A General Theory of Security Properties

Aris Zakinthinos
Computer Laboratory
University of Cambridge
Aris.Zakinthinos@cl.cam.ac.uk

Abstract

This paper presents a general theory of posshilistic
seaurity properties. We show that we can express a
seaurity property as a predicate that is true of evey set
containing dl the traces with the same low levd eveit
sequence. Given this saurity predicate, we show how
to construct a patial ordering d seaurity properties.
We also dscuss information flow and pesent the
weakest property such that no information can flow
from high levd users to low levd users. Finaly, we
present a comparison o our framework and McLean's
Selective Interleaving Functions framework [14].

1. Introduction

Each researcher has proposed a new seaurity property
has constructed his or her own notation and formalism.
With different notations and assumptions about the
model of components, comparing the strengths and
weaknesss of the various eaurity properties has beean
difficult. In this paper, we examine what constitutes a
seaurity property and how they can be epressed. We
then present a framework for the spedfication and
analysis of security properties.

One of the first attempts to provide a general theory of
seaurity properties was through the use of Sdedive
Interleaving Functions [14]. McLean's framework is
only applicable to a subset of seaurity properties.
Posshly its greatest weakness however, is that it does
not allow for an obvious gedfication of seaurity. Our
framework captures the intuitive notion of searity
properties and can be used to determine the
composability of components that satisfy seaurity
properties.

In this paper we are only interested in confidentiality
properties. The goal of confidentiality is to prevent low
level users (LLU) from determining anything about high
level activity. The seaurity policy defines exactly what
low level users are forbidden to discover. For example, it
may be mnsidered desirableto ensure that low level users

E.S. Lee
Centre for Communications Research
University of Cambridge
Stewart.Lee@cl.cam.ac.uk

cannot determine which high level inputs have occurred.
Or we may say, information about high leve inputs may
not flow to LLU. The seaurity policy dictates which
flows are permisshle and which are not. A searity
property is an ingtantiation of a policy. There may be
more than one property that satisfies a given policy. In
this work, we do not advocate any spedfic searity
policy. We consider security properties in genferal

2. Event Systemsand Notation

The framework for our investigation into
composability will be esent systems as given by
McCullough [12] and Johnson and Thayer [11].
McCullough’'s definition derives from the work on
modeling concurrence of Hoare [9]. An event system
interacts with its environment through events. These
events correspond to the primitive actions done to o by
the system. A sequence of events corresponding to a
possble exeaution sequence of the system is called a
trace. We will define an event system in terms of its
possible traces.

A traceis denoted by a sequence of events, separated
by commas and enclosed in angle brackets. Sincetraces
play such a central role in our work we require some
operations on traces.

Definition 1: Trace Concatenation
The notation s't will refer to the trace formed by
putting together traces sand t in that order. We will
use st to denote mncatenation if sand t are obvious
from the ontext. Formally, if <X> and <Y> are
traces then <XXY> = <X,Y>

Definition 2. Trace Prefix
If sis atrace prefix of t, then it is posshle to find
some extension of s such that®i=t Formally,

<t = tul¥u=t

1 In this work when referring to security we mean

confidentiality.

Definition 3: Restriction Operator
The epresson t|A denotes the trace formed by
removing from t all events not i

Examplel: Lett=<a, &, &, a3, &>. Then tfay,as}
= <&,&,8>

An event system is defined as follows:

Definition 4: Event Systems.
An event trace system is a 4-tuple:

S =<,1,0,T>
where
E is the set of events
[, the input eventd, 0 E
O, the output event§ O E andl n O=0

*
TOE isthe set of traces

Throughout the remainder of this work we will need
the set of traces of a given system. The following
definition gives the set of traces of a systém

Definition 5: The Set of Traces of a System
For a system Sthe function traces(S) returns the set
of tracesT of S.

The st of traces of an event system must satisfy the
following property. It must always be possble for the
system to accept an input event. This condition is called
input totality [12] [11]. Formally,

Definition 6: Input Totality
A systemSis said to be input total if and only if

Ot:traces(S)de:l [MeCtraces(S)

This modding abstraction simplifies the presentation
of the results. The ned for input totality is examined in
section6.

