APLICACIONES DEL MÉTODO "ADJOINT" EN LA HIDROLOGÍA DEL AGUA SUBTERRÁNEA

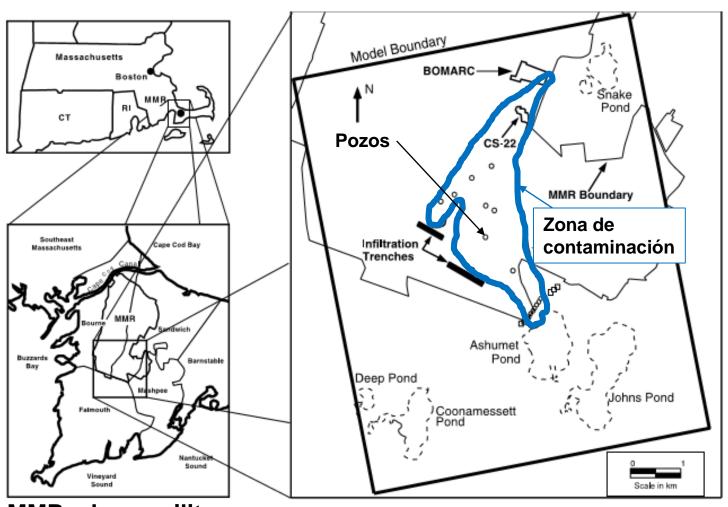
Roseanna M. Neupauer

Dept

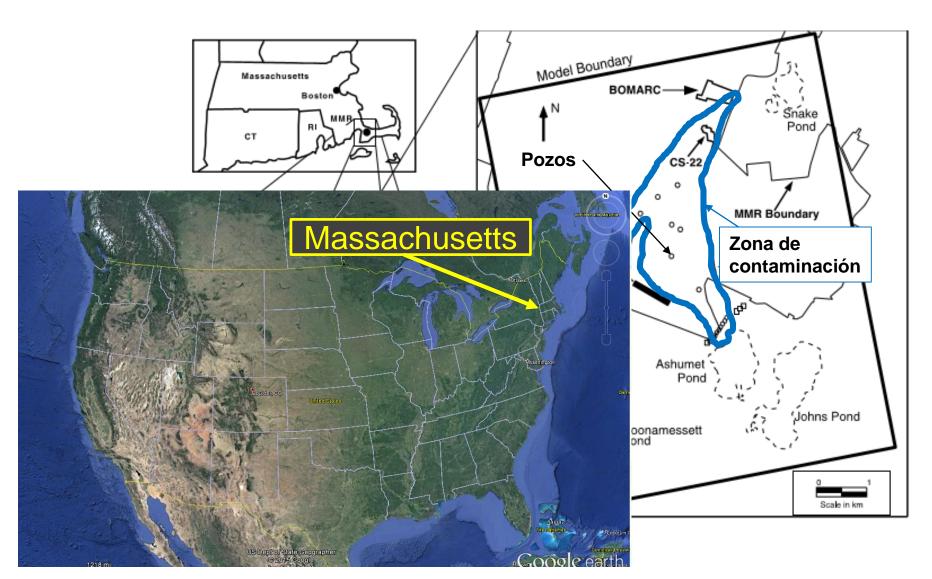
de Ingeniería Civil, Ambiental, y Arquitectural

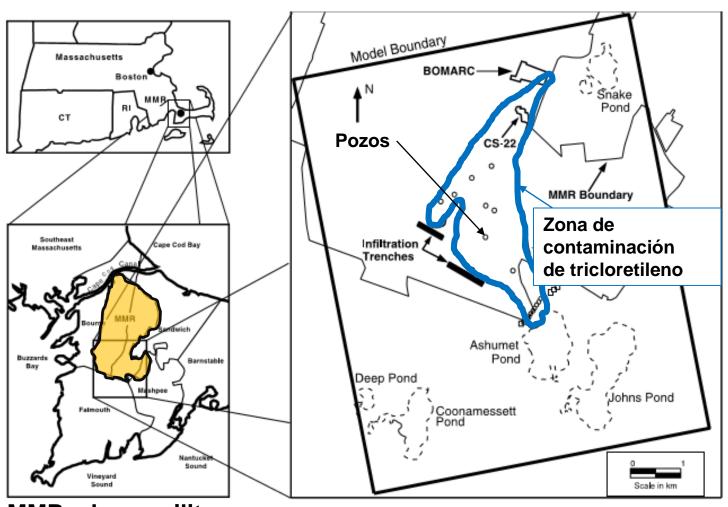
University of Colorado Boulder

16 junio 2016



MMR - base militar





MMR - base militar

Modelo tradicional

- Propaga información en la dirección aguas abajo
- Unas fuentes, muchos receptores

Modelo "adjoint"

