Secure Computer Systems:
A Mathematical M odel

November, 1996

An electronic reconstruction
by
Len LaPadula
of
the original

MITRE Technical Report 2547, Volume 1
titled “ Secure Computer Systems: Mathematical Foundations’
by Leonard J. LaPadulaand D. Elliott Bell
dated 31 May 1973

ABSTRACT

This paper presents a set of rules of operation which guarantee that a computer system
can remain secure while exhibiting certain desired external characteristics. Therulesare
easily transformable into algorithms suitable for implementation on adigital computer.

PREFACE

In our introductory paper on secure computer systems (MTR-2547, Vol. I) we introduced
aframework for mathematical modeling based upon general systems theory. We then
developed abasic model of a secure computer system in very abstract terms. That model
is the basis from which we proceed in this paper.

We present a set of rules of operation which guarantee that the system remains secure
while exhibiting certain desired external characteristics. The rules of operation will be
seen to be easily transformable into algorithms suitable for implementation on a digital
computer.

Thiswork was supported by Project 522B, Secure Computer, a part of Air Force Project
5220, Project 85.

TABLE OF CONTENTS

INTRODUCTION

BACKGROUND
APPROACH
SUMMARY AND REFERENCES

EXTERNAL CHARACTERISTICS OF THE MODEL

INTRODUCTION

ACCESSATTRIBUTES

REQUESTS AND DECISIONS

SECURITY CONDITION

INTERACTION OF MULTIPLE ACCESSES
SUMMARY AND REFERENCES

FORMULATION OF THE MODEL

INTRODUCTION

SECURITY CONDITION
*-PROPERTY

RULES

PROOF APPROACH

SUMMARY AND REFERENCES

RULES OF OPERATION

INTRODUCTION
THE RULES
THE SYSTEM =(R,D,W,Z0)
SUMMARY

DESIGN CONSIDERATIONS

INTRODUCTION

A COVERING, DISJOINT SET OF RULES
SYSTEM DATA BASE

PROTECTION

RESCINDING ACCESS

SUMMARY AND REFERENCES

BIBLIOGRAPHY

-

QO OWOoUTWwWw w NP

I =
N

O e e
RP~NOUOIN

N
N

NN NN
O O© NN

(O8]
o

WWWWww
NNNRFROO

w
N

SECTION |
INTRODUCTION

BACKGROUND

This paper is adirect extension of the work reported in [1], SECURE COMPUTER
SYSTEMS. MATHEMATICAL FOUNDATIONS. Therein we developed a
mathematical framework and showed the basic methodology by which the resulting
simple model could be extended. Starting with an abstract notion of general system, we
showed how arelation can specify behavior of a system and how it is possible to prove
that a system has (or does not have) a given property. However, the model of [1] isfar
from being usable for the design of asystem. A key factor here isthat afunction (a
specialized form of relation) is more amenable to translation into algorithm for a digital
computer than is ageneral relation. Additionally, the set of access attributes, the set of
requests, and the set of system decisions were al left abstract in [1]. Finally, we showed
that the system under discussion had no security compromise; however, the definition of
security compromise was such that we had only shown that the system was internally
correct — we had not related the internal behavior of the system to its external behavioral
characteristics.

APPROACH

Our general approach is easily deduced from the preceding remarks. We shall make
specific the sets of requests, decisions, and access attributes, guided by the characteristics
we would like to see in the resulting system. Our model, while less general, will then be
closely matched to the design problem. This approach is an exemplification of the
genera principles of modeling which we discussed in the introductory chapter of [1].
More particularly, we shall now consider external characteristics of the model (Section
I1) asthey pertain to secure system operation. Section Il provides justification for the
formal properties of the model developed in Section I11. Itisin Section I11 that we
develop amodel which will be seen to be more specific than the model presented in [1]
and particularly suited to the development of rules of operation which are functions.
Section 111, then, provides a system for the formalization of rules; in addition, we shall
develop therein a proof approach by which we shall show that the rules satisfy certain
desired properties. Section IV presents the rules of operation, each accompanied by a
formal proof of correctness — that is, we show that each rule preserves security and
satisfies an externally imposed property. Section V is devoted to design considerations;
in particular, we shall discuss the notion of a covering, digoint set of rules— anotion
irrelevant to the mathematical model but of some significance for the design engineer, for
acovering, digoint set of rules hasno redundancy in the domains of operation of the
rules. Other subjectsrelevant to design are also discussed in Section V.

SUMMARY AND REFERENCES

We have given avery brief introduction to the material of this paper. A lengthy
introduction and motivation for our approach can be found in [1].

1. Bell, D. Elliott; LaPadula, L. J.,, "Secure Computer Systems: Mathematical
Foundations', MTR-2547 Vol. I, The MITRE Corporation, Bedford, Massachusetts, 1
March 1973.

SECTION I1
EXTERNAL CHARACTERISTICSOF THE MODEL

INTRODUCTION

The problem addressed in this report is the specialization of the model described in [1].
The godl isto make the model more useful for the investigation of rules for the operation
of a secure computer system. To realize that goal, we must consider the characteristics of
the system we are designing as guides for the specialization process. In particular, we
must devise areasonable set of access attributes and accompanying sets of requests and
decisions. The next task isto consider the reasonableness of the security condition of [1];
in this case, we shall revise our concept of security to make it reflect the real situation
more accurately. We shall end this chapter with a discussion of the possible interaction
caused by multiple accesses. This discussion will result in the statement of a property
which we shall incorporate into the model axiomatically as the *-property.

ACCESSATTRIBUTES

We consider four basic types of access in acomplex computer system. In this section, we
shall describe these four access attributes —read-only access, append access, execute
access, and read/write access, together with afifth attribute, control access. The
discussion of each access attribute is intended to provide our interpretation of that type of
access and to justify our conclusionsin the sections entitled Security Conditions and
Interaction of Multiple Accesses.

The read access we shall includein our set A of access attributes can be considered a
"pure read" access in the sense that a user with read access to an object cannot affect the
contents of that object. Thisaccess mode will enable usto model two very different
situations, each of which poses a significant modeling problem.

A file containing information which can be referenced, but which should not be altered,
will be accessed in read mode. An obvious example of such information would be the
classification and clearance listings of the subjects and objectsin the system: in order to
enforce security rules, thisinformation must be accessible and unalterable. Read-only
access provides the appropriate combination of availability and protection.

Our model needs to take into account input and output devices, as well as information
storage units. In particular, an input device such as a card reader, which has no inherent
content, can be included in our model as aread-only object. Analogously, output devices
will be included in the model using the append access mode.

The append access we shall include is a"pure write" access. By this we mean that append
access alows alteration of the object (in particular, the addition of information to afile)

3

while preventing information extraction from the object. We intend, therefore, that
append access to afile should not divulge any of the contents of thefile. In addition, we
include within the purview of append access the use of an output device such as a printer
which transfers information beyond the control of the system. In doing so, we assume
that printers which are in nonclassified areas will be nonclassified and that matching the
classifications of output information and the output device will suffice to prevent
unauthorized personnel from viewing restricted material. The append access that we
have described denotes a pure write operation anywherein afile. We chose the word
"append"”, however, because it connotes addition to the end of afile, i.e., appending data
to an existing file, and because we anticipate that subsequent implementation will use an
actual append operation.

