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ABSTRACT

This paper presents a set of rules of operation which guarantee that a computer system
can remain secure while exhibiting certain desired external characteristics.  The rules are
easily transformable into algorithms suitable for implementation on a digital computer.
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PREFACE

In our introductory paper on secure computer systems (MTR-2547, Vol. I) we introduced
a framework for mathematical modeling based upon general systems theory.  We then
developed a basic model of a secure computer system in very abstract terms.  That model
is the basis from which we proceed in this paper.
We present a set of rules of operation which guarantee that the system remains secure
while exhibiting certain desired external characteristics.  The rules of operation will be
seen to be easily transformable into algorithms suitable for implementation on a digital
computer.
This work was supported by Project 522B, Secure Computer, a part of Air Force Project
5220, Project 85.
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SECTION I

INTRODUCTION

BACKGROUND

This paper is a direct extension of the work reported in [1],     SECURE         COMPUTER    
    SYSTEMS:     MATHEMATICAL FOUNDATIONS.  Therein we developed a
mathematical framework and showed the basic methodology by which the resulting
simple model could be extended.  Starting with an  abstract notion of general system, we
showed how a relation can specify behavior of a system and how it is possible to prove
that a system has (or does not have) a given property.  However, the model of [1] is far
from being usable for the design of a system.  A key factor here is that a function (a
specialized form of relation) is more amenable to translation into algorithm  for a digital
computer than is a general relation.  Additionally, the set of access attributes, the set of
requests, and the set of system decisions were all left abstract in [1].  Finally, we showed
that the system under discussion had no security compromise; however, the definition of
security compromise was such that we had only shown  that the system was internally
correct — we had not related the internal behavior of the system to its external behavioral
characteristics.

APPROACH

Our general approach is easily deduced from the preceding remarks. We shall make
specific the sets of requests, decisions, and access attributes, guided by the characteristics
we would like to see in the resulting system.  Our model, while less general, will then be
closely matched to the design problem.  This approach is  an exemplification of the
general principles of modeling which we discussed in the introductory chapter of [1].
More particularly, we shall now consider external characteristics of the model (Section
II) as they pertain to secure system operation. Section II provides justification for the
formal properties of the model developed in Section III.  It is in Section III that we
develop a model which will be seen to be more specific than the model presented in [1]
and particularly suited to the development of rules of operation which are functions.
Section III, then, provides a system for the formalization of rules; in addition, we shall
develop therein a proof approach by which we shall show that the rules satisfy certain
desired properties.  Section IV presents the rules of operation, each accompanied by a
formal proof of correctness — that is, we show that each rule preserves security and
satisfies  an externally imposed property.  Section V is devoted to design considerations;
in particular, we shall discuss the notion of a covering, disjoint set of rules — a notion
irrelevant to the mathematical model but of some significance for the design engineer, for
a covering, disjoint set of rules has no  redundancy in the domains of operation of the
rules.  Other subjects relevant to design  are also discussed in Section V.



2

SUMMARY  AND  REFERENCES

We have given a very brief introduction to the material of this paper.  A lengthy
introduction and motivation for our approach can be found in [1].

1. Bell, D. Elliott; La Padula, L. J.,  "    Secure         Computer        Systems   : Mathematical
Foundations", MTR-2547 Vol. I, The MITRE  Corporation, Bedford, Massachusetts, 1
March 1973.
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SECTION II

EXTERNAL CHARACTERISTICS OF THE MODEL

INTRODUCTION

The problem addressed in this report is the specialization of the model described in [1].
The goal is to make the model more useful for the investigation of rules for the operation
of a secure computer system.  To realize that goal, we must consider the characteristics of
the system we are designing as guides for the specialization process.  In particular, we
must devise a reasonable set of access attributes and accompanying sets of requests and
decisions.  The next task is to consider the reasonableness of the security condition of [1];
in this case, we shall revise our concept of security to make it reflect the real situation
more accurately.  We shall end this chapter with a discussion of the possible interaction
caused by multiple accesses. This discussion will result in the statement of a property
which we shall incorporate into the model axiomatically as the *-property.

ACCESS ATTRIBUTES

We consider four basic types of access in a complex computer system.  In this section, we
shall describe these four access attributes —read-only access,  append access, execute
access, and  read/write access, together with a fifth attribute, control access.  The
discussion of each access attribute is intended to provide our interpretation of that type of
access and to justify our conclusions in the sections entitled Security Conditions and
Interaction of Multiple Accesses.

The read access we shall include in our set  A  of access attributes can be considered a
"pure read" access in the sense that a user with read access to an object cannot affect the
contents of that object.  This access mode  will enable us to model two very different
situations, each of which poses a significant modeling problem.

A file containing information which can be referenced, but which should not be altered,
will be accessed in read mode.  An obvious example of such information would be the
classification and clearance listings of the subjects and objects in the system:  in order to
enforce security rules, this information must be accessible and unalterable.  Read-only
access provides the appropriate combination of availability and protection.

Our model needs to take into account input and output devices, as well as information
storage units.  In particular, an input device such as a card reader, which has no inherent
content, can be included in our model as a read-only object. Analogously, output devices
will be included in the model using the append access mode.

The append access we shall include is a "pure write" access. By this we mean that append
access allows alteration of the object (in particular, the addition of information to a file)
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while preventing information extraction from the object.  We intend, therefore, that
append access to a file should not divulge any of the contents of the file.  In addition, we
include within the purview of  append access the use of an output device such as a printer
which transfers information beyond the control of the system.  In doing so, we assume
that printers which are in nonclassified areas will be nonclassified and that matching the
classifications of output information and the output device will suffice to prevent
unauthorized personnel from viewing restricted material.  The append access that we
have described denotes a pure write operation anywhere in a file.  We chose the word
"append", however, because it connotes addition to the end of a file, i.e., appending data
to an existing file, and because we anticipate that subsequent implementation will use an
actual append operation.

Another type of object we want to include in our model is the executable object such  as a
program or routine.  We therefore add an execute access mode to our model.  Execute
access only allows a subject to trigger the executable object:  the general user cannot read
or write the program  if he has only execute access.  If the program produces information,
the information is fed back to the executor under system control.  The usual procedure
would be for the program to write its results in a file and for the executor to read the file.
If the information produced were classified higher than the executor's clearance level,
then the system would deny the executor read access to the file where the generated
information had been stored.

The last type of access we shall consider is  an interactive read/write access.  We shall
call this type of access write-access for simplicity.  Write-access is the type of access that
would be used in editing or  updating a file.

The final access attribute we shall include we call "control access".  This attribute is
intended to formalize the notion of control over an object and the access to it.  Locking
and unlocking a file to another subject will be governed by the control access attribute.

We formalize five access attributes later in this paper based upon the preceding
considerations:

• read access; a subject having read access attribute with respect to some object
has a read-only capability with respect to that object;

• append access; a subject having append access attribute with respect to some
object has a write-only capability with respect to that object;

• execute access; a subject having execute access attribute with respect to some
object has the capability to cause execution of that object (in the sense of
running a program) in its behalf;

• write access; a subject having write access attribute with respect to some object
has the capability to both read and write that object;

• control access; a subject having control access with respect to some object has
the capability to extend to another subject one or more of the other four access
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attributes it may have with respect to that object.

REQUESTS AND DECISIONS

Assuming an environment wherein processes are surrogates for users, we shall speak of
processes making requests for access to objects, requests to make changes to the access
matrix of the system, requests to create objects, or requests to delete objects. The reader,
then, should understand that such requests represent the intentions of the users of the
system. We shall speak of the responses of the system to requests by processes as
decisions.

