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Abstract
This paper presents a general theory of possibili stic
security properties.  We show that we can express a
security property as a predicate that is true of every set
containing all the traces with the same low level event
sequence.  Given this security predicate, we show how
to construct a partial ordering of security properties.
We also discuss information flow and present the
weakest property such that no information can flow
from high level users to low level users.  Finall y, we
present a comparison of our framework and McLean’s
Selective Interleaving Functions framework [14].

1. Introduction

Each researcher has proposed a new security property
has constructed his or her own notation and formalism.
With different notations and assumptions about the
model of components, comparing the strengths and
weaknesses of the various security properties has been
diff icult.  In this paper, we examine what constitutes a
security property and how they can be expressed.  We
then present a framework for the specification and
analysis of security properties.

One of the first attempts to provide a general theory of
security properties was through the use of Selective
Interleaving Functions [14].  McLean's framework is
only applicable to a subset of security properties.
Possibly its greatest weakness, however, is that it does
not allow for an obvious specification of security.  Our
framework captures the intuiti ve notion of security
properties and can be used to determine the
composabilit y of components that satisfy security
properties.

In this paper we are only interested in confidentialit y
properties.  The goal of confidentialit y is to prevent low
level users (LLU) from determining anything about high
level activity.  The security poli cy defines exactly what
low level users are forbidden to discover.  For example, it
may be considered desirable to ensure that low level users

cannot determine which high level inputs have occurred.
Or we may say, information about high level inputs may
not flow to LLU.  The security poli cy dictates which
flows are permissible and which are not.  A security
property is an instantiation of a poli cy.  There may be
more than one property that satisfies a given policy.  In
this work, we do not advocate any specific security
policy.  We consider security properties in general1.

2. Event Systems and Notation

The framework for our investigation into
composabilit y will be event systems as given by
McCullough [12] and Johnson and Thayer [11].
McCullough’s definition derives from the work on
modeling concurrence of Hoare [9].  An event system
interacts with its environment through events.  These
events correspond to the primiti ve actions done to or by
the system.  A sequence of events corresponding to a
possible execution sequence of the system is called a
trace.  We will define an event system in terms of its
possible traces.

A trace is denoted by a sequence of events, separated
by commas and enclosed in angle brackets.  Since traces
play such a central role in our work we require some
operations on traces.

Definition 1: Trace Concatenation
The notation ŝ  t will refer to the trace formed by
putting together traces s and t in that order.  We will
use st to denote concatenation if s and t are obvious
from the context.  Formally, if <X> and <Y> are
traces then <X>̂ <Y> = <X,Y>

Definition 2: Trace Prefix
If s is a trace prefix of t, then it is possible to find
some extension u of s such that ŝ u=t  Formally,

s≤t ≡ ∃u⋅ ŝ  u=t

                                                       
1 In this work when referring to security we mean

confidentiality.



Definition 3: Restriction Operator
The expression t|A denotes the trace formed by
removing from t all events not in A.

Example 1: Let t = <a1, a2, a1, a3, a2>.  Then t|{ a1,a3}
= <a1,a1,a3>

An event system is defined as follows:

Definition 4: Event Systems.
An event trace system is a 4-tuple:

S = <E,I,O,T>
where

E is the set of events
I, the input events, I ⊆ E
O, the output events, O ⊆ E  and I ∩ O = ∅

T ⊆ E
*
 is the set of traces

Throughout the remainder of this work we will need
the set of traces of a given system.  The following
definition gives the set of traces of a system S.

Definition 5: The Set of Traces of a System
For a system S the function traces(S) returns the set
of traces T  of S.

The set of traces of an event system must satisfy the
following property.  It must always be possible for the
system to accept an input event.  This condition is called
input totality [12] [11].  Formally,

Definition 6: Input Totality
A system S is said to be input total if and only if

∀τ:traces(S)⋅∀e:I ⋅τ  ̂e∈traces(S)

This modeling abstraction simpli fies the presentation
of the results.  The need for input totalit y is examined in
section 6.

