Essay 1

What Is There to Worry About?
An Introduction to the Com-
puter Security Problem

Donald L. Brinkley and Roger R. Schell

This essay provides an overview of the vulnerabilities and threats
to information security in computer systems. It begins with a
historical presentation of past experiences with vulnerabilities in
communication security along with present and future computer se-
curity experiences. The historical perspective demonstrates that
misplaced confidence in the security of a system is worse than
having no confidence at all in its security.

Next, the essay describes four broad areas of computer misuse:
(1) theft of computational resources, (2) disruption of computa-
tional services, (3) unauthorized disclosure of information in a
computer, and (4) unauthorized modification of information in a
computer. Classes of techniques whereby computer misuse re-
sults in the unauthorized disclosure and modification of informa-
tion are then described and examples are provided. These classes
are (1) human error, (2) user abuse of authority, (3) direct probing,
(4) probing with malicious software, (5) direct penetration, and (6)
subversion of security mechanism. The roles of Trojan horses, vi-
ruses, worms, bombs, and other kinds of malicious software are de-
scribed and examples provided.

In the past few decades, we have seen the implementation of myriads of
computer systems of all sizes and their interconnection over computer
networks. These systems handle and are required to protect credit data,
justice information, computer vote tabulation, consumer billing, health
data, insurance data, military and intelligence data, and computer and
human communications, as well as countless other types of information.
It is likely that readers of this essay have heard about some computer or
network break-in at some time in the past few years. Such events have

What Is There to Worry About? 11



been the subjects of popular movies and books, and reports about them
are appearing ever more frequently in the press. Even telephone service
has been disrupted by what has been described as “electronic vandal-
ism.” Finding the source of such problems can amount to the electronic
equivalent of looking for a needle in a haystack, so often the source of the
problem is never discovered. Such is the nature of what we refer to in
this essay as the computer security problem.

The first step in this introduction to the computer security problem will
be a brief look at the historical parallels with a related subject — the
communication security problem. The aspect of communication security ad-
dressed here is the protection of information while it is being communi-
cated electronically from one place to another.

Historical lessons

The computer security problem has grown with the computer industry.
For roughly the first two decades of the use of electronic digital comput-
ers, the problem of security really was not noticed. The early computers
were used to process sensitive information, both in environments in-
volving national security and in commercial applications. But the size of
the computers and the nature of their applications allowed any security
problems to be solved outside the computer. If the entire system was
dedicated to a single user, protection consisted of the user simply picking
up his tapes and cards and clearing CPU memory when the job was fin-
ished. If one had sensitive information on a computer, one locked the
computer in a room. Basically the user had complete control over his
processing environment, including his data and programs. The computer
itself was not really part of the security problem or its solution.

In the 1960s, users began demanding better utilization of computing
resources, and the security environment surrounding computer systems
started to change. The response to the demand for more efficiency gave
birth to multiplexing techniques, resource-sharing operating systems,
multiprogramming, and various other techniques of the age. One could
build a time-sharing computer system to serve many users simultane-
ously. Users suddenly found not only a lack of control over the process-
ing environment but a lack of control over their data and programs as
well. While some of the early time-sharing systems were used in so-called
benign environments where there was no exposure to security problems,
others were not.

Users of time-sharing computers — for example, in academic environ-
ments — rapidly found that there was a real threat of unauthorized dis-
closure or modification of any sensitive information processed on the
early time-sharing systems. There arose the problem of defending inde-
pendent software structures from each other, as these were often imple-
mented on the same physical resources. Thus, multiprogramming

12 Information Security



operating systems began to enforce some sort of isolation of simultane-
ously executing processes. Since efficiency was the main consideration in
computer systems, design criteria limited the “defending” and “isolation”
primarily to the containment of accidents and errors.

Organizations desiring to utilize the increased capacities of resource-
sharing systems demanded assurances that sensitive and nonsensitive
information could be processed concurrently. Responding to customer
pressure, computer systems manufacturers at first claimed that hard-
ware and software mechanisms supporting resource sharing would also
(with perhaps minor alterations) provide sufficient protection and isola-
tion to permit multiprogramming of sensitive and nonsensitive programs
and data.

This claim was soon discredited in the early 1970s with the introduc-
tion of several penetration tiger teams that were specifically tasked to test
the protection offered by several major operating systems. Even those
systems that underwent “retrofitting” to correct known implementation
errors and design oversights were penetrated with only moderate amounts
of energy. A Consensus Report published in the proceedings of the 1979
National Computer Conference [AFIP79] states:

It is a fact, demonstrable by any of several studies, that no exist-
ing commercially-produced computer system can be counted
upon to protect any of its moderately knowledgeable users from
having complete and undetectable access to any information in
the system, no matter what kinds of so-called security features or
mechanisms have been built into the system.

Despite the fact that little substantive reduction in the basic vulnerabili-
ties occurred throughout the 1970s and 1980s, vast numbers of com-
puter systems serving every imaginable user population and processing
information of every possible degree of sensitivity have been put in op-
eration. These computer systems are connected together into communi-
ties via various types of networks. The connection to networks introduces
a need for communication security (often utilizing cryptography) to counter
the possibility of an attacker tapping into the communication lines used
by the networks. Further, by providing more ways of accessing the sys-
tems (from other interconnected systems, from remote terminals, and so
on), the connection to networks gives potential attackers greater accessi-
bility to the computer systems, thus compounding the computer security
problems. However, the fundamental computer security problems are little
affected by the interconnection of systems via networks. That is, the net-
works themselves provide few fundamentally new computer security prob-
lems, other than enhanced accessibility of the interconnected systems to
potential attackers. Thus, the primary computer security implication of
connecting a computer system to a network is the increased exposure of

What Is There to Worry About? 13



the system to those individuals with the opportunity and the means to
exploit the underlying computer security problems.

As noted in the preceding paragraph, however, communication security
technology was developed to counter a different threat — that of an at-
tacker tapping into communication lines. Communication security technol-
ogy has a much longer history of development and use than that of
computer security. Those concerned with computer security will be well
served to learn from some of the errors made in using communication secu-
rity. The remainder of this section briefly reviews some of the lessons from
the history of communication security in an attempt to help those con-
cerned with computer security avoid the mistakes encountered there.

Communication specialists, especially in the military, early recognized
the vulnerability of electronic transmissions to interception (for example,
through wiretaps or surreptitious listening to radio signals). The solu-
tions were simple but drastic — restrict transmissions only to relatively
unimportant (and nonsensitive) information or to transmission paths
that were physically protected from intrusion. Obviously, these solutions
limited use of the communications technology where it was most needed
— in potentially hostile situations.

The communication security restrictions eventually gave rise to various
cryptographic devices. These devices encode information into an unintel-
ligible form so that protection of the entire transmission path is not re-
quired. But (of paramount importance) this dramatically changed the
very nature of the security problem itself from a question of physical
protection to a question of technical efficacy. Unfortunately, a problem
arose with this new technology. When selecting a cryptographic device to
use, rather than determining its effectiveness through careful technical
analysis, selection was often based on the apparent absence of a known
way to attack it.

Technically weak cryptographic devices found widespread military use
because of misplaced confidence and the pressing operational need for
electrical communications. One notable example was the Enigma ma-
chine used by the Germans during World War II. Their high-level na-
tional command and control network used it for communication security
throughout the war. The Germans considered the Enigma completely
safe. Yet before the war really got started, the British (perhaps aided by
others) had in fact “solved the puzzle of Enigma” [WINT74].

The Enigma example also shows how the tendency to defend previous
decisions (to accept and use techniques that were plausible but turn out
to be insufficient) assures those so inclined of opportunities for exploita-
tion. Ultra — what the broken Enigma signals were called — “not only
gave the full strength and disposition of the enemy, it showed that the
Allied (troops) could achieve tactical surprise.” In fact, General Dwight
Eisenhower stated that “Ultra was decisive” [WINT74].

