
Chapter 2
Why Systems Are
Not Secure

Despite significant advances in the state of the art of computer security in recent years, informa-
tion in computers is more vulnerable than ever. Each major technological advance in computing 
raises new security threats that require new security solutions, and technology moves faster than 
the rate at which such solutions can be developed. We would be fighting a losing battle, except 
that security need not be an isolated effort: there is no reason why a new technology cannot be 
accompanied by an integrated security strategy, where the effort to protect against new threats 
only requires filling in a logical piece of a well-defined architecture.

We probably cannot change the way the world works, but understanding why it works the way 
it does can help us avoid the typical pitfalls and choose acceptable security solutions. This chapter 
explores some of the classic reasons why the implementation of security lags behind its theory.

2.1 SECURITY IS FUNDAMENTALLY DIFFICULT

Why are computer systems so bad at protecting information? After all, if it is possible to build a 
system containing millions of lines of software (as evidenced by today's large operating systems), 
why is it so hard to make that software operate securely? The task of keeping one user from get-
ting to another user’s files seems simple enough—especially when the system is already able to 
keep track of each user and each file.

In fact, it is far easier to build a secure system than to build a correct system. But how many 
large operating systems are correct and bugfree? For all large systems, vendors must periodically 
issue new releases, each containing thousands of lines of revised code, much of which are bug 
fixes. No major operating system has ever worked perfectly, and no vendor of an operating sys-
tem has dared offer a warranty against malfunctions. The industry seems resigned to the fact that 
systems will always have bugs. Yet most systems are reasonably dependable, and most of them 
adequately (but not perfectly) do the job for which they were designed. 

What is adequate for most functions, however, is not sufficient for security. If you find an iso-
lated bug in one function of an operating system, you can usually circumvent it, and the bug will 
have little effect on the other functions of the system: few bugs are fatal. But a single security 
“hole” can render all of the system’s security controls worthless, especially if the bug is discov-
ered by a determined penetrator. You might be able to live in a house with a few holes in the walls, 
but you will not be able to keep burglars out.

As a result, securing a system has traditionally been a battle of wits: the penetrator tries to find 
holes, and the designer tries to close them. The designer can never be confident of having found 
all the holes, and the penetrator need not reveal any discoveries. Anyone entrusting sensitive. 
information to a large operating system or to a computer on a' network has reason to be concerned 



about the privacy of that information. If the information is valuable enough to a penetrator to war-
rant the effort, there is little reason to assume that the penetrator will not succeed.

But of course there is hope: with appropriate techniques, a system can be built that provides 
reasonably high assurance of the effectiveness of its security controls—a level of assurance much 
higher than that of the system's overall correctness. The important factor is not the likelihood of a 
flaw (which is high), but the likelihood that a penetrator will find one (which we hope is very 
low). While we never can know whether a system is perfectly secure, we can build a system in a 
way that will make the penetrator's job so difficult, risky, and costly that the value to the penetra-
tor of successful penetration will not be worth the effort.

The key to achieving an acceptable degree of security is the systematic use of proper tech-
niques. Ad hoc security measures provide, at best, insignificantly increased protection that rarely 
justifies their expense. At worst, they provide a false sense of security that renders the users more 
susceptible than ever to the real threats.

2.2 SECURITY IS AN AFTERTHOUGHT

Despite the publicity about computer security in the press, computer and software vendors have 
rarely taken the trouble to incorporate meaningful security measures into their systems. Security, 
if considered at all, usually comes at the bottom of a list that looks something like this:

Functions: What does it do?
Price: What does it cost?
Performance: How fast does it run?
Compatibility: Does it work with earlier products?
Reliability: Will it perform its intended function?
Human Interface: How easy is it to use?
Availability: How often will it break?

•
•
•

Security Functions: What protection features does it provide?
Security Assurance: How foolproof are the protection features?

Based on past and current practice, you might say that this entire book is about two of the least 
important factors in the design of computer systems.

It is unfair to fault vendors entirely for this lack of attention to security. While customers may 
want improved security, they usually have second thoughts when security features adversely 
affect other, “more important” features. Since few customers are willing to pay extra for security, 
vendors have had little incentive to invest in extensive security enhancements.