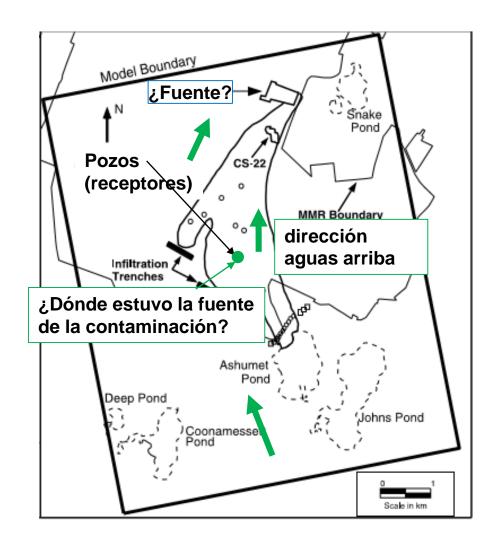
- Propaga información en la dirección aguas arriba
- Unos receptores, muchas fuentes

Modelo tradicional

- Propaga información en la dirección aguas abajo
- Unas fuentes, muchos receptores

Modelo "adjoint"

- Propaga información en la dirección aguas arriba
- Unos receptores, muchas fuentes



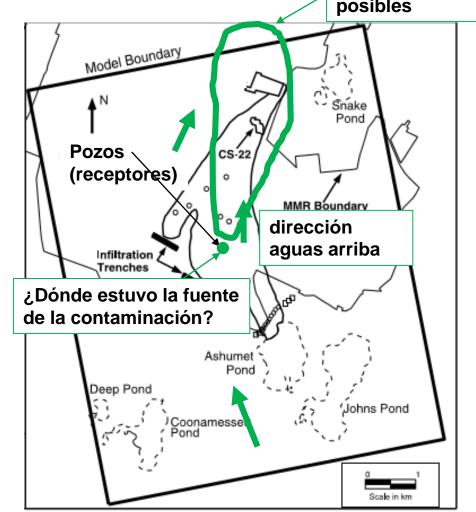
Zona de fuentes posibles

Modelo tradicional

- Propaga información en la dirección aguas abajo
- Unas fuentes, muchos receptores

Modelo "adjoint"

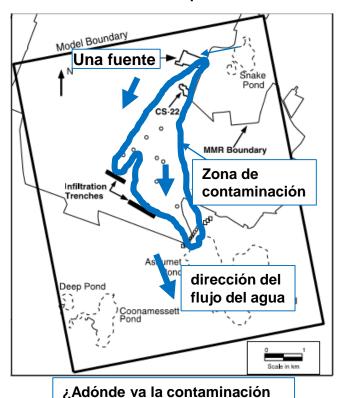
- Propaga información en la dirección aguas arriba
- Unos receptores, muchas fuentes



Resumen de método "adjoint"?

Modelo tradicional

- Propaga información en la dirección aguas abajo
- Unas fuentes, muchos receptores



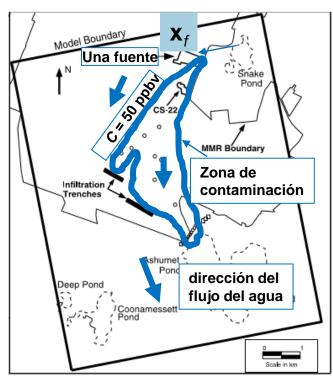
de una fuente?

Modelo "adjoint"

- Propaga información en la dirección aguas arriba
- Unos receptores, muchas fuentes posibles

¿Dónde estuvo la fuente de la contaminación ?

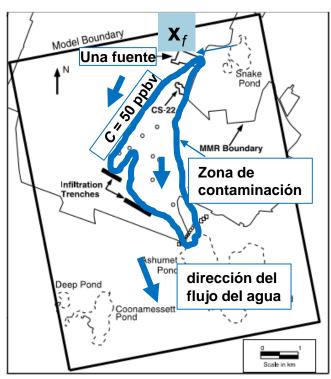
Sensibilidad de un estado del sistema con un parámetro



C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_f – ubicación de la fuente específica t – tiempo t_f – tiempo de descarga de la fuente

Sensibilidad de un estado del sistema con un parámetro

estado del sistema: concentración, $C(\mathbf{x},t)$



C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_f – ubicación de la fuente específica t – tiempo t_f – tiempo de descarga de la fuente

Sensibilidad de un estado del sistema con un parámetro

estado del sistema: concentración, $C(\mathbf{x},t)$

parámetro: Masa de contaminación descargada de la fuente, $M(\mathbf{x}_f, t_f)$

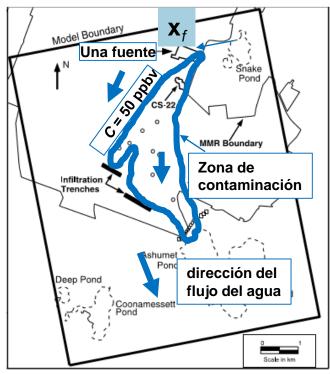
C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_{f} – ubicación de la fuente específica t – tiempo t_{f} – tiempo de descarga de la fuente

