Essay 2

Concepts and Terminology for
Computer Security

Donald L. Brinkley and Roger R. Schell

This essay introduces many of the concepts and terms most im-
portant in gaining an understanding of computer security. It fo-
cuses on techniques for achieving access control within computer
systems and networks.

The essay begins by defining what is meant by computer security
and describing why it is important to constrain the definition to
protection that can be meaningfully provided with a significant
degree of assurance within computer systems. The theory of com-
puter security — the reference monitor concept — is introduced next
through an analogy with security concepts from the world of peo-
ple and sensitive documents.

Next, the essay develops the presentation of the theory by intro-
ducing concepts and terms related to the security policy. Distinc-
tions between discretionary and nondiscretionary access control
policies are provided, and supporting policies are introduced. Tech-
niques used for building a secure system based on the principles
of the theory are presented, along with methods of usefully verify-
ing the security of a system. The security kernel is presented as a
useful, high-assurance realization of the reference monitor concept,
and the principles behind designing and implementing one from
scratch are discussed. Feasible improvements to the security of
an existing operating system, as well as fundamental limitations
on those improvements, are described next.

Finally, the reference monitor concept is applied to networks, and
cryptography and access control are shown to be useful partners.

This essay concerns concepts and terminology relevant to computer se-
curity. However, it is not a glossary. (A glossary typically does not make
very interesting reading from beginning to end, and interesting reading is
one of our goals for this essay.) This essay certainly does not define all

40 Information Security

concepts and terminology relevant to computer security; nor does it ad-
dress concepts and terminology for communication security and related
communication networking technology. It does address concepts and
terms that we consider to be the most critical to gain a fundamental un-
derstanding of computer security technology — that is, the theory of this
technology and something of its implementation.

Our approach in this essay is to focus primarily on explaining concepts
critical to understanding computer security. For the basis of the communi-
cation about the concepts, we use a set of terms that have been consis-
tently used over a period of time. Alternate terms have been used for
some of the concepts we present, and in some cases, the alternate terms
are being promulgated by other individuals and/or organizations. In
contrast, in Essay 6, we have used terminology specific to a particular
document [TCSE85] and to a specific organization (the US Department of
Defense). However, in this essay, we have tried to remain clear of a spe-
cific set of organizational “utterances,” instead preferring to use a set of
widely and historically accepted terminology. Specific sources for some of
the terms are given where the source is thought to be historically signifi-
cant.

The next few sections focus on identifying the domain of discourse for
the concepts and terminology discussed in the rest of the essay. They
clarify what we mean by just one term — computer security.

Considerations for computer security

There are many characterizations of computer security. The one we use is
related to the term information technology security. Information technology se-
curity is defined in a document [ITSE91] created by the European Com-
munity, which has gained some recent international acceptance. The
document [ITSE91] defines information technology (IT) security to include the
following:

e Confidentiality. Prevention of unauthorized disclosure of information.

e Integrity. Prevention of unauthorized modification of information.

¢ Availability. Prevention of unauthorized withholding of information
or resources.

Essay 1 describes four broad areas of computer misuse: theft of com-
putational resources, disruption of computational services, unauthorized
information disclosure, and unauthorized information modification.
These four areas correspond to threats to IT security. The first two catego-
ries correspond to threats to availability; the third corresponds to a threat
to confidentiality; and the fourth to the integrity of the information. (Note
that in this essay, theft of computational resources is considered a threat

Concepts and Terminology for Computer Security 41

to availability of resources since it fundamentally results in the withhold-
ing of the stolen resources from those who are paying to use them.)

Integrity, which is also traditionally referred to as data integrity [TNI87],
means that information is modified only by those who have the right to
do so. However, integrity has meanings other than the meaning used here.
These alternate meanings vary greatly from such a broad definition as
“soundness” to the definition of system integrity, meaning that the hard-
ware and software generally operate as expected. Program integrity means
that programs can be invoked only by programs that are lower in integrity.
This arrangement is intended to prevent corruption (that is, by unau-
thorized modification) of higher integrity programs [SHIR81] by lower integ-
rity programs (for example, by viruses or other Trojan horses that might be
in them). It has been shown [SCHE86] that program integrity is just a spe-
cial case of the data integrity described here. Although in other contexts
integrity may be used differently, throughout this essay, integrity is used
with the first meaning given above — that of data integrity. Information is
modified only by those who have the right to do so.

Distinctions among availability, confidentiality, and integrity

When considering the costs and benefits of protection against the list of
threats to IT security given above, the distinctions among confidentiality and
integrity and other system properties such as availability are important.

Availability differs in kind from the other two components of IT security.
One difference acknowledged in the definition of IT security given in the
EC document [ITSE91] is that availability pertains to both information and
resources, such as computer systems themselves. On the other hand,
confidentiality and integrity pertain only to information itself.

In a further distinction from availability, consider that confidentiality and
integrity can be enforced by preventing illicit access to the information un-
der protection (that is, access control in the computer context). In con-
trast, availability cannot be provided by access control within a computer
system. Rather, the key objective of availability is that information or re-
sources should not be withheld [ITSE91].

This distinction has very fundamental implications for the protection
feasible against threats to availability, in contrast to the protection feasible
against threats to confidentiality and integrity. This is easy to see, since, for
example, a process may in general consume resources in a manner that
may prevent other processes from accessing those resources when
needed. The observation that a “runaway process” can waste resources,
even in a system which implements access controls, was made by Butler
Lampson as early as 1971 [LAMP71]. Twenty years later, Lampson
[LAMP91] stated more flatly that access controls provide a foundation for
confidentiality and integrity, but are less useful for availability.

42 Information Security

We see then that there are very many things that can affect the avail-
ability of a system; in fact, it is not possible to identify all the factors that
may affect availability. It is the unboundedness of the possible causes of a
loss of availability that leads to the conclusion that it is not possible to ver-
ify to a high degree of assurance that a system possesses the quality of
availability. However, it is possible to verify to a high degree of assurance
that a system possesses qualities of confidentiality and integrity through the
dependable enforcement of access controls.

Furthermore, consider the problem of malicious software. Essay 1 char-
acterized the growth of malicious software. It is clear that as the use of
commercial off-the-shelf software products or any other software of un-
known pedigree grows, so do the opportunities for insertion of malicious
software. This is because there are now many more points in the software
life cycle, including during distribution as well as development, at which
malicious software can be incorporated. However, even in the face of mali-
cious software, we can obtain, for a reasonable cost, the benefit of mean-
ingful assurance that a useful form of access control will continue to be
enforced (as we see in a later section on mandatory access control policy). In
contrast, current technology does not allow us to obtain at any cost, in
the face of malicious software, this kind of assurance for other system
properties such as availability. This is not because one cannot design a
system that enhances availability, but rather because one cannot be sure
the system will meet any particular level of availability in the face of mali-
cious software. We shall see later that this means it is possible to provide
a reference monitor for confidentiality and integrity, but not for availability.

The reason for this is the existence of a very basic distinction between
confidentiality and integrity and other system properties, such as availability.
The distinction is that confidentiality and integrity can be characterized in
terms of properties that are precisely defined, global, and persistent.
Confidentiality and integrity can be specified for a particular system in a
way that allows one to know, beyond the shadow of a doubt, whether or
not the system enforces those properties.

We understand that this is an incredibly strong statement which may
be surprising to some. However, there is a set of mathematical tools in
computer science that gives one the confidence to make such a state-
ment. The characteristic ability to specify these properties for a particular
system in a manner that allows one to positively know that they are en-
forced is known in the jargon of computer science as “being computable.”
It is not essential that a reader of this essay understand computability to
understand the remainder of the essay. However, the next paragraph of-
fers a very brief discussion of the implications of the computability of
confidentiality and integrity for those readers who are interested. Others
may wish to skip to the next section.

As implied by the above statements, confidentiality and integrity can be
specified for a particular system such that whether or not that system

Concepts and Terminology for Computer Security 43

enforces those properties is computable. Being computable means basi-
cally that one can specify an algorithm that can be used in a mechanical
way to determine the result. This is particularly significant since com-
puters can only execute algorithms and can therefore only dependably
perform computable functions! This means that one can program a com-
puter in such a way as to dependably determine whether it enforces con-
fidentiality and integrity. On the other hand, whether a given system meets
criteria of availability, reliability, safety, and other such properties is fun-
damentally “noncomputable,” meaning that it is impossible to determine
whether a computer’s program enforces these properties, given their ex-
isting definitions. In fact, it is generally noncomputable to determine
whether an arbitrary protection system enforces particular properties
[HARR76]. It is fortunate that a particularly useful form of confidentiality
and integrity (for example, mandatory access control) constitutes a special
case whose enforcement within a protection system can be proven, as
will be discussed subsequently in this essay.

Meaning of computer security

In the real world of information that people care about, it is highly
beneficial to treat confidentiality and integrity separately from other system
properties, including availability. Information can be very dependably pro-
tected from unauthorized modification or disclosure in the face of a large
range of threats; that is, confidentiality and integrity can be provided with
high assurance of enforcement. Availability cannot. If confidentiality and in-
tegrity were rolled into the same class as availability, an important and very
sharp distinction between assurance that is feasible in the two cases
would be lost. We feel that this would not serve well the readers of this
essay who could benefit from the ability to provide access control to in-
formation with a high degree of assurance, despite the lesser assurance
possible for other properties such as availability.

To clarify the importance of assurance, recall the danger described in
Essay 1 that was associated with misplaced trust in a supposedly “se-
cure” system — Enigma. The danger of misplaced trust in technology, of
false assurance in the Enigma case, was a serious contributor to the loss
of World War II by the Germans. False assurance is a danger that is
avoidable by only trusting technology that is demonstrably trustworthy.

Because of these fundamental differences, we say that confidentiality and
integrity are the two components of IT security in a computer system that
make up computer security (that is, computer security is the subset of IT se-
curity that addresses security of information in a computer against
threats to confidentiality and integrity, but which does not address availabil-
ity). Therefore, computer security, as used in this essay, may be provided by
the methods used for access control within a computer system.

44 Information Security

The remainder of this essay is divided into major sections that present
concepts and terminology related to

¢ the theory of computer security,

¢ an important aspect of that theory — the security policy,

¢ methods of building a secure system based on the principles of the
theory, and

e application of the theory to networks.

Theory of computer security

As noted above, the threats to computer security can be countered by
providing access control over information on a computer to ensure that
only specifically authorized users are allowed access. What we desire is a
set of methods that make it possible to build a relatively small part of the
system in such a way that one can even allow a clever attacker who uses
malicious software to build the rest of the system and its applications, and
it will still be secure. The theory of computer security gives us this.

Understanding computer security involves understanding three funda-
mental notions:

1. a security policy, stating the laws, rules, and practices that regulate
how an organization manages, protects, and distributes sensitive
information;

2. the functionality of internal mechanisms to enforce that security
policy; and

3. assurance that the mechanisms do enforce the security policy.

Now we introduce these three important notions and describe how they
pertain to the reference monitor concept, which provides a set of principles
that can be applied to the design or selection of security features and to
their implementation in ways that afford a high degree of resistance to
malicious software. We begin with an example from the world of people and
sensitive documents to illustrate the requirements of any information
security system. We then introduce the reference monitor concept as we
apply it in designing secure computer systems.

An example: Protecting sensitive documents. If we had a collection
of extremely sensitive documents — perhaps corporate plans and strate-
gies or classified national security information — we might go to extreme
lengths to protect that collection. Thinking about the measures that we
might take to provide such protection will help us find an intuitive basis
for the reference monitor concept.

Concepts and Terminology for Computer Security 45

Restricting access. Since we are talking about documents (presumably
ink on paper), we can most naturally think about locking them up. So we
buy something like a bank vault to hold our little library of priceless se-
crets. But the documents still have to be used, so we have to provide a
way for authorized people to get at them and read them. Now we have to
put a door in our vault and provide some set of controls over who can
and who cannot go in.

We can place a guard post in front of our vault door and staff it with a
team of extremely vigilant and trustworthy guards. These guards can
surely exercise control over who goes in and who goes out, but they will
need some set of criteria for determining who is authorized for such ac-
cess. We can solve this problem by providing the guards with a list that
specifies only those individuals we have authorized (in the national secu-
rity case, those we have cleared) for access to the vault and its secrets.
Now the guards know who may and who may not enter.

We are not finished, though. For when an individual shows up at the
guard post and requests entry, the guards need some way to check that
the person is not claiming a fake identity. We might simply rely on the
guards’ powers of recognition, or we can invent a variety of measures to
provide the guards with the information they need. We can give each
authorized individual a badge or pass and direct the guards to check the
badge against the appearance of a valid badge. Perhaps we can store
each individual’s photograph, or even fingerprints, and associate them in
the authorization list with individuals’ names. This information is neces-
sary to authenticate the identification of the individual in a reliable way. We
can invent schemes of almost limitless cost and complexity to help the
guards assure themselves that they are admitting only authorized people
to the vault.

Finally, we might want to check up on the guards to make sure that
only those users on the authorization list are being admitted to the vault
to use the document collection — to ensure individual accountability for
the guards’ work. So we can add to our basic protection scheme a log
that must be signed by both guard and visitor to give us a clear record of
visits to our vault.

Of course, we must not only have a good security system; we must also
implement it correctly. If a guard is subject to subversion or if our vault
has walls of paper rather than steel, the security we provide will not be
very effective. The extent to which we must worry about such matters will
depend on the sensitivity of the information and on the threat we per-
ceive. Perhaps we will put moderately sensitive documents in a locked
room with an unarmed guard, and very sensitive ones in a real bank-
style vault with armed guards.

The basic scheme outlined here is not too different from some that are
actually used to protect very sensitive documents. If the users of the
documents are at remote locations and too busy to come to our vault,

46 Information Security

perhaps we will send the guards to them. Then we have a system similar
to that used to handle “Ultra” information before and during World War II
[WINT74]. The point is that the basic scheme is simple, comprehensible,
and secure.

When access rights vary. Our scenario of a vault full of sensitive docu-
ments differs from reality in (at least) one very important respect. When
people or organizations go to such lengths to protect sensitive informa-
tion, it is unlikely that they will simply put it in a room and give author-
ized visitors unrestricted access to the room. Rather, different people are
likely to have access to different documents, and the document protec-
tion system will be required to recognize and enforce this sort of distinc-
tion. We may also want the document protection system to enforce some
control over the use (or misuse) of the documents by authorized users.
We will consider some of these issues in the paragraphs below.

In thinking about a document library in a vault that enforces “fine-
grained” protection, we can at least start with the basic concepts that
were introduced above. A would-be user will appear at the reading room,
identify himself (or herself), and have his identity checked by the guards
on duty. Now, however, the user will not simply be admitted to the li-
brary for unrestricted access. Instead, he will request access to a specific
document or set of documents. The guard will check the user’s access in
some sort of list and, assuming all is in order, give the user both the
documents requested and a place to work on them. Perhaps our library
or reading room is divided into individual carrels to which authorized us-
ers take their documents. If several people must work together, they may
be assigned a closed conference room in which they may work with
documents that all are authorized to see.