14 Information Security



To be sure, the Germans “must have been puzzled by our knowledge of
their U-boat positions, but luckily they did not accept the fact that we
had broken Enigma” [WINT74]. There was a similar misplaced trust by
the Japanese. The Japanese “hypnotized themselves into the delusion
that their codes were never seriously compromised” [KAHN67]. Both the
Japanese and the Germans, it seems, would not acknowledge their secu-
rity weaknesses without direct confirming counterintelligence — and this
came only after they had lost the war.

Technical experts eventually provided a sound technical basis for
countering these sorts of communication security problems. Today our
military and the commercial sectors make widespread use of crypto-
graphic devices with confidence. For computers, as for communications,
the nub of the problem is the effectiveness of the security mechanism
and the assurance of its implementation.

Applying this history further to computer security, important lessons be-
come clear. Misplaced confidence in the security of a system is worse
than having no confidence at all in its security. Each (formal or de facto)
decision to use computer systems without proper computer security con-
trols permits a technical weakness to become a vulnerability in the same
way the broken codes were a vulnerability to the Germans and the Japa-
nese. An implication for computer security in military systems is that the
lack of hard counterintelligence on exploitation should not be offered as
evidence of effective security, even though the absence of war against an
enemy capable of exploiting such weaknesses in our military computer
systems has precluded ultimate exploitation.

The thrust of this historical review is captured in the maxim, “Those
who cannot remember the past are condemned to repeat it.” The main
lesson to be learned is this: Do not entrust security to technology unless
that technology is demonstrably trustworthy, and the absence of demon-
strated compromise is absolutely not a demonstration of security.

Computer misuse

As we observed earlier, today there are vast numbers of computer sys-
tems and networks serving every imaginable user population and proc-
essing information of every possible degree of sensitivity. There is also a
large and growing threat to the security of much of this information and
the resources that handle it. The threat stems from the potential for com-
puter misuse.

With respect to the potential damage done, computer misuse can be
categorized into four broad areas:

1. theft of computational resources,

2. disruption of computational services,
3. unauthorized information disclosure, and

What Is There to Worry About? 15



4. unauthorized information modification.

Within these areas of computer misuse, we are concerned about misuse
effected by either authorized users of the computer or those not author-
ized to use the computer. However, the former is generally a much more
difficult problem to counter. As we shall discuss further, countering un-
authorized information disclosure and modification depends as heavily
on preventing the illicit access of bona fide users as preventing illicit ac-
cess of nonusers. On the other hand, countering theft of computational
resources and disruption of computational services primarily requires
keeping nonusers from using (and abusing) the resource.

Note that computer misuse may arise in situations where there are le-
gal penalties for the attackers if they are caught and convicted of these
acts (for example, in countries or states that have specific laws against
them). However, misuse may also occur in situations in which there is
not a reasonable chance that the attackers will be captured and pun-
ished (for example, in espionage or warfare between two countries). In the
latter situations, of course, there will be more of a concern with protect-
ing against the threat being carried out; in the former, determining the
damage and identifying the attacker after the fact are important as well.

Theft of computational resources. The theft of computational re-
sources is one area of computer misuse. Much as some people connect
into electric utility lines and divert power for their use without payment,
computer resources can be diverted. For example, the systematic use of
computational resources on a large scale by unauthorized users can have
both economic and production impacts. Likewise, the use of systems by
authorized users for unauthorized purposes (game playing, office football
pools, bowling league administration, and so on) is a theft of the compu-
tational resource, as it represents a drain upon the computer system.
However, such theft by authorized users is usually on a limited scale and
is much harder to control, since, in general, it is difficult to determine
whether authorized users are using the computer for authorized pur-
poses only. Hence, preventing theft of computational resources typically
focuses on protecting against actions by unauthorized users. Not only is
prevention easier than apprehension, but also it is the unauthorized us-
ers who most likely perpetrate a theft on a major scale with little evidence
to permit apprehending the thief.

Unauthorized programs that extensively use the hardware and the op-
erating system can consume many thousands of dollars of computer
services and compete with authorized programs. In addition to lost time,
hardware subsystems — memory, for example — may be filled by the un-
authorized programs to the exclusion of valid data, causing failure or
delay of authorized programs.

16 Information Security



If measures are taken to exclude unauthorized users, say through
passwords, the persons responsible may misrepresent themselves as
valid users, for example, by using a valid password they guessed or ob-
served. In this way, they can continue to run their programs and charge
any expenses to some legitimate user. However, stronger measures than
passwords can be used to make it harder for an unauthorized user to
masquerade as a legitimate user. Furthermore, other technical controls
(for example, what is known as a “trusted path,” described in the next
essay) can be used to substantially enhance the effectiveness of pass-
words and other measures.

Disruption of computational services. The second area of computer
misuse is the disruption of computational services. Consider the situa-
tion of two companies competing for a contract. Company A has an
automated cost/schedule system, while Company B does not. In the last
several days before bidding closes, Company A’s computer (upon which
its management relies) is unavailable due to a series of failures. Company
A is forced to develop its bid without benefit of its system and thus pro-
poses a contract with a cost 5 percent higher than the more accurate,
computerized figures would have suggested. Company A loses in its bid
on the basis of cost. The computer failures were caused by saboteurs
from Company B.

Such disruptions of service can be extremely expensive if the timing is
correct. Interruptions can be caused by attacks on any of the computer
system’s components: hardware, software, or data. Physical damage to
the hardware, confusion or modification of the operating system, subtle
changes in the applications software, or modifications to the data or in-
terface can all cause such problems. This form of attack does not neces-
sarily use significant amounts of computer time, nor does it require
either access to or modification of data. Nevertheless, access to the sys-
tem by authorized users can be denied through these subtle attacks.

In such situations the misuse often goes undetected. The failures may
be blamed on “bad luck” or on inadequate preventive maintenance. Since
resources accessed may be minimal, few “tracks” may be left by the at-
tackers, and proof of malicious acts or intent is often difficult to obtain.
Identification of the perpetrators is even more difficult, since it is rela-
tively easy to cover what “tracks” are left behind. Like preventing theft of
computational resources, protecting against disruption of computational
services typically focuses on protecting against actions by unauthorized
users and on attempting to detect any misuse after the fact by authorized
users by performing a “best effort” audit on their actions.

Unauthorized information disclosure. The third area of computer

misuse is the unauthorized disclosure of data stored in the computer.
This type of act, much akin to our popular view of espionage, is well un-

What Is There to Worry About? 17



derstood when we speak of unauthorized access to conventional data files
stored on paper in filing cabinets. Computers add a new dimension to
this problem. The enormous storage capability and the fast access times
make the stakes more costly. A criminal might normally have to search
an office for hours to find the data he wants (if he finds it at all). The long
periods required for such nefarious searches greatly increase the chances
of being “caught in the act.” Using a computer, the attacker can search
databases equivalent to several offices’ filing systems in a matter of sec-
onds. The fact that computer data systems often store data used for criti-
cal decision-making processes (such as the hypothetical situation of
Company A above) usually implies that the data is entered in a more
timely manner than in paper-based systems. The complete and up-to-
date information in a computer system makes it a tempting target. “Out-
siders” with full access to “inside” information pose a significant threat to
business and society.

Furthermore, a computer used to implement a cryptosystem to protect
information from unauthorized disclosure (for example, by encrypting the
files it stores) presents a particularly attractive target, since cryptosys-
tems typically depend on the nondisclosure of the encryption or decryp-
tion keys for the protection of the data being encrypted. That makes the
keys themselves a small but extremely valuable target. When such keys
are included in the data processed by the computer, such a small target
is far easier to “slip out” of the system than all of the data that the keys
can be used to compromise. This presents a significant motivator to
those bent on attempting to gain unauthorized access to such data to try
to implant some malicious software in the system (for example, through a
penetration of the system). The malicious software could covertly leak the
keys once the system is operational. Perhaps even more so than other
forms of computer misuse, unauthorized disclosures are difficult to de-
tect, since there may be no apparent tracks left behind.