Another type of object we want to include in our model is the executable object such asa
program or routine. We therefore add an execute access mode to our model. Execute
access only allows a subject to trigger the executable object: the general user cannot read
or write the program if he has only execute access. |If the program produces information,
the information is fed back to the executor under system control. The usual procedure
would be for the program to write itsresults in afile and for the executor to read thefile.
If the information produced were classified higher than the executor's clearance level,
then the system would deny the executor read access to the file where the generated
information had been stored.

The last type of access we shall consider is an interactive read/write access. We shall
call thistype of access write-access for simplicity. Write-accessisthe type of access that
would be used in editing or updating afile.

The final access attribute we shall include we call "control access'. Thisattributeis
intended to formalize the notion of control over an object and the accessto it. Locking
and unlocking afile to another subject will be governed by the control access attribute.

We formalize five access attributes later in this paper based upon the preceding
considerations:

. read access; a subject having read access attribute with respect to some object
has a read-only capability with respect to that object;

. append access; a subject having append access attribute with respect to some
object has awrite-only capability with respect to that object;

. execute access; a subject having execute access attribute with respect to some
object has the capability to cause execution of that object (in the sense of
running a program) in its behalf;

. write access; a subject having write access attribute with respect to some object
has the capability to both read and write that object;

. control access; a subject having control access with respect to some object has
the capability to extend to another subject one or more of the other four access

4

attributes it may have with respect to that object.

REQUESTS AND DECISIONS

Assuming an environment wherein processes are surrogates for users, we shall speak of
processes making requests for access to objects, requests to make changes to the access
matrix of the system, requests to create objects, or requests to delete objects. The reader,
then, should understand that such requests represent the intentions of the users of the
system. We shall speak of the responses of the system to requests by processes as
decisions.

The access matrix we have just mentioned is formally defined in Section I11. For our
purposes here it will suffice for the reader to have the notion that the access matrix of the
system is simply a record-keeping device which remembers, for each possible subject-
object pairing, alist of access attributes associated with that subject-object pairing. For
example, the access matrix might show that the access attributes write (w)and control (c)
are associated with subject S7 and object Og, where S7 isaprocessand Og isafile. The

access matrix can be envisioned as suggested in Figure 2-1.

objects
subjects Og
S7 w,C
Figure2-1

Aswe have briefly indicated at the beginning of this section, we shall provide for four
types of requests:

(i) arequest by asubject to be granted access to an object in a particular mode;

(i) arequest by asubject that another subject be given some access attribute with
respect to some object;

(iii) arequest by a subject to create an object in the system; and
(iv) arequest by asubject to delete an object from the system.

With respect to (i), only requests involving read, write, append, or execute are valid. We
shall use the control attribute in such away that for a subject to request control access to
an object makes no sense. Thus, a subject may request that it be given read, write,
execute, or append access to an object. When such arequest is made, a number of checks
need to be made by the system. One of these, and perhaps the most obvious, isto check
that the subject making the request is allowed to access the object in the mode which it is
requesting. Thisisdone by checking in the access matrix. For example, subject S7
requesting write access to object Og passes the test, according to Figure 2-1, but S7
requesting execute access to Og failsthe test. Now, other checks must be made before a

final decision can be rendered by the system; these have to do with preserving security
and *-property — thisis discussed in the next two sections.

With respect to (ii), we require that a number of conditions be met in order for thistype
of request to be valid. Imagine arequest by Sg to give the read (r) access attribute to

subject Sg with respect to object Og. First of all, the access matrix must show an entry of
cat Sg,09 — that is Sg must have the .control access attribute with respect to Og. Next,
Se must also have the access attribute with respect to Og which it is attempting to extend
to Sg — inthis case, Sgitself must have the read access attribute for Og. In other words,

a subject cannot give (or take away) access attributes unlessiit itself has control access
and the access attribute it is attempting to give (or take away). Finally, we shall not allow
a subject to extend the control access attribute to another subject. Other checks need to
be made also — these are similar to those for type (i) requests and are covered later.

With respect to (iii), we have divided the notion of creation of an object into two parts.
Our reason for this approach liesin our method of modeling the process of creation: we
see the creation of an object as the activation of an unused object index. This point of
view was chosen to simplify the discussion of creation and deletion of objects by
avoiding the need to dynamically alter Both the domain of the classification function f
and the dimension of the access matrix M. This approach isjustified since the activation
of an object index islogically equivalent to the addition of an entirely new object to the
set O. Using this point of view, however, the created object Oj may have a classification
and a set of categories which do not match the requirements of the requesting subjects.
(In the model, every object, active or not, has a classification and a set of categories
assigned to it.) Thuswe have included

(i) requeststo alter the classification and category assignment of unused objects,
and

(i) requeststo create (i.e., activate) unused objects.

Inasmuch as these types of requests neither alter the classifications or categories of active
objects nor alter the clearances or categories of subjects nor change the current allocation
of objects to subjects, the granting of these requests hinges not on security considerations
but on appropriateness of the request. That is, arequest to alter the classification of an
active object or arequest to create an object which is currently active would be rejected
asinappropriate.

With respect to (iv), we again find that security considerations play no significant role. A
request to delete an object Oj, when made by a subject with control access, causes the
deactivation of Oj and the immediate withdrawal of all access privilege to Gj, both

current and future. Asin the preceding discussion, only the appropriateness of the
request is considered by the system since neither compromise nor any other problem of
concern can result.

In summary, the access matrix records the access attributes associated with each subject-
object pair. The access matrix does not change except as noted — that is, the read, write,
execute, and append access attributes for active objects may be given and rescinded only
by certain subjects. During normal operation of the system the control access attribute is
entered into or deleted from the access matrix only when an object is created or deleted.
We assume that other changes involving this access attribute are made by a control
officer while the system isin a special mode of operation and not generally available to
users.

The two basic decisions which the system must make are yes and no — yes, the request is
granted; no, the request is not granted. In addition, however, we specify an error decision
and a"question” (?) decision. We shall use the error decision in aspecial way: it will
indicate that the decision-making mechanism of the system is confused; its principal use
would be in debugging during initial stages of checkout. The error decision will result
when two or more rules (developed in Chapter 4) are applicable to the same request (as
defined in Chapter 3, Section 3-5, Rules). However, the error mechanism could be
retained in the system beyond itsinitial checkout to cover the eventuality that a change in
the rules might at some time be desirable.

The decision ?will be used to indicate that the request is not recognized. Inthe formal
model this simply means that no rule is applicable to the request being made. Aswe shall
seein Section V, the ? decision can be restricted to be an internal response of the system,
with the decision illegal being given to the subject (indicating an illegal request).