Sensibilidad de un estado del sistema con un parámetro

estado del sistema: concentración, $C(\mathbf{x},t)$

parámetro: Masa de contaminación descargada de la fuente, $M(\mathbf{x}_{f}, t_{f})$

sensibilidad:
$$\phi(\mathbf{x}, t, \mathbf{x}_f, t_f) = \frac{C(\mathbf{x}, t)}{M(\mathbf{x}_f, t_f)}$$



C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_{f} – ubicación de la fuente específica t – tiempo t_{f} – tiempo de descarga de la fuente

Sensibilidad de un estado del sistema con un parámetro

estado del sistema: concentración, $C(\mathbf{x},t)$

parámetro: Masa de contaminación descargada de la fuente, $M(\mathbf{x}_{f}, t_{f})$

sensibilidad:
$$\phi(\mathbf{x}, t, \mathbf{x}_f, t_f) = \frac{C(\mathbf{x}, t)}{M(\mathbf{x}_f, t_f)}$$

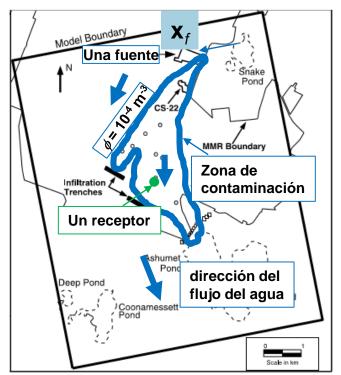
C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_{f} – ubicación de la fuente específica t – tiempo t_{f} – tiempo de descarga de la fuente

Sensibilidad de un estado del sistema con un parámetro

estado del sistema: concentración, $C(\mathbf{x},t)$

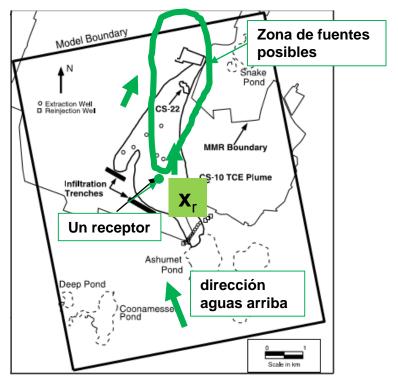
parámetro: Masa de contaminación descargada de la fuente, $M(\mathbf{x}_{f}, t_{f})$

sensibilidad:
$$\phi(\mathbf{x}, t, \mathbf{x}_f, t_f) = \frac{C(\mathbf{x}, t)}{M(\mathbf{x}_f, t_f)}$$



C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_f – ubicación de la fuente específica t – tiempo t_f – tiempo de descarga de la fuente

sensibilidad "adjoint":
$$\psi(\mathbf{x}, t, \mathbf{x}_r, t_r) = \frac{C(\mathbf{x}_r, t_r)}{M(\mathbf{x}, t)}$$



ϕ − sensibilidad

 ψ – sensibilidad "adjoint"

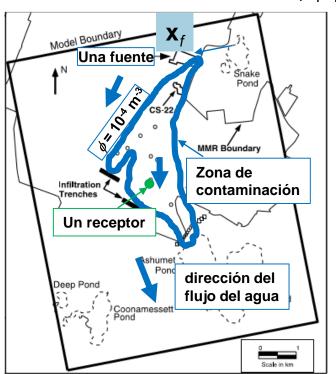
 \mathbf{x}_{r} – ubicación del receptor específico

Sensibilidad de un estado del sistema con un parámetro

estado del sistema: concentración, $C(\mathbf{x},t)$

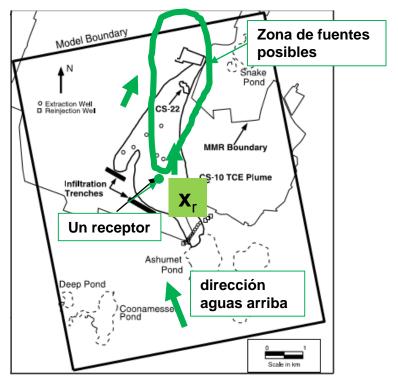
parámetro: Masa de contaminación descargada de la fuente, $M(\mathbf{x}_{f}, t_{f})$

sensibilidad:
$$\phi(\mathbf{x}, t, \mathbf{x}_f, t_f) = \frac{dC(\mathbf{x}, t)}{dM(\mathbf{x}_f, t_f)}$$



C – concentración M – masa de la fuente \mathbf{x} – ubicación \mathbf{x}_f – ubicación de la fuente específica t – tiempo t_f – tiempo de descarga de la fuente

sensibilidad "adjoint": $\psi(\mathbf{x}, t, \mathbf{x}_r, t_r) = \frac{dC(\mathbf{x}_r, t_r)}{dM(\mathbf{x}, t)}$



ϕ − sensibilidad

 ψ – sensibilidad "adjoint"

 \mathbf{x}_{r} – ubicación del receptor específico

Ecuaciones

Model Boundary Una fuente Zona de contaminación Un receptor Pond dirección del flujo del agua