This extension is a very crucial one. For now, instead of admitting one
or more users for unconstrained access to the entire collection, our li-
brary grants individual users access to individual documents based on
their authorization. Not only that, we also have a mechanism (the carrels
or reading room) for ensuring that the access rights of individuals are
enforced and that a user reading document A is prevented from gaining
(inadvertently or deliberately) access to document B. The access rights
are defined by the authorization list and enforced on a document-by-
document basis. Some of the documents may have, associated with them
on the authorization list, user access rights that are identical with those
associated with other documents in the collection. These equivalence
classes of document access rights define a notion called access class (also
referred to outside this essay by other names, including “classification,”
“clearance,” “security level,” and “security class”). An access class is an
equivalence class for the sensitivity of information and the authorization
of people who share common access rights to the information in that
class. An important observation about access classes is that the notion

Concepts and Terminology for Computer Security 47

provides the basis for “fine-grained” protection, such as we are discuss-
ing. A document may have more or less sensitivity than another, or its
sensitivity may differ from the other’s in a noncomparable way, such as
might be the case for unrelated documents in totally different fields.

In defining both our basic and enhanced scenarios, we have ignored
the question, “Where does the authorization list come from?” We cannot
yet deal fully with this question, but presumably the same authority that
established the library also defined a mechanism by which some people
can establish or change the list. To do so, they have to communicate the
updated list to the guard force in some manner, and the mechanism that
they use to identify themselves to the guards is probably similar to that
used by the ordinary users of the library. It is even possible that some of
the users of the library are themselves allowed to modify the authoriza-
tion lists for some subset of the documents in the library and that the
rules enforced by the guards handle this.

We have also ignored until now the practical question of what users of
the library do with the information that they have access to. One possi-
bility is that they leave their notes, extracts, and so on in the library. In
this scheme, each user may be assigned a file folder for his or her notes,
and the folder may be locked up by the guard force from one visit to the
next. If a user takes information away from the library, the guards will
probably attempt to check that the information can legitimately be re-
moved, and perhaps that its access class is marked on the copy (so the
user will assume due care in handling it). It is entirely possible that only
a few people will be allowed to remove any written information from our
library and then only under controlled circumstances.

If our library is to enforce access restriction at the level of the individ-
ual document, it can also collect a more detailed record of users’ accesses
to documents. The log that we mentioned above can be expanded to in-
clude documents accessed and individual users’ actions.

The library scenario outlined here may sound unlikely. However, some
government classified document libraries work almost exactly this way.
The mode of operation outlined is not terribly inconvenient once the us-
ers and guards become accustomed to it. Such formal libraries typically
do a good job of protecting the information entrusted to them, while
making it available to the people who need to work with it. We shall see
that these libraries also provide a fairly good model for the reference
monitor that is implemented in a secure computer system.

The reference monitor. The reference monitor provides the underlying
“security theory” for conceptualizing the idea of protection, thereby per-
mitting one to focus attention only on those aspects of the system that
are relevant to security. As we shall see, the reference monitor concept for
the computer applies equally well to the design of a document library like
the one we have just discussed.

48 Information Security

The reference monitor [ANDE72] is an abstraction that allows active en-
tities called subjects to make reference to passive entities called objects,
based on a set of current access authorizations. The reference monitor is
interposed between the subjects and objects. The reference monitor makes
reference to an authorization database and reports information used to
support an audit trail (similar to the “log” described above) that records
operations which have been attempted or allowed.

At an abstract level, the reference monitor supports two classes of func-
tions: reference functions and authorization functions [SCHE74]. Both are
controlled by the current access authorization data in the authorization
database. The authorization functions allow subjects to change the authori-
zations in the authorization database. The reference functions control the
ability to access information. The utility of the reference monitor concept is
independent of the specific rules that make up the access control policy.
That is, the reference monitor is not defined by the access control policy, nor
does the reference monitor define the access control policy.

The reference functions are defined in terms of only two generic access
modes — observe and modify. The equivalents of these abstract access
modes in a computer are read and write; therefore, we will use these
terms. These are the only access modes for which one can be certain of
the enforcement of access control; that is, these are the only access modes
for which enforcement of access control policy can be verified. Read and
write are fundamentally the only two types of access to computer mem-
ory, since, at the level of the hardware “chips” that implement the com-
puter, even operations such as instruction execution begin as read
and/or write operations. These two access modes provide the basis for
describing the rules for access (that is, the access control policy or the ac-
cess control aspects of the security policy.

With the following examples we try to clarify why other less primitive
modes of access used in computers are not suitable for defining the ac-
cess control policy. For an access mode to be suitable for this role, one
must be able to verify that access control policy rules that are specified in
terms of the particular access mode are enforced. For example, some
computers support an append access mode. One might wish to build a
system to enforce access control policy rules that allow a subject to append
some objects but not to read or write them. One would like to be able to
verify that the system enforces those rules. However, at the most primi-
tive level in a computer, append relies on a read of some control informa-
tion to determine where to write the information being appended. Thus, it
would not be possible to build a system in such a way as to allow one to
verify that access control policy rules that allow one to append but not to
read or write will not result in undesired read or write accesses.

As another example, consider instruction execution as an access mode
for defining access control policy. For execution to be suitable for this pur-
pose, the following must be true: If an access control policy states that

Concepts and Terminology for Computer Security 49

execution of an object (for example, a program file) is authorized for a
particular subject, but read access to that object is not authorized for that
subject, we must be able to verify that read access is not possible. How-
ever, it is easy to see a specific case in which the access control policy
cannot be enforced — it is not generally possible to know that executing
a program (which is desired to be “execute-only”) will not “leak” informa-
tion from the program and thus allow undesired read access. D.E. Den-
ning [DENN76, DENN82] has described ways in which executing a
program may result in information leaking out of the program. This
means that it is not possible to specify that read access is not permitted
for an object to which execute access is permitted. Therefore, execute ac-
cess is not sufficiently primitive to define access control policy in a verifiable
way.

It should now be clear how a reference monitor implementation in a
computer is related to the document library that we described above. In
the document library, the users are our subjects or active entities. They
make access to passive documents that correspond to the objects of the
reference monitor. The authorization list that defines access to the library
itself governs what subjects are known to the library.

Note, as a detail, that the action taken by the guards in the library to
authenticate the identification of the individual seeking entry to the library is
not itself a function of the reference monitor. Rather, it is a trusted func-
tion which is implemented outside the reference monitor. Another trusted
function that may be implemented outside the reference monitor is the
construction of the audit trail (mentioned above) from information reported
by the reference monitor. Recall that the reference monitor contains only
reference functions and authorization functions. In a later section we give ad-
ditional information about the roles of authentication and audit in support-
ing the reference monitor’s functions.

The reference monitor’s authorization database corresponds to the library’s
augmented authorization list that identifies which users may see each
document. The reference monitor's reliance exclusively on the two access
modes — read and write — corresponds to the library guards’ exclusive
reliance on controls for what documents users are allowed to read and
what notes users may remove from the library. Fortunately, read and
write mean the same thing in the computer that they do in the document
library. In the library, as in the reference monitor, there is an authorization
function that changes the authorization database, and there are reference
functions for reading or writing documents. As noted, the library, like the
reference monitor, can generate data for an audit trail that reflects those op-
erations that have occurred or been attempted. The guards, walls, doors,
and internal partitions (carrels, reading rooms, and so on) of the library
are all reflected by the abstraction of the reference monitor.

The reference monitor implementation in a computer system must meet
a set of requirements that are also met by components of our document

50 Information Security

library. These requirements were first identified by J.P. Anderson
[ANDE72] and have been historically referred to as completeness, isolation,
and verifiability:

e Completeness. The reference monitor must be invoked on every refer-
ence by a subject to an object.

e Isolation. The reference monitor and its database must be protected
from unauthorized alteration.

e Verifiability. The reference monitor must be small, well-structured,
simple, and understandable so that it can be completely analyzed,
tested, and verified to perform its functions properly.

A review of the document library against these three requirements for a
reference monitor will be instructive.

As to completeness, we presume that a user of the library cannot gain
access to the collection by walking through a wall or around a guard.
Note, however, that the guards do not necessarily have to watch the user
directly through every moment of his or her use of a document. Our li-
brary is designed so that a user in a carrel with a document is still ade-
quately restricted from gaining unauthorized access to other documents.

As to isolation, the library must be designed so that an interloper cannot
replace a guard, drill though a wall, or replace the authorization database
or other key reference monitor databases.

Finally, the procedures of the library must be simple enough so that
they can be reviewed or inspected, thus meeting the requirement for veri-
fiability. If the library system allows a user, for example, to check out a
document at one desk and then carry it across a parking lot unobserved
to get to a reading room, there is adequate opportunity for mischief, even
though all the doors are locked and all the guards who are present are
conscientious. The design of the security procedures themselves must be
simple and sound, or the provision of more guards and thicker walls will
be useless.

The reference monitor and the computer system. Before we leave this
introduction of the reference monitor concept, we will tie it to the world of
computer systems, and then to the classes of computer misuse tech-
niques that we introduced in Essay 1.

The correspondence between reference monitor components and compo-
nents of the computer system is reasonably clear: The subjects are the
active entities in the computer system that operate on information on
behalf of the system’s users. The subjects are processes executing in a
particular domain (see below for definition) in a computer system (that is,
a <process, domain> pair). Most of the subjects are acting out the wishes
of an individual whose identification has been authenticated by passing
something like a password, using some means of reliable communication

Concepts and Terminology for Computer Security 51

between the individual and the portion of the system performing the iden-
tification. The means of ensuring reliable communication between a hu-
man and the portion of the system performing identification (and certain
other functions such as security administration) is called a trusted path. The
topics of identification, authentication, and trusted path are explored more
fully in a later section.

The objects hold the information that the subjects may access. A domain
of a process is defined to be the set of objects that the process currently
has the right to access according to each access mode. As noted above,
two primitive access modes, read and write, are the basis for describing
the access control policy. While we shall be concerned with many kinds of
objects in general, we can think of objects as well-defined portions of
memory within the computer, such as segments. Files, records, and
other types of information repositories can be built from these primitive
objects, but access control is provided by the reference monitor on the basis
of the primitive objects over which it has total control. As mentioned ear-
lier, the reference monitor controls access to them by controlling the
primitive operations on them — the ability to read and write them.

There is another type of resource in the computer that needs to be tied
to the reference monitor concept but that we have not yet mentioned — the
device or communication channel. For clarity, we will include communication
channel within the notion of device and use this term throughout. A device
is the means whereby information is imported to or exported from the
computer system — that is, it is the means for input/output. Note that
by devices, we mean things that are actually under the control of and
logically part of a computer system (for example, a controller connected
to the computer’s bus or a disk drive). We do not mean a separate
“dumb” peripheral unit such as a dumb terminal or dumb printer, and
not the actual storage media such as a tape or disk platter. Devices may
be considered objects under certain circumstances, but they must be
considered subjects under other circumstances. We will return to the
topic of devices in a later section, when we discuss networks.

The authorization database specifies those circumstances under which a
subject may or may not gain access to objects. There are many ways of
specifying authorization in a computer system. We can think of authoriza-
tion databases associated with each object in the computer system (called
a “list-oriented” implementation [SALT75, WILK72]) or with each subject
(called a “ticket-oriented” or “capabilities” implementation). Regardless of
how authorization is represented, the reference monitor ensures that only
authorized accesses occur.

The audit trail records what security-relevant operations have actually
occurred in the computer system. These include introduction of objects
into the domain of a process acting on behalf of a user (for example, file
open), deletion of objects, and so on. For each security-relevant event
captured in the audit trail, the audit record includes such information as

52 Information Security

the date and time of the event, the user who initiated the event, the type
of event, and success or failure of the event. Note that while the reference
monitor generates some of the information for the audit trail, it may not be
the only source for audit trail information.

Finally, the reference monitor itself is that most primitive portion of the
computer system that we rely on to control access. For the purposes of
this essay, we shall think of implementing the reference monitor with a
subset of a computer’s operating system and hardware. We shall find
that, to be efficient, the operating system software needs the assistance
of computer hardware that is well suited to the task of providing security.

This last suggestion — that we can implement the reference monitor with
a subset of a computer’s operating system and hardware — will be espe-
cially important in our discussions of secure systems. A security kernel is
defined as the hardware and software that implement the reference moni-
tor. (In a specific context where the hardware is fixed, security kernel is
sometimes used in reference to just the software.) The implication of the
term security kernel is that we can design a hardware/software mecha-
nism that meets exactly the requirements for a reference monitor. In par-
ticular, such a mechanism must be complete, isolated, and verifiable. While
a computer operating system of the usual sort may attempt to meet the
reference monitor requirements to some extent, it will normally fall short
to some degree. Only by building a mechanism that is explicitly designed
to meet the reference monitor requirements can we achieve a high degree
of assurance in the security of a computer system. No alternative techni-
cal foundation has yet been identified.

Using the reference monitor. We can now turn, as promised, to the
classes of computer misuse techniques introduced in Essay 1. The first
class of computer misuse techniques resulting in unauthorized disclo-
sure or modification is human error. This class can best be countered by
a program of security consciousness; intensive user education; frequent
training, retraining, and reminders; and conscientious system admini-
stration and operation. The reference monitor can prevent some forms of
this class of misuse through the enforcement of access control using ac-
cess classes. For example, an operator may be prevented from acciden-
tally mounting the wrong tape if the access class of the tape does not
meet the requirements specified in the access control policy enforced by
the reference monitor. However, the reference monitor most often does not
help or hinder this class of misuse.

If we are concerned about the second class, user abuse of authority, we
must design a mechanism that meets our security requirements at the
user interface and attempts to constrain the users or detect those times
when they go astray. Implementing some of the reference monitor func-
tions in an application program may be appropriate in these cases,
though this would not give us a verifiable reference monitor. A functional

Concepts and Terminology for Computer Security 53

implementation of some of the reference monitor may be sufficient in this
case since, by the definition of this class of abuse given in Essay 1, our
irresponsible user is not involved in probing (or else that user’s actions
would belong in a different class of computer misuse techniques). There-
fore, we know that this irresponsible user we have hypothesized will not
write a program to bypass the controls we have supplied.

If we are concerned about the threat of direct probing or probing with
malicious software, we can probably implement our reference monitor func-
tions in the operating system or within a subset of the operating system.
Of course, we may have to pay more attention to security features than
have most operating systems today, and we shall also have to use and
manage the system with considerable attention to security. But an oper-
ating system that is designed with considerable attention to security and
very well managed can be quite effective against probing.

If we are worried about penetration or subversion of security mechanisms,
we had better go shopping for a security kernel. Not only does such a
mechanism incorporate the security features we will need, it also pro-
vides (especially by its attention to compactness and verifiability) a high
degree of assurance that the design and implementation are complete and
that malicious software attacks will not succeed. Furthermore, its com-
pactness and verifiability provide a significant degree of inspectability and
assurance that its implementation has not been exposed to subversion.
Other mechanisms, such as cryptography, can be used for detecting (af-
ter the fact) whether software or data has been modified (as discussed in
a later section), but the security kernel is the only method proven effective
at countering the threats of penetration and subversion of mechanism, and
thus it is the only method effective at preventing illicit access to informa-
tion under protection.

Computer security and security policy

In our discussion of a document library, we mentioned an authoriza-
tion list or roster that determined which individuals could enter the li-
brary at all, and which documents they could see. External laws, rules,
and regulations establish how, when, and what access by people is to be
permitted. We do not expect the guards (or walls) of our library to deter-
mine who may and who may not enter. Instead, the organization that
established the library in the first place also defined a security policy
specifying who may enter and who may not. This section provides an in-
troduction to the notion of a security policy and its enforcement in a com-
puter system.

A useful security policy is quite general. It typically does not specify by
name that certain people may or may not have access to certain infor-
mation. Instead, it may state that the holders of certain positions have
the authority to gain access to certain information. It may allow the hold-

54 Information Security

ers of other positions to grant individuals access to information within
some scope or set of checks and balances. A security policy may also state
requirements that people must meet for access to information, as in the
case of security clearances for access to classified national security in-
formation.