SECURITY CONDITION

We desire the system to satisfy the condition that security compromise not be allowed to
occur within it. With the establishment of specific access attributes and requests behind
us, we can now be quite specific about the security condition we wish to satisfy.
Security compromise will be used in the usual sense of military and governmental
definitions of security compromise — the unauthorized disclosure of information. With
this strict interpretation of security compromise we gain two advantages. First, we need
not change nor strain our usual understanding of compromise; second, the security
condition can be precisely and succinctly formalized in our model and can be kept
distinctly separate from other properties or conditions we may wish to include in the

7

model.

Given the access attributes we have defined and granted the strict interpretation of
security compromise which we have indicated, the following notions develop quite
naturally. The security condition to be developed formally in the model should be so
defined as to prevent a subject of a given clearance level with agiven set of categories
(project clearances, special clearances, password, and so forth) from having read access
to any object which is or can be the source of information with a classification which
exceeds the clearance of the subject or an associated category set which includes an
element (such as a proj ect-need-to-know) which the subject does not possess. And that is
al. Noticethat we shall define the security condition (in Section 3) so that it pertainsto
immediate, actual ability to read (receive) information in an unauthorized way — it does
not involve potential, probable, or possible unauthorized access. This latter point
illustrates what we have said previously. Potential unauthorized accessis dealt with in
the next section and leads to a new property to be incorporated into the model. The
security condition, however, remains intact, smple and to the point.

INTERACTION OF MULTIPLE ACCESSES

In certain cases, a combination of two or more accesses, none of which in itself
constitutes a security compromise, can lead to a potential for later compromise. More
importantly, these situations involve aloss of control on the part of the security system: it
becomes possible for high classification material to be added to alow classification file
without appropriate changes being made to the security classification lists. To avoid such
potential for compromise and to retain control of the security situation, we have
developed a set of criteriawhich describe precisely which situations we wish to avoid.
The remainder of this section presents a specific example of potential compromise to
illustrate the problem more clearly and an informal description of the *-property which
characterizes those undesirable situations with which we are concerned.

Suppose that a subject S7 currently has read accessto afile O11. Suppose further that
the clearance level of S7 iscj and that the classification of O11 isaso ¢j. Assume also
that the categories associated with O11 are included within those possessed by S7 so that

the security condition is satisfied. According to the security condition we have discussed,
if S7 should request append access to some object O13 we are able to grant the access

regardless of the classifications, clearances, and categories associated with S7 and O13.
But suppose that the classification of O13 is¢j and ¢j < ¢j, meaning O13 is of lower
classification than O11; for example, O13 might be classified confidential and O11
secret. We have now set up atypical example of potential compromise.

Suppose that S7, either inadvertently or intentionally, reads secret information from O11
and appendsit to O13. Thenitis possible for some other subject whose clearance level is
only confidential to gain access to O13 and read secret information(security
COMPromise).

Several courses are opento us. For example, we might attempt to allow S7 to do what
we have indicated, in a controlled way of course, thereby necessarily changing the

classification of O13 (by upgrading it from confidential to secret). An approach similar

to this alternative has, in fact, been reported by Weissman [1]. This approach does keep
the system's information about clearances and classificationsin agreement with the actual
clearances and classifications. However, we choose not to change the classifications of
objects during the normal operation of the system. If this choice were reversed, the
change could, of course, be incorporated into the model.

Therefore, we must find some other way to guarantee that the system's information
reflectsreality. Thus, we shall deny S7's request to access O13 in append mode while it

has access to O11 in read mode; this decision is based not on the satisfying of the security

condition but on the fact that the potential for compromise would exist if the request were
granted.

A number of other examples could be constructed; each could illustrate some aspect of
the general problem we have been discussing. The reader should have no difficulty in
seeing that we are led to the following requirement — that the system, at each moment,
satisfy a property (to be called *-property) which will guarantee that the potential for
compromise does not exist.

We give now an informal description of *-property (Section I11 formalizes this as part of
the mathematical model). Consider some subject S. We require that if S haswrite or
append access to some objects and read or write access to some objects, then the
classifications of the objectsto which S has write or append access must exceed or equal
the classifications of the objects to which S has read or write access. Clearly, this
requirement prevents the situation which we detailed in the example at the beginning of
this section. Another obvious situation isavoided. If S can read information from a card
reader and print information on a printer, the *-property guarantees that information of a
classification higher than that which the printer should handle will not be sent to it by S
from the card reader, which might be allowed to handle the information.

SUMMARY AND REFERENCES

In this section we have discussed certain aspects of an hypothetical multi-user system
which isto be secure in some sense. We have attempted to give motivation and heuristic
arguments for the precise sense in which we shall consider a system to be secure later in
this paper.

We have not always indicated why a particular approach has been taken. For example, in
developing our arguments for the *-property, we indicated that "we choose not to change
the classifications of objects during the normal operation of the system.” In this case the
decision isthe result of analyzing the requirements for the system, the general consensus
being that changing classifications of objects during normal operation is somewhat
unnatural, akin to upgrading a confidential document while oneisreading it by writing
secret marginaliain it.

The approaches we have taken can be succinctly recounted and categorized as being
either required or discretionary. The set of access attributes contains both required and
discretionary attributes. The attributes read and write (that is, read-only and read-write)
we consider to be necessary in a reasonable computer system; the attributes execute and

9

append are optional in that a computer system could operate without them. Given the
access attributes, the requests we have included are necessary to provide aminimally
usable system; the sameistrue of all the decisions except 2. ?was included in order to
simplify the discussion of sets of rules. Three other principles combined with the access
attributes, the requests, and the decisions we chose, directly resolve every other decision
that was made. Those three principles are the following: the security principle; the
interactivity principle; and the tranquility principle. The security principle, enunciated in
the definition of security, is necessary in amilitary-governmental situation. The
interactivity principle, embodied in the model as the *-property, is also a necessary
ingredient in ausable system. The tranquility principle, that the classification of active
objects will not be changed during normal operation, is not required. Aswe mentioned
above, its adoption was accepted as aresult of afirst analysis of the requirements for
secure computer systems. These decisions specify our model. In particular, situations
such as the one presented in the preceding paragraph can be handled in only one way:
gueueing arequest isruled out by the unavailability of that decision in our model and
upgrading a document to preserve the *-property is ruled out by the tranquility principle.
Thus, the model as presented can be significantly altered only by changing elements of
the model or by rejecting the tranquility principle.

1. Weissman, C.: "Security Controlsin the ADEPT-50 Time-Sharing System,”
AFIPS Conference Proceedings 35, FJCC 1969, 119-133.

10

SECTION I11
FORMULATION OF THE MODEL

INTRODUCTION

We are now in a position to develop a model more specifically suited to the investigation
at hand than the model presented in [1].

Having introduced specific access attributes, requests, and properties of the system which
we deem desirable, two things are immediately evident:

(i) we can specialize the state space of the system;

(i) we can specialize the genera relation W (cf. [1]) to be the union of partial
functions, each function being arule of operation for access control.
We show the elements of the model in Table I, wherein we identify sets, elements of the
sets, and an interpretation of the elements of the sets. Thistable can be seen to be that of
[1] extended as we have previously indicated.