A few vendors have taken steps to help the few security-conscious customers who are willing 
to invest in additional protection. These customers include not only the government but some 
banks, manufacturers, and universities. Several add-on security packages for major operating sys-



tems have been on the market for some time. The most notable of these are CGA Software Prod-
ucts Group’s TOP SECRET, Uccel Corporation’s ACF2, and IBM’s RACF, all for IBM’s MVS 
operating system. Stronger mandatory controls (a subject of chapter 6) designed to be integrated 
into the operating system appear in SES/VMS, an enhancement to VMS offered by Digital Equip-
ment (Blotcky, Lynch, and Lipner 1986), and are under development in the Sperry (now Unisys) 
1100 operating system (Ashland 1985). These packages and enhancements are commercially via-
ble despite their significant purchase and administrative costs. Several vendors have made a con-
siderable investment in internal security enhancements to their operating systems without cost 
add-ons. These systems include DEC’s VMS and Honeywell’s Multics (Organick 1972; Whitmore 
et al. 1973). Control Data has also incorporated security enhancements into its NOS operating sys-
tem. Honeywell was the first to offer commercially a highly secure minicomputer, the SCOMP 
(Fraim 1983), based on a security kernel, (a subject of chapter 10). Gemini Computers offers the 
GEMSOS operating system, also based on a security kernel (Schell, Tao, and Heckman 1985).

These and several other examples show that there has always been a certain demand for secu-
rity features in the user community. But the examples also show that demand is fairly weak and 
can easily evaporate if the features should have an adverse impact on cost or any other functions.

2.3 SECURITY IS AN IMPEDIMENT

A common perception among users is that security is a nuisance. Security measures are supposed 
to thwart someone who tries to break the rules; but because of poorly integrated ad hoc solutions, 
security measures often interfere with an honest user's normal job.

Vendors often implement security enhancements in response to specific customer demands. 
Such enhancements, made to existing systems at minimal cost, often result in reduced conve-
nience or poor performance. Vendors commonly adopt the attitude that a customer who wants 
security badly enough should be willing to live with the inconvenience.

Many customers take it upon themselves to fix security problems at their own sites. Because 
of inherent limitations in the system, fixing security problems often requires restrictive procedural 
controls: limited access from remote terminals; restricted physical access to local terminals. and 
printers; multiple passwords or logins; frequent password changes; automatic disconnect after 
periods of inactivity; and call-back devices. Many of these controls do not substantially increase 
the security of the system, but they do foster the notion that security is painful. Because users and 
managers do not see a way around the inconveniences, security is often employed only as a last 
resort, when a problem has already occurred or a clear threat exists.

2.4 FALSE SOLUTIONS IMPEDE PROGRESS

The computer industry, like other industries, is subject to fads. Fads in the computer security area 
can have a serious negative effect on the overall progress toward achieving good security, because 
progress stops when people think they have the answer. Since few people have a good understand-
ing of security, security fixes are particularly subject to snake-oil salesmanship.



One misconception (fortunately short-lived) involved data encryption; that is, encoding infor-
mation using a password or secret key so that it cannot be deciphered by unauthorized individuals. 
Data encryption is indispensable for communications and is useful for protecting the media used 
to store files, but it does not address the general computer security problem. Few of the penetra-
tion techniques used by various “tiger teams” charged with finding security holes in systems 
would be thwarted by encryption. The primary problem with file encryption is that it does nothing 
to increase the level of trust in the operating system; and if you do not trust your operating system 
to protect your files, you cannot trust it to encrypt your files at all the right times or to protect the 
encryption keys properly. Nonetheless, simplistic statements are still occasionally encountered 
that claim that securing an operating system is unnecessary if all the files are encrypted. Section 
13.2 discusses the legitimate role of encryption in communications and the relationship of encryp-
tion to computer security.

A popular security device is the call-back modem. The idea is that you telephone a computer 
from your home or office terminal and identify yourself (via a password) to the modem on the 
remote computer through your terminal. The computer's modem verifies that the password is cor-
rect and tells you to hang up. The modem then looks up your home telephone number in a list, and 
calls you back. Nobody can dial into the system and masquerade as you, even if that person 
knows your password, unless that person also uses your phone. Call-back devices are attractive 
because they do not require any modification to the system being protected—a classic example of 
add-on security. The danger in these devices is the risk of being lulled into complacency because 
you feel that only “good guys” can get to your system. You may decide that it is never necessary 
to change passwords or to enforce any control over the types of passwords people use. You may 
become lax about access control within your system, allowing too many of your users access to 
too much information. You may forget that half of your security problem is a matter of keeping 
your users isolated from each other—not keeping outsiders out.