The Executive Branch of the US government (as well as branches of
other governments) has a general security policy for the handling of sensi-
tive information. This security policy involves giving an access class called
a “security classification” to sensitive information and a clearance to in-
dividuals authorized to access it. No individual is granted access to in-
formation classified higher than that individual’s clearance. (For example,
since “Top Secret” is higher than “Secret,” an individual with a “Secret”
clearance is not permitted access to “Top Secret” information.) However,
possession of a clearance at or higher than the classification of the in-
formation alone is not enough to gain access — that individual also must
have a “need-to-know” the information, as judged by someone who al-
ready has access to the information.

To better understand how a general security policy such as this is en-
forced when computer systems are operating in different environments,
consider three different modes of secure computing used in the Depart-
ment of Defense: dedicated, system high, and multilevel.

In a simple computation environment, protection or security is enforced
by physical means external to the computer (fences, guards, and so on)
in a dedicated mode of operation. In this mode, all users allowed access to
the system are cleared for the highest level of information contained in
the system and have a need-to-know for all the information in the system
(that is, it is dedicated to processing for users with a uniform need-to-
know for this information at a given single security level). All users,
equipment, and information reside within this protective boundary or
security perimete. Everything within the security perimeter is considered be-
nign. The computer system is not expected to seriously “defend” informa-
tion from any of its users because they are considered nonmalicious by
virtue of their security clearances and need-to-know.

In another environment (called the system high mode), the computer not
only provides computation but must internally provide mechanisms that
separate information from users. This is because not all users of the
system have a need-to-know for all the information it contains (but all
are cleared for the highest level of information in the system).

In yet another environment (called the multilevel mode), the computer
must internally provide mechanisms that distinguish levels of informa-
tion and user authorization (that is, clearance and need-to-know). In this
case, not all users of the system are cleared for the highest level of infor-
mation contained in the system, nor do all users have a need-to-know for
all the information contained in the system.

Concepts and Terminology for Computer Security 55

Here, the computer system must protect the information from the user
who is not cleared for it and his possibly malicious software. In effect, the
computer system must become part of the security perimeter. The internal
protection mechanisms must “assume the roles” of the guards, fences,
and so on, that are indicative of the external security perimeter. Anything
outside the security perimeter (including software) should be considered
suspicious, since it may be malicious.

Clearly, for a computer to operate in the system high or multilevel mode,
in which it is responsible for enforcing a portion of the security policy, the
security policy must be translated into rules for handling sensitive infor-
mation on a computer. This translation is not always clear since the se-
curity policy is expressed in terms of persons accessing information and
not in terms of computer processes (accessing files or segments or bytes).
The security policy does not address how a computer may provide both
computation and protection.

Thus, one of the first steps in building a secure computer system is to
interpret the security policy to be enforced (for example, as described by
Lunt et al. [LUNT88a]) in a way that allows it to apply to the internal en-
tities of the computer system. A security policy is interpreted in terms of
the permissible access modes (for example, read or write) between the ac-
tive entities — subjects — and the passive entities — objects — to estab-
lish a technical security policy (or a “technical policy” [TDI91]) for the
system. We therefore call the specific translation of a security policy into
terms implemented on a computer the technical security policy, as distinct
from the security policy stated in terms of people accessing information. To
build a secure computer system, it is essential to have a technical security
policy that is complete and precisely defined and interpreted.

It is adequate to characterize the access controlrequirements of a techni-
cal security policy in terms of the set of subjects to be controlled, the set of
objects to be protected, and all the rules concerning the access of subjects
to objects to be enforced by the system. The basic security-relevant op-
eration available to subjects is a request to access a particular object in a
particular access mode. In response to such a request, the secure system
may either grant or deny access.

To decide whether a particular request for access is to be granted or
denied, the system must make a decision as to whether the requested
access is consistent with the access control policy to be enforced. Although
actual mechanisms typically function on the basis of accesses that are to
be permitted, it is useful to think of a policy abstractly as accesses that
are to be prohibited. Therefore, consider an access control policy as a list of
ordered triples <s, o, m> of accesses that must be prohibited (where s is a
particular subject, o is a particular object, and m is a particular access
mode). This list of triples completely specifies the behavior of the access
control policy’s reference functions. For instance, if the triple <x, myfile,
read> appears in the list, subject x may not be given read access to object

56 Information Security

myfile. The convention of representing the abstract access control policy as
a list of prohibited accesses is useful because it enables the rules for
verifying correct enforcement of the policy to be specified positively and
completely. It is also particularly useful in composing access control poli-
cies belonging to different components in a network, as we show in a
later section. (For access control policies expressed in this way, the com-
posed access control policy is just the union of the access control policies of
the components.)

A basic principle of computer security is that a given system can only be
said to be “secure” with respect to some specific security policy, stated in
terms of controlling access of persons to information. It is critical to un-
derstand the distinction between security policy (or technical security policy
as defined above) and security mechanisms that enforce the security policy
within a given computer system. For example, mechanisms might include
type enforcement [BOEB85], segmentation, or protection rings [SCHR72].
These are all mechanisms that may be used within a computer system to
help enforce a security policy that controls access of persons to informa-
tion, but none of these is itself a security policy. Such mechanisms provide
functionality that enables the implementation of access control within the
computer system, but they do not directly represent rules in the security
policy world of persons and information. It has been shown [HARR76,
SHIR81] that in general for any given security mechanism, there are se-
curity policies that the mechanism is not sufficient to enforce. Thus the
mechanism is molded by the security policy that it is designed to support.
To understand the danger of mistaking security mechanisms for security
policy, consider that some existing systems impose security mechanisms
on users, but it is not at all clear what the security policy is that is being
enforced. (Examples include the Unix “setuid” and “setgid” mechanisms
[LEVI89].) This creates the illusion of security, without providing real se-
curity.

As we noted earlier, the reference monitor concept is not defined by the
security policy, nor does it define the security policy. The reference monitor
concept is compatible with a broad range of security policies that can be
considered in two classes: access control policies and supporting policies.
Access control policy is that portion of the security policy that specifies the
rules for access control that are necessary for the security policy to be en-
forced (as will be described in later sections). Supporting policy is that part
which specifies the rules for associating humans with the actions which
subjects take as surrogates for them in computers to access controlled
information (as will also be described later).

The access control policies in turn fall into two classes: discretionary and
mandatory. These two classes were originally referred to as discretionary
and nondiscretionary, and, as described in the following excerpt [SALT75],
both have historically been considered necessary for commercial as well
as military security:

Concepts and Terminology for Computer Security 57

We may characterize [one] control pattern as discretionary implying
that a user may, at his own discretion, determine who is author-
ized to access the objects he creates. In a variety of situations,
discretionary control may not be acceptable and must be limited or
prohibited. For example, the manager of a new department devel-
oping a new product line may want to “compartmentalize” his de-
partment’s use of the company computer system to ensure that
only those employees with a need to know have access to infor-
mation about the new product. The manager thus desires to apply
the principle of least privilege. Similarly, the marketing manager
may wish to compartmentalize all use of the company computer
for calculating product prices, since pricing policy may be sensi-
tive. Either manager may consider it not acceptable that any indi-
vidual employee within his department can abridge the
compartmentalization decision merely by changing an access
control list on an object he creates. The manager has a need to
limit the use of discretionary controls by his employees. Any limits
he imposes on authorization are controls that are out of the
hands of the employees, and are viewed by them as nondiscretion-
ary. Similar constraints are imposed in military security applica-
tions, in which not only isolated compartments are required, but
also nested sensitivity levels (for example, top secret, secret, and
confidential) that must be modeled in the authorization mechan-
ics of the computer system. Nondiscretionary controls may need to
be imposed in addition to or instead of discretionary controls. For
example, the department manager may be prepared to allow his
employees to adjust their access control lists any way they wish,
within the constraint that no one outside the department is ever
given access. In that case, both nondiscretionary and discretionary
controls apply.

More recently, nondiscretionary has been called mandatory [TCSE85], but
the meaning has been retained: Mandatory is still the complement of dis-
cretionary. For reasons that will become clearer below, protection against
malicious software is offered only by an implementation of the reference
monitor concept enforcing mandatory access control policies, though the ref-
erence monitor paradigm of subjects, objects, authorization functions, and ref-
erence functions is also used for discretionary access control.

In general, one cannot a priori simply assert whether an arbitrary ac-
cess control policy is mandatory or discretionary. However, it is clear that
some access control policies cannot be mandatory (we will see why in the
next section). The more appropriate question is whether the protection
against malicious software that is uniquely possible with the high assur-
ance enforcement of a mandatory access control policy is needed for a par-
ticular aspect of the security policy. The problem then becomes one of

58 Information Security

expressing that aspect of the security policy in a way that maintains the
properties of a mandatory access control policy. This too is described in the
next section.

As a practical matter, the choice between mandatory and discretionary
access control policies to support a particular security policy is, in most
cases, tied to the penalty for which one would be liable if one violated the
policy in the “paper world” — if no computers were being used. If the per-
son responsible for protecting the information could get into “real trou-
ble” (for example, lose a job, get sued, be placed in jail, or even be
severely reprimanded) for violating the policy in the paper world, then a
mandatory access control policy should be used to protect the information
in the computer.

Mandatory access control policy. A mandatory access control policy pro-
vides an overriding constraint on the access of subjects to objects, with
high assurance of protection possible, even in the face of Trojan horses and
other forms of malicious software, as described in Essay 1. In terms of the
reference monitor concept, the idea is that we can affix a label to objects to
reflect the access class of the information they hold. We can correspond-
ingly affix a label to subjects to reflect the equivalence class of object sen-
sitivity that the subject can access. The reference monitor compares the
labels on subjects and objects, and grants a subject access, per the re-
quested access mode, to an object only if the result of the comparison in-
dicates that the access is proper.

Note that the preceding paragraph identifies the mapping between our
two “worlds”:

1. The world independent of computers, of people attempting to ac-
cess information on paper.

2. The world of computers with objects that are repositories for infor-
mation and subjects that act as surrogates for users in the attempt
to access information in objects.

As noted above, the label associated with an object indicates the access
class of the information that the object holds. The label associated with a
subject that acts as a surrogate for a user indicates the authorization of
the user — the access class of the information the user is authorized to
access (for example, the user’s clearance). Earlier we identified subjects as
processes executing in a particular domain. In many systems, there is a
single label associated with each process since, in these systems, there is
a single domain per process. However, in some systems [SCHES85a,
THOM90], each process may have a number of domains (and corre-
spondingly, a number of subjects) simultaneously, each of which has a
separate label. (Incidentally, these separate domains within a single proc-

Concepts and Terminology for Computer Security 59

ess are typically implemented by a mechanism called protection rings
[SCHR72].) Finally, the access modes used in the computer are the same
as the fundamental access modes in the world independent of computers,
of people attempting to access information on paper — read and write.

Mandatory access control policies can provide protection against unau-
thorized modification of information (integrity) as well as protection
against unauthorized disclosure (confidentiality). The labels in a specific
mandatory access control policy can be selected to accomplish many differ-
ent purposes for integrity and confidentiality. For example, they can reflect
the US government’s security policy for confidentiality mentioned earlier,
utilizing hierarchical classifications and security clearances (for example,
Secret, Top Secret). They can reflect a corporate security policy [LIPN82,
LEE88, SHOCS88| (for example, Public, Proprietary for Confidentiality or
Technical, Management for Integrity). They can also reflect a partitioning
of activities into separate spheres or compartments, with different indi-
viduals authorized access to information in different areas (for example,
Project A, Project B).

Abstractly, in the list of triples that specifies a particular mandatory ac-
cess control policy, there is an entry for each subject, object, and access
mode set (read or write) for which access should not be granted. In other
words, if the mandatory access control policy requires that the label associ-
ated with the subject be “higher” than that associated with the object in
order to grant read access, there are triples for each subject, object pair for
which the third element in the triple is read and for which the subject’s
label is not “higher” than the object's. For a different mandatory access
control policy, there would be a different list of triples.

Mandatory access control policies operate by partitioning the sensitivity of
objects and the authorizations of subjects into access classes (which corre-
spond to the labels mentioned above). The key to the power and effective-
ness of mandatory access control policies is the verifiable restriction on the
flow of information from one access class to another. Briefly, a mandatory
access control policy reflects a set of rules for comparing access classes.
Depending on the security policy being enforced, some flows are allowed
and others forbidden. The distinguishing qualities of mandatory access
control policies are that they are global and persistent within some uni-
verse of discourse; these qualities enable verifiability of the reference moni-
tor implementations that enforce them.

In this context, “global” means that particular information has the
same sensitivity wherever it is; “persistent” means that particular infor-
mation has the same sensitivity at all times. In other words, the subject
and object labels are “tranquil”; they do not change. For an access control
policy to be global and persistent, the set of access classes (or labels) must
form what is termed in mathematics a “partial order.” This means that
any members of the set can be compared by using a relation usually
called dominate, written “>=" and meaning something like “greater than or

60 Information Security

equal to.” For any two distinct members x and y of a partially ordered
set, x dominates y, y dominates x, or x and y are noncomparable. (Most ex-
isting implementations of mandatory access control policies use a particular
type of partially ordered set called a lattice. The distinctions between a
partial order and a lattice are not particularly important for this essay, so
we will not further discuss lattices.)

The partially ordered set of labels and the resulting restriction on the
flow of information provide a tool of sufficient power to defend against
even malicious software, described in Essay 1. The members of a set that
forms a partial order can be compared by the dominate relation in a man-
ner that satisfies three standard mathematical conditions:

1. reflexivity,
2. antisymmetry, and
3. transitivity.

We can say that for a particular set (for example, of labels) and the rela-
tion >=, these three conditions mean respectively that, for all x, y, and z
in the set,

1. x>=x,
2. x>=yand y>= x implies x = y, and
3. x>=yand y >= zimplies x >= z.

If any of these three conditions of a partially ordered set of labels is re-
laxed in an access control policy, either the global or persistent quality is
destroyed, rendering the access control policy fundamentally vulnerable to
Trojan horses. For that reason, arbitrary “tags” cannot be used as manda-
tory access control policy labels. For example, consider a violation of reflex-
ivity — consider an access control policy in which all subjects and objects
have either the label “Sensitive” or the label “Public” and which specifies
that Public subjects can access Public objects except on odd Tuesdays.
That is an example of the label Public not always dominating itself — a
violation of reflexivity and of the “persistent” quality. For another exam-
ple, if the access control policy specifies that Public subjects can access
Sensitive objects only on weekends, the label Sensitive would dominate
Public and on weekends Public would dominate Sensitive. But since Sen-
sitive and Public are not equal, we lack antisymmetry, and the quality of
persistence is again violated, leaving the opportunity for the access control
policy to be circumvented. Similarly, if the access control policy uses the
label “Proprietary” in addition to “Sensitive” and “Public,” and if Proprie-
tary subjects can access Sensitive objects, while Sensitive subjects can ac-
cess Public objects, but if there are some Public objects that Proprietary
subjects cannot access, then the access control policy lacks transitivity and
the “global” quality is not met.

Concepts and Terminology for Computer Security 61

As we have noted, an access control policy which does not use labels that
conform to the qualities of a partially ordered set for all its subjects and
objects is not a mandatory access control policy — it is a discretionary access
control policy. Each of the access control policies given as invalid mandatory
access control policies in the preceding paragraph is a perfectly valid dis-
cretionary access control policy. The basic definitions themselves lead to an
important, unavoidable conclusion. Any access control policy is either
mandatory or discretionary; there is no gray area between. Furthermore, it
is a mandatory access control policy if, and only if, it can be represented by
a partially ordered set of access classes; otherwise, it is discretionary. Re-
member that the key distinction between these two forms of access control
policy is the protection against malicious software that is possible with
each.