Tablel

Elements of the Modd

Set Elements Semantics
S {S1,Sp,* * *.Sn} subjects; processes, programs in execution
@) {01,00,¢ * « .0} objects; data, files, programs, subjects, 1/0
devices
C {C1.Co, ¢+« Cg} classifications; clearance level of a
{C1>Cp> e e >Cq subject, classification of an object
K {K1.Ko, o o o Ki} categories: special access privileges
A {r.w,eact access attributes; read, write, append,

execute, and control

11

RA {g,r,cd} request elements;
0. Oet, give
r: release, rescind
c. change, create
d: delete
R St x RA x ST x O x X requests. inputs, commands, requests for
access to objects by subjects
where St =S {¢} and
X=AO{¢@ OF; an
arbitrary element of Ris
written Rk
D {yes, no error, 7} decisions
an arbitrary element of D is
written Dm
T {1,2, e o o t,o e} indices; elements of the time set;
identification of discrete moments; an
element t isanindex to request, decision,
and state sequences
F cS x c0 x (PK)S x (PK)O classification/need-to-know vectors;
an arbitrary element of F is f1: subject-classification function
written f = (f1,f2,f3,f4) fo: object-classification function
f3: subject-category function
f4: object-category function
X RT request sequences
an arbitrary element of X
iswritten X
Y DT decision sequences

an arbitrary element of Y
Iswritten y

12

M {M1,Mp,e ¢ o M}, access matrices

c= nm25;

an element of M, say M,
isann x m matrix with
entries from PA; the
(i,))-entry of My shows §'s
access attributes relative to

Y
v P(Sx0xA)xM xF states
an arbitrary element of V is
written v
Z vT state sequences

an arbitrary element of Z
iswritten z; z¢ J z isthet-

th state in the state
sequence z

We have defined the states of the system in such away asto include all the information
considered pertinent to preservation of security and other desirable properties. A state v

0V isan ordered triple (b,M,f) where

bOP(Sx0xA), indicatingwhich subjects have accessto what objectsin
what mode in the state v;

M OM, indicating the entries of the access matrix in the state v;
and
fOF, indicating the clearance level of all subjects, the

classification level of all objects, and the categories
associated with each subject and object in the state v.

LeeWORXxDxV xV. Thesystem 2(RD,W,zg) X XY xZ

isdefined by (x,y,z) O Z(R,D,W,zp) iff (if and only if) (xt,yt,zt,zt-1) O W foreacht O T,
where zg isa specified initial state, usually of the form (¢@,M,f).

W has been defined as arelation. As we shall see, however, W will be the union of

partial functions which constitute the rules of operation of the system with respect to
preservation of security and the externally imposed characteristic (to be called

*-property).

13

SECURITY CONDITION

(S0.x) 0 SxOxA satisfiesthe security condition relativeto f (SC rel f) iff

() x=eor x=aor x=c,or

(i) (x=r or x=w)and (f1(S) 2 2(0) and f3(S) U f4(0)).

A state v =(b,M,f) OV isasecure state iff each (S,0,x) 0 b satisfies SC rel f. A state
vV isacompromise state (compromise) iff it is not a secure state.

A state sequence z 0 Z hasacompromise iff zt isacompromiseforsome t OT. zisa

secure state sequence iff zt isasecure stateforeach t OT. Wecall

(x,y,2) 0 Z(R,D,W,z0)

an appearance of the system. (x,y,z) O 2(R,D,W,zg) isasecure appearanceiff z isa
secure state sequence. The appearance (X,y,z) has acompromise iff z hasa
compromise.

2(R,D,W,zg) isasecure system iff every appearance of Z(R,D,W,zp) is secure.
>(R,D,W,zp) has a compromise iff some appearance of Z(R,D,W,zp) has a compromise.

*-PROPERTY

We introduce the following notation to make later development more succinct.
Let b(SX,y, ... ,Z) denotethe set

{O: 000 and[(SO,x) Obor(SOy) Obor ese or (S0,2) O b]}.

A statev = (b,M,f) O V sdtisfies *-property iff for each SO S the proposition

[[b(Sw.8) # ¢ and b(Sr,w) # ¢] implies[f2(O1) = f2(O2) and f4(01) U f4(02),
for all O1inb(Sw,a), 02 in b(Srr,w)]] (3-1)

istrue. A statev violates*-property iff v does not satisfy *-property.

A state sequence z [1 Z satisfies *-property iff zt satisfies *-property for each t [T.
(x,y,2) 0 Z(R,D,W,z0) satisfies *-property iff z satisfies *-property. Z(R,D,W,zgp)
satisfies *-property iff every appearance of Z(R,D,W,zg) satisfies*-property.

14

RULES

A ruleisafunction p: RxV - D x V. Theinterpretation of aruleisthat, given a
request and a state, a rule decides a response and a state change. A rule is analogous to
the concatenation of the output and decision (next-state) functions of afinite-state
machine (or sequential machine).

A rule p is security-preserving iff the proposition
[[P(Rk.v) = (Dm,v*) and v issecure] implies [v* is secure]]
holds for al elements (Rk,v) 00 R x V.
A rule p is*-property-preserving iff the proposition
[[P(Rk.V) = (Dm,v*) and v satisfies *-property] implies [v* is secure]]
holdsfor al elements (Rk,v) O R x V.

Letw={p1,p2,***,ps} beaset of rulesrelativeto R, D, and V. Therelation W(w) is
defined by:

) (Rk,2v,v) O W(w) iff pj(Rk,v) = (2Vv) foreachi, 1<i<s

(i) (Rk.error,v,v) O W(w) iff thereexistii, i2, 1<iq <ip < s, such that pil(Rk,v)

#(2v*) and pi2(Rk,v) # (2v**), for somev* v** [V,

@iii) (Rk,Dm,v*,v) 0 W(w) iff thereexistsauniquei, 1 <i < s, such that (2v**) #
Pi(Rk,v) = (Dm,v*), for somev* and any v** [1 V.

One may interpret arule to be aformal realization of one's intuitive notion of how the
system handles requests, making decisions based on the combination of current situation

and specific request. If rule pj doesnot handle arequest Rk , then pj(Rk,v) = (2Vv),
meaning that pj is not applicableto (Rk,v); considering pj as a function, this means that
(Rk,V) isnot in the domain of pj. If we have some (Rk,v) for which every ruleis
inapplicable, then W(w) isinapplicable and the system responseis (2v) (cf. (i) under the

definition of W(w)). By our definition of W(w) we have imposed the condition that each
type of request be handled by no more than one rule. If more than oneruleis applicable,

then the system response is (error, v) (cf. (ii) under the definition of W(w)). If exactly
oneruleis applicableto (Rk,v) resulting in (Dm,v*), then the system responseis (Dm,v*)

(cf. (iii) under the definition of W(w)).

15

PROOF APPROACH

In this section we present five theorems, the first of general interest, the other four of
specific applicability to the development of Section IV. We shall need the following
definition for our purposes.