The standard set operators of union, ∪, and
intersection, ∩, will be used to combine the various sets
of the event trace system.  The set difference operator, \,
will also be used.  The set A\B, for example, contains all
elements in the set A that are not in the set B.

The specification of security properties usually
requires a distinction between high level (trusted) and
low-level (untrusted2) users.  We will refer to these
categories as HLU and LLU respectively.  This division
is accomplished by dividing E into the disjoint subsets L
and H, such that every event is in exactly one of L or H.
These are, respectively, the sets of low- and high-level
events.  Assuming two comparable levels simpli fies the
presentation of the results without altering the results;

                                                       
2 Or less trusted.

the generali zation to an arbitrary lattice of levels is
straightforward but notationaly cumbersome.

 The following definition gives some notation for
commonly used classes of events.

Definition 7: Event Classes.
The following notation will be useful in specifying
security properties:
HI = H ∩ I high level input events,
LI = L ∩ I low level input events,
HO = H ∩ Ohigh level output events and
LO = L ∩ Olow level output events.

3. Security Properties

McLean [14] was one of the first to propose a general
theory of secure system composition.  McLean’s desire to
provide such a theory came from the reali zation that
security properties do not fit into the Alpern-Schneider
[2] safety li veness framework.  This means the Abadi and
Lamport’s composition principle [1] cannot be used to
reason about composition.  We present a proof that
security properties cannot be expressed in the Alpern-
Schneider framework in Appendix A.

McLean’s theory is based on selective interleaving
functions (SIFs).  Selective Interleaving Functions can be
used to express properties that are an interleaving of two
traces of the system.  The justification for using SIFs is
McLean’s observation that certain security properties are
“closure properties with respect to some function that
takes two traces and interleaves them to form a third
trace” [14].  In this section we propose a framework for
specifying security properties that is more general than
selective interleaving functions.  This allows a system
designer the abilit y to reason about a larger class of
security properties.  We defer a comparison between our
framework and selective interleaving functions to section
6.

To understand what a security property is, we first
must understand what a security property does.  Consider
a low level user using a system and observing a trace τlow.
He can construct the set of traces that are consistent with
his observation.  We will call this the low level
equivalent set .

Definition 8: Low Level Equivalent Set.
Given a trace τ and a System S, LLES(τ,S) is the set
of traces that have the same low level events as τ in
the same order. Formally,

LLES(τ,S) = { s | τ|L=s|L ∧ s∈traces(S) }



The low level user knows that a member of
LLES(τlow,S) must have occurred3.  The examination of
the elements of LLES(τlow,S) will i ndicate which high
level sequences could have occurred and which could not
have occurred.

The purpose of a security property is to prevent low
level users from being able to make deductions about the
events of the high level users.  The exact deductions that
the low level user should not be able to make is
dependent on what information flow policy the security
property is attempting to enforce.  Security properties try
to remove the abilit y of a low level user from deducing
anything about high level events by ensuring that τlow can
be attributed to more than one high level event sequence.
That is, a security property ensures that certain traces are
elements of LLES(τlow,S).  A system satisfies a security
property if all of the required traces are present in all l ow
level equivalent sets of the system.  This leads us to the
following definition of a security property.

Definition 9: Security Properties
A system property P is a security property if and only
if there is a predicate Q such that for any system S, P
satisfies S, written P(S), if and only if every low level
equivalent set of S satisfies Q.  Formally,

P is a security Property ⇔
∃Q⋅∀S⋅P(S)⇔(∀τ:traces(S)⋅Q(LLES(τ,S)))

Which traces are required to be present (i.e.,
consistent with τlow) is dependent on what information
flows are to be prevented.  It might seem strange that the
relevant traces are not those that prevent all i nformation
flows.  There are many reasons why other properties are
required.  For example:
1. The risk analysis of the system indicates littl e threat

of Trojan horses.  In this case a security property
with the possibilit y of some unauthorized flows
might be acceptable.