Unauthorized information modification. We have mentioned the ad-
vantage of knowing the facts upon which a competitor is basing his deci-
sions, and of knowing the decisions as soon as they are made. Of far
greater use is the ability to “feed” data (erroneous, misleading, or incom-
plete) into the competing system and thus control or influence the deci-
sions to one’s benefit. With such ability, one can virtually “change the
facts” to suit the situation. Consider also the ability to “feed” keys into a
cryptosystem such as that described in the preceding section (for exam-
ple, where the keys are stored or manipulated by the computer that may
be penetrated). If he had the ability to control the keys in a cryptosystem,
an attacker could virtually control the cryptosystem. With this power to
substitute his keys for the intended keys or to control the generation of
the keys used, the attacker could not only read and write the data flow-
ing through the cryptosystem as would be possible even if he only knew

18 Information Security



the key (see the preceding section), but he could also generally introduce
new data and read and write any data of the sort protected by any of the
keys in the system.

The classical cases of computer operators modifying their credit ratings
or erasing the records of their outstanding debts are small examples of
this area of misuse. Also included in this area are modifications made to
programs. Modification of accounting routines to prevent charges to one’s
credit card from being billed to one’s account is an example. In view of
our ever-increasing dependence on computerized systems in banking and
commerce, the potential for large-scale fraud is enormous.

Computer misuse techniques

The latter two areas of computer misuse discussed in the previous sec-
tions are threats to the information that computers handle rather than to
the computers themselves. Threats to information (unauthorized infor-
mation disclosure and modification) are fundamentally different from
threats to resources (theft of computational resources and disruption of
computational services). For one thing, countering information-oriented
computer misuse depends as heavily on preventing the illicit access of
bona fide users as preventing illicit access of nonusers, whereas coun-
tering resource-oriented computer misuse primarily requires keeping
nonusers from using (and abusing) the resource. Further, resource-
oriented computer misuse is countered using control mechanisms differ-
ent from those necessary for countering information-oriented misuse.
Generally, resource-oriented misuse is most effectively countered with
measures such as maintaining separate rooms for computers, registering
users of computers and networks, requiring use of passwords, and other
physical and administrative security measures. Appropriate additional
measures may include those that fall into the areas of computer system
reliability and human engineering.

For the most part, this book in general and this essay in particular deal
with information-oriented computer misuse. In thinking about how in-
formation-oriented computer misuse may be brought about, we have
come to characterize “what there is to worry about” into six different
classes. These classes are

human error,

user abuse of authority,

direct probing,

probing with malicious software,
direct penetration, and

subversion of security mechanism.

ok

Common to all six of these classes are two elements:

What Is There to Worry About? 19



1. A vulnerability: A quality or characteristic of the computer system
(for example, a “flaw”) that provides the opportunity or means of
exploitation.

2. A threat: The possible existence of one who participates in the ex-
ploitation by gaining unauthorized disclosure or modification of
information such as accompanies information-oriented computer
misuse.

The product of threat and vulnerability is considered the risk one faces in
operating a system. Each of these two elements may in theory be brought
about either accidentally or deliberately. For example, a vulnerability may
be introduced through either the accidental introduction of a “bug” into
the system or the deliberate introduction of malicious software. However,
although a threat of accidental exploitation of a vulnerability may exist, we
are concerned in this essay only with deliberate exploitations of vulner-
abilities (that is, intentional acts attempting unauthorized disclosure or
modification of information), since these are the purview of computer secu-
rity, as described in Essay 2.

Therefore, the remainder of this essay discusses the six classes of in-
formation-oriented computer misuse listed above, which we call “com-
puter misuse techniques.” We have used the rubric “computer misuse
techniques” for all six classes, since what we are talking about with each
is the threat of deliberate exploitation of an accidentally or deliberately
introduced vulnerability. This distinction is clear in considering the first
class — human error. The “error” allows the accidental introduction of a
vulnerability, which may then be deliberately exploited, making it a “tech-
nique” for computer misuse.

We will now introduce the six classes of computer misuse techniques
and provide examples for each class. Note that these classes of computer
misuse are not mutually exclusive, as attackers may combine techniques
to more effectively achieve their nefarious goals.

Human error. Human errors that lead to unauthorized disclosure or
modification are basically probabilistic in nature. They may involve sev-
eral human, hardware, and timing factors that when combined could al-
low an unauthorized disclosure or modification of information. Simple
examples of this method are a computer operator inadvertently mounting
the wrong tape, a user typing sensitive information into a file that is
thought to be nonsensitive, or (assuming the computer has some sort of
access controls for files) a user setting the authorized mode of access for
a file to an inappropriate value. Users receiving information from this
kind of disclosure or modifying information in this manner are often vic-
tims of circumstances and may not be malicious in their intent. However,
even though the success of this method relies on probabilistic events that
one cannot control, the method can be used by a determined attacker.

20 Information Security



The basic approach used by an attacker in this method is to sit and
wait for the proper set of circumstances to occur. Upon detection of a
breach in the protection of information, the attacker acts to exploit the
breach and make use of this accidentally introduced vulnerability.

This method could prove profitable to a malicious user, particularly if
the system under attack has a history of human errors. Although this
method is viable, other methods will be discussed that do not rely on
these probabilistic circumstances and would thus be far more attractive
to an attacker. Better human engineering reduces the probability of hu-
man error.

User abuse of authority. Al Capone’s bookkeeper is reported to have
said, “I can steal more with a pencil than ten men with machine guns.”
That was probably a conservative estimate. Regardless of the book-
keeper’s actual capabilities, his chances of escaping detection and appre-
hension by law enforcement authorities would have been significantly
better than those of a gang of gunslinging outlaws. If we can replace a
hundred or a thousand crooked bookkeepers with a single vulnerable
computer, consider the possibilities. The computer significantly increases
the speed and possible scope of criminal acts.

Newspaper readers will occasionally encounter reports of “computer
misuse” or “computer crime” at some financial institution that would
probably be just as happy to avoid the publicity. The cases reported
range from simple to fiendishly complex. In a simple case, perhaps a
bank teller records, by a few keystrokes on a terminal, the receipt of a
few thousand or hundred thousand dollars of money that “isn’t there.”
An accomplice withdraws most or all of the money from another branch
of the bank and both flee to some warmer and more hospitable clime. The
daily audit of account balances and the real amount of cash on hand
soon reveal the shortage, but by then the culprits are likely to be long
gone.

More complex instances of this sort of computer misuse tax the imagi-
nation of the financial institution and the credulity of the reader. In one
widely reported case, a bank officer is alleged to have submitted transac-
tions with values in the millions over a period of more than a year. In this
case, the strategy was allegedly to exploit the delay of funds or paperwork
traveling from bank to bank or branch to branch, build up a large “float”
of money in transit, and siphon off some of that float to the goals of per-
sonal enrichment and early retirement. The details of such a scheme are
apparently intricate and difficult for the culprit as well as the reader. If
the culprit slips up or there is some sort of accident, the float may sink,
as it were, and the entire scheme could be discovered. In one case, the
fatal flaw was apparently a computer outage that required a batch of bo-
gus transactions to be processed by hand.

What Is There to Worry About? 21



Computer crimes such as these make interesting reading, and it seems
likely that they will become more common in the years to come, as com-
puters become more common in every nook and cranny of life. There is
already a vast literature on such incidents, and one might be tempted to
conclude that these cases typify the computer security problem. In fact,
however, a review of the cases shows that they have little to do with
computers. Whether they are simple cases involving the entry of a ficti-
tious transaction or complicated ones involving the managementof vast
“floats,” these crimes could as well be carried out in a world of quill pens
and green eyeshades as one that used the latest computer systems. The
key common factor is the irresponsible action of an authorized individual
who, in some manner, abuses a trust and abuses the authority granted
to perform some task.