(Rj,Dj,v*,v) D Rx D x V x V isan action of Z(R,D,W,zp) iff there is an appearance
(x,y,2) of ¥(R,D,W,zp) and somet [] T such that

(Ri.Dj,v*.v) = (Xt Yt zt, Zt-1)

If the system Z(R,D,W,z0) is clear from the context, then we shall ssmply refer to
(Rj,Dj,v*,v) as an action.

Proposition If (Rj,Dj,v*,v) isan action of Z(R,D,W,zg), then (R;,Dj,v*,v) O W.

We now state and prove Theorem 3-1. It has utility as a general analysistool for the
evaluation of a proposed system.

Theorem 3-1 >(R,D,W,zq) is secure for any secure state zg iff W satisfies the following
conditions for every action (R;j,Dj,(b*,M* f*),(b,Mf)):
(i) every (S0,x) O b*— b satisfies SC rel f*;
(i) every (S,0,x) O b which does not satisfy SC rel f* isnot in b*.

Proof

@)

Let zg = (b,M,f) be secure. Pick (x,y,z) 0 (R,D,W,zo) and write z¢ = (b(t), M(1) (1)) for
eachtOT.

Z1 isasecure state

(X1,y1,21,20) O W. By (i), every (S,0,x) O b(1)- b satisfies SC rel f(1).
Letb={(S,0,x) inband (S,0,x) does not satisfy SC rel f(1)}. By (ii), we have

b(1) n b=¢. Thenb n (6D n b)=(b n b(D) n b=¢n b=¢. Hence, if

((S0,x) O b(1) b, then (S,0,x) isnot in b so that (S,0,x) satisfies SCrel f(1). Since
every (S,0,x) O b(1) isin either b(1)- b or b(1) n b, we have shown that zj is a secure
state.

If z—1 is secure, then z; is secure.

Repetition of the argument just used can clearly be done validly. By induction, z is secure
so that (x,y,z) is a secure appearance. (x,y,z) being arbitrary, we have shown that
2(R,D,W,zq) is secure.

(0)

Proof by contradiction. Contradiction of the conclusion of the theorem resultsin the
proposition

16

[there is some (Xt,Yt,2t,2t-1) such that either

(i) [some (S,0,x) O b(t)- b(t=1) does not satisfy SCrel f(1)] or

(iv) [some(S,0,x) O b(t=1) which does not satisfy SC rel f(t) isin b(D)].
Suppose (iii). Then there is some (S,0.x) O b(t) which does not satisfy SC rel (), since
b(t)- b(t=1) O p(®).

Suppose (iv). Then there is some (S,0,x) in b(t) which does not satisfy SC rel f(t) by
statement of (iv).

Therefore, z isacompromise, (x,y,z) has acompromise, and this contradicts the
assumption that Z(R,D,W,zp) is secure.

The proof of the theorem is complete. [

The next four theorems provide the tools we shall require in Section 1V for the
development of rules of operation for the system.

Theorem 3-2 Let w be aset of security-preserving rules and zg a secure state. Then
>(R,D,W(w),zp) is secure.

Proof Suppose 2(R,D,W(w),zp) isnot secure. Let (X,y,z) 0 Z(R,D,W(w),zp) have a
compromise. Let t be the least element of T such that z is a compromise. zg is secure, SO
that t > 0. By our choice, z{—1 is secure and by definition of Z(R,D,W(w),z0), (Xt.Yt,Zt,Zt—
1) U W(w). Sincez z;—1, thereisaunique p [w such that p(Xt,zt—1) = (Y.2t) Z (2v**).
Since p is security-preserving and z¢—1 is secure, z¢ is secure. This contradiction proves
that Z(R,D,W(w),zq) is secure.

The proof of the theorem is complete. [

Theorem 3-3 Let w be aset of *-property-preserving rules and zg a state which satisfies
*-property. Then £(R,D,W(w),zp) satisfies *-property.

Proof The proof is exactly that of Theorem 3-2 with the obvious substitutions of
*-property for secure. [J

Theorem 3-4 Let v = (b,M,f) be secure and (S,0,x) O b. Set b* =b 00 {(S,0x)} and
v* = (b*,M,f).

(i) Ifx=eorx=aorx=c, V*issecure.

i x=rorx=w, v*issecureiff f1(S) = fo(O) and f3(S) I f4(O).

17

(i) vsecureimpliesv* secure since (S,0,x) satisfies SC rel f by definition.
@i (©)
Direct consequence of definition of secure state.
Q)
f1(S) = f2(0) and f3(S) O f4(O) imply (S,0,y) O b* satisfies SCrel f so that
v* issecure. [J

Theorem 3-5 Let v = (b,M,f) satisfy *-property and (S,0x) [b. Set b* =b O {(S,0x)}
and v* = (b*,Mf).
(i) Ifx=eorx=c, thenv* satisfies *-property.

(i) If x = a then v* satisfies*-property iff fo(O) = fo(O") and f4(O) LI f4(O') for
each O’ J b(Sr,w).
@iif) If x =r, then v* satisfies *-property iff fo(O) < fo(O') and f4(O) U f4(O’) for
each O' 0 b(S:w,a).
(iv) If x=w, then v* satisfies *-property iff
(@ fo(0) = fo(0O') and f4(0O) U f4(O’) for each O' O b(Sr),
(b) f2(0O) < fo(O') and f4(O) U f4(O’) for each O’ [I b(S:8), and
() f2(0) =fo(O) and f4(0O) = f4(O') for each O" 1 b(S:w).

Proof

(i) Sincetheinclusion of (S,0,x), x [1 {ec}, in b* does not affect the *-property
in any way, v* satisfies *-property since v does.

@iy (@)
Let (O1,02) be any element of (b*(S:w,a)) x (b*(Sir,w)).
If O1 # O, then we have that the proposition
[[b*(Sw.8) # pand b*(Sr.w) # ¢ implies
[f2(01) 2 f2(Op) and f4(01) O f4(02)]] (ii-1)
istrue since v satisfies *-property. If O1 = O, then (ii-1) holds with O
substituted for O1 by assumption of the theorem. 1 (01,02) being arbitrary,
we have that the proposition
[for each s 'S, [b*(S:w,a) # @and b*(Sir,w) # ¢] implies
[f2(01) 2 f2(02) and f4(Oy) 0 f4(O2),
for all 01 0 b*(S:w,a), O2 O b*(Sir,w)]]
istrue, so that v* satisfies *-property.

i (@) o
Direct consequence of v* satisfying * -property.
(i) (d)

18

(iii)
(iv)

(iv)

Let (01,02) be any element of (b*(S:w,a)) x (b*(Sir,w)).

If O # O, then we have that the proposition

[[b*(Sw.8) # pand b*(Srw) # ¢ implies

[f2(01) 2 f2(Op) and f4(01) O f4(02)]] (iii-1)
istrue since v satisfies *-property. If O = O, then (iii-1) holds with O
substituted for O2 by assumption of the theorem. The remainder of the proof

isidentical to that portion of the proof of (ii) (I) which begins at the place
marked t.

(0)

Direct consequence of v* satisfying * -property.

@)

Let (O1,02) be any element of (b* (S:w,a)) x (b* (Sir,w)).