We should note that if more than one mandatory access control policy
must be enforced simultaneously within a system, then each subject and
object may have a label associated with it for each mandatory access control
policy. In this case, the labels may have no relationship with each other.
Such is the case for the enforcement of mandatory access control policies
for both confidentiality and integrity. For example, an object may have a “Se-
cret” label for confidentiality but a “Junk” label for integrity. Another object
may have a “Secret” label for confidentiality but a “High Integrity” label for
integrity. The only requirement for these labels is that the set of labels for
each mandatory access control policy must be partially ordered. Obviously,
the overall decision of whether or not to grant access depends on the
proper dominates relationship between the subject and object labels for
each set of labels. However, this is easy, since the mathematics tells us
that the product of partially ordered sets is another partially ordered set.
In other words, since each set of labels is partially ordered, all the sets of
labels can be combined into a single set, making the comparison of nu-
merous labels a single operation. This technique has been used in prac-
tice in a commercial product to greatly simplify and improve the
efficiency of the enforcement of mandatory access control policy [THOM90].

An example of a mandatory access control policy and its computer imple-
mentation with a partially ordered set of labels may make the discussion
more comprehensible at this point. Let us divide an organization into two
divisions — perhaps Marketing and Engineering. The employees in each
division are allowed access to the information for their own division, but
only top management is allowed access to both access classes. We might
mark all the Marketing information in our computer with a label “M” and
all the Engineering information “E.” Employees of the Marketing and En-
gineering Divisions would be represented in the computer by processes
labeled “M” and “E,” respectively.

Our secure operating system would allow any process to read informa-
tion with the same label it possessed or with no label at all. However, no
process could remove or change the label on a file, and no process could

62 Information Security

write any information that did not have the same label as the process.
Thus, when a Marketing person was using the computer, he or she could
read “M” information or unlabeled information at will. But any information
that the process wrote would be labeled “M.” Neither the employee nor a
Trojan horse could communicate information from one access class to the
other.

A scenario that allows no communication at all sounds fairly useless.
We shall later expand on this basic scenario to suggest ways in which
users can share information and to discuss the access authorizations of
our organization’s top management. For this introduction, though, let it
suffice to say that mandatory access control policies provide a powerful and
flexible tool [BELL91] for controlling the flow of information among indi-
viduals, and a basic tool for the design of secure computer systems.

Discretionary access control policy. Discretionary access control policies
are so named because they allow the subjects in a computer system to
specify who shall have access to information at their own discretion. In a
system that incorporates both mandatory and discretionary access control
policies, the discretionary access control policy serves to provide a finer
granularity within (but cannot substitute for) the mandatory access control
policy. For example, the military need-to-know security policy in which
each individual has a responsibility to determine that another has a valid
requirement for information, even though the other has a clearance for
the information, is a common discretionary access control policy. In other
cases, allowability of access within a discretionary access control policy may
be based on the content or context of the information to be accessed or
on the role of the user at the time of the access request — or it may in-
volve complex conditions for determining allowable access. In contrast to
mandatory access control policies, it need not be global or persistent. Alter-
natively, a system may incorporate only a discretionary access control policy
if the mandatory access control policy is degenerate so that all subjects and
objects belong to just a single (implicit) access class. This is the case for
the system high mode of operation discussed earlier.

A common example of a discretionary access control policy implementation
is the ability of a computer user or a process which that user has exe-
cuted to designate specific individuals as being authorized access to a
given file. Many operating systems provide protection bit masks (for ex-
ample, “owner,” “group,” and “world”), access control lists, or file pass-
words as mechanisms to support some form of discretionary access control
policy.

As is the case with mandatory access control policies, we can talk about
the abstract list of triples that specifies a particular discretionary access
control policy. As with mandatory access control policies, for different discre-
tionary access control policies, there are different lists of triples. With a
particular discretionary access control policy, there is an entry for each sub-

Concepts and Terminology for Computer Security 63

ject, object, and access mode set for which access should not be granted.
However, unlike the limitations on the access modes relevant to mandatory
access control policies (that is, read and write), the access modes for a par-
ticular discretionary access control policy may be any set of functions. In
other words, a particular discretionary access control policy may control not
only static read and write access by subjects to objects but also, for exam-
ple, read-on-every-other-Friday or read-only-if-another-object-has not-
been-read, or any other content- or context-dependent rules. (The direct
correspondence of security policy access modes to primitive controls —
read and write — within a computer system is not important for discre-
tionary access control policies as it is for mandatory access control policies be-
cause of the inherent limitations of discretionary access control policies, as
is illustrated in the following paragraph.)

A discretionary access control policy is useful in some environments, but it
will not defend against Trojan horses or other forms of malicious software
such as may be used to perform probing, penetration, or subversion attacks,
as described in Essay 1. This can be seen by considering a Trojan horse
hidden in a useful program. The example Trojan horse is designed to make
a copy, in a directory where the copy is not likely to be noticed right
away, of all of the files that belong to a user who runs the program that
are marked for reading only by that user. This copy is made readable by
some other user who would not be intended to have access to the files. In
contrast, consider a mandatory access control policy intended to provide
confidentiality. Since the label is attached to any copy which is made and
since the Trojan horse cannot change the label, the Trojan horse cannot
give a user access to any file in a manner contrary to the mandatory ac-
cess control policy. In other words, a mandatory access control policy does
not prevent a copy from being made by a Trojan horse executing in a proc-
ess with the same label (for example) as the file, but it does prevent the
file’s label from changing and prevents access to the file on a global and
persistent basis. Discretionary access control policies offer no real protection
against even such simply designed malicious software.

Supporting policy. In addition to the access control policies (mandatory
and discretionary), there are additional security requirements relating to
the accountability of individuals for their security-relevant actions in the
computer system. These requirements make up supporting policy [TNI87].
Supporting policy fundamentally “supports” the tie of people in access con-
trol policies, about people accessing information, to subjects acting as sur-
rogates for people in computers. Supporting policy provides an
environment for ensuring individual accountability for the enforcement and
monitoring of the access control policies. In contrast to access control policy,
which associates directly with the “theory of computer security” — the ref-
erence monitor concept — there is no corresponding “theory” that helps
one verify the implementation of supporting policy. Fortunately, it is possi-

64 Information Security

ble to analyze and test software performing supporting policy functions to
reasonably conclude that it functions properly. In contrast, as we have
said, it is not possible to do this for an implementation of access control
policy.

Supporting policy includes two subcategories: identification/authentication
policy and audit policy. The former supports the access control policies by
specifying the requirements for authenticating the identity of an individual
prior to allowing subjects to act as surrogates for that individual in at-
tempting access. |dentification/authentication policy provides the basis for the
labels that are used in enforcing the mandatory access control policy to be
associated with subjects acting as surrogates in the computer for indi-
viduals. In other words, it determines whether subjects may act as surro-
gates for a particular individual and what label is associated with such
subjects. It also provides the basis for the membership of individuals in a
group and more generally for controls on subjects consistent with the dis-
cretionary access control policy. Further, it provides the basis for recording
the identity of the individual causing an auditable action to be performed
by a subject acting as the user’s surrogate.

Audit policy provides the basis for the recording of those security-
relevant events that can be uniquely associated with an individual. The
objective is to provide accountability for the security-relevant actions of in-
dividual users. We do not have much more to say in this essay about
audit policy. The following paragraphs expand a bit on identification and
authentication and other aspects of accountability, as supporting policy con-
siderations.

Identification and authentication overview. ldentification is a rather
straightforward notion. Our summary of identification is simply this: The
secure computer system should associate subjects with the identities of
individual users and have the option of making authorization decisions
or recording an audit trail on the basis of those individual identities. This
is in order to be able to trace back security-relevant actions on the com-
puter to some individual. The question arises, “How do we know the
identity is correct?” The answer to this question is the province of authen-
tication.

When we discuss authentication, we are concerned with providing the
system with some basis for confirming that the user’s identity is as
claimed. For example, authentication is commonly implemented with some
sort of password scheme. The classic definition of authentication measures
presents a taxonomy of something one has, something one is, or some-
thing one knows. In addition to password schemes (know), there are
other methods, such as the use of badge readers (have), chal-
lenge/response calculator-like devices (have), smart cards (have), finger-
print readers (are), palm readers (are), and retinal scanners (are).

Concepts and Terminology for Computer Security 65

All of the authentication schemes attempt to provide a reason to believe
that the individual who is claiming an identity is in fact the person
claimed. All do so by provoking the occurrence of some event that would
be much less likely if the person were not the one claimed, and all are
probabilistic. The last point is critical. No matter how refined the pass-
word scheme or sophisticated the fingerprint reader, there is still a resid-
ual probability that one can “fool” it by luck or by cunning. Longer
passwords and better fingerprint readers may reduce the probability of
an error, but they cannot reduce it to zero. As with the guards in our
document library, there is a chance that the authentication scheme will be
fooled. For this reason, topics such as “password management” should be
examined in greater detail by anyone implementing an authentication
scheme based on passwords. However, such topics will not be discussed
further in this essay.

There is another side to authentication in a secure computer system
whose very existence may be a surprise to the reader. This side deals
with the need to authenticate the system to the user.

Authenticating the system. To motivate the need to authenticate the com-
puter system to its user [SALT75], we will again start with a “war story.”
Suppose we can write a program that will clear the screen of a display
terminal and sit waiting for a user to type something. When the program
detects a carriage return, it will respond with the string of characters
that resembles the system’s prompt for the login identifier (for example,
“USERNAME:”). If a user types any string, the program will respond with
the string the system uses to prompt for the password (for example,
“PASSWORD:”), and, if appropriate, it will direct the terminal to cease
printing the characters that the user types. After receiving the new string
and a carriage return, the program will type some suitable error message
and terminate, leaving the unsuspecting user with a real unassigned
terminal. Of course, the program was a Trojan horse that just captured
the user’s authentication information and stored it some place where the
attacker responsible for the Trojan horse can later retrieve it and use it to
log in as the user who was the victim.

The scenario presented above is a simple way to capture an unsus-
pecting user’s password. It can be executed more or less easily on almost
any time-shared computer system that relies on passwords. This sort of
attack is logically the same as one in which a separate computer inter-
cepts communications between the user’s terminal and computer and
steals the password [SALT75]. The possibility of executing the scheme is
directly traceable to the lack of an authentication mechanism that serves to
authenticate the computer system to the user. As we have just shown, the
lack of such a mechanism can have serious consequences.

If we wish to eliminate the possibility of writing a “password grabber” of
the sort proposed, we must develop a sort of reverse authentication

66 Information Security

mechanism. Simply, what we would like to do is have some action that
the secure system can take and a password grabber cannot. This can be
accomplished by what is called a trusted path.

To implement a trusted path, we can provide a unique action that the
user can take to communicate with the secure system. The user initiates
the exchange, but is guaranteed that his or her action will result in a re-
sponse from the trusted part of the secure system. For example, many
current systems are guaranteed to respond when a terminal is powered
off and then back on. This, or other hardware-supported measures such
as pressing the break key, can be used when a terminal is directly con-
nected to the system in a form of authentication of the system that is well
suited to initiating the login dialogue.

Of course, this method violates the concept of “programming general-
ity.” For while the ideals of computer system design might direct that we
always allow a program to intercept and interpret or filter the actions or
responses of a user or another program, in the case of the secure system,
we must have a class of action or response that cannot be filtered. In
particular, it is important to the notion of a trusted path that no code out-
side the trusted part of the secure system may execute as part of the
trusted path.

As mentioned, the password grabber is an instance of a Trojan horse.
Once a valid <username, password> pair has been captured, the attacker
can use it to establish a false identification as the victim. A trusted path can
provide a means (for example, a reserved “secure attention key” on the
terminal keyboard) whereby the user can ensure that communication is
with the trusted part of the secure system before the username and
password are typed. The trusted path is used at other times when a posi-
tive communication between a user and the secure system is needed,
such as for performing security administration on the secure system (for
example, entering user clearances, setting the access class label or range
on devices) or downgrading a file (if such a capability is implemented).

Security policy in the document library. We might consider our docu-
ment library once more and make the examples of authorization and
partitioning a little more concrete. Suppose that the library contains
documents classified “Secret” and “Top Secret.” Individuals who have
been granted access to the library have either a Secret or a Top Secret
clearance, and the authorization list at the guard desk lists the clearance
for each authorized individual.

The library is divided into a Secret area and a Top Secret area. While
holders of a Secret clearance are restricted to the Secret area, those with
a Top Secret clearance are allowed to enter either. Users of the library are
normally forbidden to remove documents, and any notes they take are
marked with the access class of the material they have been reading (and
retained in the library for their later use). Secret notes may be carried to

Concepts and Terminology for Computer Security 67

the Top Secret area. Documents may be removed or classification mark-
ings modified only under the control of elaborate procedures authorized
by specially selected people. The partitioning of people and areas, and the
restriction on removal and reclassification of documents, implement our
library’s mandatory access control policy.

Documents are stored in the two areas under the control of custodians
who are part of the guard force. Each document has an access control list
that identifies those cleared individuals who may have access to it. In
addition, each document has designated “owners,” typically library users
who may add names of people to the access control list. The combination
of access control lists, custodians, and owners implements a discretionary
access control policy that operates within the constraints imposed by the
mandatory access control policy.

An audit trail is kept to record the comings, goings, and accesses of indi-
viduals, as required by the audit policy.

Indirect access. Any discussion of security policy would be incomplete if
it did not address the often-overlooked topic of indirect access. Indirect ac-
cess is access that occurs outside the security perimeter of the secure
computer system. Indirect access is particularly important precisely be-
cause it is often overlooked in establishing a security policy for a computer
system. Often, the security policy of a so-called secure system may con-
tribute to illicit indirect access; conversely, the security policy of a secure
system can contribute to preventing illicit indirect access.

Of course, indirect access is not always overlooked. A description
[TECHS85] of what is meant by “clearances of system users” says,

System users include not only those users with direct connections
to the system but also those users without direct connections who
might receive output or generate input that is not reliably re-
viewed for classification by a responsible individual.

This statement indicates a security concern not only with controlling the
sensitivity of information that the system is processing but also with
controlling the sensitivity of information the system is importing or export-
ing. Note that this illustrates the key to the techniques already partially
described for defending against Trojan horses; the key lies not in stopping
the Trojan horse from reading the information being protected, but rather
in preventing that information from exfiltration.

Now we look at several examples of indirect access. Consider our docu-
ment library and the security policy described in the preceding para-
graphs. Recall that, in the library, documents are marked with their
access class and that there are elaborate procedures for removal of
documents from the library. Suppose that, for whatever reason, the pro-
cedures for removing materials from the library include changing their

68 Information Security

access class markings from Secret and Top Secret to Restricted and Very
Restricted. (This is not as preposterous as it sounds; in some environ-
ments, the very names of the classification markings are sensitive, and
code words are used outside of the “document library” instead of the real
names.) If these documents are now taken to a different library in which
the markings Restricted and Very Restricted do not mean the same
things as in the original library, users of the new library may access
them who would never have been granted access to them in the original
library. In this manner, illicit indirect access might result.