These essays have little to say about the problem of controlling author-
ized users of an application beyond confining the authorized users to
their domains of authority and providing the capability to automatically
audit the users’ security-relevant actions. Computers cannot reach into
users’ minds and determine whether they are abusing the trust placed in
them. We believe, in fact, that restricting the users to their domains of
authority is a worthwhile goal for any system that processes valuable
data, but the legitimacy of the authorized users’ actions is better meas-
ured by auditors or experts in the area of action than controlled by com-
puter systems.

Direct probing. If cases of user abuse of authority are as old as banks
and ledger papers, the computer misuse technique that we have called
“direct probing” is as old as shared computer systems. We use the term
probing to distinguish those cases where an individual uses a computer
system in ways that are certainly allowed, but not necessarily intended,
by the system’s operators or developers. It is important to realize that the
individual who is attempting probing is deliberate in his attempts. This
introduces a class of “user” that computer system designers may not
have seriously considered. Often, designs reflect that the systems are ex-
pected to operate in a “benign environment” where violations of the sys-
tem controls are presumed to be accidental. Because systems are
presumed to be in a benign environment, the attacker may not have to
exert much effort to succeed.

We present two examples because these cases are important. The sec-
ond example bears many similarities to the story told by C. Stoll in The
Cuckoo’s Egg [STOL89], but it does describe a different event.

Students and sloppy security. The growth of computer literacy among
high school (and younger) students has resulted in a large population
interested in seeing “what systems are out there” and what information
and programs are available. More frequently, there seems to be signifi-

22 Information Security



cant interest in gaining unauthorized access to other people’s computers
and information.

A widely reported incident involved students from a school in New York
who learned a telephone number that would give them access to a time-
sharing computer operated by a small business in another city. The stu-
dents dialed the number and recognized the “banner” that the system
displayed on their terminal as belonging to the same operating system
used by their school’s computer. They knew from experience with their
school computer that copies of the operating system were distributed by
the manufacturer with user accounts predefined for the system manager,
who was expected to log in and create new accounts for his facility’s us-
ers. The system manager account had privileges to access any informa-
tion on the computer. It was always distributed with the same “secret
password,” and the documentation for the system directed the system
manager to change the password as soon as he had installed the system.

The students tried the login sequence for the system manager’s account
and gave the “distributed” password. Although the small business system
had been in place for a long time, the system manager’s password had
never been changed, and the students found themselves logged in with a
fully privileged account. They read files, deleted files, and played games.
They were able to create new accounts for themselves (they were, after
all, the system manager for the computer) and made fairly general nui-
sances of themselves.

Eventually they asked for a “ransom” to stop playing on the system and
leave its owners and users alone, and the ransom demand revealed
enough information to allow the authorities to intervene. The students
wound up the exercise with gently slapped hands, and the victims were
not (very) much worse off for the experience.

The key aspect of this case is that the students did not use the com-
puter or its software in any way that was unexpected by its developers or
owners. They merely took advantage of sloppy administration by the
system’s operators and inserted themselves where they had no business
being.

Network adventure. We expect that many of our readers will have
played or heard of some form of the computer game Adventure. In this
game, one is presented with the computer’s representation of a maze of
interconnected chambers. Some contain treasures that the player can
collect and bring back to a “home base” to gain points in the game. Other
chambers contain various kinds of monsters, miscreants, and unfortu-
nate circumstances. The topology of the maze is left to the player to infer.
The object, of course, is to navigate the maze and collect the treasures
without being destroyed by one of the unfortunate circumstances.

Some persons unknown played a form of real-life Adventure in the large
computer network operated by a major manufacturer. They dialed an

What Is There to Worry About? 23



“800” number that gave access to an account that was supposed to be
used for reporting software problems. The account was improperly set
up, and the “players” found that they could issue user commands to the
operating system in question. In particular, they could try remote termi-
nal logins to other systems in the manufacturer’s network and could
copy files from other machines.

In exploring the network, the adventurers discovered that it was easy to
find the names of users on other machines by using the network file ac-
cess facilities to list directory names, and by assuming that user names
were the same as directory names. They tried guessing passwords for the
user names they had found, and discovered that occasionally user name
and password were the same. Then they could log in on a remote ma-
chine as one of its users.

As they wandered through the network, the adventurers discovered
more user names and more passwords. Many files were unprotected
(readable to any user on the network), and some gave clues to the names
and passwords of yet more users. In addition, by logging into remote
systems, the players were able to read files that were protected from
“world” or general access — they now had legitimate local accounts that
might belong to a group that had access to the files, or might own some
files. Some of the files they found in this manner even contained stored
passwords. In addition, some users had accounts on several machines.
When those accounts all had the same password, it was a bonus to the
now experienced adventurers.

Eventually the adventurers got access to some “privileged” accounts on
a few machines. These accounts had the authority to bypass the normal
system controls and read or write any information on the systems. In
particular, the players could read lists of user names and passwords, and
now had unrestricted access to many more “chambers” in the “maze.”
The adventurers were able to compromise numerous accounts and to
read an “awesome” number of files during their explorations.

The only misfortune that the adventurers suffered was early discovery.
They were logged into the machine that was their starting point using a
user name and password that should not have been associated with that
communication line at that time of day, and an alert user realized that
fact. The user developed a program that could monitor all transactions
from the “800” number, and the manufacturer was able to record all the
adventurers’ activities. Because they were apparently students on a low
budget, the adventurers were unwilling to stop using the system through
the all-important (and free) “800” number. Eventually, through a combi-
nation of telephone traces, rumors, and good luck, the management of
the network got an idea of the identities of the players and the game was
canceled.

This case is like the previous case in one key respect. The adventurers,
like the student vandals, were using the computer roughly as it was in-

24 Information Security



tended. They were looking at files that were there for the reading, logging
in through the normal paths with passwords that were legitimately in-
stalled in the systems, and issuing legitimate commands to operating
systems and network software. Their ability to gain access to a huge
quantity of information resulted from a combination of sloppiness on the
part of system users and managers and the fact that most of the systems
they were exploring had fairly “coarse” protection, so that files were fre-
quently left accessible to the “world.”

The results of this fairly unsophisticated game of Adventure are none-
theless frightening. Had the players had a sufficient budget to dial di-
rectly to a machine where they had gained access to an account (instead
of reusing the “800” number and then exploring by use of the intercom-
puter network’s communication), they need never have been discovered
or stopped. They had access to a large volume of sensitive information,
but were apparently more interested in seeing how far they could go than
in making malicious use of the information they could find.

Probing with malicious software. This computer misuse technique is
quite similar to the previous technique, in that it is a form of probing— it
involves using a computer system in ways that are allowed, but not nec-
essarily intended. With this technique, however, specially developed soft-
ware is used by the attacker for the express purpose of carrying out the
probing. The use of such malicious software in probing makes this technique
unique and significant.

The Trojan horse. Ancient Greek mythology supplies us with the story of
the Trojan horse, which when brought within the fortified walls of Troy,
opened to reveal hostile Greek soldiers, who attacked the city’s defenses
from within. The term Trojan horse for software is widely attributed to
Daniel Edwards [SALT75], an early computer security pioneer, and it has
become standard in computer security. Like its mythological counterpart, it
signifies a technique for attacking a system from within, rather than
staging a frontal assault on well-maintained barriers. However, it does so
without circumventing normal system controls (in the same manner in
which the Trojans opened the doors of the city to bring in the horse). A
Trojan horse is a program whose execution results in undesired side ef-
fects, generally unanticipated by the user. A Trojan horse will most often
appear to provide some desired or “normal” function. In other words, a
Trojan horse will generally have both an overt function (to serve as a lure
to attract the program into use by an unsuspecting user) and a covert
function (to perform clandestine activities).