Ecuación tradicional

$$n\frac{\partial C}{\partial t} = \nabla \cdot \left(n\mathbf{D}\nabla C \right) - \nabla \cdot \left(n\mathbf{v}C \right) + M\delta \left(\mathbf{x} - \mathbf{x}_f \right) \!\! \delta \! \left(t - t_f \right)$$
 Dispersión Advección Descarga de la fuente

C – concentración

n – porosidad

x – ubicación

D – tensor de dispersión

t - tiempo hacia atrás

M – masa de la fuente

 ψ – sensibilidad "adjoint"

v - velocidad

t – tiempo

x_f – ubicación de la fuente específica

 t_f – tiempo de descarga de la fuente

x_r – ubicación del receptor específico

Ecuaciones

Ecuación tradicional

$$n\frac{\partial C}{\partial t} = \nabla \cdot \left(n\mathbf{D}\nabla C \right) - \nabla \cdot \left(n\mathbf{v}C \right) + M\delta \left(\mathbf{x} - \mathbf{x}_f \right) \delta \left(t - t_f \right)$$
 Dispersión Advección Descarga de la fuente

Ecuación de sensibilidad

sensibilidad:
$$\phi(\mathbf{x}, t; \mathbf{x}_f, t_f) = \frac{dC(\mathbf{x}, t)}{dM(\mathbf{x}_f, t_f)}$$

$$n\frac{\partial \phi}{\partial t} = \nabla \cdot (n\mathbf{D}\nabla\phi) - \nabla \cdot (n\mathbf{v}\phi) + \delta(\mathbf{x} - \mathbf{x}_f)\delta(t - t_f)$$

C – concentración

M – masa de la fuente

 ψ – sensibilidad "adjoint"

n – porosidad

v - velocidad

t – tiempo

x – ubicación **D** – tensor de dispersión

x_f – ubicación de la fuente específica

t – tiempo hacia atrás

 t_f – tiempo de descarga de la fuente

x_r – ubicación del receptor específico t_r – tiempo de observación en el receptor

Ecuaciones

Ecuación tradicional

$$n\frac{\partial C}{\partial t} = \nabla \cdot \left(n\mathbf{D}\nabla C \right) - \nabla \cdot \left(n\mathbf{v}C \right) + M\delta \left(\mathbf{x} - \mathbf{x}_f \right) \!\! \delta \! \left(t - t_f \right)$$
 Dispersión Advección Descarga de la fuente

Ecuación de sensibilidad

sensibilidad:
$$\phi(\mathbf{x}, t; \mathbf{x}_f, t_f) = \frac{dC(\mathbf{x}, t)}{dM(\mathbf{x}_f, t_f)}$$

$$n\frac{\partial \phi}{\partial t} = \nabla \cdot (n\mathbf{D}\nabla\phi) - \nabla \cdot (n\mathbf{v}\phi) + \delta(\mathbf{x} - \mathbf{x}_f)\delta(t - t_f)$$

Ecuación "adjoint"

sensibilidad adjoint: $\psi(\mathbf{x}, \tau; \mathbf{x}_r, \tau_r = 0) = \frac{dC(\mathbf{x}_r, \tau_r = 0)}{dM(\mathbf{x}, \tau)}$

C – concentración

n – porosidad

x – ubicación

D – tensor de dispersión τ – tiempo hacia atrás

M – masa de la fuente

 ψ – sensibilidad "adjoint"

v - velocidad

t – tiempo

x_f – ubicación de la fuente específica

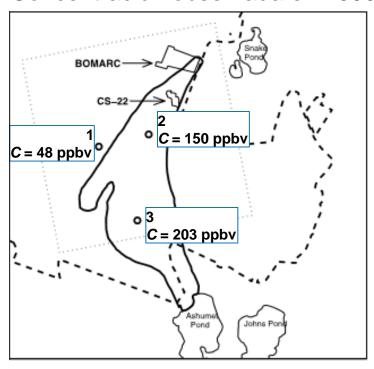
 t_f – tiempo de descarga de la fuente

 $n\frac{\partial \psi}{\partial \tau} = \nabla \cdot (n\mathbf{D}\nabla \psi) + \nabla \cdot (n\mathbf{v}\psi) + \delta(\mathbf{x} - \mathbf{x}_r)\delta(\tau)$

 \mathbf{x}_{r} – ubicación del receptor específico

Identificación de la fuente de contaminación

Concentración observada en 2000



¿Dónde estuvo la fuente en 1962?

$$n\frac{\partial \psi}{\partial \tau} = \nabla \cdot (n\mathbf{D}\nabla \psi) + \nabla \cdot (n\mathbf{v}\psi) + \delta(\mathbf{x} - \mathbf{x}_r)\delta(\tau)$$

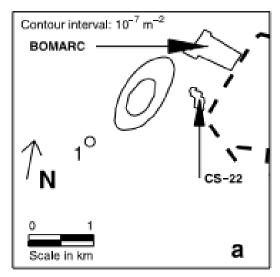
sensibilidad adjoint:
$$\psi(\mathbf{x}, \tau, \mathbf{x}_r, \tau_r = 0) = \frac{dC(\mathbf{x}_r, \tau_r = 0)}{dM(\mathbf{x}, \tau)}$$