There are many ways other than ambiguous security markings, as in
the above example, in which illicit indirect access might occur. For exam-
ple, there is a so-called secure system in use today that utilizes two types
of access class markings. One is a label used by the system to implement
its mandatory access control; the other is “advisory,” not necessarily re-
flecting the full sensitivity of the information. The “advisory” marking’s
accuracy may be destroyed by malicious software that places into the object
information more sensitive than that indicated by the “advisory” marking
and yet, as enforced by the system, no more sensitive than the label used
for the mandatory access control. Malicious software capable of performing
this feat is quite simple to develop. In such a way, the “advisory” marking
may no longer reflect the sensitivity of the information it marks.

The “advisory” marking may be printed on hard copy by the “secure
system.” Even though the specification for this system says that the “ad-
visory” marking should not be used in determining whether to export in-
formation outside the system, in reality this practice is not always
followed. In practice, the hard copy bearing the “advisory” marking is
sometimes handled outside the computer in a manner consistent with
the “advisory” marking but inconsistent with the mandatory access control
label. Clearly, this marking is then the basis for decisions regarding the
possession and access of this hard copy, quite possibly resulting in illicit
indirect access. This illustrates again the “historical lesson” expounded in
Essay 1 that misplaced confidence or false assurance of security is worse
than if no security at all were provided.

Illicit indirect access may similarly be effected electronically if not care-
fully considered and prevented. This is trivially possible in the system
just cited if, instead of generating hard copy, the system makes decisions
about exporting information out of a communication port (for example, to
a network or other computer). As a practical matter, it is impossible to
detect all possible ways such electronic indirect access might occur. For
example, consider a computer system operating in the system high mode
described earlier, in which messages are created by users of the system.
The sensitivity of these messages is recorded in the “header” of the mes-
sage by the user who creates it, but, since the system is operating in the
system high mode, the system does not enforce a mandatory access control
policy based on the message sensitivity reflected in the header. Given

Concepts and Terminology for Computer Security 69

that, as is the case for system high systems, each of the users on the sys-
tem is cleared for all of the information on the system (but may not have
the need-to-know for all of it), this design may operate with satisfactory
security for quite some time. However, if this system is now connected to
a network of other systems in a manner in which it is desired to enforce a
mandatory access control policy over the messages, it would be a major
mistake to trust the message sensitivity from the message header pro-
vided by the system high system to suffice as the mandatory access control
policy label. This is true, of course, because of the ability of a Trojan horse
on the system high system to modify the sensitivity in the header of po-
tentially any message on that system — since that system implements
only a discretionary access control policy.

As a final example of electronically effected illicit indirect access, con-
sider a system that processes both sensitive and nonsensitive informa-
tion. In this system, it is intended that no information will leave the
system without undergoing review by a human reviewer to determine
whether that information is sensitive or not. Of course, this security
strategy can face a high risk of failure, since it pits the reviewer’s skill
and stamina against the cleverness of the designer of a Trojan horse. All
the designer of the Trojan horse has to do to succeed is to find one way of
“sneaking information past” the reviewer without detection. In practice,
this is usually easy.

The specific method chosen by an attacker would vary based on the
format for presenting the information to the reviewer and the media on
which the information being reviewed is stored while being exported from
the system. For example, if information is presented to the reviewer in a
digital image, it is very simple to contaminate the digital image without
detection by the reviewer. The interested reader is encouraged to read an
insightful paper by Kurak and McHugh [KURA92]. It clearly shows that
“image downgrading based on visual display of the image to be down-
graded not be performed if there is any threat of image contamination by
Trojan horse programs.” As another example, if the information were be-
ing exported by the use of a magnetic tape, parts of the magnetic tape
that are not easily humanly readable (perhaps “header” or unused bits of
each byte) could be used to sneak information past the reviewer. Even if
paper is used for exporting the information, sneaking information past the
reviewer could be as simple as modulating the use of spaces that sepa-
rate words in the information being exported.

The solution to the problems of indirect access lies in ensuring that the
labels used to enforce a mandatory access control policy are reliable both
inside and outside the system. This is possible only if the labels are
maintained by an implementation of a trusted computing base, as de-
scribed in the following section. For human interfaces, such as docu-
ments, deliberately and carefully choosing the human-readable access
class markings for information exported from the secure system and used

70 Information Security

outside the system’s security perimeter helps to guard against illicit indirect
access by making such choices explicit during security policy development.
Similarly, for electronic interfaces, a protocol is needed for unambigu-
ously associating a label with all imported and exported information. Only
through such explicit designs can the specter of false assurance be pre-
vented.

Building a secure system

The primary focus of this section is the mechanization of security policies
by a subset of an operating system called a trusted computing base (TCB)
[TCSES85] and methods of achieving degrees of assurance that the mecha-
nisms are correctly enforcing the security policy. (Note that this essay does
not address specific evaluation criteria or evaluation classes [TCSE83],
which are discussed in Essay 6.) These methods make it possible to build
a relatively small part of the system (the TCB) in such a way that one can
even allow a clever attacker to build the rest of the system and it will still
be secure.

The TCB is defined to be the totality of protection mechanisms within a
computer system — including hardware, firmware, and software — the
combination of which is responsible for enforcing a security policy. Any
software outside the TCB may be malicious software. If a security kernel is
implemented in a TCB, then it is the most privileged part of the TCB, and
it implements the reference monitor. The ability of a TCB to enforce a secu-
rity policy depends solely on the mechanisms within the TCB and on the
correct input by system administrators of parameters (for example, a
user’s clearance or the access class label for devices) related to the security
policy. The input of these parameters is generally called security administra-
tion, and the specially privileged users responsible for the accuracy of this
information are called security administrators. Entry of the parameters by
the security administrators is an example of exercising the authorization func-
tions.

The role of a security policy model. Once we have the reference monitor
concept and a suitable security policy in hand, we are faced with the prob-
lem of building a secure system or TCB, as it is called. In other words, we
have the problem of implementing the concept in a real hard-
ware/software mechanism that enforces the security policy. In beginning
this task of implementation, we shall find that a crucial role in the assur-
ance of security policy enforcement is played by a model of the security policy
of our TCB. The security policy model allows us to make the leap from secu-
rity policy to real TCB by providing an intermediate step: a formal descrip-
tion of the functions that the TCB will perform. By “formal” we mean that
the model must be a precise and complete mathematical statement which

Concepts and Terminology for Computer Security 71

can be proven self-consistent — such statements are usually presented
using predicate calculus.

This intermediate step offered by the security policy model bridges be-
tween two constrained universes of discourse — the computer-
independent world of people attempting to access information, and the
world of computers. We have already discussed the roles of subjects as
surrogates for users and objects as containers of information. In a security
policy model, we have a set of operations or rules that model the reference
functions and the authorization functions that define the access of subjects to
objects. The security policy model takes as a “given” (that is, does not
model) certain initial state information — including certain information
typically entered into a TCB by security administrators, as mentioned above.
It also takes as a given the proper operation of the TCB to correctly im-
plement the supporting policies, including the proper operation of the TCB
to identify individuals authorized to perform as security administrators or
as users of the system.

The security policy defines the behavior desired of the TCB but does not
directly dictate the functions to be performed by the TCB. In fact, nothing
in the security policy itself explicitly relates to the notion of a TCB or a
computer system at all (remember that we just applied a “computer secu-
rity” paradigm to a document library). We proceed by precisely (formally)
defining the functions of the TCB. We must, of course, find functions
such that the behavior exhibited by the security policy model complies with
the security policy. The security policy model can be viewed as a formaliza-
tion and particularization of the reference monitor, providing its reference
and authorization functions. Note that current practice is for the security
policy model to encompass only the access control policies of the TCB; it
does not itself represent the supporting policies. As stated above, a security
policy model takes as a given the proper operation of the TCB to correctly
implement the supporting policies. History has shown that enforcement of
the access control policy is one of the hardest things in a computer system
to get right. It is fortunate that the technology has developed to allow this
tool to be used to substantially increase the assurance of access control
policy enforcement.

If the security policy model encompasses the discretionary access control
policy, then it must represent authorization functions whereby a subject can,
for some object, grant access to another specified subject. This function
could, for example, correspond to adding a user’s name to an access con-
trol list. If there is no explicit discretionary access control policy in the model,
then the controls on access within the model reflect only the mandatory
access control policy.

By the very definition of mandatory access control policy, in general, sub-
jects cannot modify mandatory security authorizations. The access class
labels for the initial objects are supplied from “outside” the TCB as part of
its initial configuration, typically by security administrators. The security

72 Information Security

policy model may, however, include functions for creating and deleting
objects, and for controlling the access class for new objects and subjects.

There is an exception, by the way, to the notion that in a mandatory ac-
cess control policy, subjects cannot modify mandatory security authoriza-
tions. That exception is for trusted subjects. Trusted subjects are subjects
outside the reference monitor, but within the TCB, that can read and write
objects at different access classes, in a manner that would normally be
prevented by the reference monitor. Trusted subjects are used, for example,
in downgrading a file in TCBs, which permits sanitization of information,
or they may be used simply in the course of implementing a TCB.

The use of trusted subjects is distinguished from the more general exten-
sion of privilege to read and write computer resources outside the refer-
ence monitor (for example, in “privileged” processes), as is implemented in
some systems. In building a TCB, it is important to recognize the sharp
distinctions that exist between privileged processes and trusted processes
(that is, processes containing a trusted subject). Privileged processes are
those that are capable of affecting access control decisions or other func-
tions of the reference monitor. Since they can potentially affect any aspect
of the reference monitor, the entire security of the system depends on the
behavior of these privileged processes as much as any other part of the
reference monitor. In other words, the reference monitor's security perimeter
is extended to encompass privileged processes. This is in contrast to
trusted processes that operate within a range of access classes but do not
affect access control decisions. The difference in the level of system expo-
sure that accompanies privileged processes from that which accompanies
trusted processes is clearly considerable.

For example, in TCBs like Multics [SCHR72] and the Gemini Trusted
Network Processor [THOMO9O0], there are multiple protection rings where
trusted processes can be placed, and therefore their actions can be con-
strained from affecting the rest of the TCB. However, there is no such
thing in the typical Unix architecture. The usual choice for implementing
trusted processes with Unix is to effectively modify the Unix kernel by
implementing privileged code. However, this is a problem, since even if
the Unix code is well-modularized and understandable, it is generally un-
reasonable to expect writers of privileged processes to understand the
security implications of so fundamental a modification. Further, note
that some implementations provide a “privilege bit” intended to allow one
to build things like a trusted process, but this is the moral equivalent of
extending the Unix kernel out into the trusted process. If one were to use
this “privilege” mechanism, one would not be able to state any well-
formed security properties about it. In contrast, building a trusted proc-
ess on a base with protection rings, such as those mentioned above, al-
lows one to make the trusted process somewhat independent from the
rest of the TCB, thereby providing a valid basis for security in the system.
Since trusted processes contain subjects that are outside the reference

Concepts and Terminology for Computer Security 73

monitor and their behavior is constrained, their effects are not usually
explicitly included in the security policy model for a mandatory access control
policy. However, the effects of privileged processes must be included in
the security policy model since their behavior is far less constrained.

While a number of security policy models have been developed, by far the
most widely used has been the Bell-LaPadula security policy model
[BELL73]. The Bell-LaPadula security policy model is an abstract model of
the behavior of a TCB. It provides a framework within which a security
policy can be formally represented as mandatory access control policy and
discretionary access control policy. The Bell-LaPadula security policy model is
security policy-independent. It has been used to represent a set of rules to
enforce security policies whose primary objective is confidentiality, and it has
also been used to represent a set of rules to enforce security policies whose
primary objective is integrity. Each time it is used, it must be interpreted
for a specific security policy and a specific system [BELL75, BIBA77,
LUNTS88a].

Each such interpretation of this model mathematically represents the
state of a TCB and prescribes the criteria for a secure state with respect
to the requirements of a mandatory access control policy and a discretionary
access control policy. The TCB modeled is defined to be in a secure state
only if no subject can access information that it is not authorized to ac-
cess. Each interpretation of the Bell-LaPadula security policy model defines
a set of functions or rules for changing the state of the TCB and for per-
mitting subjects to reference objects. It is mathematically proven that the
rules preserve the property that the new state of the TCB is still secure —
no subject can access information that it is not authorized to access.

Bell and LaPadula presented an interpretation of their security policy
model for the Multics system and for a security policy aimed at confidential-
ity [BELL75]. The key properties preserved in this interpretation for man-
datory access control are the “simple security property” and the “*-
property.” The simple security property for confidentiality stipulates that
the label of a subject must dominate the label of an object in order for that
subject to get read access to that object. The *-property for confidentiality
stipulates that the label of a subject must be dominated by the label of an
object in order for that subject to get write access to that object. It is easy
to see why these properties prevent information from flowing “downward”
from an object labeled with a particular confidentiality access class (for ex-
ample, Top Secret) to one lower (for example, Unclassified). In this way,
confidentiality Trojan horses are rendered ineffective.

Biba’s interpretation [BIBA77] of the Bell-LaPadula security policy model
for the Multics system and for a security policy aimed at integrity is quite
like Bell and LaPadula’s [BELL75], except that the simple security prop-
erty and *-property are changed in an interesting way. The equivalent of
the simple security property stipulates that for integrity the label of a sub-
ject must be dominated by the label of an object in order for that subject to

74 Information Security

get read access to that object. The *-property for integrity stipulates that
the label of a subject must dominate the label of an object in order for that
subject to get write access to that object. It is easy to see why these prop-
erties prevent information from flowing “upward” from an object labeled
with a particular integrity access class (for example, Junk) to one higher
(for example, High Integrity). In this way, integrity Trojan horses are ren-
dered ineffective.

Shockley [SHOCS88] has pointed out that Biba’s security policy model in-
terpretation [BIBA77] is capable of satisfying commercial security re-
quirements, as well as the more frequently seen military requirements. In
particular, he said that the Clark/Wilson integrity policy that is claimed to be
“an accurate representation of what the business and commercial data
processing community means by the term ‘integrity’...in commercial data
processing” can be represented using Biba’s techniques [BIBA77].

The power of the security policy model comes from the fact that a suitable
set of rules has been developed. It has been inductively proven that if the
initial state is secure, these rules can never produce a state that is not
secure. That is, a set of sufficient (but not always necessary) conditions is
assured by the rules. This power ensures that, if the security policy model
indeed represents that behavior of a TCB, then no use of that TCB can
cause a violation of the mandatory access control policy.

The security policy model dictates what must and what need not be in-
cluded in the TCB of the secure system. Thus it has a strong impact on
the design of any TCB that attempts to follow the security policy model's
requirements rigorously.

Two key issues must be emphasized in closing this subject because
they have been an occasional source of misunderstanding. First, the se-
curity policy model must be a valid representation of the behavior with re-
spect to information protection of the entire system. Merely modeling
distinct computer functions with respect to individual assertions about a
protection mechanism provides little indication of overall system security
and can even be misleading. Second, the security policy model must in-
clude a proven security theorem, which establishes that the security policy
model's behavior always complies with the security requirements for the
security policy of interest. As stated above, the security policy model takes as
a given certain initial state information — including certain information
typically entered into a TCB by security administrators. It also takes as a
given the proper operation of the TCB to implement the supporting policies,
and in particular that subjects faithfully represent the access classes of
the individuals for which they are acting as surrogates. With this input,
which it considers a satisfactory basis for establishing a secure initial
state, the security theorem which is proven is that no matter which rule
of the model is operated, all future states will also be secure. This proof of
what is called the Basic Security Theorem is the key to the power and
utility of this technique. We leave the topic of security policy models with

Concepts and Terminology for Computer Security 75

one guiding principle: A security policy model without a proven security
theorem is like a fire bucket with a large hole in its bottom — it is the
sort of thing that can give you a warm feeling, but it is probably not what
you really want. A false sense of assurance is a dangerous thing.