The overt or “lure” function of a Trojan horse can, for example, be
mathematical library routines, word processing programs, computer
games, compilers, or any program that might be widely used at an in-
stallation. Because these programs are executing on behalf of the user,

What Is There to Worry About? 25



they assume all access privileges that the user has. This gives the covert
function access to any information that is available to the user.

The covert function is exercised concurrently with the lure function. An
example of this kind of malicious software might be a text editor program
that legitimately performs editing functions for the unsuspecting user
while browsing through his directories looking for interesting files to
copy. Attackers have used seemingly harmless computer games (for ex-
ample, backgammon) to set all of the player’s files to “world read” so the
game’s author can copy the files without the knowledge of the files’
owner.

This is a particularly effective option for the attacker due to the fact
that as far as any internal protection mechanism of the computer system
is concerned, there are no “illegal” actions in progress. The Trojan horse
(for example, text editor) is simply a user program, executing in user ad-
dress space, accessing user files, performing perfectly legitimate system
service requests such as giving another user (for example, the attacker)
copies of files.

An example comes from the security test of an Air Force system that
was used to process sensitive information in the early 1970s. The instal-
lation in question was processing classified magnetic tapes using a com-
puter and operating system that were widely known for the ease with
which a hostile individual could access any information processed. The
installation’s solution was to use only a selected set of programs to proc-
ess the classified tapes, while any user was allowed to submit any un-
classified program that he or she wished. The programs used to process
the classified tapes not only did the requisite processing, but also took
special precautions to label the classified information that appeared on
the line printers. They even erased the main memory areas that had been
used to store the sensitive data before terminating processing and re-
turning the memory areas to the operating system for reallocation.

A security test team (a tiger team) realized that the classified processing
programs could be used to ease the attacker’s job. By exploiting the oper-
ating system’s weaknesses to access it, they modified the program used
to print the contents of a classified magnetic tape to serve as a Trojan
horse. The Trojan horse program completed the print job when requested,
but also hid a copy of the classified data, lightly encrypted, in an “invisi-
ble” location on disk. A later unclassified job could be submitted to read
the hidden data, print it out (still encrypted) for a member of the tiger
team, and erase the hidden copy. In this case, a security solution actually
made a security problem worse, since the use of the classified processing
programs served to locate and save for the tiger team exactly those files
and jobs that they wished to steal.

To reinforce the subtle nature of Trojan horses and the reality of the op-
portunities to plant them, the interested reader should read the story by
Ken Thompson [THOMS84], one of the codevelopers of Unix, of what he

26 Information Security



describes as “the cutest program [he] ever wrote.” This program is a Tro-
jan horse that he introduced into the C compiler. When the Trojan horse in
the C compiler determined that it was compiling the “login” code for the
Unix operating system, it would generate code to accept not only the
valid password but also a fixed password that he had previously selected
and built into the Trojan horse. He also planted another Trojan horse in the
compiler. This Trojan horse added the code for the two Trojan horses to the
object code each time it recompiled subsequent versions of the compiler,
without the Trojan horse code having to be present in the compiler source
code. In this way, he was able to cover his tracks for years, while his em-
ployer possibly continued to unknowingly crank out copies of the oper-
ating system and compiler containing his Trojan horses.

While our stable full of Trojan horses may seem quite different from the
network Adventure or password exploitation cited above, there is a tech-
nical point that all three cases hold in common. That is, just as one can
guess a password or read an unprotected file without doing violence to
the mechanism of the underlying computer and operating system, one
can install a Trojan horse in a program that will be used by an intended
victim, and that Trojan horse can function within the normal rules and
mechanisms of the computer and its operating system. By issuing oper-
ating system directives to reset the access controls on a file or make a
new copy, the Trojan horse can take advantage of standard mechanisms
to do its dirty work without detection.

Two things make Trojan horses particularly attractive to the hostile at-
tacker. First, as a practical matter, there is no effective procedure for
detecting whether a piece of software contains a Trojan horse, especially if
the designer devoted a reasonable effort to hide it. Second, almost all
computer users are compelled to use software (for example, operating
systems and application programs) developed by persons completely un-
known to them. The route this software takes to the user provides nu-
merous opportunities for insertion of a Trojan horse.

Viruses, time bombs, logic bombs, and worms. These four eye-catching
names have received some notoriety in the popular press in the past few
years. Actually, these are four types of Trojan horses, with special char-
acteristics.

A virus is a self-replicating Trojan horse that attaches itself to other pro-
grams in order to be executed. This method of self-replication by attach-
ing to another program to be executed is the primary distinguishing
feature of a virus. The primary covert function of some viruses may be
simply to replicate and spread, performing no other harmful action. How-
ever, others may take such actions as to modify, copy, or destroy other
files or entire disks. Viruses are carried from one personal computer to
another by unsuspecting users sharing software that has already been
infected. They spread among other computer systems in a similar man-

What Is There to Worry About? 27



ner via networks. Note that a virus’s method of replication by attaching
itself to another program is, in itself, an unauthorized modification of
data (the program to which it is attached).

Since each copy of a virus may replicate itself, a virus’s ability to
spread quickly is one of its most distinctive qualities. For example, sup-
pose one copy of a virus is introduced into a system through the execu-
tion of an infected text editor. If that virus is able to attach itself to a new
program just once per day, and each of its copies does likewise, after a
week there will be more than 50 copies. After about a month, there will
be around a billion copies. Although this is not our serious prediction, it
is interesting to note that at the rate currently identified viruses seem to
be spreading, by 1995 every computer in existence could potentially have
a virus. (Do not be overly frightened, however, as this book will describe
the technology for arresting Trojan horses; it is only necessary to employ
it.)

A time bomb is simply a Trojan horse set to trigger at a particular time.
For example, time bombs have been set to trigger on Friday the 13th and
on the anniversary of events that were significant to the attacker.

A logic bomb is a Trojan horse set to trigger upon the occurrence of a
particular logical event. For example, the Trojan horse might be set to
trigger at the worst possible time. An event such as the need to correct a
temperature imbalance in a power plant might trigger a logic bomb that
modifies data to make the imbalance worse. Another example of a logic
bomb is a “letter bomb” — contained in electronic mail and triggered
when the mail is read.

Another form of Trojan horse is known as a worm. A worm is a program
that distributes multiple copies of itself within a system or across a dis-
tributed system either through the exercise of a flaw that permits it to
spread or through normally permitted actions (for example, mailing cop-
ies of itself to other systems, compiling them on the remote systems, and
initiating their execution). Once in place, the worm may attack in any
number of ways, through the methods described above or in the para-
graphs below. A good example of a worm in action is the “Internet worm”
[SPAF89]; it invaded a large, nationwide network of computers called the
Internet, spreading to thousands of machines and disrupting normal ac-
tivities and connectivity of the machines for several days. Fortunately,
the primary objective of this worm was simply to spread to more ma-
chines, rather than to do any particular damage once it was established
on a new machine. Otherwise, the damage would have been far more sig-
nificant.

Direct penetration. Probing relies on the fact that a computer’s security
controls are being used sloppily, or that the controls are so poorly de-
signed that a user cannot control the sharing of information in a way
that corresponds to his or her needs. Penetration, in contrast, involves the

28 Information Security



bypassing of intended security controls. In many cases, an attacker finds
a single flaw in the implementation of an operating system or hardware,
writes a program, and has the entire computer at his or her command.

Penetration typically involves the use of malicious softwaresuch as a Tro-
jan horse, to confirm and exploit the flaw. It is not necessarily difficult or
costly. Three historical examples will illustrate the point.