The access matrix we have just mentioned is formally defined in Section III.  For our
purposes here it will suffice for the reader to have the notion that the access matrix of the
system is simply a record-keeping device which remembers, for each possible subject-
object pairing, a list of access attributes associated with that subject-object pairing.  For
example, the access matrix might show that the access attributes      write     (     w     )and    control    (   c   )
are associated with subject S7 and object O9, where S7 is a process and O9 is a file. The
access matrix can be envisioned as suggested in Figure 2-1.

objects

subjects O9

S7      w     ,   c   

Figure 2-1

As we have briefly indicated at the beginning of this section, we shall provide for four
types of requests:
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(i) a request by a subject to be granted access to an object in a particular mode;

(ii) a request by a subject that another subject be given some access attribute with
respect to some object;

(iii) a request by a subject to create an object in the system; and

(iv) a request by a subject to delete an object from the system.

With respect to (i), only requests involving read, write, append, or execute are valid.  We
shall use the control attribute in such a way that for a subject to request control access to
an object makes no sense.  Thus, a subject may request that it be given read, write,
execute, or append access to an object.  When such a request is made, a number of checks
need to be made by the system.  One of these, and perhaps the most obvious, is to check
that the subject making the request is allowed to access the object in the mode which it is
requesting.  This is done by checking in the access matrix.  For example, subject S7
requesting      write     access to object O9 passes the test, according to Figure 2-1, but S7
requesting    execute     access to O9 fails the test.  Now, other checks must be made before  a
final decision can be rendered by the system; these have to do with preserving security
and *-property — this is discussed in the next two sections.

With respect to (ii), we require that a number of conditions be met in order for this type
of request to be valid.  Imagine a request by S6 to give the    read     (r) access attribute to
subject S8 with respect to object O9.  First of all, the access matrix must show an entry of
   c    at S6 ,O9 — that is S6 must have the    .control    access attribute with respect to O9.  Next,
S6 must also have the access attribute with respect to O9 which it is attempting to extend
to S8 — in this case, S6 itself must have the    read     access attribute for O9.  In other words,
a subject cannot give (or take away) access attributes unless it itself has    control    access
and the access attribute it is attempting to give (or take away).  Finally, we shall not allow
a subject to extend the    control    access attribute to another subject.  Other checks need to
be made also — these are similar to those for type (i) requests and are covered later.
With respect to (iii), we have divided the notion of creation of an object into two parts.
Our reason for this approach lies in our method of modeling the process of creation:  we
see the creation of an object as the    activation     of an unused object index.  This point of
view was chosen to simplify the discussion of creation and deletion of objects by
avoiding the need to dynamically alter Both the domain of the classification function  f
and the dimension of the access matrix M.  This approach is justified since the activation
of an object index is logically equivalent to the addition of an entirely new object to the
set O.  Using this point of view, however, the created object Oj may  have a classification
and a set of categories which do not match the requirements of the requesting subjects.
(In the model, every object, active or not, has a classification and a set of categories
assigned to it.)  Thus we have included

(i) requests to alter the classification and category assignment of unused objects,
and

(ii) requests to create (i.e., activate) unused objects.
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Inasmuch as these types of requests neither alter the classifications or categories of active
objects nor alter the clearances or categories of subjects nor change the current allocation
of objects to subjects, the granting of these requests hinges not on security considerations
but on appropriateness of the request.  That is, a request to alter the classification of an
active object or a request to create an object which is currently active would be rejected
as inappropriate.

With respect to (iv), we again find that security considerations play no significant role.  A
request to delete an object Oj, when made by a subject with    control    access, causes the
deactivation of Oj and the immediate withdrawal of all access privilege to Oj, both
current and future.  As in the preceding discussion, only the appropriateness of the
request is considered by the system since neither compromise nor any other problem of
concern can result.

In summary, the access matrix records the access attributes associated with each subject-
object pair.  The access matrix does not change except as noted — that is, the    read,         write,   
   execute,    and    append     access attributes for active objects may be given and rescinded only
by certain subjects.  During normal operation of the system the    control    access attribute is
entered into or deleted from the access matrix only when an object is created or deleted.
We assume that other changes involving this access attribute are made by a control
officer while the system is in a special mode of operation and not generally available to
users.
The two basic decisions which the system must make are     yes    and     no     — yes, the request is
granted; no, the request is not granted.  In addition, however, we specify an    error    decision
and a "question" (?) decision.  We shall use the    error    decision in a special way:  it will
indicate that the decision-making mechanism of the system is confused; its principal use
would be in debugging during initial stages of checkout.  The    error    decision will result
when two or more rules (developed in Chapter 4) are applicable to the same request (as
defined in Chapter 3, Section 3-5, Rules).  However, the    error    mechanism could be
retained in the system beyond its initial checkout to cover the eventuality that a change in
the rules might at some time be desirable.

The decision    ?    will be used to indicate that the request is not recognized.  In the formal
model this simply means that no rule is applicable to the request being made.  As we shall
see in Section V, the    ?    decision can be restricted to be an internal response of the system,
with the decision    illegal    being given to the subject (indicating an illegal request).

SECURITY CONDITION

We desire the system to satisfy the condition that security compromise not be allowed to
occur within it.  With the establishment of specific access attributes and requests behind
us, we can now be quite specific about the security condition we wish to satisfy.
Security compromise will be used in the usual sense of military and governmental
definitions of security compromise — the unauthorized disclosure of information.  With
this strict interpretation of security compromise we gain two advantages.  First, we need
not change nor strain our usual understanding of compromise; second, the security
condition can be precisely and succinctly formalized in our model and can be kept
distinctly separate from other properties or conditions we may wish to include in the
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model.

Given the access attributes we have defined and granted the strict interpretation of
security compromise which we have indicated, the following notions develop quite
naturally.  The security condition to be developed formally in the model should be so
defined as to prevent a subject of a given clearance level with a given set of categories
(project clearances, special clearances, password, and so forth) from having read access
to any object which is or can be the source of information with a classification which
exceeds the clearance of the subject or an associated category set which includes an
element (such as a project-need-to-know) which the subject does not possess.  And that is
all.  Notice that we shall define the security condition (in Section 3) so that it pertains to
immediate, actual ability to read (receive) information in an unauthorized way — it does
not involve     potential,        probable,    or     possible    unauthorized access.  This latter point
illustrates what we have said previously.  Potential unauthorized access is dealt with in
the next section and leads to a new property to be incorporated into the model.  The
security condition, however, remains intact, simple and to the point.

INTERACTION OF MULTIPLE ACCESSES

In certain cases, a combination of two or more accesses, none of which in itself
constitutes a security compromise, can lead to a potential for later compromise.  More
importantly, these situations involve a loss of control on the part of the security system: it
becomes possible for high classification material to be added to a low classification file
without appropriate changes being made to the security classification lists.  To avoid such
potential for compromise and to retain control of the security situation, we have
developed a set of criteria which describe precisely which situations we wish to avoid.
The remainder of this section presents a specific example of potential compromise to
illustrate the problem more clearly and an informal description of the *-property which
characterizes those undesirable situations with which we are concerned.