2. A desired component does not satisfy this property
and a weaker property must be used.

We will discuss information flow further in section 4.
The following sections will demonstrate how some of the
properties presented in the literature can be expressed
using definition 8.

3.1 Noninference

Noninference was introduced by O’Halloran [17].  It
attempts to separate the low level activity from the high

                                                       
3 Since we are only interested in possibili stc properties

we assume that each member of LLES(τ,S) is
equiprobable.

level activity.  Informally, Noninference requires that for
any trace of the system removing all high level events
results in a trace that is still valid.  This can be expressed
as follows:

∀τ:traces(S) ⋅NONINFERENCE(LLES(τ,S)), where

NONINFERENCE( A ) ≡ ∃t:A⋅t|H=<>
Notice that the predicate NONINFERENCE ensures

that for a given low level observations τlow, τlow is a
possible trace.

Noninference is too strong for systems that have a
high level output without a high level input.  As an
example consider a system the only function of which is
to keep a journal of all l ow level events on a high level
device.   This system is secure.   The low level user does
not know anything about what high level users are doing.
This system, however, does not satisfy the Noninference
property.

McLean [14] extends Noninference as follows.  For
any trace τ, it must be possible to find another trace σ
such that the low level events of τ are equal to σ and σ
has no high level inputs.  McLean call s this weaker
property Generali zed Noninference.  This can be
expressed as a predicate over the low level equivalent set
as follows:

∀τ:traces(S) ⋅GN(LLES(τ,S)), where

GN( A ) ≡ ∃t:A⋅t|HI=<>
This satisfies the definition of a security property.

The GN predicate ensures that the trace without any high
level inputs is always possible for any low level
observation.  Therefore, for all possible low level
observations, a trace can be found with the same low
level events but with no high level inputs.

3.2 Noninterference

Noninterference is a security property introduced by
Goguen and Meseguer [6] [7].  It captures the attractive
notion that system security is preserved whenever high
level users are prevented from influencing the behavior
of low level users.  Goguen and Meseguer’s original
definition of Noninterference was only applicable to
deterministic systems.  McCullough [12] [13] extended
the definition to encompass non-deterministic systems.

McCullough' s definition of Generali zed
Noninterference (GNI) can be informally defined as
follows:  Given a trace τ, modifying it by inserting or
deleting high level inputs results in a sequence σ, which
is not necessaril y a valid trace.  It must be possible to
construct a valid trace τ' from σ by inserting or deleting
high level outputs.



We can formally define Generalized Noninterference4

as:

∀τ:traces(S) ⋅⋅ GNI(LLES(τ,S)), where
GNI(A)

≡∀τ:A⋅∀t:interleave(HI*,τ|L)⋅∃s:A⋅t=s|(L∪HI)
The function interleave will return all possible

interleavings of its arguments.

3.3 Non-Deducible Output Security

The previous two examples were of security properties
founded on the notion of preventing a LLU from
deducing anything about high level inputs.  Our
definition of a security property is not limited to this type
of security.  To ill ustrate a different form of security we
present Guttman and Nadel's Non-Deducible Output
Security [8].  Non-Deducible Output Security can be
expressed as:

∀τ:traces(S) ⋅⋅NDO(LLES(τ,S)), where

NDO(A)≡∀τ:A⋅∀t:traces(S)⋅t|LI=τ|LI⇒

∃s:A⋅s|(H∪LI)=t|(H∪LI)
If the LLU sees a trace τlow, he can determine the set

LLES(τlow,S).  All of these traces are indistinguishable to
a low level user from a trace s that has the same low level
events as τ, but the high level events come from another
trace that has the same low level input events.  Since the
low level user cannot determine which high level events
were chosen, the observation of τlow gives the user no
new information about high inputs or outputs.
Furthermore, since the merging was performed
arbitraril y, the low observation is also compatible with all
interleavings and so give no information about which
interleaving occurred.

3.4 Separability

Separabilit y is an example of perfect security [14].
Separabilit y is perfect security because no interaction is
allowed between high level and low level events5.  It is
li ke having two separate systems, one running the high
level processes and one running the low level processes.