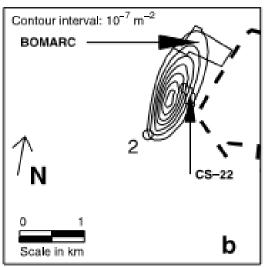
función densidad de probabilidad (FDP) de la ubicación de la fuente

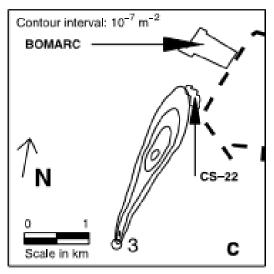
$$f_x = n(\mathbf{x}) \ \psi(\mathbf{x}, \tau, \mathbf{x}_r, \tau_r = 0)$$

Identificación de la fuente de contaminación

FDP de la ubicación de la fuente



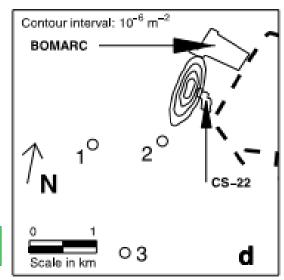




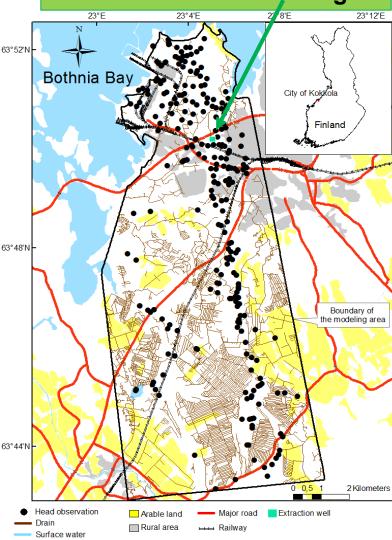
De cada pozo individualmente

Resultados: La fuente más verosímil es CS-22

FDP conjunta



Protección de la calidad del agua en un pozo



Kokkola, Finlandia

- Usan intercambiadores de calor
- Quieren asegurar que la concentración en el pozo nunca excederá el umbral

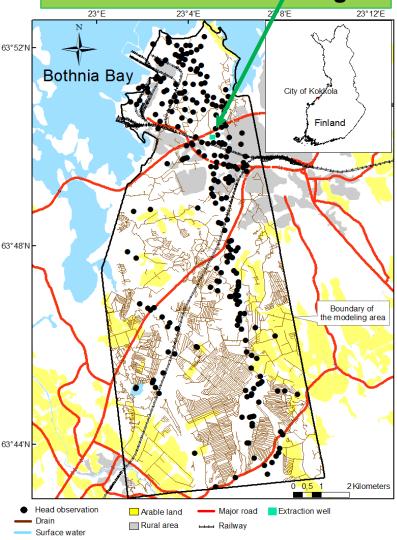
¿Dónde deben permitir el uso de intercambiadores de calor?

Zona de captura – región alrededor del pozo en que una descarga produciría una concentración en el pozo que excede un umbral

Producto químico	Vida media t _{1/2} (d)	Masa de descarga (kg)			
		V =200L	400 L	16,000L	
Etanol	2	44	88	3535	
Formate de potasio	5	76	153	6106	
Glicol de etileno	23	33	67	2672	

Protección de la calidad del agua en un pozo

Receptor: Pozo de suministro del agua



$$n\frac{\partial \psi}{\partial \tau} = \nabla \cdot (n\mathbf{D}\nabla \psi) + \nabla \cdot (n\mathbf{v}\psi) - n\frac{\ln 2}{t_{1/2}}\psi + \delta(\mathbf{x} - \mathbf{x}_r)\delta(\tau)$$

sensibilidad adjoint:
$$\psi(\mathbf{x}, \tau, \mathbf{x}_r, \tau_r = 0) = \frac{dC(\mathbf{x}_r, \tau_r = 0)}{dM(\mathbf{x}, \tau)}$$

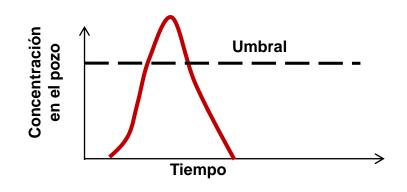
$$C(\mathbf{x}_r, \tau) = M \psi(\mathbf{x}, \tau; \mathbf{x}_r, \tau_r = 0)$$

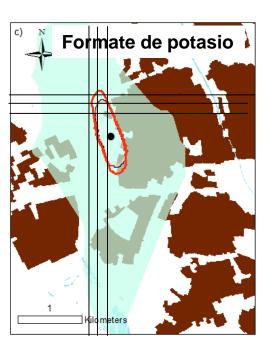
Producto químico	Vida media t _{1/2} (d)	Masa de descarga (kg)			
		V =200L	400 L	16,000L	
Etanol	2	44	88	3535	
Formate de potasio	5	76	153	6106	
Glicol de etileno	23	33	67	2672	

$$C(\mathbf{x}_r, \tau) = M \psi(\mathbf{x}, \tau; \mathbf{x}_r, \tau_r = 0)$$
 3 simulationes 3 masas por simulación