Suppose that a subject S7 currently has read access to a file O11.  Suppose further that
the clearance level of S7 is ci and that the classification of O11 is also ci.  Assume also
that the categories associated with O11 are included within those possessed by S7 so that
the security condition is satisfied.  According to the security condition we have discussed,
if S7 should request append access to some object O13 we are able to grant the access
regardless of the classifications, clearances, and categories associated with S7 and O13.
But suppose that the classification of O13 is cj and cj < ci, meaning O13 is of lower
classification than O11; for example, O13 might be classified confidential and O11
secret.  We have now set up a typical example of potential compromise.

Suppose that S7, either inadvertently or intentionally, reads secret information from O11
and appends it to O13.  Then it is possible for some other subject whose clearance level is
only confidential to gain access to O13 and read secret information(security
compromise).
Several courses are open to us.  For example, we might attempt to allow S7 to do what
we have indicated, in a controlled way of course, thereby necessarily changing the
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classification of O13 (by upgrading it from confidential to secret).  An approach similar
to this alternative has, in fact, been reported by Weissman [1].  This approach does keep
the system's information about clearances and classifications in agreement with the actual
clearances and classifications.  However, we choose not to change the classifications of
objects during the normal operation of the system.  If this choice were reversed, the
change could, of course, be incorporated into the model.

Therefore, we must find some other way to guarantee that the system's information
reflects reality.  Thus, we shall deny S7's request to access O13 in append mode while it
has access to O11 in read mode; this decision is based not on the satisfying of the security
condition but on the fact that the potential for compromise would exist if the request were
granted.

A number of other examples could be constructed; each could illustrate some aspect of
the general problem we have been discussing.  The reader should have no difficulty in
seeing that we are led to the following requirement — that the system, at each moment,
satisfy a property (to be called *-property) which will guarantee that the potential for
compromise does not exist.

We give now an informal description of *-property (Section III formalizes this as part of
the mathematical model).  Consider some subject S.  We require that if S has      write     or
   append     access to some objects and    read     or      write     access to some objects, then the
classifications of the objects to which S has      write     or    append     access must exceed or equal
the classifications of the objects to which S has    read     or      write     access.  Clearly, this
requirement prevents the situation which we detailed in the example at the beginning of
this section.  Another obvious situation is avoided.  If S can read information from a card
reader and print information on a printer, the *-property guarantees that information of a
classification higher than that which the printer should handle will not be sent to it by S
from the card reader, which might be allowed to handle the information.

SUMMARY AND REFERENCES

In this section we have discussed certain aspects of an hypothetical multi-user system
which is to be secure in some sense.  We have attempted to give motivation and heuristic
arguments for the precise sense in which we shall consider a system to be secure later in
this paper.

We have not always indicated why a particular approach has been taken.  For example, in
developing our arguments for the *-property, we indicated that "we choose not to change
the classifications of objects during the normal operation of the system." In this case the
decision is the result of analyzing the requirements for the system, the general consensus
being that changing classifications of objects during normal operation is somewhat
unnatural, akin to upgrading a confidential document while one is reading it by writing
secret marginalia in it.
The approaches we have taken can be succinctly recounted and categorized as being
either required or discretionary.  The set of access attributes contains both required and
discretionary attributes.  The attributes read and write (that is, read-only and read-write)
we consider to be necessary in a reasonable computer system; the attributes execute and
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append are optional in that a computer system could operate without them.  Given the
access attributes, the requests we have included are necessary to provide a minimally
usable system; the same is true of all the decisions except    ?   .     ?    was included in order to
simplify the discussion of sets of rules.  Three other principles combined with the access
attributes, the requests, and the decisions we chose, directly resolve every other decision
that was made.  Those three principles are the following:  the security principle; the
interactivity principle; and the tranquility principle.  The security principle, enunciated in
the definition of security, is necessary in a military-governmental situation.  The
interactivity principle, embodied in the model as the *-property, is also a necessary
ingredient in a usable system.  The tranquility principle, that the classification of active
objects will not be changed during normal operation, is not required.  As we mentioned
above, its adoption was accepted as a result of a first analysis of the requirements for
secure computer systems.  These decisions specify our model.  In particular, situations
such as the one presented in the preceding paragraph can be handled in only one way:
queueing a request is ruled out by the unavailability of that decision in our model and
upgrading a document to preserve the *-property is ruled out by the tranquility principle.
Thus, the model as presented can be significantly altered only by changing elements of
the model or by rejecting the tranquility principle.

1. Weissman, C.: "Security Controls in the ADEPT-50 Time-Sharing System,"
AFIPS Conference Proceedings 35, FJCC 1969, 119-133.
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SECTION III

FORMULATION OF THE MODEL

INTRODUCTION

We are now in a position to develop a model more specifically suited to the investigation
at hand than the model presented in [1].
Having introduced specific    access attributes   ,    requests   , and     properties    of the system which
we deem desirable, two things are immediately evident:

(i) we can specialize the state space of the system;

(ii) we can specialize the general relation  W  (cf. [1]) to be the union of partial
functions, each function being a rule of operation for access control.

We show the elements of the model in Table I, wherein we identify sets, elements of the
sets, and an interpretation of the elements of the sets.  This table can be seen to be that of
[1] extended as we have previously indicated.

Table I

Elements  of  the  Model

Set Elements Semantics

S {S1,S2, •  •  • ,Sn}    subjects   ; processes, programs in execution

O {01,02, •  •  • ,0m}     objects   ; data, files, programs, subjects, I/O
devices

C {C1,C2, •  •  • ,Cq}
{C1 > C2 >  •  •  •  > Cq

   classifications   ; clearance level of a
subject, classification of an object

K {K1,K2, •  •  • , Kr }    categories   : special access privileges

A {   r   ,     w     ,   e   ,   a   ,   c   }    access attributes   ; read, write, append,
execute, and control
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RA {g,r,c,d}    request elements   ;
g:  get, give
r:  release, rescind
c:  change, create
d:  delete

R S+ × RA × S+ × O × X

where S+ = S ∪  {φ} and

X = A ∪  {φ} ∪  F; an
arbitrary element of R is
written Rk

   requests   : inputs, commands, requests for
access to objects by subjects

D {    yes   ,     no    ,    error   ,    ?   }
an arbitrary element of D is
written Dm

    decisions   

T {1,2,  •  •  • ,t, •  •  • }    indices   ; elements of the time set;
identification of discrete moments; an
element  t  is an index to request, decision,
and state sequences

F CS × C0 × (PK)S × (PK)O
an arbitrary element of F is
written f = (f1,f2,f3,f4)

   classification/need-to-know vectors   ;
f1: subject-classification function
f2: object-classification function
f3: subject-category function
f4: object-category function

X RT
an arbitrary element of  X
is written  x

   request sequences   

Y DT
an arbitrary element of  Y
is written  y

    decision sequences   
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M {M1,M2, •  •  • , Mc},

c = nm25;
an element of M, say Mk,

is an n  ×  m  matrix with
entries from PA; the
(i,j)-entry of Mk shows Si's
access attributes relative to
0j

   access matrices   

V P(S × 0 × A) × M × F
an arbitrary element of V is
written v

   states   

Z VT
an arbitrary element of  Z
is written  z; zt ∈ z  is the t-
th state in the state
sequence  z

   state sequences   

We have defined the states of the system in such a way as to include all the information
considered pertinent to preservation of security and other desirable properties.  A state  v
∈  V  is an ordered triple (b,M,f) where

b ∈  P(S × 0 × A), indicating which subjects have access to what objects in
what mode in the state  v;

M ∈  M, indicating the entries of the access matrix in the state  v;
and

f ∈  F, indicating the clearance level of all subjects, the
classification level of all objects, and the categories
associated with each subject and object in the state  v.