                                                       
4 This version of Generali zed Noninterference is

weaker than McCullough’s because it does not
require high level outputs to only be altered after the
point which the high level inputs have been altered.
However, this does not change any of the results and
simplifies the presentation.

5 We stress that this is in the possibili stic sense. A
Separabilit y secure system can be constructed that
has a probabilistic covert channel.

Separabilit y can be defined as follows.  For every pair of
traces τ1 and τ2 the trace τ such that τ|L=τ1|L and
τ|H=τ2|H is a valid trace.

No matter what the low level user observes, every
possible sequence of high level events is possible.
Therefore, the low level user cannot gain any new
information.

This property can be formalized as:

∀τ:traces(S) ⋅⋅ SEPARABILITY(LLES(τ,S)), where

SEPARABILITY( A ) ≡ ∀τ:A⋅∀t:traces(S)⋅
interleave(t|H,τ|L)⊆A

4. Information Flow and the Perfect
Security Property

The previous section defined security properties.  We
indicated that the traces that must appear in the low level
equivalent set are dependent on what information flows
are to be prevented.  In this section, we present the
weakest security property such that no information can
flow from high level users to low level users.  We will
use this result to determine the strength of the various
properties presented in the literature.

Information flows from high level users to low level
users when the low level users observe something they
believe is connected with high level activity.

“ Information is transmitted along an object when
variety in the events engaged by a [high level] user
can be conveyed to a [low level] user as a result of
[the high level users] interaction with the object.” [5]

Separabilit y is an example of a system with no
possibili stic information flow.  This is ensured because
all high level traces must be consistent with any low level
observation τlow.  However, Separabilit y is too strong.
Consider a low level user observing a sequence τlow from
a system S.  The absence of a high level sequence from
LLES(τlow,S) might indicate an information flow from
high level to low level users, but this is not suff icient.
For example, consider a system where the only high level
behavior is to echo all l ow level output events to a high
level device for archiving.  A low level user observing
τlow can construct LLES(τlow,S) and will notice that many
high level sequences are not possible.  However, there is
no information flow from high level users to low level
users.  The problem with Separabilit y is that it does not
allow low level users to influence high level activity.

The abilit y for low level users to influence high level
events does not reduce security since the low level users
will not know how they have influenced the high level
outputs.  Even if the low level user knows exactly what



the effect of his actions are, it does not help him in
determining anything new about high level activity.

To see how to weaken Separability to allow low level
events to influence high level outputs consider the
following formulation of Separability:

∀τ:traces(S) ⋅⋅ τ|L∈LLES(τ,S) ∧ ∀p,s: p  ̂s∈LLES(τ,S)∧

s|H=<>⋅∀α:H⋅∃t:traces(S)⋅p  ̂<α>|H=t|H⇒
  p  ̂<α>  ̂s ∈LLES(τ,S)

This formulation differs from the one given in section
3.4 by incrementally constructing all the interleavings.
This can be seen by examining the expression:

∀α:H⋅∃t:traces(S)⋅p  ̂<α>|H=t|H⇒p  ̂<α>  ̂s∈LLES(τ,S)(1)
The trace p  ̂s is such that s has no high level events

while p might have some high level events.  Since
τlow∈LLES(τ,S) we can always find such a p and s.  The
antecedent of (1) is true if p|H  ̂<α> is a valid high level
trace.  If p|H  ̂<α> is a valid high level trace then it must
be possible for the event α to occur between p and s.

The possibility of α occurring between p and s is only
dependent on the preceding high level events in p.
Therefore, a system where low level events influence
high level outputs would not satisfy Separability because
Separability would require that this high level output be
possible even before the event that caused it has occurred.

The following property allows α to be dependent on
all of p not just the high level events.