En cada caudra, los resultados muestran la distribución temporal de concentración EN EL POZO

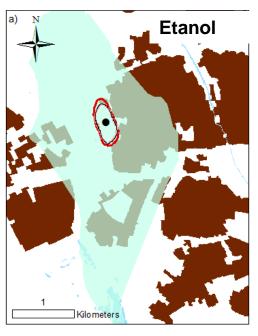
Si la concentración máxima excede el umbral, la cuadra está en la zona de captura

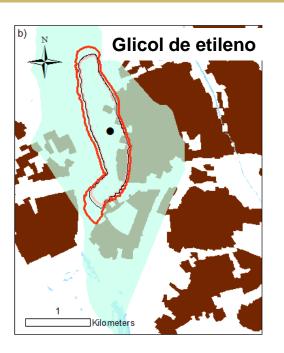




Volumen del fluido descargado

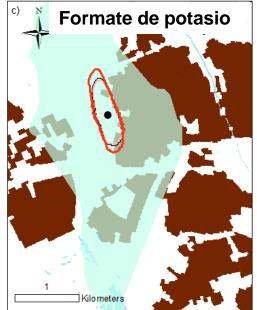
	_				
16000 L					
400 L		Vida	Masa	de descarg	ja (kg)
200 L		media			
Pozo	Producto químico	t _{1/2}			
P020		(d)	V 000I	400.1	40.0001
Steady state capt			V =200L	400 L	16,000L
Rural area	Etanol	2	44	88	3535
	Formate de potasio	5	76	153	6106
	Glicol de etileno	23	33	67	2672





Zonas de Captura

3 simulaciones adjoint 350.000 simulaciones tradicionales



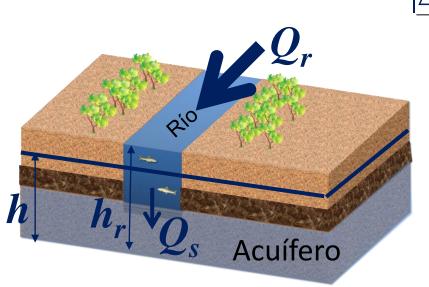
Volumen del fluido descargado

16000 L 400 L 200 L	Producto químico	Vida media t _{1/2} (d)	Masa de descarga (kg)		
Pozo Steady state capt			V =200L	400 L	16,000L
Rural area	Etanol	2	44	88	3535
	Formate de potasio	5	76	153	6106
	Glicol de etileno	23	33	67	2672

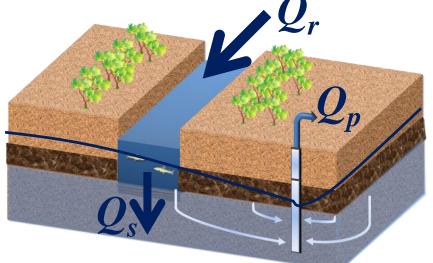
Agotamiento de un río

Disminución del caudal del río como resultado de bombear de un acuífero adyacente al río.

$$|\Delta Q_r| = C \Delta (h_r - h)$$



 $\frac{|\Delta Q_r|}{O} = ?$



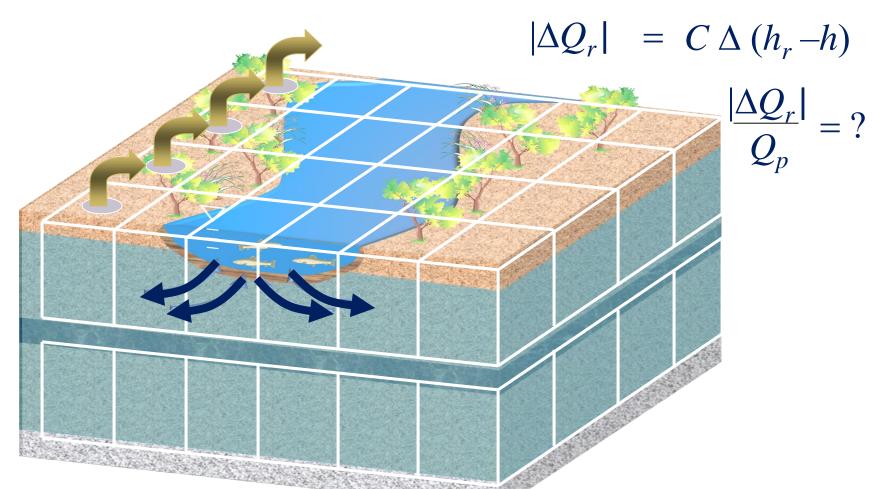
 Q_r = caudal del río C = coeficiente

 Q_s = flujo entre río y acuífero h = carga hidráulica en el acuífero

 Q_p = tasa de bombeo h_r = carga hidráulica en el río

Simulaciones Tradicional

Sensibilidad de un estado del sistema (h) con un parámetro (ubicación del pozo)