Let W ⊂  R × D × V × V.  The system  Σ(R,D,W,zo) ⊂  X × Y × Z

is defined by (x,y,z) ∈  Σ(R,D,W,zo) iff (if and only if) (xt,yt,zt,zt−1) ∈  W for each t ∈  T,

where zo is a specified initial state, usually of the form (φ,M,f).
W  has been defined as a relation.  As  we shall see, however, W  will be the union of
partial functions which constitute the rules of operation of the system with respect to
preservation of security and the externally imposed characteristic (to be called
*-property).
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SECURITY CONDITION

(S,O,    x    ) ∈  S x O x A  satisfies the    security condition relative to f    (SC rel f) iff

(i)     x     =    e     or      x     =    a    or      x     =    c    , or

(ii) (    x     =    r     or      x     =      w     ) and (f1(S) ≥ f2(O) and f3(S) ⊇  f4(O)).

A state  v = (b,M,f) ∈  V  is a    secure state     iff each (S,O,    x    ) ∈  b satisfies SC rel f.  A state
v  is a    compromise state    (   compromise   ) iff it is not a secure state.
A state sequence  z ∈ Z      has a compromise     iff  zt  is a compromise for some  t ∈ T.  z is a

   secure state sequence     iff  zt  is a secure state for each  t ∈ T.  We call

(x,y,z)  ∈   Σ(R,D,W,z0)

an     appearance    of the system.  (x,y,z) ∈  Σ(R,D,W,z0)  is a    secure appearance     iff  z  is a
secure state sequence.  The appearance  (x,y,z)     has a compromise     iff  z  has a
compromise.

Σ(R,D,W,z0)  is a    secure system      iff every appearance of Σ(R,D,W,z0) is secure.

Σ(R,D,W,z0)     has a compromise     iff some appearance of Σ(R,D,W,z0) has a compromise.

*-PROPERTY

We introduce the following notation to make later development more succinct.
Let  b(S:    x    ,    y    , ... ,   z   )  denote the set

{O: O ∈ O and [(S,O,    x    ) ∈ b or (S,O,    y    ) ∈ b or  • • •  or (S,O,   z   ) ∈ b]}.

A state v = (b,M,f) ∈  V    satisfies *-property     iff for each  S ∈  S  the proposition

[[b(S:     w     ,   a   ) ≠ ϕ and b(S:   r   ,     w     ) ≠ ϕ] implies [f2(O1) ≥ f2(O2) and f4(O1) ⊇  f4(O2),

for all O1 in b(S:     w     ,   a   ), O2 in b(S:   r   ,     w     )]] (3-1)

is true.  A state v      violates *-property     iff  v  does not satisfy *-property.

A state sequence  z ∈ Z     satisfies *-property     iff  zt satisfies *-property for each  t ∈ T.

(x,y,z) ∈  Σ(R,D,W,z0) satisfies *-property iff  z  satisfies *-property.  Σ(R,D,W,z0)

satisfies *-property iff every appearance of  Σ(R,D,W,z0)  satisfies *-property.
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RULES

A    rule    is a function  ρ:  R × V → D × V.  The interpretation of a rule is that, given a
request and a state, a rule decides a response and a state change.  A rule is analogous to
the concatenation of the output and decision (next-state) functions of a finite-state
machine (or sequential machine).
A rule ρ is    security-preserving     iff the proposition

[[ρ(Rk,v)  =  (Dm,v*) and v is secure] implies [v* is secure]]
holds for all elements (Rk,v) ∈  R × V.

A rule ρ is     *-property-preserving     iff the proposition

[[ρ(Rk,v)  =  (Dm,v*) and v satisfies *-property] implies [v* is secure]]
holds for all elements (Rk,v) ∈  R × V.

Let ω = {ρ1,ρ2, • • • ,ρs} be a set of rules relative to R, D, and V.  The relation W(ω) is
defined by:

(i) (Rk,   ?   ,v,v) ∈  W(ω) iff ρi(Rk,v) = (   ?   ,v) for each i, 1 ≤ i ≤ s;

(ii) (Rk,   error   ,v,v) ∈  W(ω) iff there exist i1, i2, 1 ≤ i1 ≤ i2 ≤ s, such that ρi1(Rk,v)

≠ (   ?   ,v*) and ρi2(Rk,v) ≠ (   ?   ,v**), for some v*,v** ∈  V;

(iii) (Rk,Dm,v*,v) ∈  W(ω) iff there exists a unique i, 1 ≤ i ≤ s, such that (   ?   ,v**) ≠
ρi(Rk,v) = (Dm,v*), for some v* and any v** ∈  V.

One may interpret a rule to be a formal realization of one's intuitive notion of how the
system handles requests, making decisions based on the combination of current situation
and specific request.  If rule  ρi  does not handle a request Rk , then ρi(Rk,v) = (   ?   ,v),

meaning that ρi is not applicable to  (Rk,v); considering ρi as a function, this means that

(Rk,v) is not in the domain of ρi.  If we have some (Rk,v) for which every rule is

inapplicable, then W(ω) is inapplicable and the system response is (   ?   ,v)  (cf. (i) under the

definition of W(ω)).  By our definition of W(ω) we have imposed the condition that each
type of request be handled by no more than one rule.  If more than one rule is applicable,
then the system response is (   error   , v) (cf. (ii) under the definition of W(ω)).  If exactly
one rule is applicable to (Rk,v) resulting in (Dm,v*), then the system response is (Dm,v*)

(cf. (iii) under the definition of W(ω)).
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PROOF APPROACH

In this section we present five theorems, the first of general interest, the other four of
specific applicability to the development of Section IV. We shall need the following
definition for our purposes.
(Ri,Dj,v*,v) ∈  R × D × V × V is an action of Σ(R,D,W,z0) iff there is an appearance

(x,y,z) of Σ(R,D,W,z0) and some t ∈  T such that

(Ri,Dj,v*,v) = (xt,yt,zt, zt−1)

If the system Σ(R,D,W,z0) is clear from the context, then we shall simply refer to
(Ri,Dj,v*,v) as an action.

    Proposition      If (Ri,Dj,v*,v) is an action of Σ(R,D,W,z0), then (Ri,Dj,v*,v) ∈  W.

We now state and prove Theorem 3-1. It has utility as a general analysis tool for the
evaluation of a proposed system.

    Theorem 3-1      Σ(R,D,W,z0) is secure for any secure state z0 iff W satisfies the following
conditions for every action (Ri,Dj,(b*,M*,f*),(b,M,f)):

(i) every (S,O,    x    ) ∈  b*− b satisfies SC rel f*;

(ii) every (S,O,    x    ) ∈  b which does not satisfy SC rel f* is not in b*.

    Proof   
(⇐ )

Let z0 = (b,M,f) be secure. Pick (x,y,z) ∈  Σ(R,D,W,z0) and write zt = (b(t),M(t),f(t)) for

each t ∈  T.
   z       1        is a secure state   

(x1,y1,z1,z0) ∈  W. By (i), every (S,O,    x    ) ∈  b(1)− b satisfies SC rel f(1).