The dandard set operators of union, O, and
intersedion, n, will be used to combine the various sts
of the event trace system. The set difference operator, \,
will also be used. The set A\B, for example, contains all
elements in the set A that are not in the set B.

The spedfication of searity properties usually
requires a distinction between high level (trusted) and
low-level (untrusted®) users. We will refer to these
categories as HLU and LLU respedively. This division
is accomplished by dividing E into the digoint subsets L
and H, such that every event is in exactly one of L or H.
These are, respedively, the sets of low- and high-level
events. Asauming two comparable levels smplifies the
presentation of the results without altering the results;

2 Orless trusted.

the generalizaion to an arbitrary lattice of leves is
straightforward bubhotationay cumbersome

The following definition gives some notation for
commonly used classes of events.

Definition 7: Event Classes.
The following notation will be useful in spedfying
security properties:
HI =H n | high level input events,
LI =L n | low level input events,
HO = H n Ohigh level output events and
LO =L n Olow level output events.

3. Security Properties

McLean [14] was one of the first to propose a general
theory of seaure system composition. McLean's desire to
provide such a theory came from the redlization that
seaurity properties do not fit into the Alpern-Schneider
[2] safety livenessframework. This meansthe Abadi and
Lamport’s composition principle [1] cannot be used to
reason about composition. We present a prodf that
seaurity properties cannot be epresed in the Alpern-
Schneider framework in Appendix

McLean's theory is based on sdledive interleaving
functions (SIFs). Seledive Interleaving Functions can be
used to expressproperties that are an interleaving of two
traces of the system. The judtification for using SIFs is
McLean's observation that certain seaurity properties are
“closure properties with resped to some function that
takes two traces and interleaves them to form a third
trace’ [14]. In this sdion we propose a framework for
spedfying seaurity properties that is more general than
seledive interleaving functions. This allows a system
designer the ahility to reason about a larger class of
seaurity properties. We defer a comparison between our
framework and seledive interleaving functions to sedion
6.

To understand what a searrity property is, we first
must understand what a seaurity property does. Consider
alow level user using a system and observing atrace T oy,
He @n construct the set of traces that are mnsistent with
his observation. We will cal this the low leve
equivalent set .

Definition 8: Low Level Equivalent Set.
Given atracet and a System S LLES(T,S) is the set
of traces that have the same low level eventsas T in
the same order. Formally,
LLES(t,S) ={ s |t|L=s|L O straces(S) }

The low level user knows that a member of
LLES(Tjow,S) must have ocaurred®. The examination of
the dements of LLES(Tiow,S) Will i ndicate which high
level sequences could have occurred and which could not
have occurred.

The purpose of a searity property is to prevent low
level users from being able to make deductions abaut the
events of the high level users. The eact deductions that
the low level user should not be able to make is
dependent on what information flow policy the seaurity
property is attempting to enforce Seaurity properties try
to remove the ability of a low level user from deducing
anything about high level events by ensuring that T, can
be attributed to more than one high level event sequence
That is, a searity property ensures that certain traces are
eements of LLES(Tjon,S). A system satisfies a seaurity
property if all of the required traces are present in all low
level equivalent sets of the system. This leads us to the
following definition of a security property.

Definition 9: Security Properties
A system property P isa searity property if and only
if thereisa predicate Q such that for any system S, P
satisfies S, written P(S), if and only if every low level
equivalent set ab satisfiesQ. Formally,
P is a security Property

MIOSE(S)= (Ct:traces(SIA(LLES(,S)))

Which traces are required to be present (i.e,
consistent with T1,,,) is dependent on what information
flows are to be prevented. It might sean strange that the
relevant traces are not those that prevent all i nformation
flows. There are many reasons why other properties are
required. For example:

1. Therisk analysis of the system indicates littl e threat
of Trojan horses. In this case a seaurity property
with the posshility of some unauthorized flows
might be acceptable.

2. A desired component does not satisfy this property
and a weaker property must be used.

We will discussinformation flow further in sedion 4.
The following sedions will demonstrate how some of the
properties presented in the literature @n be epressed
using definition 8.