∀τ:traces(S) ⋅⋅τ|L∈ LLES(τ,S)∧∀p,s: p  ̂s∈ LLES(τ,S) ∧

s|H=<>⋅∀α: H ⋅ p  ̂<α>∈traces(S)
⇒ p ̂  <α>  ̂s  ∈ LLES(τ,S)

PSP stands for the perfect security property.  We will
demonstrate why we call this property perfect below.
PSP allows high level outputs to be influenced by low
level events.  PSP might appear complex but fortunately
there exists a simple procedure to determine if a
component satisfies PSP [19].   The composability of PSP
is proven below.  We will now prove that this property is
the weakest security property to ensure no information
flow.

Theorem 1: PSP does not allow any information to flow
from high level users to low level users.

Proof:
Assume that there is a system S that satisfies PSP and S
allows high level information to flow to low level users.
Since S has an information flow it does not satisfy
Separability.
Therefore, there exists a τlow such that the Separability
predicate is false.  For a τlow that makes Separability
false, construct A such that:

SEPARABILITY( LLES(τlow,S)∪A ) is true.

Let τ be a trace of A. Let p and s be traces such that they
satisfy the following:

∃α:H⋅p  ̂s|L = τlow ∧ p  ̂<α>|H ≤ τ|H ∧ p  ̂s∉Α ∧ p  ̂ <α>  ̂s∈A
Such a p and s exist A is not empty and τlow is a trace of
system since it satisfies PSP.

Consider p  ̂ <α>  ̂s:
Case 1:  α∈HI or α∈HO and α is only dependent on high
level events.  In this case the definition of PSP and
Separability are the same.  Therefore, α cannot be such
an element.
Case 2:  α∈HO and is dependent on low level events.  If
α cannot occur at this point in the trace it is because the
conditions for it to occur have not been satisfied.  Does
the low level user gain any knowledge from realizing α
did not occur?  Since he is controlling the existence of
the event, the answer is no.  The existence of such a trace
does imply that the low level user can covertly
communicate with the high level user, but such an
information flow is already allowed.

�

Theorem 2: PSP is the weakest security property that
does not allow information flow from high level users
to low level users.

Proof:
Theorem 1 proved that PSP does not allow information to
flow from high level users to low level users.  We must
therefore prove that any weaker property must allow
flows from high level users to low level users.
Let P be a property that is weaker than PSP that does not
have any unauthorized information flows.  Let S be a
system that satisfies P but not PSP.  Since S does not
satisfy PSP and is weaker than PSP:

∃p,s: p  ̂s∈A ∧ s|H=<>⋅∃α: H ⋅ p  ̂<α>∈traces(S)∧
p ̂  <α> ̂  s ∉ A,  where A=LLES(τlow,S)

If the subtrace p occurs and if α occurs then τlow could
not have occurred.  The low level user has deduced
something about high level events.  Therefore no such P
exists.

�

We will now prove that PSP is a composable property.
The following defines the composition of two
components.

Definition 10: Composition of Components
Given S1=<E1,I1,O1,T1> and S2=<E2,I2,O2,T2> that
satisfy

I1 ∩ I2 = ∅
O1 ∩ O2 = ∅

(E1 \ ( I1 ∪ O1)) ∩ E2 = ∅
(E2 \ ( I2 ∪ O2)) ∩ E1 = ∅



then the composition of S1 and S2 produces a new
component S=<E,I,O,T> such that:

E = E1 ∪ E2

I = (I1 \ O2) ∪ (I2 \ O1)
O = (O1 \ I2) ∪ (O2 \ I1)

and T = { a∈E
*
 such that a|E1∈T1 ∧ a|E2 ∈T2}

Theorem 3: The composition of two components S1 and
S2 that satisfy PSP will yield a system S to satisfy
PSP.

Proof:
Assume that the composition of two components that
each satisfy PSP does not satisfy PSP.  This then implies
that for some τ of S:



τlow∉A∨∃p,s: p  ̂s∈A ∧ s|H=<>⋅∃α: H ⋅
p  ̂<e>∈traces(S)∧p ̂  <α> ̂  s ∉ A, where A=LLES(τ,S)

Case 1: τlow∉A
Since τ is a trace of S, τ|E1∈traces(S1) and
τ|E2∈traces(S2).  Since S1 and S2 satisfy PSP
τ|L1∈traces(S1) and τ|L2∈traces(S2) therefore by the
definition of composition τ|L∈traces(S).