Let     b     = {(S,O,    x    ) in b and (S,O,    x    ) does not satisfy SC rel f(1)}. By (ii), we have
b(1) ∩     b     = φ. Then     b     ∩ (b(1) ∩ b) = (    b     ∩ b(1)) ∩ b = φ ∩ b = φ. Hence, if

((S,O,x) ∈  b(1) ∩ b, then (S,O,    x    ) is not in     b     so that (S,O,    x    ) satisfies SC rel f(1). Since

every (S,O,    x    ) ∈  b(1) is in either b(1)− b or b(1) ∩ b, we have shown that z1 is a secure
state.
   If z      t       −        1        is secure, then z       t       is secure    .
Repetition of the argument just used can clearly be done validly. By induction, z is secure
so that (x,y,z) is a secure appearance. (x,y,z) being arbitrary, we have shown that
Σ(R,D,W,z0) is secure.

(⇒ )
Proof by contradiction. Contradiction of the conclusion of the theorem results in the
proposition
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[there is some (xt,yt,zt,zt-1) such that either

(iii) [some (S,O,x) ∈  b(t)− b(t−1) does not satisfy SC rel f(t)] or

(iv) [some (S,O,x) ∈  b(t−1) which does not satisfy SC rel f(t) is in b(t)].

    Suppose (iii)   . Then there is some (S,O,    x    ) ∈  b(t) which does not satisfy SC rel f(t), since

b(t)− b(t−1) ⊆  b(t).
    Suppose (iv)   . Then there is some (S,O,    x    ) in b(t) which does not satisfy SC rel f(t) by
statement of (iv).

Therefore, zt is a compromise, (x,y,z) has a compromise, and this contradicts the

assumption that Σ(R,D,W,z0) is secure.

The proof of the theorem is complete. ❚

The next four theorems provide the tools we shall require in Section IV for the
development of rules of operation for the system.

    Theorem 3-2      Let ω be a set of security-preserving rules and z0 a secure state. Then

Σ(R,D,W(ω),z0) is secure.

    Proof     Suppose Σ(R,D,W(ω),z0) is not secure. Let (x,y,z) ∈  Σ(R,D,W(ω),z0) have a
compromise. Let t be the least element of T such that zt is a compromise. z0 is secure, so

that t > 0. By our choice, zt−1 is secure and by definition of Σ(R,D,W(ω),z0), (xt,yt,zt,zt−

1) ∈  W(ω). Since zt  zt−1, there is a unique ρ ∈  ω such that ρ(xt,zt−1) = (yt,zt) ≠ (   ?   ,v**).

Since ρ is security-preserving and zt−1 is secure, zt is secure. This contradiction proves

that Σ(R,D,W(ω),z0) is secure.

The proof of the theorem is complete. ❚

    Theorem 3-3      Let ω be a set of *-property-preserving rules and z0 a state which satisfies

*-property. Then Σ(R,D,W(ω),z0) satisfies *-property.

    Proof     The proof is exactly that of Theorem 3-2 with the obvious substitutions of
*-property for secure. ❚

    Theorem 3-4      Let v = (b,M,f) be secure and (S,O,    x    ) ∉  b. Set b* = b ∪  {(S,O,    x    )} and
v* = (b*,M,f).

(i) If     x     =    e    or     x     =    a    or     x     =    c   , v* is secure.
(ii) If     x     =    r    or     x     =      w     , v* is secure iff f1(S) ≥ f2(O) and f3(S) ⊇  f4(O).

    Proof   
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(i) v secure implies v* secure since (S,O,    x    ) satisfies SC rel f by definition.
(ii) (⇒ )

Direct consequence of definition of secure state.
(⇐ )

f1(S) ≥ f2(O) and f3(S) ⊇  f4(O) imply (S,O,    y    ) ∈  b* satisfies SC rel f so that
v* is secure. ❚

    Theorem 3-5      Let v = (b,M,f) satisfy *-property and (S,O,    x    ) ∉  b. Set b* = b ∪  {(S,O,    x    )}
and v* = (b*,M,f).

(i) If     x     =    e    or     x     =    c   , then v* satisfies *-property.
(ii) If     x     =    a   , then v* satisfies *-property iff f2(O) ≥ f2(O′) and f4(O) ⊇  f4(O′) for

each O′ ∈  b(S:   r   ,     w     ).

(iii) If     x     =    r   , then v* satisfies *-property iff f2(O) ≤ f2(O′) and f4(O) ⊆  f4(O′) for

each O′ ∈  b(S:     w     ,   a   ).
(iv) If     x     =      w     , then v* satisfies *-property iff

(a) f2(O) ≥ f2(O′) and f4(O) ⊇  f4(O′) for each O′ ∈  b(S:   r   ),

(b) f2(O) ≤ f2(O′) and f4(O) ⊆  f4(O′) for each O′ ∈  b(S:   a   ), and

(c) f2(O) = f2(O′) and f4(O) = f4(O′) for each O′ ∈  b(S:     w     ).

    Proof   
(i) Since the inclusion of (S,O,    x    ),     x     ∈  {   e   ,   c   }, in b* does not affect the *-property

in any way, v* satisfies *-property since v does.
(ii) (⇐ )

Let (O1,O2) be any element of (b*(S:     w     ,   a   )) × (b*(S:   r   ,     w     )).

If O1 ≠ O, then we have that the proposition

[[b*(S:     w     ,   a   ) ≠ φ and b*(S:   r   ,     w     ) ≠ φ] implies

[f2(O1) ≥ f2(O2) and f4(O1) ⊇  f4(O2)]] (ii-1)
is true since v satisfies *-property.  If O1 = O, then (ii-1) holds with O
substituted for O1 by assumption of the theorem. † (O1,O2) being arbitrary,
we have that the proposition
[for each s ∈  S, [b*(S:     w     ,   a   ) ≠ φ and b*(S:   r   ,     w     ) ≠ φ] implies

[f2(O1) ≥ f2(O2) and f4(O1) ⊇  f4(O2),

for all O1 ∈  b*(S:     w     ,   a   ), O2 ∈  b*(S:   r   ,     w     )]]
is true, so that v* satisfies *-property.

(ii) (⇒ )
Direct consequence of v* satisfying *-property.

(iii) (⇐ )



19

Let (O1,O2) be any element of (b*(S:     w     ,   a   )) × (b*(S:   r   ,     w     )).

If O2 ≠ O, then we have that the proposition

[[b*(S:     w     ,   a   ) ≠ φ and b*(S:   r   ,     w     ) ≠ φ] implies

[f2(O1) ≥ f2(O2) and f4(O1) ⊇  f4(O2)]] (iii-1)
is true since v satisfies *-property.  If O2 = O, then (iii-1) holds with O
substituted for O2 by assumption of the theorem. The remainder of the proof

is identical to that portion of the proof of (ii) (⇐ ) which begins at the place
marked †.

(iii) (⇒ )
Direct consequence of v* satisfying *-property.

(iv) (⇐ )

Let (O1,O2) be any element of (b*(S:     w     ,   a   )) × (b*(S:   r   ,     w     )).

If O1 ≠ O and O2 ≠ O, then the proposition (iii-1) is true since v satisfies
*-property. If O1 = O then (iii-1) holds with O substituted for O1 by
assumptions of the theorem ((a) and (c)). If O2 = O then (iii-1) holds with O
substituted for O2 by assumptions of the theorem ((b) and (c)). The remainder

of the proof is identical to that portion of the proof of (ii) (⇐ ) which begins at
the place marked †.

(iv) (⇒ )
Direct consequence of v* satisfying *-property.

The proof of the theorem is complete. ❚

SUMMARY AND REFERENCES

In this section we have done all the work required to establish the formal structure within
which we shall define rules of operation for the system. As we shall see in the next
section, Theorems 3-2 through 3-5 are the most significant results of this section for our
purposes; these theorems will enable us to prove quite easily that Σ(R,D,W(ω),z0) is

secure and satisfies *-property with the set of rules ω to be developed in the next section.

