Chapter 7
Trojan Horses and
Covert Channels

When people began thinking about making systems more secure, they naturally speculated about
specific penetration techniques. At first, the approach to securing operating systems was directed
toward closing the holes inadvertently left by designers. These holes typically allowed a penetra-
tor to gain control of the operating system, or at least to bypass some particular access control
mechanism. Some penetration techniques identified by “tiger teams” searching for holes were
incredibly complex, as were the countermeasures.

The Trojan horse route to penetration, however, was not formally identified until surprisingly

late in the history of computing.1 This route was far easier to exploit than many of the highly
sophisticated penetrations people were trying to thwart. Worse, this simple type of penetration
was fundamentally impossible to prevent on nearly all systems. Only a complete change in the
philosophy of protection and a complete restructuring of the system could come close to address-
ing the problem. The most insidious aspect of the Trojan horse attack is that it requires no discov-
ery and exploitation of loopholes in the operating system. A successful Trojan horse attack can be
mounted through the use of only the most well-documented and obviously desirable features of a
flawless, bug-free system.

Do not assume that the Trojan horse problem is so esoteric that it only applies to computers
entrusted with military secrets. Once you understand how easy it is to carry out a Trojan horse
attack, you may wonder why anyone should have any confidence in the safety of any information
in their system, why more systems are not constantly being penetrated, and why you should
bother to close every small hole in your system while leaving gaping Trojan horse holes that are
so easy to exploit.

One sentence can explain what a Trojan horse is, but chapters are needed to cover all the implica-
tions. Many who initially think they understand the Trojan horse are surprised when confronted
with its ramifications. If you explain the Trojan horse problem to the management of a large com-
puter installation, the likely response you will receive is “we don't have that problem here,
because...” But if you ask about that installation's existing security controls, you will usually find
multiple redundant measures strengthening “conventional” aspects of the system while leaving
wide-open paths for a Trojan horse attack. After such a discussion, you might be able to convince
the management that many of the controls in these conventional areas serve only to reinforce the
iron links in a paper chain.

7.1 TROJAN HORSES AND VIRUSES

Most references define the Trojan horse in one or two sentences. A Trojan horse is a computer
program that appears to the user to perform a legitimate function but in fact carries out some illicit

1. The term Trojan horse was first used by Dan Edwards (Anderson 1972).

function that the user of the program did not intend. The victim is the user of the program; the per-
petrator is the program's developer.

We can identify several key requirements for launching a successful Trojan horse attack:

* You (the perpetrator) must write a program (or modify an existing program) to perform the
illicit act in a way that does not arouse the suspicion of any future user of the program. The
program should perform some interesting or useful function that will entice others to use
it.

* You must have some way of making the program accessible to your victim—by allowing
the victim access to the program, by installing it in a system library (which could require
help from an honest but gullible system administrator), or by physically handing the vic-
tim a tape or disk.

* You must get the victim to run your program. This might happen incidentally (if your pro-
gram replaces an existing program that the victim normally uses) or intentionally (if your
program is directly invoked by the victim).

* You must have some way to reap the benefits of the illicit act. If the act is to copy private
information (our primary concern), then you have to provide a repository for it that you
can later access. This is normally quite easy if you have an account on the victim's system.

A special type of Trojan horse that propagates itself through a system or network of systems is the
virus (Cohen 1984). “Infecting” a system with a virus usually requires a high level of skill on the
part of the perpetrator, but once installed it can cause a great deal of harm and may be particularly
difficult to eliminate.

7.1.1 Trojan Horse Examples

In section 3.4.1 we discussed some simple examples of the Trojan horse threat. Following are a
few more sophisticated examples. of both Trojan horses and viruses:

* A program that plays the game Adventure uses idle time when the user is thinking to scan
the user's directory and give “world” read access to all the victim's files. You (the perpetra-
tor) later log in normally and read the files. The victim might eventually find out that the
access rights were changed, but may still have a hard time figuring out which program did
it and whether anyone read the files.