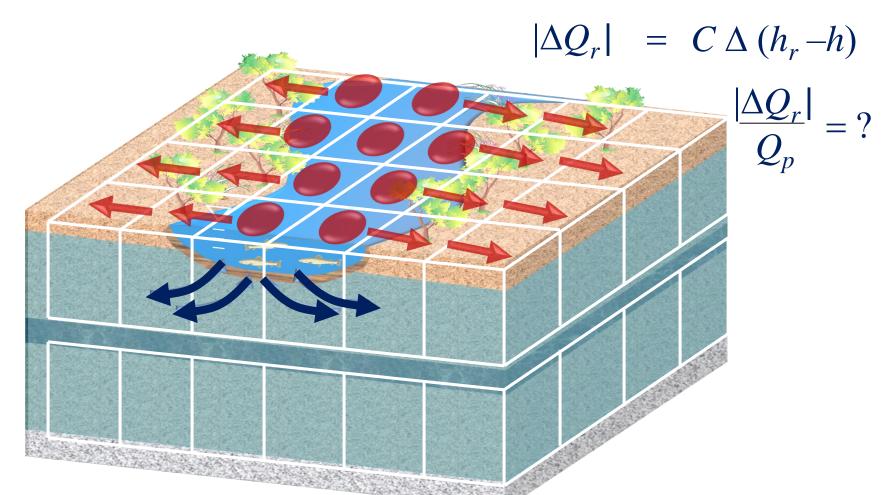
 Q_r = caudal del río C = coeficiente

 Q_s = flujo entre río y acuífero h = carga hidráulica en el acuífero

 Q_p = tasa de bombeo h_r = carga hidráulica en el río

Simulaciones "Adjoint"

Sensibilidad de un estado del sistema (h) con un parámetro (ubicación del pozo)

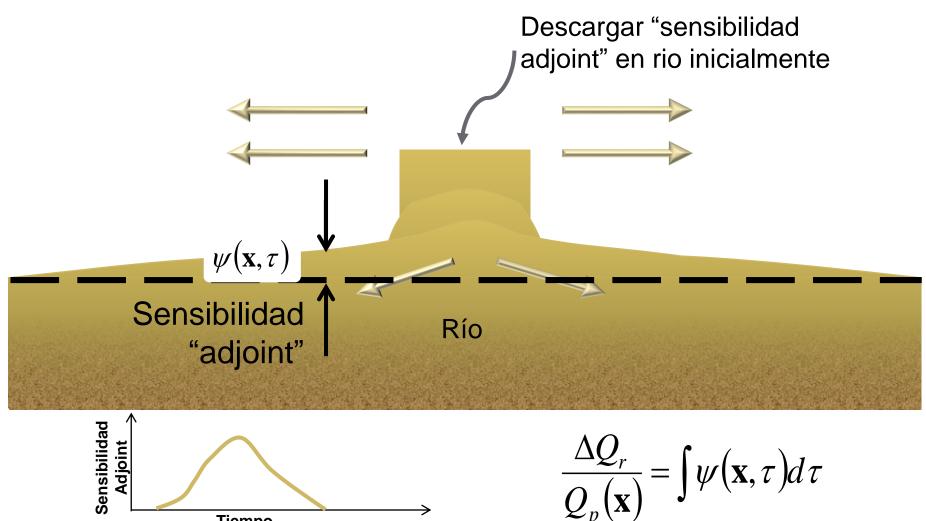


 Q_r = caudal del río C = coeficiente

 Q_s = flujo entre río y acuífero h = carga hidráulica en el acuífero

 Q_p = tasa de bombeo h_r = carga hidráulica en el río

Agotamiento de un río de método "adjoint"



 Q_r = caudal del río C = coeficiente

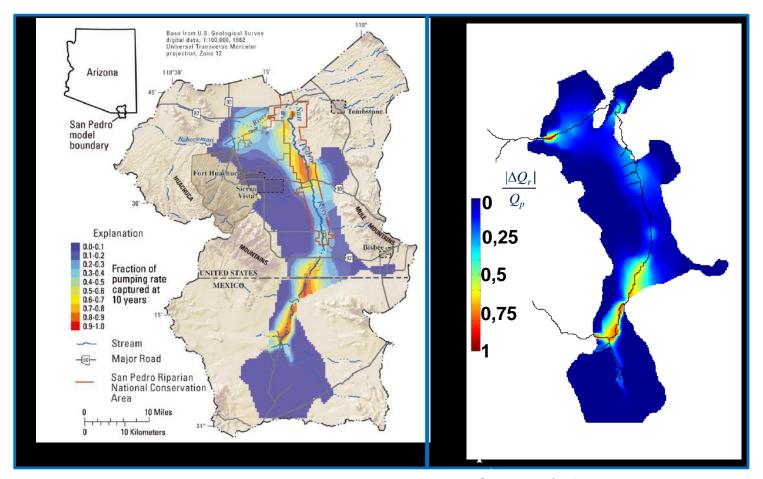
Tiempo

 Q_s = flujo entre río y acuífero h =carga hidráulica en el acuífero

 Q_p = tasa de bombeo

 h_r = carga hidráulica en el río

Cuenca San Pedro



 $rac{\Delta Q_r}{Q_p}$

Simulaciones tradicionales (Leake et al., 2010).