1. Bell, D. Elliott; La Padula, L. J.,  "    Secure         Computer        Systems   : Mathematical
Foundations", MTR-2547 Vol. I, The MITRE  Corporation, Bedford, Massachusetts, 1
March 1973.
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SECTION IV

RULES OF OPERATION

INTRODUCTION

In this section we develop a set ω of rules which are security-preserving and

*-property-preserving and show that the resulting system Σ(R,D,W(ω),z0), given z0
secure and satisfying *-property, is secure and satisfies *-property.

Theorem 3-4 is the principal tool by which we shall prove that a rule is
security-preserving; Theorem 3-5 is the principal tool by which we shall prove that a rule
is *-property-preserving; and Theorems 3-2 and 3-3 enable us to prove that the resulting
system is secure and satisfies *-property if its initial state is secure and satisfies
*-property.

THE RULES

Let Rk = (σ1, γ, σ2, Oj,     x    ), where σ1 and σ2 in S+, γ in RA,     x     in χ, v = (b,M,f). When σ1
∈  S, we shall denote it by “Sλ.”; we shall us Si for σ2 whenever σ2 ∈  S. Also, let Φ
denote an arbitrary subset of A.

For notational convenience, make the definitions:

• augb(Rk,v) = (b ∪  {(σ2,Oj,    x    ),M,f)

• dimb(Rk,v) = (b − {(σ2,Oj,    x    ),M,f)

• M (+) [Φ]ij will be the matrix M+ where

M+[st] = M[st] if (s,t) ≠ (i,j)

M+[st] = M[st] ∪  Φ if (s,t) = (i,j).

• M (−)[Φ]ij will be the matrix M− where

M− [st] = M[st] if (s,t) ≠ (i,j)

M− [st] = M[st] − Φ if (s,t) = (i,j).

• A(M) = {j: 1 ≤ j ≤ m and Mij ≠ ϕ for some i}.

Rule 1:     get-read    : ρ1 (Rk,v) ≡
   if    σ1 ≠ ϕ or γ ≠ g or     x     ≠    r    or σ2 = ϕ
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   then     ρ1(Rk,v) = (   ?   ,v);

   if       r    ∉  Mij or [f1(Si) < f2(Oj) or f3(Si) /⊇ f4(Oj)]

   then     ρ1(Rk,v) = (    no    ,v);

   if    Uρ1 = {O:O ∈  b(Si:     w     ,   a   ) and [f2(Oj) > f2(O) or f4(Oj) /⊆ f4(O)]} = ϕ

   then     ρ1(Rk,v) = (    yes   ,augb(Rk,v))

   else     ρ1(Rk,v) = (    no    ,v);

   end    .

    Rule 1 is security-preserving    :

Let v be secure and Rk ∈  R. If ρ1(Rk,v) = (Dm,v*), then v* = v or v* = augb(Rk,v),

according to ρ1. If v* = v, then v* is secure since v is secure. Suppose v* = augb(Rk,v).

Now b*− b = {(Si,Oj,   r   )} or ϕ. If empty, then done (since (Si,Oj,   r   ) ∈  b). Suppose not

empty: then, since f1(Si) ≥ f2(Oj) or f3(Si) ⊇  f4(Oj) according to ρ1, v* is secure by
Theorem 3-4.

    Rule 1 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ1(Rk,v) = (Dm,v*). Then v* = v or v* =
augb(Rk,v). If v* = v, then v* satisfies *-property. Suppose v* = augb(Rk,v). Now

augb(Rk,v) = (b*,M,f), where b* = b ∪  {( Si,Oj,   r   )}. According to ρ1 we have Uρ1 = ϕ.

Thus, if O ∈  b(Si:     w     ,   a   ), then [f2(Oj) > f2(O) or f4(Oj) /⊆ f4(O)] is false. That is, we have

f2(Oj) ≤ f2(O) and f4(Oj) ⊆  f4(O) so that v* satisfies *-property by Theorem 3-5.

Rule 2:     get-append    : ρ2(Rk,v) ≡
   if    σ1 ≠ ϕ or γ ≠ g or     x     ≠    a    or σ2 = ϕ

   then     ρ2(Rk,v) = (   ?   ,v);

   if       a    ∉  Mij
   then     ρ2(Rk,v) = (    no    ,v);

   if    Uρ2 = {O:O ∈  b(Si:   r   ,     w     ) and [f2(Oj) < f2(O) or f4(Oj) /⊇ f4(O)]} = ϕ

   then     ρ2(Rk,v) = (    yes   ,augb(Rk,v))

   else     ρ2(Rk,v) = (    no    ,v);

   end    .
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    Rule 2 is security-preserving    :

Let v be secure and Rk ∈  R. Set ρ2(Rk,v) = (Dm,v*); then v* = v or v* = augb(Rk,v)
according to Rule 2. If v* = v, then v* is secure since v is secure. Suppose v* =
augb(Rk,v). Now b*− b = {(Si,Oj,     w     )} or ϕ. If empty, then done (since (Si,Oj,     w     ) ∈  b).
Suppose not empty. Then the conditions of Theorem 3-4 are satisfied so that v* is secure.

    Rule 2 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ2(Rk,v) = (Dm,v*). v* = v or v* = augb(Rk,v)
according to Rule 2. If v* = v, then v* satisfies *-property since v does. Suppose v* =
augb(Rk,v). Now b* − b = {(Si,Oj,   a   )} or ϕ. If empty, then done. If not, then according to

Rule 2 we have Uρ2 = ϕ so that f2(Oj) ≥ f2(O) and f4(Oj) ⊇  f4(O) for each O ∈  b(Si:   r   ,     w     )

and therefore v* satisfies *-property by Theorem 3-5.

Rule 3:     get-execute   : ρ3(Rk,v) ≡
   if    σ1 ≠ ϕ or γ ≠ g or     x     ≠    e    or σ2 = ϕ

   then     ρ3(Rk,v) = (   ?   ,v);

   if       e    ∉  Mij
   then     ρ3(Rk,v) = (    no    ,v);

   else     ρ3(Rk,v) = (    yes   ,augb(Rk,v));

   end    .

    Rule 3 is security-preserving    :

Let v be secure and Rk ∈  R. Set ρ3(Rk,v) = (Dm,v*); then, according to Rule 3, v* = v or
v* = augb(Rk,v). If v* = v, then v* is secure since v is secure. Suppose v* = augb(Rk,v).

b*− b = {(Si,Oj,   e   )} or ϕ. If empty, then done. If not, then the conditions of Theorem 3-4
are satisfied so that v* is secure.

    Rule 3 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ3(Rk,v) = (Dm,v*). Then, according to Rule 3,
v* = v or v* = augb(Rk,v). If v* = v, then v* satisfies *-property since v does. Suppose

v* = augb(Rk,v). Then b* − b = {(Si,Oj,   e   )} or ϕ. If empty, then done. If not, then the
conditions of Theorem 3-5 are satisfied so that v* satisfies *-property.