* Anewimproved 1ist directory program that everyone wants to use functions as
advertised but never exits upon completion. Instead,. it pretends to exit, mimicking the
response of the system command processor. The program reads and processes the victim's
further commands normally (possibly by invoking the real command processor for each
command) and never reveals the fact that it is still there. When the user finally types
logout, the program simulates a genuine logout, but does not really log out. The next
time any user walks up to the terminal and types 1ogin, the program reads the user's
name and password and discreetly sends you (the perpetrator) a message containing the
user's password. Then the program mimics a normal login procedure and finally does exit,
returning the user to the command processor. The user never knows that all the prior input
has been monitored, and you now have the user's password.

* An Adventure game, copied by the user from a public bulletin board where you have
placed it for free distribution, modifies the user's command search list to cause a search of
one of your own directories before searching the system libraries. In all subsequent ses-
sions, every time the user types a system command, any one of a number of Trojan horse
programs in your directory may be invoked instead of, or in addition to, the desired system
command. Once the search list is modified, you can get the victim to run any of your pro-
grams practically at will. One of these Trojan horse programs might be an altered version
of show-search-11ist that hides from the user the fact that your directory is on the
user's list. You would probably also want to include a doctored version of
modify search 1list topreventyour own directory from being deleted from the list.
This example shows that, with a little planning on your part, a single mistake by a user can
result in permanent compromise of the user's security.

* You quietly place your Trojan horse in a public user directory, and give it an interesting
name like Superspreadsheet, hoping some user will find it and try it. Besides operating as
a spreadsheet, the program scans the user's directories, looking for executable binary files
(other programs) that the user owns and appending a section of Trojan horse code to each
such file. It modifies the calling sequence in those files to transfer temporary control to the
Trojan horse each time one of those programs is called. When one of those programs is
later used—possibly by a different user—the Trojan horse scans that user's directories, look-
ing for more files to append itself to. Of course, the operation of the programs modified by
this Trojan horse is not visibly affected. On a system where many users share each other's
programs, this virus will quickly infect most of the user software in the system. If system
programmers or administrators ever use someone else's programs, the virus can infect sys-
tem programs as well. Since nobody ever looks at object code to see if it matches com-
piled code, this virus is unlikely to be detected as long as it does no visible harm.

Your hope is that someone on a compiler development team will use a program
infected with your virus; your virus is designed to recognize when it is appended to the
compiler, and it will thereafter cause the compiler to append the virus to all compiled pro-
grams automatically. In this way, recompiling a program will not eliminate the virus.

This virus causes no functional harm to the operating system other than using up a lit-
tle memory along with each executable program. You can use your imagination to decide
what additional features an interesting virus might have.

A primitive type of virus was installed as a penetration exercise on an early version of
Honeywell’s Multics (Karger and Schell 1974).

As you can see, the illicit activity of the Trojan horse or virus need not hamper or frustrate the
legitimate function of the command in which it is embedded, although the simplest Trojan horses
might just go after the information the particular command already uses. The best Trojan horses
do their dirty work and leave no traces. Modifying the access rights to all the user's files can be
very damaging, but it is also easily detected and potentially traceable to the program that caused
it. Trojan horses that persist indefinitely (like the virus) can cause a great deal of harm while they
exist, but a program that causes trouble has a chance of being detected eventually. A clever Trojan
horse might even be programmed to delete itself if the user tries to do something that might reveal

its presence. Because most systems keep track of logins, stealing and using a password is unlikely
to work more than a few times before the penetration is detected (although password theft is prob-
ably the easiest route to computer crime and can certainly cause a great deal of damage).

The common goal in these examples is to allow you (the perpetrator) to read a user's informa-
tion to which you have no access. The Trojan horse either copies the information into one of your
files, or sets up access modes so that you can later read the information directly from the user's
files. The success of the Trojan horse depends on the extent to which you can retrieve the infor-
mation.