If O1 # Oand O2 # O, then the proposition (iii-1) istrue since v satisfies
*-property. If O1 = O then (iii-1) holds with O substituted for Oq by
assumptions of the theorem ((a) and (c)). If Op = O then (iii-1) holds with O
substituted for O2 by assumptions of the theorem ((b) and (c)). The remainder

of the proof isidentical to that portion of the proof of (ii) (O) which begins at
the place marked .

)
Direct consequence of v* satisfying * -property.

The proof of the theorem is complete. [

SUMMARY AND REFERENCES

In this section we have done al the work required to establish the formal structure within
which we shall define rules of operation for the system. Aswe shall seein the next
section, Theorems 3-2 through 3-5 are the most significant results of this section for our

purposes; these theorems will enable us to prove quite easily that 2(R,D,W(w),zg) is
secure and satisfies * -property with the set of rules w to be developed in the next section.

1.

Bell, D. Elliott; LaPadula, L. J., "Secure Computer Systems; Mathematical

Foundations’, MTR-2547 Val. |, The MITRE Corporation, Bedford, Massachusetts, 1
March 1973.

19

SECTION IV
RULES OF OPERATION

INTRODUCTION

In this section we develop a set w of rules which are security-preserving and

*-property-preserving and show that the resulting system 2(R,D,W(w),zp), given zg
secure and satisfying * -property, is secure and satisfies * -property.

Theorem 3-4 isthe principal tool by which we shall prove that aruleis
security-preserving; Theorem 3-5isthe principal tool by which we shall prove that arule
IS *-property-preserving; and Theorems 3-2 and 3-3 enable us to prove that the resulting
system is secure and satisfies * -property if itsinitial state is secure and satisfies
*-property.

THE RULES

Let Rk = (01, Y, 02, Oj, X), where g1 and 02 in SF, yinRA, xinx, v = (b,M,f). When o1
O S, we shall denoteit by “S).”; we shall us Sj for oo whenever oo U S. Also, let @
denote an arbitrary subset of A.

For notational convenience, make the definitions;

« augb(RiV) = (b 0 {(52.0,X).M.f)
« dimb(Ry,v) = (b - {(02,01X),M.f)
* M (+)[@]jj will bethe matrix M* where
M*[st] = M[st] if (sit) # (i.j)
M*[st] = M[st] O @ if (st) =(i,j).
. M (-)[®]jj will be the matrix M~ where
M~ [st] = M[st] if (sit) Z (i)
M~ [st] = M[st] = @ if (s;t) = (i.,)).
* AM)={j:1<j<=mandMijj# ¢ for somei}.

Rule 1: get-read: p1 (Rk,V) =
ifojzdoryzgorx#rorop=o

20

then p1(Rk,v) = (2v);
if r O Mijj or [f1(Sj) < f2(Gj) or £3(Sj) 1 f4(O))]
then p1(Rk,v) = (no,v);
if Up, ={0:0 O b(Sjw.g) and [f2(Gj) > f2(O) or f4(0j) 11 f4(O0)]} = ¢
then p1(Rk,v) = (yes,augb(R,v))
ese p1(Rk,v) = (no,v);

end.

Rule 1 is security-preserving:

Let v be secure and Rk O R. If p1(Rk,V) = (Dm,Vv*), then v* = v or v* = augb(R,v),
according to pq. If v¥ = v, then v* is secure since v is secure. Suppose v* = augb(R,V).
Now b*—b ={ (5 O] .} or ¢. If empty, then done (since (Si,Oj) O b). Suppose not
empty: then, sincef1(Sj) = f2(Oj) or f3(§j) O f4(Oj) according to p1, v* is secure by
Theorem 3-4.

Rule 1 is*-property-preserving:

Let v satisfy *-property and Rk [R. Set p1(Rk,Vv) = (Dm,v*). Thenv* =v or v* =
augb(Ry,v). If v* = v, then v* satisfies *-property. Suppose v* = augb(Ry,v). Now
augb(Ry,v) = (b*,M.f), whereb* =b I {(S,q,[)}. According to p1 we have Up1 =¢.

Thus, if O O b(Sj:w,a), then [f2(Oj) > fo(O) or f4(Oj)) f4(O)] isfadse. That is, we have
fz(Oj) < f(0O) and f4(Oj) [f4(O) so that v* satisfies *-property by Theorem 3-5.

Rule 2: get-append: po(Rk,v) =

ifopzporyzgorx#aorop=¢
then p(Rk.v) = (2v);

ifall Mjj
then pa(Ry.v) = (no,v);

if Up, ={0:0 0 b(Sj:r.w) and [f2(Gj) < f2(O) or f4(0;j) 11 f4(O)]} = ¢
then pp(Rk.v) = (ves,augb(R,v))
else p2(Rk.v) = (no,v);

21

Rule 2 is security-preserving:

Let v be secure and Rk [R. Set p2(Rk,V) = (Dm,v*); then v* =v or v* = augb(Ry,V)
according to Rule 2. If v* = v, then v* is secure since v is secure. Suppose v* =
augb(Ry,v). Now b*—b = {(§ Oj W)} or ¢. If empty, then done (since (S ,Oj,w) O b).
Suppose not empty. Then the conditions of Theorem 3-4 are satisfied so that v* is secure.

Rule 2 is * -property-preserving:

Let v satisfy *-property and Rk [R. Set p2(Rk,V) = (Dm,v*). v* = v or v* = augb(Rk,V)
according to Rule 2. If v* = v, then v* satisfies *-property since v does. Suppose v* =
augb(Rk,v). Now b* —b ={ (Si,Oj A} or ¢. If empty, then done. If not, then according to

Rule 2 we have Up2 = ¢ so that fZ(Oj) > fo(O) and f4(Oj) [f4(O) for each O O b(Sjr,w)
and therefore v* satisfies * -property by Theorem 3-5.

Rule 3: get-execute: p3(Rk,V) =
ifopzporyzgorxzeorop=0¢
then p3(Rk.v) = (2V);
if e Mjj
then p3(Rk.v) = (no,v);
else p3(Rk.v) = (yes,augb(Rk.v));
end.

Rule 3 is security-preserving:

Let v be secure and Rk [R. Set p3(Rk,V) = (Dm,Vv*); then, according to Rule 3, v* =v or
v* = augb(Rk,V). If v¥ = v, then v* is secure since v is secure. Suppose v* = aughb(Rk,V).

b*-b={(S§ Oj ©)} or ¢. If empty, then done. If not, then the conditions of Theorem 3-4
are satisfied so that v* is secure.