Rule 4:     get-write   : ρ4(Rk,v) ≡
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   if    σ1 ≠ ϕ or γ ≠ g or     x     ≠      w      or σ2 = ϕ
   then     ρ4(Rk,v) = (   ?   ,v);

   if         w      ∉  Mij or [f1(Si) < f2(Oj) or f3(Si) /⊇ f4(Oj)]

   then     ρ4(Rk,v) = (    no    ,v);

   if    Uρ4 = {O:O ∈  b(Si:   r   ) and [f2(Oj) < f2(O) or f4(Oj) /⊇ f4(O)]} ∪

{O:O ∈  b(Si:   a   ) and [f2(Oj) > f2(O) or f4(Oj) /⊆ f4(O)]} ∪
{O:O ∈  b(Si:     w     ) and [f2(Oj) ≠ f2(O) or f4(Oj) ≠ f4(O)]} = ϕ
   then     ρ4(Rk,v) = (    yes   ,augb(Rk,v))

   else     ρ4(Rk,v) = (    no    ,v);

   end    .

    Rule 4 is security-preserving    :

The proof is exactly the same as the proof of “    Rule 1 is security-preserving    .” with ρ4
substituted for ρ1.

    Rule 4 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ4(Rk,v) = (Dm,v*). According to Rule 4 v* = v

or v* = augb(Rk,v). If v* = v, then done. Suppose v* = augb(Rk,v). Now b* − b =

{(Si,Oj,     w     )} or ϕ. If empty, then done. If not empty, then Uρ4 = ϕ means the conditions

of Theorem 3-5 are satisfied so that v* satisfies *-property.

Rule 5:    release-read/write/all/execute   : ρ5(Rk,v) ≡
   if    (σ1 ≠ ϕ) or (γ ≠ r) or (    x     ≠ r,     w     ,   a   , or    e)    or (σ2 = ϕ)

   then     ρ5(Rk,v) = (   ?   ,v);

   else     ρ5(Rk,v) = (    yes   , dimb(Rk,v));

   end    .

    Rule 5 is security-preserving    :

Let v be secure and Rk ∈  R. Set ρ5(Rk,v) = (Dm,v*). According to Rule 5, v* = v or
v* = dimb(Rk,v). If v* = v, then v* is secure since v is secure. Suppose v* = dimb(Rk,v).

Then b* = b − {(Si,Oj,    x    )}; this implies b* ⊆  b. Any (S,O,    y    ) ∈  b* is therefore in b and
thus satisfies SC rel f since v is secure. Therefore v* is secure.
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    Rule 5 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ5(Rk,v) = (Dm,v*). According to Rule 5,
v* = v or v* = dimb(Rk,v). If v* = v, then v* satisfies *-property since v does. Suppose

v* = dimb(Rk,v). Then b* ⊆  b; this implies that

b*(S:     w     ,   a   ) ⊆  b(S:     w     ,   a   ) and

b*(S:   r   ,     w     ) ⊆  b(S:   r   ,     w     ).

Thus for each S ∈  S the proposition (3-1) is true (cf. definition on page 16) so that v*
satisfies *-property.

Rule 6:     give-read/write/all/execute    : ρ6(Rk,v) ≡
   if    (σ1 ≠ Sλ  ∈  S) or (γ ≠ g) or (    x     ≠ r,     w     ,   a   , or    e)    or (σ2 = ϕ)

   then     ρ6(Rk,v) = (   ?   ,v);

   if        x     ∉  Mλj or    c    ∉  Mλj

   then     ρ6(Rk,v) = (    no    ,v);

   else     ρ6(Rk,v) = (    yes   ,(b,M (+) [    x    ]ij,f);

   end    .

    Rule 6 is security-preserving    :

Let v be secure and Rk ∈  R. Set ρ6(Rk,v) = (Dm,v*). According to Rule 6, b* = b in any
case so that v* is secure.

    Rule 6 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ6(Rk,v) = (Dm,v*). According to Rule 6, b* =
b in any case so that v* satisfies *-property.

Rule 7:    rescind-read/write/all/execute    : ρ7(Rk,v) ≡
   if    (σ1 ≠ Sλ  ∈  S) or (γ ≠ r) or (    x     ≠ r,     w     ,   a   , or    e)    or (σ2 = ϕ)

   then     ρ7(Rk,v) = (   ?   ,v);

   if        x     ∉  Mλj or    c    ∉  Mλj

   then     ρ7(Rk,v) = (    no    ,v);

   else     ρ7(Rk,v) = (    yes   ,(b − {((Si,Oj,    x    )},M (−) [    x    ]ij,f);

   end    .

    Rule 7 is security-preserving    :
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Let v be secure and Rk ∈  R. Set ρ7(Rk,v) = (Dm,v*). According to Rule 7 we have

b* ⊆  b in any case so that, by argument similar to that of the proof of “    Rule 5 is security-   
    preserving.   ”, v* is secure.

    Rule 7 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Set ρ7(Rk,v) = (Dm,v*). According to Rule 7 we

have b* ⊆  b in any case so that, by argument similar to that of the proof of “    Rule 5 is
    *       -       property-preserving.   ”, v* satisfies *-property.

Rule 8:    change-f   : ρ8(Rk,v) ≡
   if    σ1 ≠ ϕ or γ ≠ c or σ2 ≠ ϕ or     x     ≠ F

   then     ρ8(Rk,v) = (   ?   ,v);

   if    f1* ≠ f1 or f3* ≠ f3 or [f2*(Oj) ≠ (f2(Oj) or f4*(Oj) ≠ f4(Oj) for some

j ∈  A(M)]

   then     ρ8(Rk,v) = (    no    ,v);

   else     ρ8(Rk,v) = (    yes   ,b,M,f*);

   end    .

    Rule 8 is security-preserving    :

Let v be secure and Rk ∈  R. If ρ8(Rk,v) = (Dm,v*), then v* = v or v* = (b,M,f*),

according to ρ8. If v* = v, then v* is secure since v is secure. Suppose v* = (b,M,f*).

Since v is secure, each (S,O,    x    ) ∈  b satisfies SC rel f. Since f* agrees with f on A(M), we

have that each  (S,O,    x    ) ∈  b satisfies SC rel f* so that v* is secure.

    Rule 8 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Let ρ8(Rk,v) = (Dm,v*). Then v* = v or v* =
(b,M,f*). If v* = v, then v* satisfies *-property since v does. Suppose v* = (b,M,f*).
Then since f* agrees with f on A(M), we have that the proposition (3-1) is true for each S
∈  S. Hence v* satisfies *-property.

Rule 9:    create-object   : ρ9(Rk,v) ≡
   if    σ1 ≠ ϕ or γ ≠ c or σ2 = ϕ or (    x     ≠    e    or ϕ)

   then     ρ9(Rk,v) = (   ?   ,v);

   if    j ∈  A(M)



26

   then     ρ9(Rk,v) = (    no    ,v);

   if        x     = ϕ
   then     ρ9(Rk,v) = (    yes   ,(b,M (+) [   r   ,     w     ,   a   ,   c   }]ij,f));

   else     ρ9(Rk,v) = (    yes   ,(b,M (+) [   r   ,     w     ,   a   ,   c   ,   e   }]ij,f));

   end    .

    Rule 9 is security-preserving    :

Let Rk ∈  R and v ∈  V with v secure. Suppose ρ9(Rk,v) = (Dm,v*) and v* = (b*,M*,f*).
By Rule 9, v* = (b,M (+) [   r   ,     w     ,   a   ,   c   }]ij,f) or (b,M (+) [   r   ,     w     ,   a   ,   c   ,   e   }]ij,f). In every case, b* = b

and f* = f so that every (S,O,    x    ) ∈  b*= b satisfies SC rel f = f*. Hence v* is secure.