3.1 Noninference

Noninference was introduced by O'Halloran [17]. It
attempts to separate the low level activity from the high

3 Sinceweareonly interested in posshili stc properties

we assume that each member of LLES(t,S) is
equiprobable.

level activity. Informally, Noninference requires that for
any trace of the system removing all high level events
resultsin atracethat is dill valid. Thiscan be expressed
as follows:

Ot:traces($ INONINFERENCE(LLESY,S)), where

NONINFERENCE(A) = [1:AltjH=<>

Notice that the predicate NONINFERENCE ensures
that for a given low level observations Tiow, Tiow IS @
possible trace.

Noninference is too strong for systems that have a
high level output without a high level input. As an
example onsider a system the only function of which is
to ke a journal of al low level events on a high level
device This gystem is aure. The low level user does
not know anything about what high level users are doing.
This g/stem, however, does not satisfy the Noninference
property.

McLean [14] extends Noninference as follows. For
any trace 1, it must be posshle to find another trace o
such that the low level events of T are equal to o and o
has no high level inputs. McLean calls this weaker
property Generalized Noninference This can be
expressd as a predicate over the low level equivalent set
as follows:

Ot:traces($ [GN(LLES(,S)), where

GN(A) = :AltHI=<>
This sttisfies the definition of a searity property.
The GN predicate ensures that the trace without any high
level inputs is aways possble for any low leve
observation. Therefore, for al possble low leve
observations, a trace @n be found with the same low
level events but with no high level inputs.

3.2 Noninterference

Noninterference is a seaurity property introduced by
Goguen and Meseguer [6] [7]. It captures the attractive
notion that system seaurity is preserved whenever high
level users are prevented from influencing the behavior
of low level users. Goguen and Meseguer's original
definition of Noninterference was only applicable to
deterministic systems. McCullough [12] [13] extended
the definition to encompass non-deterministic systems.

McCullough' s definition of Generalized
Noninterference (GNI) can be informaly defined as
follows. Given a trace 1, modifying it by inserting or
deleting high level inputs results in a sequence o, which
is not necessarily a valid trace It must be possble to
congtruct a valid tracet' frono by inserting or deleting
high level outputs

We can formally define Generalized Noninterference
as.

Ot:traces(S) LGNI(LLES(,S)), where
GNI(A)

=OuAlOtinterleave(HI",T|L) [Os:AltEs|(LOHI)
The function interleave will return all posshle
interleavings of its arguments.

3.3 Non-Deducible Output Security

The previous two examples were of seaurity properties
founded on the notion of preventing a LLU from
deducing anything about high level inputs. Our
definition of a searity property is not limited to this type
of seaurity. To ill ustrate a different form of searity we
present Guttman and Nadd's Non-Deducible Output
Seaurity [8]. Non-Deducible Output Seaurity can be
expressed as:

Ot:traces(SINDO(LLES(,S)), where
NDO(A)=0t:Aldt:traces(S)LI=T|LIC

Cs:AlS|(HILD)=t|(HOLI)

If the LLU sees a trace T,,, he can determine the set
LLES(Tiow,S). All of these traces are indistinguishable to
alow level user from atracesthat has the same low level
events as T, but the high level events come from another
tracethat has the same low leve input events. Sincethe
low level user cannot determine which high level events
were cosen, the observation of 1, gives the user no
new information about high inputs or outputs.
Furthermore, since the merging was performed
arbitrarily, the low observation is also compatible with all
interleavings and so give no information about which
interleaving occurred.

3.4 Separability

Separahility is an example of perfea seaurity [14].
Separahility is perfed searity becuse no interaction is
allowed between high level and low level events’. It is
like having two separate systems, one running the high
level processes and one running the low level processes.

4 This verson of Generalized Noninterference is

weaker than McCullough’'s because it does not
require high level outputsto anly be altered after the
point which the high leve inputs have been altered.
However, this does not change any of the results and
simplifies the presentation.

We stress that this is in the posshilistic sense. A
Separahility searre system can be @nstructed that
has a probabilistic covert channel.

Separahility can be defined as follows. For every pair of
traces 1, and 1, the trace T such that t|L=T4JL and
T|H=T,|H is a valid trace.

No matter what the low level user observes, every
possble sequence of high level events is posshle
Therefore, the low level user cannot gain any new
information.