The best is not good enough. Honeywell Information Systems and MIT
conducted a cooperative research project during the late 1960s and early
1970s to develop the Multiplexed Information and Computing Service
(Multics). This time-sharing system incorporated hardware and operating
system software “designed with security in mind” and was widely touted
as the most secure operating system of its time. An Air Force tiger team
was evaluating Multics [KARG74] as a candidate for use in a Pentagon
application where the computer itself would be required to protect sensi-
tive information from authorized system users who were not “cleared” to
see all the information in the computer. Only the Multics operating sys-
tem would stand between classified information and users without the
clearances to see it.

In examining the Multics operating system programs, the tiger team
found one place where an ordinary user program could branch to any
location in a supervisory (executive mode) program. Such instances were
forbidden by the Multics design concepts, but the implementation had
made this program directly accessible for reasons of efficiency. The tiger
team examined the program listings and found two instructions that
would store a word at any location they specified, then return to their
program. The privileges of the supervisory program were such that the
store instruction could operate even on the programs or data used by the
operating system itself.

The tiger team also found a place where Multics first checked a user’s
authorization for access to a file and, when the request proved valid, exe-
cuted the request. However, in this case, the user could change the re-
quest after the validity check and before the execution of the request.
Again, the vulnerability could be exploited to operate on any information in
the computer.

The tiger team tested the first apparent vulnerability on an Air Force labo-
ratory computer, then tried it on the Multics development computer at
MIT. They were able to use a small “hole” in the operating system to
change the access privileges for a penetration job and gain complete and
unrestricted access to any information on the computer. Specifically,
they were able to change the “user ID” for their process from that of an
ordinary user to that of the system manager who maintained the system
programs and files. Given this level of access, the tiger team had effective
ownership of the MIT Multics computer.

What Is There to Worry About? 29



Once they had a way to penetrate Multics, the tiger team provided a
number of additional demonstrations of the thoroughness of their work.
(These will be described in a later section.)

When the hardware is soft. A major concern in computer security during
the late 1960s and early 1970s dealt with security-related hardware flaw
s. There was a fear in that era that processor hardware might fail in such
a way that the processor would keep running but security-related hard-
ware checks would no longer be made. For example, the failed hardware
might allow a privileged instruction to be executed from a user program.
The people who hypothesized the problem also invented a form of solu-
tion: An unprivileged, interactive program they called “Subverter” would
check periodically to see if any security-related hardware failures had
occurred and, if they had, sound a suitable alarm.

The tiger team that penetrated Multics developed the Subverter program
to check for flaws in the Multics processor. This program would awaken
once every minute or so and try a few illegal operations, then go back to
sleep. The illegal operations ranged from commonplace to obscure and
were chosen to invoke the complexity of the Multics processor hardware.
These tests included

trying to run privileged instructions,

attempting to violate read and write permission on segments,
testing of all instructions marked illegal, and

taking out-of-bounds faults on zero length segments.

PO

During several hundred hours of execution while the tiger team’s mem-
bers were using Multics, Subverter never detected a security-related
hardware failure. When the hardware broke, the system went down, and
there was no opportunity for subtle security exploitation. The tiger team
did, however, discover that Subverter would occasionally crash without
apparent cause.

On investigation, it became clear that Subverter was crashing because
its read-only program segment was being modified. The test case that
Subverter used for illegal memory access was to try to write in itself, and
in these cases it was succeeding. The cause was traced to a test that
used a combination of register, indexed, and indirect addressing that
spanned several of the segments that make up a Multics process’s virtual
memory. When the locations involved met certain requirements (one indi-
rect address word had to be in location three of a specific segment in the
address chain), the instruction that started the operation would succeed
without regard to the process’s access rights for the final target address.
When the target address was in the read-only Subverter code segment,
Subverter “clobbered itself.”

30 Information Security



The flaw that allowed Subverter to write in itself was not random. Every
time the combination of addressing modes involved was used, the prob-
lem would occur. It could in fact be used to write anywhere in virtual
memory on any Multics processor. Thus the hardware flaw was as ex-
ploitable from a security penetration standpoint as any of the flaws in the
operating system. It was a speculation that there might be such a flaw
that caused the tiger team to write Subverter so that it emphasized the
testing of obscure and complex instructions and addressing modes. The
flaw was found to have been introduced by a field change to the proces-
sor that had the side effect of removing a special-case security check.

The implications of the Multics hardware vulnerability are as frightening
as those of the software flaws. The designer of a secure operating system
usually assumes a known hardware base. In this case, the hardware was
“almost” what was expected, but the difference was capable of rendering
the system’s controls ineffective.

Job security instead of computer security. An early instance of penetration
illustrates the tremendous difficulties of penetration and security repair.
Penetrate and patch, as this was called, was once thought to be an effective
security method, but it is now known to be unreliable. In theory one
could test all possible programs to find any that led to a security penetra-
tion. This method of exhaustion would be effective if it were possible, but
it is far beyond the realm of feasibility. For any real computer, it would
take so long that before the penetration and patch work was finished, the
sun would literally have burned out! Essays 2 and 6 describe more pro-
ductive schemes for designing and demonstrating the security of com-
puter systems. See Essay 11 for additional information on penetration
testing.

A large aerospace contractor operated a major computer center that
was used to support both government contracts and a commercial service
bureau. The government contracts required that the contractor process
classified information, while the service bureau had a large population of
customers who could access the computer center by telephone.

The contractor proposed to allow the service bureau users access to the
computer that was processing classified information. It was well under-
stood (by the contractor and government security officials) that the oper-
ating system used by the computer center could be penetrated by a hostile
programmer, so the contractor proposed to fix the system’s vulnerabilities.
To that end, the contractor assigned a team of system programmers to
review the operating system code, find the ways in which the controls
could be subverted, and then repair the vulnerabilities. The team labored
for several months and produced a system that they pronounced secure.

At this point the government brought in an independent tiger team to
assess the contractor’s work. The team found, in about two weeks, a set

What Is There to Worry About? 31



of ways to gain control of the computer in supervisor state and obtain
access to any file stored or information processed in the system.

One would think that such an incident might be the end, but the con-
tractor responded by mounting a new team that was directed to find all
the remaining exposures and fix them as well. After a few more months,
the tiger team was brought back with the same quick and successful re-
sults. The cycle may have been repeated once more — the history be-
comes vague around this point. However, the point that is not vague is
that the contractor eventually gave up, bought a separate computer, and
secured it by locking it up. The tiger team left the field victorious after the
final “game.”

Note, however, that this was a relatively happy ending only because the
tiger team was fortunate enough to repeatedly find flaws with little effort.
If they had not, it may well have been the case that the system would
have been declared “secure,” and the flaws would have been found and
exploited only by malicious attackers, while the contractor and the gov-
ernment proudly used their “secure” computer.

Subversion of security mechanism. Subversion of a computer system’s
security mechanism involves the covert and methodical undermining of
internal system controls to allow unauthorized and undetected access to
information within the computer system. Such subversion is not limited to
on-site operations, as in the case of deliberate penetration. It includes ac-
tivities that spread over the entire life cycle of a computer system, in-
cluding design, implementation, distribution, installation, and use.

The legitimate activities that are carried on during the various life-cycle
phases offer ample opportunities for the subverter to undermine system
components. The activities in the first four life-cycle phases identified
above are basically not sensitive in nature and are carried out at rela-
tively open facilities. Therefore, the subverter would have little difficulty in
subverting the system components under development. Later in the use
phase, these same components would be involved in the protection of in-
formation. By this phase the subverter would have an “environment” pur-
posefully constructed for the unauthorized and undetected exploitation of
a system and the information it contains.