- 1530 simulaciones
- Resultados para 1 km x 1 km cuadrícula y 1 capa (de 5)

Simulación "adjoint" 1 simulación Resultados para 0,25 km x 0,25 km cuadrícula y 5 capas

Resumen

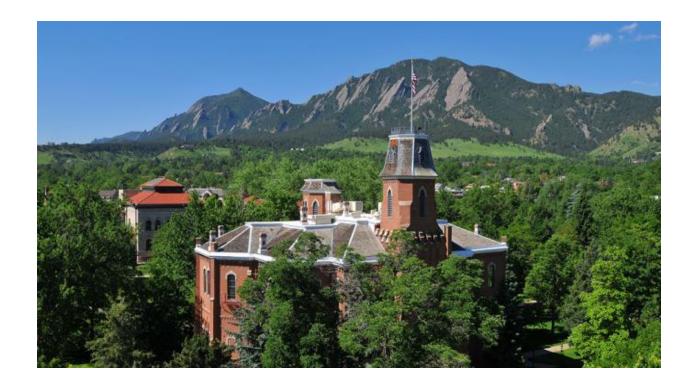
- El método "adjoint" es eficiente para situaciones en que tenemos información sobre un receptor, y necesitamos información sobre muchas fuentes posibles.
- El método "adjoint" es basado en el análisis de sensibilidad.
- Los resultados de las simulaciones son sensibilidades de un estado del sistema a un parámetro
- Estas sensibilidades pueden ser usado en muchas aplicaciones
 - Identificación de la fuente de contaminación
 - Identificación de la zona de captura alrededor de un pozo
 - Estimación del agotamiento de un rio.

¿Preguntas?

(hablen lentamente, por favor)

Colaboradores

- Scott Griebling
- Jarkko Okkonen
- John Wilson



Forward and Adjoint Equations

Forward Equations

$$S_{y}\frac{\partial h}{\partial t} = \nabla \cdot \left[\mathbf{K}\left(h - \xi\right)\nabla h\right] - Q_{p}\delta(\mathbf{x} - \mathbf{x}_{w}) + \frac{K_{r}}{b_{r}}(h_{r} - h)B(\mathbf{x})$$

$$\frac{\partial Q_{r}}{\partial s} = -\frac{K_{r}w}{b_{r}}(h_{r} - h)$$

$$Q_{r} = \frac{1}{n}(h_{r} - z_{r})^{5/3}S_{o}^{1/2}w$$

Adjoint Equations

$$S_{y} \frac{\partial \psi^{*}}{\partial \tau} = \nabla \cdot \left[\mathbf{K} \left(h_{o} - \xi \right) \nabla \psi^{*} \right] + \frac{K_{r}}{b_{r}} \left(\psi_{r}^{*} - \psi^{*} \right) \qquad \psi^{*}(\mathbf{x}, \tau = 0) = \frac{K_{r}}{b_{r}} B(\mathbf{x})$$

$$- \frac{\partial}{\partial s} \left(\frac{5S_{o}^{1/2}w}{3n} \left(h_{ro} - z_{r} \right)^{2/3} \psi_{r}^{*} \right) = -\frac{K_{r}w}{b_{b}} \left(\psi_{r}^{*} - \psi^{*} \right) - \psi_{r}^{*} \frac{5}{3} \frac{\partial}{\partial s} \left(\frac{S_{o}^{1/2}w}{n} \left(h_{ro} - z_{r} \right)^{2/3} \right)$$

$$\frac{dQ_{s}(\mathbf{x}_{c}, t_{c})}{dQ_{p}(\mathbf{x})} \approx \int_{0}^{t_{c}} \psi^{*}(\mathbf{x}, \tau) d\tau$$

 S_v = specific yield $\mathbf{K} = \text{hydraulic conductivity}$ h = head in aquifert = time \mathbf{x}_{w} = well location Q_{r} = river flow rate ξ = elevation of aquifer bottom Q_n = pumping rate h_r = head in river $B(\mathbf{x})$ = indicator function b_r = sediment thickness K_r = sediment conductivity \mathbf{x}_c = critical location t_c = critical time $\Omega = domain$ s =coordinate along stream w = river width S_o = channel slope $n = \text{Manning's roughness } z_r = \text{river bottom elevation}$ Q_s = exchange rate between river and aquifer \mathbf{x}_c = control location t_c = control time ψ_r^* = adjoint state of h_r ψ^* = adjoint state of h