This property can be formalized as:

Ot:traces(SLSEPARABILITY(LLES(,S)), where

SEPARABILITY(A) = Ot:Allt:traces(S)J
interleave(t|H,t|L)OA

4. |nformation Flow and the Perfect
Security Property

The previous dion defined seaurity properties. We
indicated that the traces that must appear in the low level
equivalent set are dependent on what information flows
are to be prevented. In this sdion, we present the
weakest seaurity property such that no information can
flow from high level users to low level users. We will
use this result to determine the strength of the various
properties presented in the literature.

Information flows from high level users to low level
users when the low level users observe something they
believe is connected with high level activity.

“Information is transmitted along an objed when
variety in the events engaged by a [high level] user
can be onveyed to a [low level] user as a result of
[the high level users] interaction with the object.” [5]

Separability is an example of a system with no
posshili stic information flow. This is ensured because
al high level traces must be mnsistent with any low level
observation T1,,,. However, Separability is too strong.
Consider alow level user observing a sequence 1o, from
asystem S. The absence of a high level sequence from
LLES(T|ow,S) might indicate an information flow from
high level to low level users, but this is not sufficient.
For example, consider a system where the only high level
behavior is to echo al low level output events to a high
level device for archiving. A low level user observing
Tiow Can construct LL ES(Tow,S) and will notice that many
high level sequences are not possbhle. However, there is
no information flow from high level users to low level
users. The problem with Separahility is that it does not
allow low level users to influence high level activity.

The ahility for low level users to influence high level
events does not reduce seaurity since the low level users
will not know how they have influenced the high level
outputs. Even if the low level user knows exactly what

the effect of his actions are, it does not help him in
determining anything new about high level activity.

To see how to weaken Separability to allow low level
events to influence high leved outputs consider the
following formulation of Separability:

Ot:traces(S) B|LDLLES(I,S) 0O0p,s: p"sOLLES(t,S)0

sH=<>[0a:H[Ot:traces(S) [p'<a>|H=t|HO
p"<ca> "sOLLES(T,S)

This formulation differs from the one given in section
3.4 by incrementally congtructing all the interleavings.
This can be seen by examining the expression:
Oo:H Ok traces(S) [pf<a>|H=t|HO p'<o> "SILLES(T,S)(1)

The trace p"s is such that s has no high level events
while p might have some high levd events. Since
TiowLLES(T,S) we can always find such ap and s. The
antecedent of (1) istrue if pjH"<a> is a valid high level
trace. If p|H"<a> isavalid high level trace then it must
be possible for the event a to occur between p and s.

The possibility of a occurring between p and sis only
dependent on the preceding high level events in p.
Therefore, a system where low level events influence
high level outputs would not satisfy Separability because
Separability would require that this high level output be
possible even before the event that caused it has occurred.

The following property alows o to be dependent on
all of p not just the high level events.

Ot:traces(S) E|LD LLES(t1,9)00p,s: p"sO0 LLES(1,S) O

sH=<>[0a: H [p"<a>Citraces(S)
0 p"<o>"s O LLES(1,9)

PSP stands for the perfect security property. We will
demonstrate why we call this property perfect below.
PSP allows high level outputs to be influenced by low
level events. PSP might appear complex but fortunately
there exists a smple procedure to determine if a
component satisfies PSP [19]. The composahility of PSP
is proven below. We will now prove that this property is
the weakest security property to ensure no information
flow.

Theorem 1. PSP does not allow any information to flow
from high level usersto low level users.

Proof:
Assume that there is a system S that satisfies PSP and S
allows high levd information to flow to low level users.
Since S has an information flow it does not satisfy
Separahility.
Therefore, there exists a 1o, such that the Separability
predicate is fase. For a T4, that makes Separability
false, construct A such that:

SEPARABILITY (LLES(T,0w,S)0A) istrue.

Let T beatrace of A. Let p and s be traces such that they
satisfy the following:

[o:HP YL = Tie Op <a>H<tH Op sOAOp" <a>"sOA
Such ap and sexist A is not empty and 1,4, is a trace of
system since it satisfies PSP.

Consider p'\ <a>"s;

Case 1. aOHI or aOHO and a is only dependent on high
level events. In this case the definition of PSP and
Separability are the sasme. Therefore, a cannot be such
an element.