The subverter is not an amateur. To be able to carry out subversive op-
erations, the subverter must understand the activities that are performed
during the various phases of a computer system’s life cycle. But none of
these activities is beyond the skill range of the average undergraduate
computer science major. In fact, much of the activity involved with sub-
version can be carried out by individuals with much less technical knowl-
edge. The subverter can utilize a diverse group of individuals who may or
may not be aware of the subversive activities they are performing. One
needs only to imagine the vast number of people who will have access to

32 Information Security



the various computer system components prior to their being installed at
a site with sensitive information.

The subverter could, and undoubtedly would, use various methods to
circumvent the control features of a computer system. But the subverter
is concerned with the long-term return on his subversive efforts. To rely
on a design oversight or an implementation flaw that might be eventually
corrected would not be sound “business” practice. Rather, the subverter
constructs his own clandestine mechanisms that are inserted into the
controlling hardware or software during one of the various phases of a
computer system’s life cycle. Such clandestine mechanisms have histori-
cally been called artifices [LACK74]. These artifices can be implemented as
either malicious hardware or malicious software. The most common
forms of artifices used in subversion are known as trap doors [KARG74].

A key characteristic of a trap door is that, since it is installed in the
controlling portion of the system (for example, operating system) and is
therefore capable, it circumvents the system’s normal control features.
Another key characteristic is that a trap door is exercised under the direct
control of an activation stimulus.

As the name implies, trap doors have a means of activation (like the
latch on a door). This activation key is under the direct control of the at-
tacker. A simple example of an activation key is a special sequence of
characters typed into a terminal. A software trap door program embedded
in the operating system code can recognize this key and allow the user of
the terminal special privileges. This is done by the software circumvent-
ing the normal control features of the system. It is important to realize
that the only purpose of a trap door is to “bypass” internal controls. It is
up to the attacker to determine how this circumvention of controls can
be utilized for his benefit.

Undetectable trap door. The attacker can construct the trap door in such
a manner as to make it virtually undetectable to even suspecting investi-
gators. The penetration of the MIT Multics computer by the tiger team that
was described earlier led to further demonstrations of the significance of
their work. Specifically, they installed a small trap door so undetectable
that the manufacturer’s personnel could not find the clandestine code,
even when they were told it existed and how it worked.

The Multics system internally encrypted its password list so that even if
the list was printed out, the passwords were not intelligible. When a user
presented his or her password, it was encrypted and then compared with
the user’s entry in the encrypted list. The tiger team retrieved the en-
crypted password list, then broke the cipher at their leisure to obtain all
of the passwords for MIT’s Multics computer system. The MIT Multics
computer was used as the development site for future versions of the
Multics operating system.

What Is There to Worry About? 33



The tiger team modified Honeywell’s master copy of the Multics operat-
ing system by installing a trap door: a set of instructions to bypass the
normal security checks and thus ensure penetration even after the initial
flaw was fixed. The trap door was small (fewer than 10 instructions out of
about 100,000) and required a coded password for use. As we said, the
manufacturer’s personnel could not find it, even when they knew it ex-
isted and how it worked. Furthermore, since the trap door was inserted in
the master copy of the operating system, the manufacturer automatically
distributed the trap door to all Multics installations. Multics kept an
“audit trail” of accesses to files by users. The tiger team’s activities were
duly audited. However, the audit trail mechanism itself was subject to
“repair” by an authorized system manager. Since the tiger team appeared
to be the system manager, they merely had to modify the record to re-
move all traces of their actions, such as the insertion of the trap door.

The full effect of the tiger team’s project was eventually demonstrated to
Honeywell and Air Force management, and a series of projects was initi-
ated to improve the system’s security to allow it to be used in the Penta-
gon application. Of perhaps as much interest, though, are the depth and
breadth of the impact that the tiger team’s penetration and subversion had
on the system’s security.

The key point that distinguishes this subversion from the other forms of
attacks described above is that the tiger team examined the mechanisms
used to provide operating system security, then installed permanent arti-
fices to bypass them all. Once the team had done that, they were able to
access any information in the system repeatedly and undetectably, de-
spite later efforts that might close the initial vulnerability they exploited.

A hardware trap door. The implications of the Multics hardware vulner-
ability described earlier are as frightening as those of the software flaws.
The prospect for maliciously installed trap doors is presumably as great in
hardware as in operating system software. It is arguable that, given the
complexity of modern integrated circuits, such trap doors are even harder
to find than their software brethren. While the tiger team’s Subverter pro-
gram described earlier was designed to find such an obscure case, all in-
volved acknowledged that there was a certain amount of luck in the fact
that the case of interest was one that Subverter tested in a finite amount
of time.

Putting it all together. It is easy enough to imagine scenarios for at-
tacks against the security of information in computer systems in which
the use of techniques such as those described in the preceding para-
graphs gives an attacker a decisive advantage. The number of avenues
available for inducing security compromises in a typical computer system
and the range of activities and capabilities that can be exercised once a
flaw is located and exploited are frightening to consider.

34 Information Security



Future attack scenario? To illustrate the range of subtlety and the indi-
rect nature of such threats, we offer the following fictional scenario
[SHOCS88], which is at least technically realizable. The purpose of this
scenario, it is emphasized, is to prompt a more careful consideration of
the threat. For that reason, we deliberately present a “worst-case” sce-
nario.

In 1995, the NATO nations undertook several technical initiatives in
the area of command and control. Among these initiatives, a project was
undertaken to interconnect many preexisting command and control sys-
tems located at various sites with high-speed, dedicated communications
links. The preexisting systems were all thought to be “secure enough”
and were accredited to process information of identical classification
ranges. The systems nominally provided for the proper confinement of
classified information. For that reason, the sponsors of the project as-
sessed as minimal the additional risk to security induced by the new
connectivity.

The successful completion of this project proved, in the ensuing con-
ventional hostilities in the Middle East, to be one of the decisive factors
leading to the losses suffered by the NATO alliance. Unknown to NATO
engineers, technical saboteurs under the control of the enemy had man-
aged to penetrate the system by installing a Trojan horse at one of the sites
as early as 1989 to exploit a flaw in the command and control system.
This obscure flaw provided a means to modify arbitrary system instruc-
tions, by sending a particular I/O device an undocumented sequence of
control instructions, causing the device to modify an arbitrary memory
location, bypassing the usual memory management access controls. The
Trojan horse was introduced in a virus-infected graphics package distrib-
uted as “freeware” on a publicly accessible bulletin board system. An un-
suspecting staff system programmer, who was a frequent contributor to
the bulletin board, noticed the package, downloaded it into his personal
home system, and transported it to the command and control system for
evaluation, as it offered several features that were currently required for
an application being developed at the site. Although the graphics package
itself, after evaluation was completed, was rejected and removed from the
system, the virus by this time had relocated itself and become a perma-
nent resident of the command and control system.

The Trojan horse had been specifically designed to penetrate any com-
mand and control system site it should chance to find itself on. Its
placement on the public bulletin board was a carefully targeted attack on
the command and control system programming staff, who were known to
be frequent contributors and subscribers. Because they placed the Trojan
horse on a public bulletin board, there was little risk to the saboteurs of
personal exposure even if the Trojan horse was eventually discovered. The
Trojan horse had been carefully engineered in advance by the technical
sabotage team, based on an exact understanding of the particular flaw

What Is There to Worry About? 35



exploited. This understanding was gained by lengthy experimentation on
an identical computer system purchased off the shelf by the sabotage
team in support of the penetration. Among the functions built into the
Trojan horse was the ability to accept covert software “upgrades” to its
own program once it had installed itself. In effect, the Trojan horse, once
installed, gave its creators complete access to the system, provided a
means of communication with the Trojan horse could be established.

When first executed at the command and control system site, the virus
contained in the Trojan horse activated itself, confirmed that it indeed was
now executing at one of the targeted sites, and relocated itself into the
message processing subsystem, where it could monitor (without percep-
tible impact on ongoing operations) all incoming message traffic. By
placing redundant “watchdog” processes in installed intelligent peripher-
als, the Trojan horse was able to ensure its continued existence past sys-
tem maintenance and regeneration episodes.