Rule 3 is * -property-preserving:

Let v satisfy *-property and Rk [R. Set p3(Rk,Vv) = (Dm,Vv*). Then, according to Rule 3,
v* =vor v* = augb(Rk,v). If v* = v, then v* satisfies *-property since v does. Suppose
v* = augh(Rk,v). Thenb* — b ={(S§ O 6} or ¢. If empty, then done. If not, then the

conditions of Theorem 3-5 are satisfied so that v* satisfies * -property.
Rule 4: get-write: pg(Rk,v) =

22

ifopzporyzgorxzworoo=¢
then p4(Rk.v) = (2v);

if w O Mjj or [f1(Sj) < f2(0j) or 3(Sj) 1 4(0j)]
then p4(Rk.v) = (no,v);

it Up, ={0:0 0 b(Sjr) and [f2(0j) < 2(O) or f4(Cj) 11 f4(0)]} O
{0:0 O b(Sj:a) and [f2(Q)) > 2(0) or F4(0j) 1 f4(0)]} O
{O:0 U b(Sj:w) and [f2(0j) # f2(O) or f4(0j) # f4(0)]} = ¢
then p4(R,v) = (yes,augb(Rk,v))
else p4(Rk.v) = (no,v);

end.

Rule 4 is security-preserving:

The proof is exactly the same as the proof of “ Rule 1 is security-preserving.” with pg
substituted for p1.

Rule 4 is * -property-preserving:

Let v satisfy *-property and Rk [R. Set p4(Rk,V) = (Dm,Vv*). According to Rule 4 v* =v
or v* = augb(Rk,V). If v¥ = v, then done. Suppose v* = augb(Rk,Vv). Now b* —b =

{(§ ,Oj W)} or ¢. If empty, then done. If not empty, then Up 4= ¢ means the conditions
of Theorem 3-5 are satisfied so that v* satisfies *-property.

Rule 5: release-read/write/all/execute: p5(Rk,V) =
if(opzd)or(yzr)or(x#rw,a ore)or(op=09)
then p5(Ry.v) = (2v);
else p5(Rk,v) = (yes, dimb(R,v));

end.

Rule 5 is security-preserving:

Let v be secure and Rk [R. Set pg5(Rk,Vv) = (Dm,v*). According to Rule 5, v* = v or
v* = dimb(Rk,v). If v* = v, then v* issecure since v is secure. Suppose v* = dimb(Rk,V).

Thenb* =b —{(Si,Oj X)}; thisimpliesb* [0 b. Any (S,0,y) O b* isthereforein b and
thus satisfies SC rel f since v is secure. Therefore v* is secure.

23

Rule 5 is * -property-preserving:

Let v satisfy *-property and Rk [R. Set p5(R,Vv) = (Dm,v*). According to Rule 5,
v* =vor v* =dimb(Rk,v). If v* = v, then v* satisfies *-property since v does. Suppose
v* = dimb(R,v). Then b* O b; thisimplies that
b*(S:w,a) [b(S:w,a) and
b* (Sir,w) O b(S:r,w).
Thusfor each S 0 S the proposition (3-1) istrue (cf. definition on page 16) so that v*
satisfies * -property.
Rule 6: give-read/write/all/execute: pg(Rk.v) =
if(o12S\ 09 or(yzg)or (x#rw,a ore)or(o2=0)
then pg(Rk.v) = (2V);
ifx0O M)\j orc M)\j
then P6(Rk.V) = (nQ,v);
else pa(Rk.v) = (ves,(b,M (+) [X]jj.f);

end.

Rule 6 is security-preserving:

Let v be secure and Ry [R. Set pg(Rk.V) = (Dm,v*). According to Rule 6, b* = b in any
case so that v* is secure.

Rule 6 is * -property-preserving:

Let v satisfy *-property and Rk [R. Set pg(Rk,Vv) = (Dm,Vv*). According to Rule 6, b* =
b in any case so that v* satisfies * -property.

Rule 7: rescind-read/write/all/execute: p7(Rk,V) =
if(c1zS\0S)or(yzr)or (x#rw,a ore)or(op=0)
then p7(Ry.v) = (2v);
ifx0O M)\j orc M)\j

then P7(Rk,v) = (no,v);
ese p7(Rk.v) = (ves,(b — {((S.0x)} M (=) [xlij.f);

end.

Rule 7 is security-preserving:

24

Let v be secure and Rk [0 R. Set p7(Rk,v) = (Dm,v*). According to Rule 7 we have

b* O binany case so that, by argument similar to that of the proof of “Rule 5 is security-
preserving.”, v* is secure.

Rule 7 is * -property-preserving:

Let v satisfy *-property and Rk [R. Set p7(Rk,Vv) = (Dm,Vv*). According to Rule 7 we

have b* [0 b in any case so that, by argument similar to that of the proof of “Rule5 is
-property-preserving.”, v satisfies *-property.

Rule 8: change-f: pg(Rk,v) =
ifopzporyzcoropzporxzF
then pg(Rk.v) = (2V);
iffy* # f1 or f3* # fz or [f2*(Oj) # (f2(Oj) or f4*(Oj) # f4(0j) for some
JOAM)]
then pg(Rk.v) = (no,v);
else pg(Rk.v) = (yesb,M,f*);

end.

Rule 8 is security-preserving:

Let v be secure and Ry [R. If pg(Rk,V) = (Dm,v*), then v* =v or v* = (b,M,f*),
according to pg. If v* = v, then v* is secure since v is secure. Suppose v* = (b,M,f*).
Sincev is secure, each (S,0,x) [b satisfies SC rel f. Since f* agreeswith f on A(M), we
have that each (S,0,x) O b satisfies SC rel f* so that v* is secure.

Rule 8 is * -property-preserving:

Let v satisfy *-property and Rk [l R. Let pg(Rk,Vv) = (Dm,v*). Thenv* =v or v* =
(b,M,f*). If v* = v, then v* satisfies * -property since v does. Suppose v* = (b,M,f*).
Then since f* agrees with f on A(M), we have that the proposition (3-1) istrue for each S

[0 S. Hence v* satisfies *-property.

Rule 9: create-object: pg(Rk,V) =
ifopzporyzcorap=¢ or (x#eor)
then pg(Rk.v) = (2V);
itj OA(M)

25

then pg(Rk,v) = (no,v);
ifx=¢
then pg(Rk.v) = (ves,(b,M (+) [rw.ac]jj.f));
else pg(Ry.v) = (ves,(bM (+) [rw,aceljj.f);
end.

Rule 9 is security-preserving:

Let Rk O Rand v OV with v secure. Suppose pg(Rk,V) = (Dm,v*) and v* = (b* ,M* f*).
By Rule 9, v* = (b,M (+) [r,w,g,c_:}]ij,f) or (b,M (+) [[,W,gc_:,g}]ij,f). Inevery case, b* =b

and f* = f so that every (S,0,x) O b*= b satisfies SC rel f = f*. Hence v* is secure.

Rule 9 is * -property-preserving:

Let Rk O R andv = (b,M,f) OV satisfying *-property. Suppose pg(Rk,Vv) = (Dm,v*) and
v* = (b*,M* f*). By Rule 9 b* = b and f* =f asin the preceding proof. Thus proposition
(3-1) holdsfor v* and v* satisfies *-property.

Rule 10: delete-object: p10(Rk,v) =
ifopzporyzdorop=¢orxz¢
then p10(Rk.v) = (2V);
if ¢ O Mj;
elsepyo(Rk.v) = (yes,(b,M (-) [rw.acelij,1<i<n);
end.