Case 2: a[JHO and is dependent on low level events. If
0 cannot occur at this point in the trace it is because the
conditions for it to occur have not been satisfied. Does
the low level user gain any knowledge from realizing a
did not occur? Since he is contralling the existence of
the event, the answer isno. The existence of such atrace
does imply that the low level user can covertly
communicate with the high level user, but such an
information flow is already allowed. a

Theorem 2: PSP is the weakest security property that
does not allow information flow from high level users
to low level users.

Pr oof:

Theorem 1 proved that PSP does not allow information to
flow from high level users to low level users. We must
therefore prove that any weaker property must allow
flows from high level usersto low level users.

Let P be a property that is weaker than PSP that does not
have any unauthorized information flows. Let S be a
system that satisfies P but not PSP. Since S does not
satisfy PSP and is weaker than PSP;

[p,s. p’'sOA O sH=<>[: H " <a>Otraces(S) 0
p'\<0(> s A, where A=LLES(T,o,,S)

If the subtrace p occurs and if o occurs then T4, could

not have occurred. The low levd user has deduced

something about high level events. Therefore no such P
exists. a

We will now prove that PSP is a composable property.
The following defines the composition of two
components.

Definition 10: Composition of Components
Given S1=<Ey,l;,0,,T;> and S;=<E,,l1,,0,,T,> that
satisfy
l1nly=10
01 N 02 =0
(E]_\(|1D 01)) NnEy=10
(Ez\(|2|] 02)) NnE=0

then the composition of S; and S, produces a new
component S=<E,|,0,T> such that:
E=EUOE
I'=(12102) O (12\ Oy)
0= (01\12) O (O2\1y)

and T={ alE such that aJE;00T; O alE, OT,}

Theorem 3: The composition of two components S; and
S, that satisfy PSP will yield a system S to satisfy
PSP.

Pr oof:

Assume that the composition of two components that
each satisfy PSP does not satisfy PSP. Thisthen implies
that for somet of S:

TiowJAOp,s: p ' STA O sH=<>0: H [
p"<e>[Otraces(S)p"<o> "0 A, where A=LLES(1,S)

Case L. 1jowJA

Since 1 is a trace of S Tt|EOtraces(S;) and

T|ExOtraces(S,). Since S and S, satisfy PSP

1L, Otraces(S;) and t|L,0traces(S,) therefore by the

definition of composition T|L Otraces(S).

Case 2: [p,s. pAsDA 0 gH=<>[To: HO
p"<o>Otraces(S)0p <o "s0 A
From the definition of composability:
OuE @m0traces(S) « T|E;Otrace(Sy) Ct|E;Otraces(S,)
Since pAsDAD pAsDtraces(S), there exists
plAsl (traces(S;) and pzAsthracm(Sz) such that
PIE1=p1, S|E1=s1, PIE2=P, and s|E;=s;.
pA<o(>D traces(S) (Composition)
p" <a>|E10 traces(S1) Op” <a>|E20 traces(S2)
(PSP)
0 p" <a>" s|E10 traces(S1)Op" <a>" S|E2 Cltraces(S2)
(Composition)

= p"<a>" sOtraces(S)
Both Cases yield a contradiction therefore PSP is a
composable property. a

5. Comparing Security Properties

Our formalism provides an easy method of evaluating
the relative strengths of security properties. Since we
have a logical expresson for our properties the
comparison is simple. To compare properties P and Q,
evaluate PO Q and QO P. If the first statement is true
then P is stronger then Q. If the second statement is true
then Q is stronger than P. If both are true, the properties
areequal. If neither are true, they are not comparable.

Example 2: We will compare Generalized Noninference
to Generalized Noninterference:

First we will show that NI implies Generalized
Noninference:
Ot:traces(S)|LIGNI(LLES(t,S)) Definition of GNI
= Ottraces(S)|LMt:interleave(HI ,Tjow) I5.LLES(T,S)
=s|(LOHI) Specialization with t=1
0 Ottraces(S)|LOELLES(t,S)E=s|(LOHI) Distributive
0 DOttraces(S)LMsLLESE,SML = gL O tHI = gHI
Definition of LLES(t,S)
= [t:traces(S)|LIBLLES(t,S)EHI = gH
It has no high level events
= [t:traces(S)|LOBLLES(t,S)[E> = gHI
Definition of GN