Design, specification, and implementation. The security policy model
defines the functions the TCB must provide but does not specify the de-
sign for the TCB. The next step after the specification and interpretation
of a security policy model is the specification of the interface to the TCB.
The specification defines a set of subroutines (that is, TCB calls, similar
to operating system calls) and hardware operations that implement the
operations of the security policy model which provide access to the re-
sources contained in the model's objects. The TCB contains internal data-
bases that represent the security policy model's state. These internal
databases are used by the TCB (in particular, by the reference monitor) to
create the abstractions of subjects and objects that are entities outside the
TCB.

When we reach the point of specifying the TCB’s interface functions, we
are at the point where our efforts reflect the level of system security, or
assurance, that we are trying to attain. As we mentioned in the introduc-
tion to the reference monitor concept, if we are interested only in prevent-
ing probing we will probably elect to make a significant portion of or all of
our operating system serve as the implementation of the reference monitor
functions. On the other hand, if our system must also be resistant to
penetration and subversion, we will need to have a much smaller subset
which can be verified — a security kernel [AMES83, SCHE84a]| that imple-
ments a true reference monitor. Gasser [GASS88] describes security kernel
implementation strategies, noting that the security kernel is the single
most often used technique for building a highly secure operating system.

While it might seem foolish to contemplate less than the best, and thus
to build a system that would not resist malicious software attacks, there
are reasons for electing to do so. Probably the best are cost and compati-
bility. Most existing operating systems can be modified to implement a
portion of the reference monitor concept and get improved security at mod-
est cost. Going further and actually modifying the system to incorporate
a security kernel is, in general, as costly as reimplementing the system
from scratch. If not engineered carefully, such modifications may have a
noticeable impact on system performance (though it is quite possible to
build an operating system with a security kernel in a way that has quite
good performance [SCHE85a]). On the other hand, if a development is
planned to build a new operating system “from scratch,” one gains sig-
nificant benefits from incorporating a security kernel, for in this case the
incremental costs in development and performance are likely to be rela-
tively modest. In addition, significant savings in life-cycle software
maintenance costs are associated with the rigorous software engineering

76 Information Security

practices used in building a security kernel. Furthermore, the stable in-
terface of a minimized security kernel appears from a software mainte-
nance point of view to be an extension of the hardware interface, often
resulting in a maintenance philosophy much more akin to hardware than
to software.

For these reasons, we now consider the steps required to build a secu-
rity kernel and a TCB without a security kernel. Because the latter approach
represents a relaxation of requirements and a set of compromises, it is in
some ways easier to deal with the security kernel case. We thus present
the steps to a security kernel design first and then describe the compro-
mises that one might make in developing a TCB that lacks a security ker-
nel.

The security kernel. In the case of a security kernel, we will design a
mechanism that performs a carefully selected subset of operating system
functions to implement at least a mandatory access control policy. (Note
that because a discretionary access control policy is fundamentally incapa-
ble of preventing Trojan horses, as described earlier, there is little need to
strive for as high a level of assurance of enforcement as for a mandatory
access control policy and therefore little need to include enforcement of a
discretionary access control policy inside the security kernel.)

The reference monitor concept requires that every reference by a subject
to an object be mediated and subject to the system’s security policy and
security policy model. To simplify a security kernel, we take steps to mini-
mize its complexity, and we may minimize the number of different types
of objects it supports.

The security kernel functions form its interface with the rest of the oper-
ating system. It turns out that, to meet the constraints of the security pol-
icy model for the mandatory access control policy, the security kernel interface
will provide a pure virtual environment for the rest of the system. This
requirement results from the need to eliminate (sometimes subtle) meth-
ods of circumventing the security policy model’s restrictions on the flow of
information from one access class to another. Frequently, specifications
of the interface are expressed in a formal language capable of being ana-
lyzed by a computer program and of supporting a formal proof that the
specifications conform to the requirements of the security policy model.
Such specifications are termed formal top-level specifications (FTLSs). A
system whose interface has been specified and proven in this manner is a
system for which one has significantly increased assurance of its ability to
enforce the security policy.

As with any design effort, preparing the specifications is a creative ac-
tivity molded by the peculiar design goals (other than security) of the
system. Typically, one proceeds iteratively, testing the design against
such requirements as performance, functional richness, use of the un-
derlying hardware, and compatibility with other software systems. Ana-

Concepts and Terminology for Computer Security 77

lytical tools supplement intuition in the effort to ensure that the resulting
specification complies with the overriding security requirements of the
security policy model.

Beneath the set of security kernel interface functions is a set of computer
code, databases, and hardware structures. The selection of secure func-
tions at the security kernel interface is of little benefit to assurance if, for
example, the underlying software turns out to be a hundred thousand
lines of incomprehensible assembly language “spaghetti code.” The secu-
rity kernel itself is structured in a series of layers (for example, SASS Ker-
nel [SCHES83]), each performing a distinct set of services either for
processes outside the security kernel or for other security kernel layers, and
each depending only on the services of lower security kernel layers. A lay-
ered security kernel provides an opportunity to develop an informal proof
sketch of each layer’s sufficiency to meet the requirements of the next
higher layer, based on an implementation specification for each layer.
This proof sketch for succeedingly higher layers of the security kernel, if
performed, would provide a clear correspondence of the layers in the de-
sign to the FTLS and hence to the security policy model. The correspon-
dence of the layered implementation to the security policy model is also
facilitated by breaking the implementation design into modules that have
a clean, clear abstraction that allows for information hiding within mod-
ules in the manner described by Parnas [PARN72a, PARN72b]. The de-
sign of such a modular, layered security kernel is not an easy exercise, but
it is by no means impossible. It pays rich dividends in providing assur-
ance that the security kernel software in fact implements the primitives at
the interface that were shown to be consistent with the security policy
model.

The security kernel software will both control and be supported by the
associated processor hardware. The requirements for hardware struc-
tures to support a security kernel derive from the basic requirements for a
reference monitor: completeness, isolation, and verifiability. In addition, the
need for well-defined subjects and objects is reflected in the choice of
hardware to support a security kernel.

The key requirements are the following:

1. Hardware support for a notion of process and support for rapid
change from process to process.

2. Hardware support for some sort of objects and for protection of
those objects. In practice, this requirement is satisfied by a seg-
mented virtual memory system and provisions for security kernel
control over input/output operations.

3. Hardware support for the protection of the security kernel and its
databases by some sort of protection domain or protection ring
[SCHR72] mechanism.

78 Information Security

The implementation of the security kernel programs typically involves the
use of some form of structured coding and a higher level language. The
choice of language and standards is influenced by efficiency as well as
security since the security kernel is the heart of an operating system.

This brief summary of the security kernel design process has taken us
from the high-level requirements of security policy and a security policy
model to the implementation of the security kernel using a programming
language. As the process of security kernel development proceeds, progres-
sively more design detail is provided. At each step, though, there must be
a correspondence between the detailed design produced and the require-
ments identified by the earlier steps. Layering, modularization, abstrac-
tion, and information hiding within the security kernel and documentation
in the form of an implementation specification facilitate a demonstration
of this correspondence. In this way, one can develop running code that
corresponds to the requirements of a security policy model and security pol-
icy. There are formal tools available that support the demonstration of the
correspondence between the FTLS and the security policy model, and there
are informal techniques for demonstrating the correspondence between
the code and the FTLS. However, even without mechanical tools, the dis-
cipline and structure of the security kernel design process provide a high
degree of assurance about the security of the resulting system.

Improving an operating system. When we think about making an oper-
ating system or a subset of an operating system — a TCB — mimic the
behavior of a reference monitor, we are frequently interested in making
after-the-fact improvements to an existing system. For this reason, we
often refer to such an effort as security enhancement and to the product
as a security-enhanced system. The approach used to develop a security-
enhanced system begins with identifying a security policy and security pol-
icy model, and specifying the interface of the security-enhanced system to
the outside world (now an interface to the users and application pro-
grams). Instead of doing a layered design and structured implementation
of the entire system “from the interface down to the hardware,” we now
modify the code of the operating system to implement the interface speci-
fication. However, in so doing, we accept that we will not be able to com-
pletely separate protection-critical components within the operating
system from those that are not protection-critical. This places a funda-
mental limit on what one can know about the behavior of such a secu-
rity-enhanced system and thus places a limit on the degree of assurance
of security policy enforcement that is possible using one.

As noted in the previous section, to simplify a security kernel, we take
steps to minimize its complexity, and we may minimize the number of
types of objects it supports. However, in contrast to that approach, in de-
veloping the interface specification for the security-enhanced system we
are talking about in this section, we may take additional short cuts.

Concepts and Terminology for Computer Security 79

For example, an existing operating system is likely to support a vast
number of object types, and it may be impossible to apply controls to
them all. We may leave some uncontrolled by the security policy model
and, in doing so, leave in the system a much higher level of vulnerability
to Trojan horse attack than a security kernel would suffer.

While the code of the security-enhanced system will be as clean and er-
ror-free as good practice can make it, it will not have the assurance ad-
vantages of the structured design and implementation that a security
kernel has. It will be much more likely to contain residual errors in design
and implementation (or even to contain malicious software), and it will be
more likely to be subject to malicious software attacks from the outside.

The above is not to diminish the value of such security-enhanced sys-
tems. The primary value of these systems lies in their resistance to prob-
ing and in their improvement over a more conventional system against
this threat. They typically provide a very robust environment and may
have enhanced penetration resistance in addition to a rich set of security
features. For that reason, and because of the feasibility of developing
them with modest effort, security-enhanced systems offer an attractive
option for those with limited needs for assured security.

TCB subsets. 1t is sometimes beneficial to develop a TCB and evaluate
its security in parts, rather than as a monolith. A TCB subset [TDI91] is
an extension of the reference monitor concept that enforces some access
control policy on subjects that may attempt to gain access to a set of objects
under the subset's control. The access control policy enforced by a TCB
subset is a subset of the overall access control policy of the TCB. Access
control policies of distinct TCB subsets are enforced by distinct domains
within the TCB.

A TCB subset must meet the three requirements of a reference monitor:
completeness, isolation, and verifiability. In fact, a reference monitor is a TCB
subset. The primary difference is that a TCB subset may have an interface
to a more primitive mechanism, which is also a TCB subset (enforcing a
less restrictive access control policy). In the degenerate case of a single,
monolithic TCB (for example, the sort of system described above as a se-
curity-enhanced system), there is a single TCB subset — which includes
the portion of the system performing the reference monitor functions and
the hardware. A TCB partition (more frequently called a network TCB parti-
tion or NTCB partition [TNI87]) that enforces an access control policy is a
TCB subset which does not depend on another TCB subset. A TCB partition
is thus in direct control of a particular, well-defined subset of subjects,
objects, and hardware of a processing component of a particular net-
worked system. NTCB partitions are discussed further in a later section.

As noted, the reference monitor implements the least restrictive manda-
tory access control policy in a TCB. Other TCB subsets within that TCB may
implement other more restrictive access control policies, including more

80 Information Security

restrictive mandatory access control policies and discretionary access control
policies. These TCB subsets are, like supporting policy implementations,
within the TCB but outside the reference monitor.

The topic of TCB subsets is only briefly introduced here. Additional in-
formation about TCB subsets may be found in the paper [SHOC87] where
the notion of TCB subsets was first formalized.

Demonstrating security. The discussions above have touched briefly
on the tools that we can use to convince ourselves that a system is se-
cure. We next give a little more of a feeling for the steps that we can take
to achieve assurance of system security. The quest for system security is
old enough to have a body of history. We mentioned in Essay 1 the itera-
tive “fix and test” or “penetrate and patch” approach that some took at a
time when computer security was in its infancy. We will begin this discus-
sion with a few comments on how “not to do it” and then summarize the
methods that can lead to effective assurance of system security.

Testing, penetration, and reading the code. In the early days of computer
security, advocates of secure systems tried to follow a path of searching
for ways to penetrate the systems’ controls, often relying on malicious soft-
ware in the same way a potential attacker could launch a probing, penetra-
tion, or subversion attack, as described in Essay 1. Their plan was that,
failing to penetrate, they could plausibly argue that there was no way to
penetrate since no way was known (to them). In this scenario, if a security
hole is found, it can be patched before the argument for security is made.
Obviously, this argument suffers from both theoretical and practical dif-
ficulties.

One presumes that one could test all possible programs to find any that
led to a security penetration. If possible, this method of exhaustion would
be effective, but it is far beyond the realm of feasibility. For any real com-
puter it would take so long that before the evaluation was finished the
sun would literally have burned out! Thus any evaluation conducted by
exhaustion must be so incomplete as to be ludicrous.

Practically speaking, the effort spent in penetrate and patch techniques
yields poor marginal return in terms of security. Experience has shown
the following conclusions to be true:

1. New penetrators tend to find new holes — even after previous teams
have found all that they could. It seems unlikely that a real, mali-
cious attacker would fail to involve new people.

2. Holes do not generally result from rank stupidity but from human
oversight in dealing with a difficult design problem. Thus the fixes
themselves are likely to be flawed.

3. It does not take a highly specialized expert to penetrate system se-
curity. It is true that most computer professionals do not know

Concepts and Terminology for Computer Security 81

ways to penetrate the systems they use; they want to do a job, not
interfere with it. Yet when given the assignment, even junior and
inexperienced professionals have consistently succeeded in penetra-
tion.

The real difficulty of achieving security by penetrate and patch tech-
niques is precisely the difficulty of finding errors in a program by testing.
A test can demonstrate the presence of an error but, short of exhaustion
of every possible combination of inputs, it cannot demonstrate the ab-
sence of errors. Much of the weakness of security in existing systems re-
sults, in the first instance, from the fact that these systems were
designed to perform a function and tested to assure that they did so cor-
rectly. The function to be performed had the nature of “the right answer”
rather than secure operation.

A failure of system security results from the failure by a designer or
implementer to anticipate a “functional” requirement for security, and to
build and test a system to meet that requirement. Security is a funda-
mentally “negative” requirement stating that, for all possible applications,
unauthorized access will not be granted. When examining the system,
the penetrator tests a different function — namely, that there exists at
least one way in which unauthorized access to information will be
granted. There are many ways of succeeding with this function.

In the limit, the problem of security is that the designer must search
out every way to penetrate security and correct all; the penetrator is really
interested in finding and using only one. This is an unbalanced “game of
wits” in which the attacker has a substantial advantage.

The key to successful functional testing lies in factoring the system’s
structure into the selection of test cases, and in designing the system to
support testing. In a real sense, this is the approach we take with a secu-
rity kernel: designing the system so that, by means of a proven security
policy model, security becomes a positive requirement rather than the ab-
sence of errors, and structuring the system to support analysis and
testing. Since testing security becomes testing for positive requirements,
it is possible to test in the same manner as in the usual software testing
scenario. In contrast to the strategy of testing for all possible penetration
approaches, testing a security kernel is quite doable.

TCB design and security verification. When we discussed design and
specification of a security kernel, we presented the process of system de-
sign, beginning with security policy and culminating in security kernel code.
We also indicated that formal security kernel verification tools could follow
the same path. In the paragraphs below, we summarize the process of
security kernel verification, then indicate how we might apply some of the
same steps to the security evaluation of the TCB of a security-enhanced
operating system.