Rule 10 is security-preserving:

Let v be secureand R O R. If p10(Rk,V) = (Dm,v*) and v* = (b* ,M* f*), then v* = v or
(bM (-) [rw.ac.e]jj,1<i<n.f). In either case, b* = b and f* = f so that v* is secure.

Rule 10 is * -property-preserving:

Let v satisfy *-property and R¢ U R. Suppose p10(Rk.V) = (Dm,v*) and v* = (b* ,M* f*).
By Rule 10 b* = b and f* =f; v* satisfies *-property.

26

THE SYSTEM 3(R,D,W,Z0)

Theorem4-1 Let w={p1, P2, * * *.P10}. the pj asdefined in the section entitled The

Rules, and zg be a secure state which satisfies *-property. Then Z(R,D,W,zg) is a secure
system which satisfies *-property.

Proof Follows directly from the proofs for the pj in the section entitled The Rules, and
from Theorems 3-2 and 3-3.

SUMMARY

In this section we have presented a set of rules, suitable for implementation on adigital
computer, which, within the framework of definitions, properties, and capabilities
discussed in Sections |1 and 111, provide the algorithms by which a secure system
satisfying the externally derived characteristic called * -property can operate successfully.
The proofs presented herein provide certification of the assertion just made.

27

SECTION V
DESIGN CONSIDERATIONS

INTRODUCTION

In this section we review briefly a subset of the design considerations which will
necessarily precede atranglation of the model presented herein into a set of design
specifications for a system. We shall assume a Multics-like architecture, both software
and hardware, for this section. Such an assumption provides a representative system so
that our discussion may have reasonable empirical content.

A COVERING, DISJOINT SET OF RULES

Definition 5-1. Let w be the set of rulesfor Z(R,D,W(w),zg). wisacovering set of rules
if [(Rj,Dm,v*,v) O W(w)] implies[Dm # 7.

Definition 5-2. Let w be the set of rulesfor Z(R,D,W(w),zp). wisadigoint set of rulesif
for each pj U w the proposition

[[pi(Rk.v) # (2v*)] implies [pj(Rk,v) = (2v**)] for each pj U w - {pj}]
istrue.

Theset w={p1, P2, * * *.p10} developed in Section IV is easily seen to be adigoint
but not a covering set of rules. On the other hand, the system response ?, which can occur
since wis not a covering set, is not very informative. The augmented set w™ = w 0 {p11}
could be used to rectify this as follows:

. add the element illegal to the set D (decisions)

. define p11(Rk.V) # (illegal,v) for all Rk [0 Rand v [0 V such that pj(Rk,Vv) =
(2v) for 1<i<10.
Thusif Rules 1 — 10 are inapplicable, then Rule 11 is applicable and system response is

illegal, meaning that the request was not avalid one. The resulting set of rules, w* is now
acovering set. An example of anillegal request is (S),9,Sj Oj .C).

28

SYSTEM DATA BASE

In speaking of the system data base we mean that portion of the total data base which
contains the information required by the rules of the system. Therefore, the elements of
the system data base are:

. an access matrix (M of the state (b,M,f))

. alist of 3-tuples (b of the state (b,M,f)) which shows which subjects have access
to which objects in what mode

. alist of the classifications, clearances, and categories associated with subjects
and objects (f of the state (b,Mf)).

The contents of b and M and the mapping f may change during normal system operation.
All three can be implemented in any way one may choose so long as it is guaranteed that
they be protected from unauthorized modification; only the rules of the system are
allowed to change b, M, and f during normal operation.

Since b expands and contracts dynamically during operation, the information should be
organized for areasonable trade-off between access time and update time.

With respect to M, at least two alternatives suggest themselves. M could be treated in the
same general manner as b or it could be afixed-size matrix which is aways kept in the
main store of the computer system.

The preceding considerations raise several points worth considering here. The model
clearly suggests that the access matrix be established (or changed) in a special mode of
operation of the system by a control officer. This suggests further that a special program,
which isitself certified and protected, be run after the control officer establishes the
access matrix to ascertain that the access matrix satisfies some appropriate set of
properties. We have made no explicit provision for changing the number of subjectsin
the system. There are several ways of making provision for this option. We envision the

access matrix to be of fixed size (n x m) during normal operation. However, the size of M
is established to handle peak load and subjects could come and go during normal
operation, with a mapping of subject name to access matrix row designation changing.

The ability to create and delete objects, which is provided by Rules 8 — 10, is most easily
accomplished by retaining the notion of afixed size matrix. The matrix would have
empty columnsin it from time to time and these would represent available address space
locations for establishing the existence of anew object. Similarly, when an object is
deleted, a column in the matrix becomes blank and available. Mapping of object hamesto
column designations (indices) would be accomplished by the system at the allocation
level — outside and (in a hierarchical sense) above the rules which manage the access
matrix.

29

PROTECTION

The rules of access developed in Section IV are not invoked for every access to an object
by a subject. For example, once Rule 1 grants a subject read-access to some object, actual
access (reading words of afile) is not monitored by the rules. However, each access must
be monitored in order to guarantee that the system remains secure and preserves
*-property. Assuming a machine architecture suitable for a Multics-like system, thiskind
of protection is easily provided by the use of hardware-interpreted registers. For each
(S,0,r) we have an associated register by which S must access O. Clearly, S must not be
allowed to change the contents of the register directly; changes must be made by a
certified portion of the system (i.e., the “kernel” of the system). The register then
monitors every accessto O by S, insuring at each moment of activity that S does only
what it is allowed to do.

RESCINDING ACCESS

Given the hardware registers of the type just discussed in the previous section,
implementation of the rescind-accessrule (Rule 7) is quite straightforward. The action

bisreplaced by b — {(S,0,x)}

of Rule 7 means simply that the appropriate enabling portion of the hardware register
associated with (S,0,x) in b is disabled, thereby denying S any further accessto O in the
mode X.

SUMMARY AND REFERENCES

In this section we have briefly discussed some design and implementation considerations;
this discussion, while by no means comprehensive, should serve as afirst step from the
mathematical model to design considerations and specifications.

We should point out that the notion of afixed-size access matrix with blank columns has
been discussed in [1], which will also provide the reader with ageneral understanding of
the Multics architecture.

1. Bensoussan, A.: Clingen, C. T.; Daey, R. C.: “The Multics Virtual Memory:
Concepts and Design,” Communications of the ACM, Val. 15, No. 5, May 1972, pp. 308-
318.

30

BIBLIOGRAPHY

Bensoussan, A.: Clingen, C. T.; Daley, R. C.: “The Multics Virtual Memory: Concepts
and Design,” Communications of the ACM, Vol. 15, No. 5, May 1972, pp. 308-318.

Bell, D. Elliott; LaPadula, L. J., "Secure Computer Systems: Mathematical
Foundations’, MTR-2547 Val. |, The MITRE Corporation, Bedford, Massachusetts, 1
March 1973.

Weissman, C.: "Security Controls in the ADEPT-50 Time-Sharing System," AFIPS
Conference Proceedings 35, FJCC 1969, 119-133.

31