So far we have not directly talked about Trojan horses that delete, modify, or damage informa-
tion. A Trojan horse or virus whose goal is to modify files can do its job without your having to
log in. In fact, you do not need to have any access to the user's system at all (provided that you had
some way of giving the program to the user in the first place). A write-only Trojan horse used
unknowingly by a system administrator and acting to modify a system file can be particularly
insidious. In keeping with the general philosophy of this book that computer security is primarily
concerned with information disclosure, we will continue to think of the Trojan horse as a means
of illicitly obtaining read access to information. Although the write-only Trojan horse attack is
somewhat simpler to carry out, solutions to the Trojan horse information disclosure problem (to
the extent that they are solutions) generally address the information modification problem, as
well.

7.1.2 Limiting the Trojan Horse

Preventing a Trojan horse from doing its damage is fundamentally impossible without some man-
datory controls, and keeping a Trojan horse out of your system is extremely difficult. While sim-
ple or special-purpose systems might be protected to a degree, no general-purpose system can be
protected adequately. A few of the techniques discussed here can reduce the possibility of a suc-
cessful Trojan horse attack; but these techniques are somewhat dangerous, in that they can give
you a false sense of security. Before adopting any of them, therefore, be sure you understand their
limitations.

Restricting Access Control Flexibility

As was discussed in section 6.2.5, a Trojan horse can defeat any type of discretionary access con-
trol mechanism. As long as it is possible for the legitimate user to write a program that alters
access control information for his or her own files, it is possible for a Trojan horse invoked by that
user to do the same. Since the ability to write programs that alter access control information is a
feature of most modern systems, it is difficult to imagine anyone being willing to eliminate this
ability for the sake of security.

But suppose we do build a system that provides no unprivileged subroutine interface to the
access control mechanism. In such a system, the only way for a user to specify access control
information is by invoking a privileged system utility that sets the information based on input
from the user’s terminal-not on input from another program. (This utility program would have to

make sure it was really reading input from the terminal, and not from a command file, for exam-
ple.)

Since we trust users not to give their own files away, it might seem that the Trojan horse threat
to discretionary access control could thus be eliminated.

Notice, however, that several of the examples in section 7.1.1 do not require the Trojan horse
to alter any access control information. For a Trojan horse to copy a user's files into the perpetra-
tor's directory, the system need only allow the perpetrator to create a file manually that is write-
able by the unsuspecting user. To avoid suspicion, the perpetrator might create a file that is
writable by anyone, rather than solely by the specific user being targeted.

Let us then go further and mandate that the system not allow anyone to create a world-writ-
able file (which is not a particularly useful feature anyway). In that. case the Trojan horse might
use a mail utility or an interprocess message to communicate information. If these facilities do not
exist either, the Trojan horse might find a world-readable file belonging to the user and store the
information in it. No one could reasonably suggest that a system not allow a user to create world-
readable files.

These examples should convince you that, except in very limited systems, it is usually not
fruitful to try to prevent a Trojan horse attack by limiting the ways in which users can exchange
information.

Procedural Controls

Within a general-purpose operating system, nobody has come up with a practical scheme for
detecting a Trojan horse. If the system allows any user programming at all, there is no way to pre-
vent a user from implementing a Trojan horse and convincing another person to use it. As used
here, the term programming includes the ability to write command files, macros, and any other
instructions that enable a user to cause things to happen outside the user's direct control.

Procedurally, however, users can be warned not to run any program: other than those in the
system libraries, and they can be cautioned not to carry out any action that might accidentally
invoke a “foreign” file in their directory as a command or program. Users need not be prevented
from writing their own programs for their own use (because it would be pointless for a user to
plant a Trojan horse in his or her own program), but users should be suspicious about any program
that someone else has written. The effectiveness of such voluntary restrictions depends, of course,
on the dedication of the users. The interesting aspect of such restrictions is that users are only pro-
tecting themselves (and information entrusted to them): one user's violating a voluntary restriction
against using an outside program will not compromise any other user'; private information.