82 Information Security

The security policy model is the linchpin of verification. It translates the
fundamentally negative requirements of security mentioned in the previ-
ous section into positive properties that can be verified. The security policy
model bridges between the people-oriented world of security policy and the
computer-oriented world of the reference monitor abstractions of subjects
and objects. The step from security policy to security policy model is neces-
sarily an informal one — at some point we must make the translation
from English “legalese” to formal, mathematical language. By taking this
step at the level of the security policy model, we reduce the complexity of
the mechanism that we must review in an unstructured way. In the case
of the Bell-LaPadula security policy model, while there is a fair amount of
formalism to be dealt with, the basic objectives and approach are rela-
tively simple. Numerous readers of the security policy model have con-
vinced themselves that it is a formal statement of the objectives that it
claims to support. It is easy to see that a security policy model that is sim-
ple and abstract is necessary to the verification process.

Once the security policy model is accepted, it provides a formal basis for
the security evaluation of the rest of the TCB. We can state our TCB’s
interface specifications in a formal language and verify the correspon-
dence between security policy model and interface specification. We can
also specify the security kernel interface in the formal language and verify
that the system implemented is the same as the security kernel whose in-
terface has been specified. The specifications of the security kernel imple-
mentation are presented module by module for each layer and layer by
layer in a structure corresponding to the security kernel software itself.
This enables a proof sketch of each module’s sufficiency to meet its
specification and each layer’s sufficiency to meet the requirements of
succeedingly higher layers, all the way up to the interface, as described
earlier.

The security kernel implementation specification supports the proof
sketch of each corresponding module of security kernel code. The technol-
ogy of program verification does not practically allow for formal code verifi-
cation of large real programs. However, there are a few key factors that
contribute to the success of this approach for providing a meaningful
verification of the implementation. The decomposition of the implementa-
tion design into “Parnas modules” with a clean, clear abstraction that
allows for information hiding, and strict layering of the modules, both
make formal verification more thinkable and offer a structured way to read
the code and review its correctness informally. In fact, it is information
hiding and strict layering that provide the real basis for progressively de-
veloping a proof sketch of the code’s sufficiency to meet the interface
specification, module by module and layer by layer, as mentioned in the
previous paragraph. Our experience shows that the difficulty of reviewing
operating system code for correct and secure operation results from both
the complexity of the code and the lack of any clear definition of what the

Concepts and Terminology for Computer Security 83

code is supposed to be doing. The implementation specifications for a se-
curity kernel support the determination of what the code should be doing.

Beyond the higher level code are machine language and hardware im-
plementation issues. Verification technology is not up to these issues yet.
Again, however, the structure of the security kernel and its specifications
at least offer meaningful support for a partially informal but effective as-
sessment of security.

There is one more aspect of assessing security that we would like to
address. It should also include a determination of whether the imple-
mentation of the reference monitor contains covert channels. Covert channels
are flows of information between access classes in a manner that is
counter to the mandatory access control policy portion of the security policy
but allowed by the implementation. It is important to recognize that valid
security policy models do not have covert channels; covert channels are an
implementation phenomenon. A security policy model that allows informa-
tion to flow in a manner counter to the security policy is a flawed security
policy model [LEVI9O].

Recall we observed earlier that the security policy model represents the
state of the TCB. Covert channels operate because this state information is
sometimes passed to subjects outside the reference monitor. The two types
of covert channels — covert storage channels and covert timing channels —
differ by the manner in which the state information is passed. In covert
storage channels, information is passed out of the reference monitor
through the value of an exception or error code. In covert timing channels,
information is passed out of the reference monitor through a delay (that is,
a measurable change in response time) observable by a subject. The only
other way besides through covert channels in which information could
flow through a reference monitor in a manner counter to the security policy
would be through the use of a flawed security policy model, as described in
the previous paragraph.

For an example of a covert storage channel, consider two subjects with
Trojan horses operating at different access classes (“Marketing” and “Ac-
counting”) such that the security policy which the reference monitor is en-
forcing forbids any information to flow between the two. If, for example,
one of the state variables in the reference monitor is used to indicate
“disk_full,” then information can easily flow between these two subjects.
The Trojan horse in one of the subjects can signal a single bit of informa-
tion to the other by filling the disk (or not filling it) at an agreed-upon
time or after an agreed-upon condition, at which time the Trojan horse in
the other subject checks to see whether the disk is full (for example, by
trying to write to the disk). This signaling can be done repeatedly and
rapidly. The maximum rate at which the signaling of a particular covert
channel can be accomplished is called its bandwidth.

A similar exploitation scenario can be constructed to illustrate covert
timing channels. Suppose that instead of the “disk_full” error condition,

84 Information Security

our Trojan horses were to use the amount of time required for a read from
the disk to signal a bit. Suppose the Trojan horses in both subjects know
how long a normal disk access takes. To signal a bit of information, the
“writer” Trojan horse need only make sure the disk is busy enough to slow
down the “reader” Trojan horse’s disk access. Again, this can be done re-
peatedly and rapidly, and one can calculate or measure the bandwidth.

One might ask, “Doesn’t the existence of covert channels destroy the as-
surance of enforcement of the mandatory access control policy we worked so
hard to achieve?” Actually, while uncorrected, covert channel bandwidths
can be quite high, though they may be difficult to exploit at the highest
rates because of “noise.” But there are many techniques available for re-
ducing the bandwidths. In fact, security kernels are available today that
can be configured to have no covert storage channels [THOM90]. The
bandwidths of covert timing channels can be reduced in the most brute-
force way by slowing down the functions that allow them to operate if it is
detected that a particular bandwidth threshold is about to be exceeded.
This can be mechanically accomplished by inserting delays wherever the
functions are called. Of course, this can have an adverse impact on per-
formance, but it permits stronger enforcement of the mandatory access
control policy.

Finally, we promised to include in this discussion a comment about the
problem of assessing the security of the TCB of a security-enhanced op-
erating system. In such a system, we are concerned about features at the
TCB interface as well as about having as “correct” an implementation as
we can. The security policy model supports a review of the interface to the
TCB in this case. We may prepare a formal or English specification of the
TCB’s interface, then review it for inappropriate ways that a subject can
gain access to an object. We will probably supplement the interface
analysis with a penetration test to help make sure that no obvious flaws
remain. We may also look for covert channels and even work to reduce
particular covert storage channels. However, experience tells us that the
lack of a structured — layered and modular — implementation in a sys-
tem which is not designed to be subjected to the level of analysis of a se-
curity kernel results in a system that is subject to penetration (as well as
subversion of security mechanism), as defined in Essay 1. Such a system
is of some value, though, since it can offer a relatively high degree of re-
sistance to probing.

For further reading. More information on building a secure computer
system can be found in a readable first book [GASS88] on this subject
that presents difficult and subtle topics clearly, while achieving a good
depth of coverage.

Concepts and Terminology for Computer Security 85

Special considerations for networks

As noted in Essay 1, networks present greater accessibility to potential
penetrators by providing more ways of accessing the systems (through
other interconnected systems, through dial-up terminals, through taps
into the communication lines used by the networks themselves, and so
on). Obviously, networks are strongly dependent on computer systems to
provide the networks’ services. The resources being shared within com-
puter systems connected to or implementing the network provide numer-
ous opportunities for sensitive information to “leak” out or be illicitly
modified from within. The networks themselves provide no fundamentally
new vulnerabilities, except through the enhanced accessibility to the com-
puter systems that protect the information. The enhanced accessibility fa-
cilitates the exfiltration of information, which, as noted earlier, may aid
the successful use of Trojan horses.

The reference monitor concept scales very nicely to networks that possess
a coherent network security architecture and design — in other words,
coherent security policies, security objectives, and protocols. In a network
context, we speak of the trusted computing base or TCB as a network trusted
computing base or NTCB. The computer systems that implement the
switching and other processing within the network, as well as the client
systems of the network, provide the opportunities for sensitive informa-
tion to leak out or be illicitly modified, as described above. The NTCB
prevents such leakage and illicit modification.

The enhanced accessibility of the connections between the computers or
switching elements of the network system is countered most often
through the use of cryptography, either alone or in combination with
other security services (for example, physical protection of the wire) and
security supporting protocols. The enhanced accessibility of one computer
system from another is countered through applying the reference monitor
concept to the computer systems that make up the network system.

The unique aspects of building secure networks are described in the
following two sections. The first section applies the theory of computer se-
curity to networks with a coherent network security architecture, in the
form of an NTCB [TNI87]. (The section contains some actual excerpts
from the “Trusted Network Interpretation of the Trusted Computer Sys-
tem Evaluation Criteria” [TNI87] to explain the concepts.) The second
section describes some of the fundamental access control problems that
must be addressed in implementing cryptography within a computer
system. We will not otherwise delve into the technology of cryptography
or security supporting protocols in this essay.

Network trusted computing base. As stated previously, this section ap-

plies the theory of computer security — the reference monitor concept — to
networks. In so doing, it also expands somewhat on the application of the

86 Information Security

reference monitor concept in stand-alone computing environments — spe-
cifically, in the area of input/output devices. So, note that the informa-
tion presented here about devices also pertains to stand-alone computing
environments; it is presented here as a convenience to the discussion of
networks and the NTCB.

One of the first steps in the design of a secure network is the develop-
ment of coherent network security architecture and design. The network
security architecture addresses the security policies, objectives, and proto-
cols of the network. The network security design specifies the interfaces
and services that must be incorporated into the network for it to be se-
cure, relative to its security policy.

The overall network security policy is the security policy of the NTCB. It
may be decomposed into security policy elements that are allocated to ap-
propriate components and used as the bases for the security policies for
those components. This technique is referred to as partitioning a network’s
security policy into component security policies or NTCB partitions [SCHES85].
As used in this essay, a component is a collection of hardware, firmware,
and software that performs a specific security function in a network and
that contains an NTCB partition. A component is defined recursively, in
that a component may consist of other components. The distinguishing
quality of a component is that it has a security policy partition allocated to it
— induced on it by the overall network security policy. The recursive defi-
nition of component is based on the fundamental concept that it contains
an NTCB partition, a recursively defined concept based on the “partition” of
mathematics. (As in mathematics, if a set is partitioned and if one of the
partitions is further partitioned, the result is still partitions of the origi-
nal set.) Such recursive definitions of component and NTCB partition are
very useful in actual practice, since, once the security of a component is
evaluated, the results of that evaluation may be directly reused in evalu-
ating the security of a component which contains it. (See the section
“Evaluation by parts” in Essay 6 for a further discussion of applying the
strategy of “divide and conquer” by separately evaluating NTCB partitions
and using the results to evaluate more complex components within which
they may be contained.)

Therefore, one of the powerful design tools provided by this approach is
the ability to compose a set of components, and then treat the result as a
single componenthaving a security policy made up of the set of allocated
security policies and defined network interfaces. Once a composition is
performed, the resulting component may be considered in a variety of
network security architectures without having to reconsider the original
components or the process of composition.

Much of the usefulness of this approach lies in its general applicability.
For example, a host computer system that implements a full set of user
services may be treated as a component for purposes of composing the
computer system into the network system.

Concepts and Terminology for Computer Security 87

Components can include entire subnetworks within an overall network,
encryption systems, local area networks, digital PABX systems, packet
switched or circuit switched systems, and virtual machines running on a
virtual machine monitor (VMM) on a single computer system, when ana-
lyzed as a network. The ability to view a set of virtual machines as dis-
tinct network components is a powerful tool that allows varied security
policies to be implemented in virtual machine components on top of a VMM
component. It is an efficient technique in that if the underlying VMM com-
ponent has already been examined and found to enforce a security policy
required for the network system, it does not have to be reexamined after
the composition. In the case of network components implemented as
virtual machines, the interface between the VMM component and the vir-
tual machine components is the set of functions provided by the VMM
component. An example of the use of this technique is described else-
where [IRVI91].

Abstractly, the reference monitor for a partitioned NTCB is realized as a
collection of security kernels for individual components. To obtain the re-
quired levels of assurance that each such security kernel enforces its secu-
rity policy, a formal security policy model is formulated for each such
component. However, it would be too restrictive to require that the formal
security policy model for each security kernel be the same, or that an overall
formal security policy model be formulated for the network. Instead, each
formal security policy model is shown by convincing arguments to correctly
represent the security policy allocated to the component. Since the overall
security policy is stated informally, the convincing arguments are also
stated informally, in the same manner as that described in the earlier
section “TCB design and security verification.”

The formal security policy models of components therefore provide the ba-
sis for the security policy exercised by the NTCB over subjects and objects
in the entire network. The purpose of the formal security policy model for
each component is to serve as a precise starting point in the chain of ar-
guments leading to the sufficient levels of assurance required for each
component in the network and ultimately for the whole network. These
arguments are easier to make if the formal security policy model has an
intuitively attractive resemblance to the abstractions of subject, object,
and access properties of the computer system TCB on which the compo-
nent is implemented.

Thus, the reference monitor subject and object definitions that pertain for
a computer system TCB are sufficient also for an NTCB. The reference
monitor represents the fundamental security policy enforcement at the in-
dividual component level but may not directly represent all of the overall
network security policy issues such as the network’s connection policy. In
many networking environments, the overall network security policy in-
cludes controlling the establishment of authorized connections across the
network. The access control mediation performed by the components of

88 Information Security

these networks enforces the establishment of connections between host
computers on the network and provides the basis for a connection-oriented
abstraction. Understanding the connection-oriented abstraction for a given
network may be essential to understanding that network’s overall security
policy. The network security architecture describes the linkage between
the connection-oriented abstraction and its realization in the individual
components of the network.

Subjects in networks are therefore active entities outside the perimeter
of the reference monitor in each component; that reference monitor’s objects
are passive entities that exist in the component which implements that
reference monitor. Reference monitor support to ensure control over all the
operations of each subject in the network is completely provided within
the single NTCB partition on which that subject interfaces to the NTCB.
This means that the entire portion of the formal security policy model's “se-
cure state” that may undergo transitions because of the actions of this
subject is likewise contained in the same component.

The level of abstraction of the formal security policy model and the set of
subjects and objects that are explicitly represented in the formal security
policy model are clearly affected by the NTCB partitioning. Subjects and ob-
jects are represented explicitly in the formal security policy model for a par-
ticular component whose NTCB partition exercises access control over them.
Global network security policy elements that are allocated to a component
must be represented by the formal security policy model for that component.

Each partition of the NTCB therefore enforces the security policy over all
subjects and objects in its component. In a network, the responsibility of
an NTCB partition encompasses all security policy functions in its component
that would be required of a TCB in a stand-alone system. In particular,
subjects and objects in a particular component that are used for communi-
cation with other components are under the control of the single compo-
nent which contains them. Conceptual entities associated with
communication between two components, such as sessions, connections,
and virtual circuits, may be thought of as having two ends, one in each
component, where each end is represented by a local object. Communica-
tion is viewed as an operation that copies information from an object at
one end of a communication path to an object at the other end. Transient
data-carrying entities, such as datagrams and packets, exist either as
information within objects at one end of the communication path, or as a
pair of objects, one at each end of the communication path.

Access by a subject in one component to information contained in an
object in another component requires the creation of a subject in the re-
mote component that acts as a surrogate for the first subject. The security
policy must be enforced at the interface of the reference monitor (that is,
the mechanism that controls physical processing resources) for each
NTCB partition.

Concepts and Terminology for Computer Security 89

Recall the introduction of devices and communication channels and the
roles they play in the reference monitor. The only links between NTCB par-
titions are the various communication channels provided by devices. Devices
may import or export information only under the explicit control of the ref-
erence monitor in accordance with the security policy.