    Rule 9 is *-property-preserving    :

Let Rk ∈  R  and v = (b,M,f) ∈  V satisfying *-property. Suppose ρ9(Rk,v) = (Dm,v*) and
v* = (b*,M*,f*). By Rule 9 b* = b and f* = f as in the preceding proof. Thus proposition
(3-1) holds for v* and v* satisfies *-property.

Rule 10:     delete-object   : ρ10(Rk,v) ≡
   if    σ1 ≠ ϕ or γ ≠ d or σ2 = ϕ or     x     ≠ ϕ

   then     ρ10(Rk,v) = (   ?   ,v);

   if    c ∉  Mij
    else     ρ10(Rk,v) = (    yes   ,(b,M (−) [   r   ,     w     ,   a   ,   c   ,   e   }]ij,1≤i≤n,f));

   end    .

    Rule 10 is security-preserving    :

Let v be secure and Rk ∈  R. If ρ10(Rk,v) = (Dm,v*) and v* = (b*,M*,f*), then v* = v or

(b,M (−) [   r   ,     w     ,   a   ,   c   ,   e   }]ij,1≤i≤n,f). In either case, b* = b and f* = f so that v* is secure.

    Rule 10 is *-property-preserving    :

Let v satisfy *-property and Rk ∈  R. Suppose ρ10(Rk,v) = (Dm,v*) and v* = (b*,M*,f*).
By Rule 10 b* = b and f* = f; v* satisfies *-property.
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THE SYSTEM Σ(R,D,W,Z0)

    Theorem 4-1      Let ω = {ρ1, ρ2, •  •  • ,ρ10}, the ρi as defined in the section entitled The

Rules, and z0 be a secure state which satisfies *-property. Then Σ(R,D,W,z0) is a secure
system which satisfies *-property.

    Proof     Follows directly from the proofs for the ρi in the section entitled The Rules, and
from Theorems 3-2 and 3-3.

SUMMARY

In this section we have presented a set of rules, suitable for implementation on a digital
computer, which, within the framework of definitions, properties, and capabilities
discussed in Sections II and III, provide the algorithms by which a secure system
satisfying the externally derived characteristic called *-property can operate successfully.
The proofs presented herein provide certification of the assertion just made.
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SECTION V

DESIGN CONSIDERATIONS

INTRODUCTION

In this section we review briefly a subset of the design considerations which will
necessarily precede a translation of the model presented herein into a set of design
specifications for a system. We shall assume a Multics-like architecture, both software
and hardware, for this section. Such an assumption provides a representative system so
that our discussion may have reasonable empirical content.

A COVERING, DISJOINT SET OF RULES

     Definition 5-1.     Let ω be the set of rules for Σ(R,D,W(ω),z0). ω is    a covering set of rules   

if [(Ri,Dm,v*,v) ∈  W(ω)] implies [Dm ≠    ?   ].

     Definition 5-2    . Let ω be the set of rules for Σ(R,D,W(ω),z0). ω is    a disjoint set of rules    if

for each ρi ∈  ω the proposition

[[ρi(Rk,v) ≠ (   ?   ,v*)] implies [ρj(Rk,v) = (   ?   ,v**)] for each ρj ∈  ω − {ρi}]
is true.

The set ω = {ρ1, ρ2, •  •  • ,ρ10} developed in Section IV is easily seen to be a disjoint
but not a covering set of rules. On the other hand, the system response    ?   , which can occur
since ω is not a covering set, is not very informative. The augmented set ω+ = ω ∪  {ρ11}
could be used to rectify this as follows:

• add the element illegal to the set D (decisions)

• define ρ11(Rk,v) ≠ (   illegal   ,v) for all Rk ∈  R and v ∈  V such that ρi(Rk,v) =

(   ?   ,v) for 1≤i≤10.

Thus if Rules 1 − 10 are inapplicable, then Rule 11 is applicable and system response is

   illegal   , meaning that the request was not a valid one. The resulting set of rules, ω+ is now
a covering set. An example of an illegal request is (Sλ ,g,Si,Oj,   c   ).
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SYSTEM DATA BASE

In speaking of the system data base we mean that portion of the total data base which
contains the information required by the rules of the system. Therefore, the elements of
the system data base are:

• an access matrix (M of the state (b,M,f))

• a list of 3-tuples (b of the state (b,M,f)) which shows which subjects have access
to which objects in what mode

• a list of the classifications, clearances, and categories associated with subjects
and objects (f of the state (b,M,f)).

The contents of b and M and the mapping f may change during normal system operation.
All three can be implemented in any way one may choose so long as it is guaranteed that
they be protected from unauthorized modification; only the rules of the system are
allowed to change b, M, and f during normal operation.

Since b expands and contracts dynamically during operation, the information should be
organized for a reasonable trade-off between access time and update time.

With respect to M, at least two alternatives suggest themselves. M could be treated in the
same general manner as b or it could be a fixed-size matrix which is always kept in the
main store of the computer system.

The preceding considerations raise several points worth considering here. The model
clearly suggests that the access matrix be established (or changed) in a special mode of
operation of the system by a control officer. This suggests further that a special program,
which is itself certified and protected, be run after the control officer establishes the
access matrix to ascertain that the access matrix satisfies some appropriate set of
properties. We have made no explicit provision for changing the number of subjects in
the system. There are several ways of making provision for this option. We envision the
access matrix to be of fixed size (n × m) during normal operation. However, the size of M
is established to handle peak load and subjects could come and go during normal
operation, with a mapping of subject name to access matrix row designation changing.

The ability to create and delete objects, which is provided by Rules 8 − 10, is most easily
accomplished by retaining the notion of a fixed size matrix. The matrix would have
empty columns in it from time to time and these would represent available address space
locations for establishing the existence of a new object. Similarly, when an object is
deleted, a column in the matrix becomes blank and available. Mapping of object names to
column designations (indices) would be accomplished by the system at the allocation
level — outside and (in a hierarchical sense) above the rules which manage the access
matrix.
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PROTECTION

The rules of access developed in Section IV are not invoked for every access to an object
by a subject. For example, once Rule 1 grants a subject read-access to some object, actual
access (reading words of a file) is not monitored by the rules. However, each access must
be monitored in order to guarantee that the system remains secure and preserves
*-property. Assuming a machine architecture suitable for a Multics-like system, this kind
of protection is easily provided by the use of hardware-interpreted registers. For each
(S,O,   r   ) we have an associated register by which S must access O. Clearly, S must not be
allowed to change the contents of the register directly; changes must be made by a
certified portion of the system (i.e., the “kernel” of the system). The register then
monitors every access to O by S, insuring at each moment of activity that S does only
what it is allowed to do.

RESCINDING ACCESS

Given the hardware registers of the type just discussed in the previous section,
implementation of the rescind-access rule (Rule 7) is quite straightforward. The action

b is replaced by b − {(S,O,    x    )}

of Rule 7 means simply that the appropriate enabling portion of the hardware register
associated with (S,O,    x    ) in b is disabled, thereby denying S any further access to O in the
mode     x    .

SUMMARY AND REFERENCES

In this section we have briefly discussed some design and implementation considerations;
this discussion, while by no means comprehensive, should serve as a first step from the
mathematical model to design considerations and specifications.

We should point out that the notion of a fixed-size access matrix with blank columns has
been discussed in [1], which will also provide the reader with a general understanding of
the Multics architecture.

1. Bensoussan, A.: Clingen, C. T.; Daley, R. C.: “The Multics Virtual Memory:
Concepts and Design,”     Communications    of the ACM, Vol. 15, No. 5, May 1972, pp. 308-
318.
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