= [t:itraces(S)|LIGN(LLES(1,S))
Now we show that Generalized Noninference does not
imply GNI:
Ot:traces(S)|LIGN(LLES(T,S)) O
Ot:traces(S)|LIGNI(LLES(T,S))
Definition of GNI & GN
= [ttraces(S)|LIs.LLES(t,S)SHI =<>0
Ot:traces(S)|L [Mt:interleave(HI* tlow) M5 LLES(t,S) [
=g|(LOHI) Specialization such that tjHIz<>
0 DOttraces(S)|LOLLES(t,S)ESHI =<> 0O
Ot:traces(S)|LME.LLES(t,S)@=s|(L O HI')
Distributive, Definition of LLES(t,S) and the
Specialization condition
0 DOttraces(S)|LIs.LLES(t,S)[HI =<>0
Ot:traces(S)|LMMB.LLES(t,S)Z gHI = <>
O

Therefore, GN does not imply GNI and GN is a weaker
property than GNI. a

By applying the above technique to the security
properties presented above, the following lattice can be
constructed.

Separahility

PSP Output Non-
Deducihility
Generdlized _
Noninterference \/Nonl nference

Generalized Noninference

Figurel: A Partial Ordering of Security Properties

The arrows in the lattice indicate which property
implies which other. For example PSP implies
Generalized Noninterference and by transtivity
Generalized Noninference. An ingructive way to
represent part of the above lattice is to only consider the
elements that can be totally ordered (see Figure 2).

Notice that PSP partitions the figure into two. This
can be used to determine the strength of the properties.
We can see that Separability is a stronger property than
PSP. Therefore, systems with no information flow are
being unnecessarily rejected. Most security properties
defined in the literature are weaker than PSP. This
might be surprising, but can be explained because high
level interleavings are not considered by any of the
weaker properties.

6. Comparison to Other Approaches

6.1 Sdlectivelnterleaving Functions

The only other general framework for the
spedfication and analysis of seaurity properties is
McLean's Sdedive Interleaving Functions. In this
sedion we @mpare our framework to MclLean's.
Spedfically, we will compare the expressability of the
two frameworks and the results one @n obtain from
each.

All of the seaurity properties that can be expressd
using SIFs must be a closure with resped to some
interleaving function. If a seaurity property cannot be so
expressd, then the results of McLean's work are not
applicable. It may be argued that if the seaurity
properties that cannot be handled by SIFs are
“uninteresting”, then SIFs are all that is required. This
argument is naive. What is considered interesting today,
might not be interesting in the future. We will show that
SIFs cannot represent al seaurity properties. A
framework should not place limits on what types of
properties can be expressed.

PSPis an example of a property that can be expressed
in our formalism but not using SIFs. Reall that PSPis
similar to Separahility but all ows high level outputs to be
dependent on low level events. A SIF for PSPwould be

required to produce the interleaving of all input events
and output events that are not dependent on low level
events whil e ensuring that the high level outputs that did
depend on low level events were not arbitrarily
interleaved. This type of dependency is not expresshle
usingSIFs.

In the SIF framework a component satisfies a property
if and only if it is closed under some SIF. SIFs take two
traces and perform an interleaving of the traces to
producea new trace Consider the dassSIFs that require
the lowin and lowout from one trace and the highin and
highout from the other. All of the seaurity properties
examined by McLean have this property. Furthermore, it
isnot clear how the esents can come from different traces
and ill have a useful system. These SIFs can be
expressd as a predicate over the low level equivalent set
by ensuring that the interleaving spedfied by SIF is
present in the low level equivalent set.

One of the main differences between our work and
McLean's is our assumption of input totality. McLean
requires the a priori knowledge of compatible traces for
the mmposition. Our assumption of input totality
removes this requirement.

Input totality makes the presentation of the results
easier. If input totality were not required then it would
be posshle to find two components sich that ther
cascade mmposition would not be allowed. Consider the
communication events between two composed
components S; and S,. If the outputs of S, were
unacceptable asinputs at S, or an input event that must

n-Forward Correctability

Generalized
Noninference

All Systems

Restrictiveness

PSP

Figure 2:

A Total Ordering of Most Possibilistic Properties

ocaur at S, cannot be generated by S;,, then the
composition would not succeal. Input totality removes
this problem.