A basic choice must be made about each device of a TCB or of an NTCB
partition allocated to a network component. That choice is

1. whether the information that will be imported or exported through
the device at any particular point in time will have its label associ-
ated and flowing with it, or

2. whether the access class of the information will be established ad-
ministratively (that is, whether the security administrator will “tell”
the TCB or NTCB partition what the access class of the information is
that can flow through that device).

If the access class of the information is associated with a label that flows
with the information, that device may be used to import or export informa-
tion whose access class varies within a range enforced by the reference
monitor implementation, and it is called a multilevel device. On the other
hand, if the access class of the information that may flow through the de-
vice is established administratively and thus cannot vary (until a different
access class is administratively established), that device is called a single-
level device. It should be explicitly recognized that a device or a communi-
cation channel that does not support the transmission of labeled informa-
tion is, by definition, single-level. In a network component, therefore, the
devices coupling the communication channel to the processing nodes may
be single-level devices, administratively set to import or export information
of the same access class, or they are multilevel devices, capable of handling
information of some intersecting access class.

A single-level device may be regarded either as a subject or an object. A
multilevel device is regarded as a subject that is within the TCB or NTCB
partition (that is, it is a trusted subject — trusted to correctly associate in-
formation and labels within some range of access classes). However, as
with all subjects, it is outside the reference monitor. For a multilevel device,
the range of the subject is the minimum-maximum range of access classes
of information that may be transmitted over the device.

To support single-level devices, the TC or NTCB includes a trusted subject
or a reliable communication mechanism by which the TCB or NTCB and
a security administrato (via a trusted path) can designate the single access
class of information imported or exported. A single-level devic also has a
range of access classes within which the access class set by the security
administrator must fall, but it is important to note that single-level devices
have only a single access class at one time.

90 Information Security

The allocation of mandatory and discretionary access control policies to
different components in a network may require communication between
trusted subjects that are part of the NTCB partitions in different components.
This communication is normally implemented with a protocol between
the subjects as peer entities. The protocols and data which they carry
between these subjects that associate the access class with exported in-
formation (for multilevel channels) or that designate the single access class
of information imported or exported (for single-level channels) require special
attention to ensure the NTCB’s integrity. These protocols are actually
being used to communicate internal NTCB data among NTCB subjects
(that is, trusted subjects outside the reference monitor but inside the NTCB)
belonging to different NTCB partitions. This data must be protected against
external interference or tampering. For example, a cryptoseal (see the next
section) or physical means may be used to protect such data exchanged
between NTCB partitions.

The need to be concerned about the integrity of internal NTCB data is
clear if one considers that labels are among the sort of information com-
municated between NTCB partitions. Since there is no standard represen-
tation for labels communicated between components, each component
needs to be able to translate from the form in which the label is commu-
nicated to its own internal representation in a highly reliable way.

Subjects outside the NTCB but not direct surrogates for a user (human)
are termed internal subjects. Protocol handlers are examples of services
that are usually provided by internal subjects. It is important to under-
stand that a key distinction of internal subjects from “regular” subjects is
that since they are not acting for users, there is little or no need for a dis-
cretionary access control policy to be enforced over them. Similarly, since
the purpose of supporting policy is to provide the tie between persons and
access control policies, there is no need for supporting polic (for example,
identification/authentication and audit policies) to be concerned with them.

Therefore, a crucial step in the design of a network is the allocation of
the NTCB security policy to individual components within the network that
share information using devices to provide communication channels. This
partitioning into components must be done in such a way that all of the
following conditions can be easily validated:

1. A subject is confined to a single component throughout its lifetime.

2. A subject may directly access only objects within its component.

3. Every component contains a component reference monitor (or, for se-
curity-enhanced systems, the functions of a reference monitor) that
mediates all accesses made locally to enforce an overall access con-
trol policy for the whole network.

4. All communication channels linking components do not compromise
the security of the information entrusted to them. This allows the

Concepts and Terminology for Computer Security 91

conclusion that the total collection of components enforces the net-
work’s overall security policy.

Access control and cryptography in networks. Access control and
cryptography interrelate in at least two fundamental ways. For one,
cryptography may be useful in supporting access control decisions. As
stated above, the reference monitor represents the fundamental security
policy enforcement at the individual componen level but may not directly
satisfy all the overall network security policy requirements such as the
network’s connection policy. In many networking environments, the
overall network security policy includes controlling the establishment of
authorized connections across the network and protecting the informa-
tion during transmission. The access control mediation performed by the
components of these networks enforces the establishment of connections
between host computers (including, for example, mainframes, worksta-
tions, and/or personal computers) on the network. Cryptography may be
used (with specific security-enhancing communication protocols) to sup-
port the access control decisions (that is, to provide the mechanism to en-
sure that the host computers may communicate only as authorized by
the overall network security policy). Of course, this is no different in prin-
ciple from the use of cryptography in media encryption. All data on a me-
dium such as a disk or transmission cable is encrypted to eliminate the
risk of exposure in case the medium is stolen or tapped into — in other
words, to prevent illicit access to the media.

That is all we are going to say specifically about the use of cryptography
to enforce access control. Instead, this section focuses on access control
issues involved in the implementation of cryptography on a computer
system. Cryptography is, of course, in its simplest application, a way of
protecting information from disclosure. However, the success of crypto-
graphic techniques fundamentally depends on the protection of certain
keys from disclosure and the assured application of the intended keys and
algorithms. If the keys that require protection from disclosure are in any
way disclosed, the information whose protection depends on those keys
can no longer be assumed to be protected. If incorrect keys or algorithms
(that is, those supplied by an attacker) are used, the protection is illu-
sory.

It is because resource-sharing computer systems have difficulty with
secure simultaneous processing of sensitive and nonsensitive information
that computer security has arisen as an important discipline. For that
same reason, systems have difficulty with secure simultaneous process-
ing of plaintext, ciphertext, and keys. In a nutshell, this is why depending
on cryptography to encrypt and keep separate individual files is usually
not a good idea — because, to be secure, the system on which the cryp-
tography is implemented must already have the capability of keeping
separate the information of different sensitivities. That means that one can

92 Information Security

do no more for access control with cryptography than what a TCB enforc-
ing a mandatory access control policy already supports. Providing individual
file encryption is, therefore, quite susceptible to Trojan horses without the
presence of a TCB that is enforcing a mandatory access control policy, ren-
dering it also quite susceptible to false assurance. However, use of en-
cryption under the control of a TCB enforcing a mandatory access control
policy to protect information on a medium (for example, a disk or a
transmission cable) is quite achievable, assuming one has such a TCB
[FELL87, THOM90, WEIS92].

Up to this point in this section, we have only explicitly mentioned using
cryptography in conjunction with a TCB to provide protection from disclo-
sure. However, it should be noted that cryptography can also be used in
conjunction with a TCB enforcing a mandatory access control policy to pro-
vide protection from illicit modification.

Most readers are probably familiar with techniques of using parity, a
checksum, or some other checkfunction (that is, the result of some algo-
rithmic function carried out on the data) to detect data errors, especially
in communication. While such techniques are useful for detecting and
sometimes even correcting random or burst errors on a communication
line or in memory, they cannot protect against an intruder, with access
to the data, illicitly modifying bits of the data. If an intruder can modify
bits of the data, he can also recalculate the checkfunction (since the al-
gorithm is typically well known) and insert this modified checkfunction.

The technique used to provide valid protection from illicit modification
is called cryptosealing. Cryptoseals themselves are data that represent the
result of a function involving cryptography being carried out over the
data being protected. Cryptoseals are typically many fewer bits of data (64
to 128 bits) than the information they are protecting. They have the
property that if any bit of data (or of the cryptoseal) is modified, the modi-
fication can be detected by carrying out the cryptographic function over
the data again, using the same key. If the result is different from the
cryptoseal, the data was modified. Cryptosealing is a useful technique when
physical controls on access to the medium on which the data is held
cannot be guaranteed. For example, bank (ATM) cards commonly use a
form of cryptoseal to ensure that bank account numbers are not “forged.”
A number of techniques for generating and using cryptoseals in different
applications have been standardized (for example, CCITT X.509 and ANSI
X9.9).

The problems with trying to use cryptosealing on a resource-sharing
computer system are the same as those noted above for cryptography in
general. Similarly with the general case, the problem is secure simulta-
neous processing of data being cryptosealed, the cryptoseals themselves,
and keys. That means that one is subject to the same security problems
inherent to resource-sharing computer systems when using cryptography
or specifically cryptosealing inside that computer system. In other words,

Concepts and Terminology for Computer Security 93

cryptography and cryptosealing are not substitutes for a TCB enforcing a
mandatory access control policy, and, if implemented in a computer system
that is not enforcing a mandatory access control policy, there is a significant
possibility of false assurance. Again, providing cryptosealing over individual
files is susceptible to Trojan horses without the presence of a TCB enforc-
ing a mandatory access control policy. However, use of cryptosealing under
the control of a TCB enforcing a mandatory access control policy to protect
information on a medium is a quite achievable task, assuming one has
such a TCB. The application of this technique to database management
systems has been addressed rather extensively [DENN84, DENNS85], and
the same basic techniques can be used for networks, as overviewed be-
low.

With a TCB that enforces a mandatory access contro policy to implement
cryptosealing, an important class of NTCB extension can be built — com-
monly termed guards. The concept of a guard was first introduced in the
early 1980s in a study by Roger Schell for the Korean Air Intelligence
System or KAIS [DENN84|. Jim Anderson then used these ideas to de-
velop the recon guard [ANDES81]. Guard is a term sometimes used (impre-
cisely and improperly) to indicate almost any form of application
providing a security function in a network. We use the term precisely and
consistently with the historical usage to refer to a technique for imple-
mentation of a specific function: communication of information of multi-
ple sensitivities between secure computers by using a system high
network, operating with the access class of the most sensitive information
being communicated.

The guard method works in the following manner: For a particular
transmission of information, two guards are involved. One is associated
with the transmitting computer and has a secure communications path
to the transmitting computer’s TCB, and one is associated with the re-
ceiving computer and has a secure communications path to the receiving
computer’s TCB. The guard associated with the transmitting computer
receives the data to be communicated and a label indicating its access
class from the transmitting computer’s TCB. (Note that the label is often
implicit, say, at the single system high level of the transmitting computer.)
The transmitting guard then cryptoseals the data to be transmitted, to-
gether with a representation of the label. This data may now be exported
from the transmitting guard, since the network is at a single level which
dominates that of the data, and it can be subsequently received by the
receiving guard. The receiving guard now checks to see whether the crypto-
seal is intact, indicating that no modification of the data or label has oc-
curred. Assuming the cryptoseal checks out, the receiving guard hands off
the data and its label to the receiving TCB for proper disposition based on
the validated label. Note that the system high network can be carrying data
of various sensitivities from one or more pairs of guards. The guards have
now logically implemented a multilevel network out of a system high net-

94 Information Security

work, albeit a network providing transmission protection (that is, via
cryptography) for up to the most sensitive information.

Some past efforts have used the terms guard and filter almost inter-
changeably. It is useful, however, to distinguish between these two. In a
sense, both devices perform sanitization and/or downgrading from one
access class to another in a manner normally counter to the access control
policy. They perform this function against data sent to them, preventing
unauthorized disclosure based on some policy, and then release the data.
The nature of this policy allows us to distinguish between the relatively
weak nature of filters and the more robust nature of guards. A policy for a
filter may rely on virtually any content or context-dependent criteria for its
decision to release the data. An example of a filter is a deviceperforming
“dirty word” sanitization, where data containing specific code words or
combinations of code words will be deemed unreleasable. Thus, filters can
be described as devices that determine the releasability of data by “fig-
uring out” the sensitivity of the data.

The major distinction between filters and guards lies in the outcome of
their correct operation. A filter examines data from a system high environ-
ment and attempts to downgrade this data to something other than its
original system high access class. In the face of malicious software, no claim
can be made about whether this downgrade is valid or not, since any
number of tricks can be used by an attacker to “sneak information past”
the filter, in a manner like that described earlier for illicit indirect access. A
guard, on the other hand, bases its sanitization decision on the credible
label, which is assigned and checked at a place where it is reliable and
which is protected by a cryptoseal. Therefore, even though there are some
problems that limit the protection against a determined attacker
[DENNS&5], guards do offer some real protection against malicious software.

Conclusion

We have presented an introduction to the concepts and terminology of
computer security and to the reference monitor concept that allows us to
build secure systems in an orderly way. We have presented an introduc-
tory view of the role of a security policy in the development of a secure
system and have outlined the processes of specifying, designing, imple-
menting, and evaluating a TCB. We have also provided a summary of the
application of computer security to networks. In all, we have addressed
concepts and terms that we consider to be among the most critical to
gaining a fundamental understanding of this technology.

The reference monitor concept, if applied properly, is a powerful tool for
the control of computer misuse. While human error and user abuse of
authority are largely external problems, a TCB is a vehicle for constrain-
ing users to their authorized domain and for obtaining data for an audit
trail of the users’ actions. Application of the reference monitor concept lets

Concepts and Terminology for Computer Security 95

us enhance the security of an operating system and make it essentially
immune to probing.

Finally, the consistent application of the reference monitor concept and
the system implementation techniques that have grown up with it allows
us to develop a security kernel for preventing penetration or subversion of
security mechanism with a high degree of assurance. There is a firm
technical foundation on which to build a security kernel for a specific sys-
tem in a manner that yields good performance. The designs and imple-
mentations to date have empirically validated the principles needed to
use the security kernel without degrading system capabilities [SCHE85a].

Epilogue

The statements above are strong ones. The reader may well ask, “Is all
of this real?” In fact, the technology has been applied to real systems.
Security-enhanced systems based on the reference monitor concept are in
use today in commercial organizations, in the Defense Department, and
in other places throughout the world. Several organizations have suc-
cessfully developed security kernels, including the Gemini Trusted Network
Processor (GTNP) from Gemini Computers [THOMO90], the Honeywell
SCOMP [FRAI83], the XTS-200/STOP from Honeywell Federal Systems,
Inc., the Boeing Multilevel Secure Local Area Network Server System
[SCHNS85], the VAX VMM Security Kernel from Digital Equipment Corp.
[KARGO91], and Blacker [WEIS92]. The technology that we describe has
sufficient credibility to be the basis of the National Computer Security
Center’s evaluation criteria for TCBs [TCSES85], trusted networks [TNI87],
and trusted database management systems [TDI91] (presented in Essay
6), as well as the basis of multinational evaluation criteria [I[ITSE91].

We hope that this essay has given the reader a sense of the concepts
and terminology of the technology that allows us to solve a significant
portion of the computer security problem. The moral of this essay is per-
haps summarized by the following quotation [SCHE79]: “Do not trust se-
curity to technology unless that technology is demonstrably trustworthy,
and the absence of demonstrated compromise is absolutely not a demon-
stration of security.”

Acknowledgments

We would like to give a special acknowledgment to the contributions of
Steven B. Lipner of Trusted Information Systems. Substantial portions of
the text as well as several key insights related to the reference monitor are
drawn from material he previously prepared and he has graciously per-
mitted us to use in this essay.

In addition, acknowledgment is given to “Trusted Network Interpreta-
tion of the Trusted Computer System Evaluation Criteria,” National Com-

96 Information Security

puter Security Center [TNI87], from which excerpts have been drawn for
incorporation into the discussion of NTCB-related concepts.

We also gratefully acknowledge the substantial constructive comments
and suggestions provided by James P. Anderson on an earlier version of
this essay.

Concepts and Terminology for Computer Security 97

40

Information Security