Case 2: ∃p,s: p  ̂s∈A ∧ s|H=<>⋅∃α: H⋅
p  ̂<α>∈traces(S)∧p ̂  <α> ̂  s ∉ A

From the definition of composability:
∀τ:E* ⋅τ∈traces(S)⇔ τ|E1∈trace(S1)∧τ|E2∈traces(S2)

Since p  ̂s∈A⇒ p  ̂s∈traces(S),  there exists

p1  ̂s1 ∈traces(S1) and p2  ̂s2∈traces(S2) such that
p|E1=p1, s|E1=s1, p|E2=p2 and s|E2=s2.

p  ̂<α>∈ traces(S) (Composition)

= p^ <a>|E1∈ traces(S1) ∧ p^ <a>|E2∈ traces(S2)
(PSP)

⇒ p^ <a>^ s |E1∈ traces(S1)∧p^ <a>^ s|E2 ∈traces(S2)
(Composition)

= p ^ <a> ^ s ∈ traces(S)
Both Cases yield a contradiction therefore PSP is a
composable property.

�

5. Comparing Security Properties

Our formalism provides an easy method of evaluating
the relative strengths of security properties.  Since we
have a logical expression for our properties the
comparison is simple.  To compare properties P and Q,
evaluate P⇒Q and Q⇒P.  If the first statement is true
then P is stronger then Q.  If the second statement is true
then Q is stronger than P.  If both are true, the properties
are equal.  If neither are true, they are not comparable.

Example 2: We will compare Generalized Noninference
to Generalized Noninterference:

First we will show that GNI implies Generalized
Noninference:

∀τ:traces(S)|L⋅GNI( LLES(τ,S) ) Definition of GNI
= ∀τ:traces(S)|L⋅∀t:interleave(HI*,τlow)⋅∃s:LLES(τ,S)⋅t

= s|(L∪HI) Specialization with t=τ
⇒ ∀τ:traces(S)|L⋅∃s:LLES(t,S)⋅t=s|(L∪HI) Distributive
⇒ ∀t:traces(S)|L⋅∃s:LLES(t,S)⋅t|L = s|L ∧ t|HI = s|HI

Definition of LLES(t,S)
= ∀t:traces(S)|L⋅∃s:LLES(t,S)⋅t|HI = s|H

It has no high level events
= ∀t:traces(S)|L⋅∃s:LLES(t,S)⋅<> = s|HI

Definition of GN

= ∀t:traces(S)|L⋅GN( LLES(τ,S) )
Now we show that Generalized Noninference does not
imply GNI:

∀τ:traces(S)|L⋅GN( LLES(τ,S) ) ⇒
∀τ:traces(S)|L⋅GNI( LLES(τ,S) )

Definition of GNI & GN
= ∀τ:traces(S)|L⋅∃s:LLES(t,S)⋅s|HI  = <> ⇒

∀t:traces(S)|L⋅∀t:interleave(HI*,tlow)⋅∃s:LLES(t,S)⋅t
=s|(L∪HI) Specialization such that t|HI≠<>

⇒ ∀t:traces(S)|L⋅∃s:LLES(t,S)⋅s|HI  = <>  ⇒
∀t:traces(S)|L⋅∃s:LLES(t,S)⋅t = s|( L ∪ HI )
 Distributive, Definition of LLES(t,S) and the

Specialization condition
⇒ ∀t:traces(S)|L⋅∃s:LLES(t,S)⋅s|HI  = <> ⇒

∀t:traces(S)|L⋅∃s:LLES(t,S)⋅¬s|HI = <>
= ⊥

Therefore, GN does not imply GNI and GN is a weaker
property than GNI.

�

By applying the above technique to the security
properties presented above, the following lattice can be
constructed.