McLean does not require input totality in his theory of
Sdedive Interleaving Functions. He uses an interface
requirement, when it is needed, that ensures the
composition will succeal. Theinput totality requirement
can be replaced with an interface requirement. This
would not change any of our results but would compli cate
their presentation.

McLean's composition results take the form of
theorems indicating what SIF a system will satisfy if the
conditi on of the theorem aretrue. If the @nditions of the
theorem are not satisfied, then nothing can be said about
the resulting system. In our framework the property that
the resulting system satisfies is evident even if the
property is not composable. Furthermore, it alows one
to determine why a property is not composable.

In spedfying a property using SIFs, it might be
required to restrict the domain of the interleavings.
Unfortunately, there are domain assumptions in the
composition prodfs. These domain assumptions are what
led McLean to incorredly conclude Generalized
Noninference was cascade mmposable when it is not®
[19]. Furthermore, even if the domain assumption had
been made eplicit they would not give any clue as to
why Generalized Noninference failed to compose.

6.2 Security Specifications

Jacob [10] developed a model of systems that he uses
to ases their seaurity. He models components using the
trace semantics of CSP[9]. Jacob's components differ
from ours in one important way: there is no distinction
between input events and output events.

Jacob defines a function infer SB | that is read as “the
inferences about S that B can make having observed |”
[10]. If we assume two comparable levels then Jacob's
definition of infer SB | is equivalent to aur definition of
LLES(,S). Notice that by inference Jacob means what
possble observations can a user make not what extra
information his observation has given him.

With the definition of infer S Jacob defines what it
means for a system R to be at least as ®aure as a system
S In our notation:

Ol:traces(R)M1:traces(SHL=I1|L Oinfer S LI|L O
infer R LI|L

Ris at least as ®aure as S if all posshle low level
traces of R are low leve traces of Sand the LLES(I,S) O
LLES(I,R). Since the low level user does not know

® This was corrected in [15]

which eement of LLES(I,S) has occurred, enlarging the
set enhances security.

Jacob then defines restricting information flow as (in
our notation and assuming two levels):

Ot:traces(S)M:traces(SYf|L=I|LO|H=<>

This definition can be seen to be eyuivalent to the
definition of Noninference (sectidhl).

Jacob proceals to generalize the infer function to
allow a seaurity spedfication that allows one to spedfy
systems in which a restricted amount of information is
allowed to flow from one user to another. Since our
definition of a searity property is a predicate over the
low level equivalent set this type of spedfication can also
be done in our framework. Furthermore, more complex
security properties can be expressed in our framework.

6.3 Security Propertiesfor CCS

Focardi and Gorrieri [3] [4] have also attempted to
provide a basis for a formal comparison of seaurity
properties. They have thosen Milner's CCS [16] as a
basis for modeling the ammponents. Focardi and Gorrieri
also formalized various information flow seaurity
properties and compared their strengths. Their work
differs from ours because they do not provide a definition
of a seaurity property. It isthis formalization of seaurity
properties that is a primary goal of our work.

7. Conclusions

In this paper we presented a framework for spedfying
an analyzing seaurity properties. The definition of a
seaurity property is general and intuiti vely appealing. We
have also presented a property that is the weakest
property that allows no posshilistic information flow.
We have demonstrated that this property cannot be
expressed in the Sededive Interleaving Functions
Framework.

Acknowledgments
We would like to thank John McLean and the
anonymous referees for their helpful comments and
suggestions.

8. Bibliography

[1] Martin Abadi and Leslie Lamport. “Composing
Specifications,” Technical Report 66, Digital
Equipment Corporation Systems Reseach Center,
Palo Alto, CA, 1990.

[2] Bowen Alpern and Fred Schneider. “Defining
Liveness” Information Processing Letters, 21(4),
pages 181-185. October 1985.

3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Riccardo Focardi and Roberto Gorrieri. “A
Taxonomy of Trace-based Security Properties for
CCS” Procedlings of the 7" Computer Security
Foundaions Workshop |EEE Computer Society,
June 1994.

Riccardo Focardi. “Comparing Two Information
Flow Security Properties,” Procesdings of the 9™
Computer Security Founddions Workshop, |IEEE
Computer Society, June 1996.

Simon N. Foley. “A Universal Theory of Information
Flow,” Proceedings of the 1987 |[EEE Sympasium on
Research in Security and Privacy, pages 116121
IEEE Press. 1987.