The worst problem with call-back modems, however, is that they may cause you to forget that 
there are other ways people can get into your system. Does your system have a connection to a 
commercial network from which users can log in? Can you trust all other systems with which 
your system communicates? If one of your users accesses your system via a modem on a personal 
computer, how do you ensure that the personal computer has not been penetrated by an outsider 
via that modem? Considering the problems that call-back modems cannot solve and weighing the 
cost of these devices against simple measures such as better password control, it is hard to see 
their value.1

An example involving the use of passwords shows how a security feature intended for one 
application can be applied inappropriately to another. Because passwords are so good at control-
ling a user's access to the system, they are often used for other types of access control access to 
certain applications in a system, access to certain files, or freedom to carry out certain operations. 
Password schemes are attractive because they are so easy to implement and to add onto existing 
systems.

1. The idiosyncrasies of the telephone system provide a number of additional ways to defeat most call-back 
devices, but that is another story.



But passwords are inappropriate for many of these applications, especially when a single pass-
word is issued to several people (for access to a common file, for example. When one person in 
the group leaves the company, the password must be changed and the new password manually 
distributed. If a break-in by an insider occurs, it is impossible to tell who is at fault. And the 
greater the number of people who know the password, the greater the chance that it will be 
revealed accidentally.

Another misuse of passwords involves the requirement on some systems that the user at a ter-
minal reenter the password periodically—supposedly to ensure that the intended user and not an 
intruder is at the terminal. This feature is dangerous for two reasons. First, repeated entry of the 
password greatly increases the risk that someone will be looking over the user's shoulder when the 
password is entered. Second, the prompt for a password, appearing at unexpected times during a 
session, is highly susceptible to spoofing by a Trojan horse (see chapter 7). Section 6.2.1 lists 
additional ways in which passwords may be misused.

The false sense of security created by inappropriate use of passwords weakens the impetus to 
seek better controls. The danger of using such ad hoc solutions to address isolated problems is that 
one can lose sight of the fundamental problems.

2.5 THE PROBLEM IS PEOPLE, NOT COMPUTERS

Many organizations believe that computer security technology is irrelevant to real-world prob-
lems because nearly all recorded cases of computer abuse and fraud are nontechnical. Computer 
crime usually involves exploitation of weaknesses in procedural or personnel controls, not weak-
nesses in internal controls. Hence, as long as relatively easy, nontechnical ways exist to commit a 
crime, technical controls will be viewed as superfluous.

But these organizations often fail to recognize that the computer can protect against flawed 
procedural controls. As we shall discuss in section 3.1, technical controls can often be used to 
ease the burden of procedural controls. It is distressing, for example, to hear claims that attacks by 
former employees represent personnel problems that the computer cannot solve, when the system 
can easily be instrumented to defend itself against this threat.

Consider, too, what will happen when procedural controls are strengthened to the point that 
technical penetration becomes the path of least resistance. Since many years are needed to make 
major security improvements to existing systems, a sudden explosion of technical crimes will be 
very difficult to counter.

Probably because the computer industry is still in its infancy, sufficient knowledge of comput-
ers to exploit technical flaws seems to be rare among the dishonest. (On the other hand, perhaps 
they are so clever that they are not detected.) But as knowledge of computers becomes more com-
mon, we cannot assume that only a few honest citizens will possess the requisite skills to commit 
a major crime. Given the low risk of getting caught and the potentially high payoff, sophisticated 
computer crime is likely to become more attractive in the future, especially if the nontechnical 
avenues to crime are sufficiently restricted.



One of the primary arguments that computers cannot prevent most cases of abuse is based on 
the observation that computer crimes committed by insiders usually do not involve a violation of 
internal security controls: the perpetrator simply misuses information to which he or she normally 
has access during, the course of normal work responsibilities. Something akin to artificial intelli-
gence would be required to detect such abuse automatically. But on closer inspection, we often 
find that people routinely gain access to more information than they need, either because the sys-
tem's security controls do not provide adequately fine-grained protection or because implement-
ing such protection within the architectural constraints of the system is too inconvenient or costly. 
The problem appears to be solely one of people, but it is exacerbated by a technical deficiency of 
the system. The technical solutions are not apparent because an organization's way of doing busi-
ness is often influenced by the design (and limitations) of its computer system.