The Trojan horse was designed to communicate with its creators via un-
classified message traffic, such as that originated at (or addressed to) a
remote diplomatic post to which the enemy had low-risk human access,
at the unclassified level. In particular, the human agent had the ability to
originate and receive routine unclassified messages of an administrative
nature. The entire NATO communication system was available to ensure
that such messages, once originated by either the human agent or the
software Trojan horse, would be delivered unchanged to the recipient in
the normal course of operations. The human operator could signal and
control the Trojan horse by including a preselected string of code words in
any unclassified message emanating from the post, followed by a “pro-
gram” for the Trojan horse to execute, encoded as numeric table data. The
enabling trigger and program code were carefully designed to mimic a
routine report originating from this and similar posts, while ensuring
that the risk of the “trigger” actually occurring in a genuine message was
low. Signals from the Trojan horse to the operator could be sent using un-
classified messages, similarly encoded, composed by the Trojan horse and
transmitted from the command and control system site to the diplomatic
post. The messages appeared, to superficial examination, to be routine
logistics accounting messages containing tabular data. In fact, this data
could be used to encode binary information (such as software upgrades
for the Trojan horse itself).

The first action the Trojan horse took after installing itself was to an-
nounce its presence and location to its operator. It was decided to mini-
mize the risk of detection by not further exercising the Trojan horse unless
its operation would yield a decisive military or diplomatic advantage.
Thus, for most of the years of its existence, the Trojan horse was inactive
and remained undetected.

The interconnection of all of the command and control system sites in-
creased the potential value of the Trojan horse to the enemy, as the means

36 Information Security



now existed to subvert the entire command and control system network.
The enemy now felt prepared to commence hostilities, based, in part, on
the successful (and undetected) exercise of the Trojan horse several weeks
earlier, verifying that it still existed and was operable. It is probable that
the Trojan horse was reprogrammed at this time so it could utilize the
newly available remote access to other command and control system sites
and could perform the precise intelligence and disinformation tasks
needed for successful completion of the enemy mission.

The actual use of the Trojan horse during hostilities was carefully
crafted to avoid detection. Prior to planned enemy thrusts, the Trojan
horse transmitted selected allied order of battle information to the opera-
tor, who then passed the information to the enemy intelligence system.
During enemy attack phases, the Trojan horse was used to introduce
small distortions in enemy track and locating data. These modifications
to system behavior were subtle enough to escape detection, but provided
decisive intelligence and disinformation advantages, leading to the at-
tainment of the enemy objectives during the hostilities.

The opportunity for exploitation exists. This scenario is, of course, inten-
tionally alarming. (Similar scenarios have been described in articles
[SCHE79, GRANS83] published in military professional journals, indicat-
ing that the tactical significance of computer security problems has not
been lost on military professionals.)

Though this scenario was from the military context, the issues are
equally relevant to any context where there are determined attackers.
The credibility of such scenarios is based on the following factors.

Contemporary systems are vulnerable to attack by any individual with
access to their hardware and/or software components at any point in
their life cycle. The exposure of systems to attack has dramatically in-
creased as systems are interconnected. The increasing use of preexisting
and commercial off-the-shelf (COTS) software (for example, graphics
packages), an increasingly attractive option, also significantly increases
the exposure of systems, as the developers of such software must be re-
garded as having access to the system.

Potential attackers are capable of exploiting opportunities to penetrate
mission-critical systems. No particular skills beyond those of normally
competent computer professionals are required. In fact, such skills are
now within the publicized repertoire of amateur “hackers.” Trojan horses
designed to penetrate particular systems can often be located “off the
shelf” from underground bulletin board systems.

It must be assumed that potential attackers are motivated to exploit
available opportunities. It would be imprudent to assume that potentially
hostile interests will be restrained, particularly where decisive advan-
tages are at stake.

What Is There to Worry About? 37



We must assume that a serious penetration attempt will be indirect in
nature, will not require direct physical access by the penetrator and/or
operator to the penetrated target, and will not advertise its presence or
cause easily observable disturbances to the system’s behavior. In short, a
serious penetration attempt will be quite unlike those of amateur penetra-
tors (hackers) occasionally receiving media publicity.

This follows simply from the difference in goals assumed for the threats:
Hackers generally have motivations related to the need for self-esteem
and notoriety. A professional penetrator is motivated to remain unde-
tected and effective for lengthy periods of time. What malicious software
does after initial system penetration is influenced primarily by the goals of
its author, not by technical difficulty. The nature of a professional threat
may be assessed, even by computer nonprofessionals, by taking any of
the recently publicized cases and estimating whether the penetration
would have ever been detected if its author had wished it to remain in-
definitely covert.

Perspective on the computer security problem

If we review the computer security “war stories” cited above, a number of
facts become clear. The problems of human error are significant but not
of substantial interest to the determined, hostile attacker. There are
other, higher payoff methods of attacking the information in a computer
system that render this problem less interesting. Proper training of users
and good system administration are prerequisites to solving this problem.
Further, protection against probing and penetration is necessary.

The computer is almost irrelevant to the issues of user abuse of
authority. The problem is as old as the storage and manipulation of in-
formation. The solutions that applied in the era of ledger papers apply as
well to equivalent records stored in a computer. To the extent that it can
automate such methods as audits, cross-checks, and consistency checks,
the computer can actually improve security against user abuse of
authority.

User probing involves exploitation of computer security controls that have
insufficient power, or controls that are improperly used. The user who
probes the system is acting as a normal user and will be controlled by
security measures that have adequate flexibility and are carefully ap-
plied.

Penetration depends on weakness in the implementation of a system’s
hardware or software security controls. Even if a system incorporates
rich and flexible security features that are carefully used and conscien-
tiously maintained, it may be vulnerable to penetration. To resist penetra-
tion, the controls themselves must be built “right.” History has taught us
that the challenge of building a penetration-proof system is very great in-
deed.

38 Information Security



Finally, subversion of the security mechanism itself is most difficult to
prevent. Not only must controls be built “right,” as mentioned in the pre-
ceding paragraph, but they must also be built nonmaliciously and be
simple and small enough for analysis to determine that they perform as
expected (or at least do not perform as not expected). Essays 2 and 6 in-
troduce measures that have been found effective against probing, penetra-
tion, and subversion of security mechanism. The reference monitor concept
introduced in Essay 2 gives us a set of principles that can be applied to
the design or selection of security features and to their implementation in
ways that provide a high degree of resistance to penetration and a high
degree of assurance that they are not subverted.

For further reading

More real examples of computer misuse can be found in the literature
[BLOO90, HAFN91, SPAF89, STOL89]. In addition, Neumann and Parker
[NEUM89] summarize and discuss classes of computer misuse tech-
niques. These references, as well as the others cited in this essay, can
help the reader gain a broader understanding of “what there is to worry
about.”

Acknowledgments

We would like to give a special acknowledgment to the contributions of
Steven B. Lipner of Trusted Information Systems. Substantial portions of
the text as well as several key insights for classifying threats are drawn
from material he previously prepared and he has graciously permitted us
to use in this essay.

Acknowledgment is also given to P.A. Myers, from whose work
[MYER80] we have drawn excerpts for incorporation into this essay.
Myers’ fine thesis also contributed significant ideas to the discussion of
malicious software and subversion presented here.

In addition, we acknowledge (and have excerpted) two early articles
[COX79, SCHE79] that reached deeply into the cultures of their respec-
tive audiences to awaken them to the computer security problem.

We also gratefully acknowledge the substantial constructive comments
and suggestions provided by James P. Anderson on an earlier version of
this essay.

What Is There to Worry About? 39






What Is There to Worry About?

11