Joseph A. Goguen and José Meseguer. “Security
Policies and Security Models,” Proceelings of the
1982 1EEE Sympasium on Research in Security and
Privacy, pages 11-20. IEEE Press. April 1982.

Joseph A. Goguen and José Meseguer. “Unwinding
and Inference Control,” Procealings of the
Symposium on Scurity and Privacy, pages 75-86.
IEEE Computer Society, May 1984.

J. D. Guttman and M. E. Nada. “What Nedals
Securing?’, Proceadings of the Computer Security
Foundaions Workshop |EEE Computer Society,
June 1988, pages 34-57. June 12-15 1988.

C. A, R Hoare. “Communicating Sequential
Process” London: Prentice-Hall International, UK,
LTD., 1985.

Jeremy Jacob. “Security Specifications,”
Procealings of the 1988 IEEE Symposium on

Research in Security and Privacy. |EEE Press May
1988.

Dale M. Johnson and F. Javier Thayer. “Security
and the Composition of Machines,” Proceedings of
the Security Foundaions Workshop, Franconia, NH,
pages 72-89. June 1988.

Daryl McCullough. *“Specifications for Multi-Level
Security and a Hodk-Up Property,” Proceelings of
the 1987 IEEE Sympasium on Research in Security
and Privacy IEEE Press, May 1987.

Daryl McCullough. “Noninterference and the
Composability of Security Properties,” Proceedings
of the 1988 |IEEE Symposium on Research in
Security and Privacy, pages 177-186. |EEE Press
May 1988.

John McLean. “A General Theory of Composition
for Trace Sets Closed Under Selective Interleaving
Functions,” Procealings of the 1994 I|EEE
Symposium on Scurity and Privacy, pages 79-93.
IEEE Press. May 1994.

John McLean. “A General Theory of Composition
for a class of “Posshilistic’ Properties,” |EEE
Transactions on Sdtware Engineging, January 1996
Volume 22 Number 1, pages 53-67.

[16] R. Milner.
Prentice-Hall.

[17] Colin O'Halloran. “A Calculus of Information
Flow,” Proceedings of the European S/mpasium on
Research in Computer Security. Toulouse, France.
1990.

[18] A. Zakinthinos and E. S. Lee “How and Why
Feedback Composition Fails,” Proceelings of the
Computer Security Founddions Workshop IX. |IEEE
Press. June 1996.

[19] A. Zakinthinos. “On The Composition Of Security
Properties,” Ph.D. dissertation, University of
Toronto, Toronto, Ontario. 1996.

“Communication and Concurrency.”

Appendix A: Security Properties vs.
Safety/Liveness Properties

The Alpern and Schneider safety/liveness model of
properties is currently the dominant mode in the
spedfication of analysis of programs [14]. Properties are
regarded as s of traces and a component satisfies a
property if its st of traces is a subset of the property’'s
set. Thisappendix proves that seaurity properties cannot
be expressed in thdpern andSchneider framework.

Definition 11: Event System Space
An event system spaceis a 4-tuple <E,I,0,T> where
E, I, O, T are defined as in the definition of an event
system but with T=E". We will write S for the event
system space.

Definition 12: An Element of a System Space.
A system S=<Ei,l,,01,T> is a subset of the system
space $=<E,|,0,T> if and only if E,CJE, 1,01, 0,00,
T,0T.

Theorem 4. Seaurity properties are not expressble as
sets of traces.

Pr oof:

Asame that a searity property P can be expressd as
the intersedion of a saftey and liveness property. Let
TOtraces(S) be the set of traces that satisfy a seaurity
property P. Since P is the intersedion of a safety and
livenessproperty, any system that had traces T'OT would
also satisfy P. A seaurity property ensures that a system
has certain behaviors. For a system to satisfy a seaurity
property al low level equivalent sets must satisfy the
seaurity predicate. Construct a system SOS and
traces(S)OT such that the seaurity property predicate is
false for some low level observation Tjo,. Such a system
exists because removing one of the required traces will
make the predicate false, but will till result in the set of

traces being a subset of T. The set of traces of S does not
satisfy the security property P but is a subset of T. This
yields a contradiction. Therefore, P cannot be expressed
as aset of traces. a