2.6 TECHNOLOGY IS OVERSOLD

There has long been the perception that true computer security can never be achieved in practice, 
so any effort is doomed to failure. This perception is due, in large part, to the bad press that a 
number of prominent government-funded secure computer development programs have received. 
The reasons for the supposed failure of these developments are varied:

• Programs originally intended for research have been wrongly criticized for not fulfilling 
needs of production systems.

• Vying for scarce funding, researchers and developers often promise more than they can 
deliver.

• Funding for the programs has been unpredictable, and requirements may change as the 
programs are shuffled among agencies. Often the requirements ultimately expressed are 
inconsistent with the original goals of the program, leading to unfortunate design compro-
mises.

• Developments are often targeted to a specific model of computer or operating system, and 
inconsistent levels of funding have stretched out programs to the point where the original 
target system is technologically obsolete by the time the program is ready for implementa-
tion.

• The public does not realize that the first version of an operating system always performs 
poorly, requiring significant additional design and tuning before becoming acceptable. 
Vendors do not release such preliminary systems, postponing their “Version 1.0” 
announcement until the performance problems have been addressed. Government pro-
grams are highly visible, and any problems (even in early versions) tend to be viewed by 
critics as inherent characteristics. Worse, contracts are often written in such a way that the 
first version is the final product, and additional money is rarely available for performance 
tuning.

• Several large government procurements have specified the use of security technology that 
was thought to be practical at the time but was in fact based on research still in the labora-
tory. When the research failed to progress fast enough to satisfy the needs of the program, 
security requirements were waived and the program lost its credibility. Industry has under-
stood for a long time that developing a new operating system involves far more than a 
one-time expense to build it; rather, a high level of continuous support is required over the 
life of the system. The federal government seems to have realized this, as well. Not able to 



commit to open-ended support, the government has largely ceased direct funding for 
secure operating system development, concentrating instead on specific applications and 
various seed efforts. A few commercial vendors are now undertaking to fill the void.

REFERENCES

Ashland, R. E. 1985. “B1 Security for Sperry 1100 Operating System.” In Proceedings of the 8th 
National Computer Security Conference, pp. 105–7. Gaithersburg, Md.: National Bureau of 
Standards.
A description of mandatory controls proposed for Sperry (now Unisys) operating systems.

Blotcky, S.; Lynch, K.; and Lipner, S. 1986. “SE/VMS: Implementing Mandatory Security in 
VAX/VMS.” In Proceedings of the 9th National Computer Security Conference, pp. 47–54. 
Gaithersburg, Md.: National Bureau of Standards.
A description of the security enhancements offered by Digital Equipment to upgrade security 
on its VMS operating system.

Fraim, L. J. 1983. “SCOMP: A Solution to the Multilevel Security Problem.” Computer 16(7): 
26–34. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp. 185–92. 
Dedham, Mass.: Artech House (1984.
A minicomputer-based security kernel with sophisticated hardware protection; this system is a 
Honeywell product.

Organick, E. I. 1972. The Multics System: An Examination of Its Structure. Cambridge, Mass.: 
MIT Press.
A description of Multics—at that time implemented on a processor without hardware-sup-
ported protection rings.

Schell, R. R.; Tao, T. F.; and Heckman, M. 1985. “Designing the GEMSOS Security Kernel for 
Security and Performance.” In Proceedings of the 8th National Computer Security Confer-
ence, pp. 108–19. Gaithersburg, Md.: National Bureau of Standards.
A description of a security kernel for the Intel iAPX 286 microprocessor offered by Gemini 
Computers.

Whitmore, J.; Bensoussan, A.; Green, P.; Hunt, D.; Kobziar, A.; and Stern, J. 1973. “Design for 
Multics Security Enhancements.” ESD-TR-74-176. Hanscom AFB, Mass.: Air Force Elec-
tronic Systems Division. (Also available through National Technical Information Service, 
Springfield, Va., NTIS AD-A030801.)
A description of the enhancements incorporated into Multics to support mandatory security 
controls.