Separability

Generalized
Noninterference Noninference

Generalized Noninference

Output Non-
Deducibility

PSP

Figure 1: A Partial Ordering of Security Properties

The arrows in the lattice indicate which property
implies which other.  For example PSP implies
Generalized Noninterference and by transitivity
Generalized Noninference.  An instructive way to
represent part of the above lattice is to only consider the
elements that can be totally ordered (see Figure 2).

Notice that PSP partitions the figure into two. This
can be used to determine the strength of the properties.
We can see that Separability is a stronger property than
PSP.  Therefore, systems with no information flow are
being unnecessarily rejected.  Most security properties
defined in the literature are weaker than PSP.  This
might be surprising, but can be explained because high
level interleavings are not considered by any of the
weaker properties.



6. Comparison to Other Approaches

6.1 Selective Interleaving Functions

The only other general framework for the
specification and analysis of security properties is
McLean’s Selective Interleaving Functions.  In this
section we compare our framework to McLean’s.
Specificall y, we will compare the expressabilit y of the
two frameworks and the results one can obtain from
each.

All of the security properties that can be expressed
using SIFs must be a closure with respect to some
interleaving function.  If a security property cannot be so
expressed, then the results of McLean’s work are not
applicable.  It may be argued that if the security
properties that cannot be handled by SIFs are
“uninteresting” , then SIFs are all that is required.   This
argument is naïve.  What is considered interesting today,
might not be interesting in the future.  We will show that
SIFs cannot represent all security properties.  A
framework should not place limits on what types of
properties can be expressed.

PSP is an example of a property that can be expressed
in our formalism but not using SIFs.  Recall that PSP is
similar to Separabilit y but allows high level outputs to be
dependent on low level events.  A SIF for PSP would be

required to produce the interleaving of all i nput events
and output events that are not dependent on low level
events while ensuring that the high level outputs that did
depend on low level events were not arbitraril y
interleaved.  This type of dependency is not expressible
using SIFs.

In the SIF framework a component satisfies a property
if and only if it is closed under some SIF.  SIFs take two
traces and perform an interleaving of the traces to
produce a new trace.  Consider the class SIFs that require
the lowin and lowout from one trace and the highin and
highout from the other.  All of the security properties
examined by McLean have this property.  Furthermore, it
is not clear how the events can come from different traces
and still have a useful system.  These SIFs can be
expressed as a predicate over the low level equivalent set
by ensuring that the interleaving specified by SIF is
present in the low level equivalent set.

One of the main differences between our work and
McLean’s is our assumption of input totalit y.  McLean
requires the a priori knowledge of compatible traces for
the composition.  Our assumption of input totalit y
removes this requirement.

Input totalit y makes the presentation of the results
easier.  If input totalit y were not required then it would
be possible to find two components such that their
cascade composition would not be allowed.  Consider the
communication events between two composed
components S1 and S2.  If the outputs of S1 were
unacceptable as inputs at S2 or an input event that must
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occur at S2 cannot be generated by S1, then the
composition would not succeed.  Input totalit y removes
this problem.

McLean does not require input totalit y in his theory of
Selective Interleaving Functions.  He uses an interface
requirement, when it is needed, that ensures the
composition will succeed.  The input totalit y requirement
can be replaced with an interface requirement.  This
would not change any of our results but would complicate
their presentation.

McLean’s composition results take the form of
theorems indicating what SIF a system will satisfy if the
condition of the theorem are true.  If the conditions of the
theorem are not satisfied, then nothing can be said about
the resulting system.  In our framework the property that
the resulting system satisfies is evident even if the
property is not composable.  Furthermore, it allows one
to determine why a property is not composable.

In specifying a property using SIFs, it might be
required to restrict the domain of the interleavings.
Unfortunately, there are domain assumptions in the
composition proofs.  These domain assumptions are what
led McLean to incorrectly conclude Generali zed
Noninference was cascade composable when it is not6

[19].  Furthermore, even if the domain assumption had
been made explicit they would not give any clue as to
why Generalized Noninference failed to compose.

