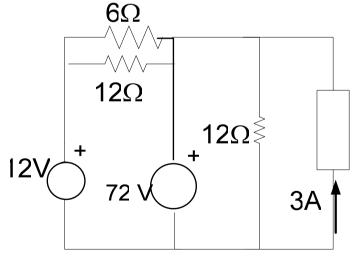

$$V_7 = -3$$

$$V_{12} = 8$$

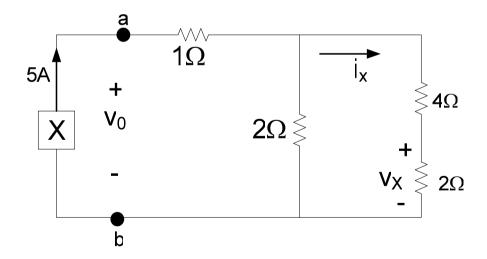
Determinar todas las restantes tensiones de rama posibles.



En el siguiente circuito, i_a = 24 e^{-3t}, i_b =2 e^{-3t} para t>0.


Calcular:

- i) i_1
- ii) i₂
- iii) v_1 si la relación volt-ampere del dipolo es $v_1 = 4\frac{di}{dt}$
- iv) v₂



Hallar el valor de las corrientes i_1 , i_2 , i_3 , i_4 , i_5 e i_6 utilizando la LKC y superficies de Gauss convenientes.

- a) Calcular las corrientes por todas las ramas usando las leyes de Kirchhoff.
 - b) Puede realizar alguna simplificación antes de resolver? Qué cambia en la resolución? Qué ocurre con las corrientes de rama?

- •Calcular las magnitudes indicadas en el circuito.
- •Calcular el balance de potencias en el circuito.
- •Qué tipo de elemento es el dipolo X.
- •Cuánto vale la resistencia vista por el dipolo X?