6.2 Security Specifications

Jacob [10] developed a model of systems that he uses
to asses their security.  He models components using the
trace semantics of CSP [9].  Jacob’s components differ
from ours in one important way: there is no distinction
between input events and output events.

Jacob defines a function infer S B l that is read as “ the
inferences about S that B can make having observed l”
[10].  If we assume two comparable levels then Jacob’s
definition of infer S B l is equivalent to our definition of
LLES(l,S).  Notice that by inference Jacob means what
possible observations can a user make not what extra
information his observation has given him.

With the definition of infer S Jacob defines what it
means for a system R to be at least as secure as a system
S.  In our notation:

∀l:traces(R)⋅∃l1:traces(S) ⋅l|L=l1|L ∧ infer S L l|L ⊆
infer R L l|L

R is at least as secure as S if all possible low level
traces of R are low level traces of S and the LLES(l,S) ⊆
LLES(l,R).  Since the low level user does not know

                                                       
6 This was corrected in [15]

which element of LLES(l,S) has occurred, enlarging the
set enhances security.

Jacob then defines restricting information flow as (in
our notation and assuming two levels):

∀t:traces(S) ⋅∃l:traces(S) ⋅t|L=l|L∧l|H=<>
This definition can be seen to be equivalent to the

definition of Noninference (section 3.1).
Jacob proceeds to generali ze the infer function to

allow a security specification that allows one to specify
systems in which a restricted amount of information is
allowed to flow from one user to another.  Since our
definition of a security property is a predicate over the
low level equivalent set this type of specification can also
be done in our framework.  Furthermore, more complex
security properties can be expressed in our framework.

6.3 Security Properties for CCS

Focardi and Gorrieri [3] [4] have also attempted to
provide a basis for a formal comparison of security
properties.  They have chosen Milner’s CCS [16] as a
basis for modeling the components.  Focardi and Gorrieri
also formalized various information flow security
properties and compared their strengths.  Their work
differs from ours because they do not provide a definition
of a security property.  It is this formalization of security
properties that is a primary goal of our work.

7. Conclusions

In this paper we presented a framework for specifying
an analyzing security properties.  The definition of a
security property is general and intuiti vely appealing. We
have also presented a property that is the weakest
property that allows no possibili stic information flow.
We have demonstrated that this property cannot be
expressed in the Selective Interleaving Functions
Framework.
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Appendix A: Security Properties vs.
Safety/Liveness Properties

The Alpern and Schneider safety/li veness model of
properties is currently the dominant model in the
specification of analysis of programs [14].  Properties are
regarded as sets of traces and a component satisfies a
property if its set of traces is a subset of the property’s
set.  This appendix proves that security properties cannot
be expressed in the Alpern and Schneider framework.

Definition 11: Event System Space
An event system space is a 4-tuple <E,I,O,T> where
E, I, O, T are defined as in the definition of an event
system but with T=E*.  We will write Š for the event
system space.

Definition 12: An Element of a System Space.
A system S=<E1,I1,O1,T1> is a subset of the system
space Š=<E,I,O,T> if and only if E1⊆E, I1⊆I, O1⊆O,
T1⊆T.

Theorem 4: Security properties are not expressible as
sets of traces.

Proof:
Assume that a security property P  can be expressed as
the intersection of a saftey and li veness property.  Let
T⊆traces(Š) be the set of traces that satisfy a security
property P.  Since P is the intersection of a safety and
liveness property, any system that had traces T’⊆T would
also satisfy P.  A security property ensures that a system
has certain behaviors. For a system to satisfy a security
property all l ow level equivalent sets must satisfy the
security predicate.  Construct a system S⊆Š and
traces(S)⊆T such that the security property predicate is
false for some low level observation τlow.  Such a system
exists because removing one of the required traces will
make the predicate false, but will still result in the set of



traces being a subset of T.  The set of traces of S does not
satisfy the security property P but is a subset of T.  This
yields a contradiction.  Therefore, P cannot be expressed
as a set of traces. 
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