Unfortunately, voluntary restrictions are highly unreliable. Even sophisticated users may inad-
vertently violate the rules or be misled into doing so. In our earlier example where the search list
was modified, one-time, possibly accidental use of a Trojan horse renders the user permanently
vulnerable thereafter. The difficulties of the voluntary approach are exacerbated by the fact that
those who would build a Trojan horse are not restricted. One can imagine an open system in

which scores of users litter the system with Trojan horses in the hope that one of a handful of hon-
est and careful users might one day make a mistake and type the wrong command name. In a mul-
tiuser system that allows data-sharing, there is no practical way to prevent program sharing.

In contrast to voluntary restrictions, enforced restrictions can be more nearly foolproof. In one
approach (Karger 1987), a trusted mechanism in the system prevents programs called by a user
from accessing files other than those intended by the user based on predefined usage pattern; of
each program that the user calls. The Trojan horse can still damage the files it is legitimately
given, but it cannot access additional file; without the user's knowledge. While such techniques
are an interesting possibility, none has yet been implemented in practice.

System Controls: No Programming

Clearly the best restrictions are ones that the system automatically enforces. Limiting sharing is
not practical, so the only restriction left involves programming.

Eliminating user programming might at first seem fairly easy: just get rid of all the compilers,
assemblers, interpreters, and similar applications. In fact, many systems on which users do not
need to write programs are operated this way. But if the system has a text editor and a command
language, the ability to write command procedures (both batch and interactive) must also be elim-
inated, either by changing the command processor or by getting rid of all text editors. A DBMS
that allows users to store complex queries as procedures for later access must be eliminated or
restricted. Even without a command processor or DBMS, many text-processing tools such as edi-
tors and formatters are practically programming languages in their own right; these would have to
be eliminated, too. (Remember that a successful Trojan horse might be as simple as a 1-line copy
command embedded in an editor macro.) Even spreadsheet programs have features for user pro-
grammability.

By the time you eliminate all possibility of writing any type of program on a system, you have
probably limited the use of the system to a few very specialized applications. Certainly no gen-
eral-purpose system can be operated that way. But many large systems are in fact special purpose
and need no kind of programmability. Large organizations such as airlines and banks use their
operational computers solely for transaction processing, with separate computers for develop-
ment. But even when the operational system has no need for programming, it is rare for designers
to make more than half-hearted efforts to eliminate the ability to write programs. Usually such
efforts are aimed at saving memory and storage rather than at increasing security.

It is frequently argued that even the best efforts at eliminating programming are doomed.
After all, any system on a network is a potential recipient of a Trojan horse from another system
that does allow programming. Moreover, Trojan horses need not always resemble a program. A
list of financial transactions could contain a Trojan horse in the form of illicit transactions. But,
while it is indeed very difficult (or perhaps impossible) to guarantee that no Trojan horse has
entered the system, the guarantee need not be absolute. Through a systematic analysis of all possi-
ble paths into the system, it is possible to weigh the effort a penetrator must make to install a Tro-
jan horse against the value of the information gained or damage done. A partial closing of such

paths (which, to be of practical benefit, must still be relatively complete) is adequate in many
cases.

Scrutinizing Vendor Software

One route to installing a Trojan horse that we have not considered is via the vendor of the soft-
ware. Most organizations certainly trust their vendors not to plant Trojan horses (although rumors
are not lacking about features such as time bombs that inactivate the software when the rental
period expires). Indeed, prior to initial purchase of a software package, there is little reason for an
organization to fear that there might be a Trojan horse in the software specifically targeted at that
organization. Once the software is installed, however, a site with very sensitive data has good rea-
son to fear updates to that software supplied by the vendor-not because the vendor is likely to be
malicious, but because the vendor probably has no more control over the actions of its employees
than the organization has over its. Imagining a scenario where a disgruntled employee quits an
organization to work as a programmer for a vendor that supplies the organization with software is
not difficult. Unless appropriate control is maintained over the acquisition of new or updated ven-
dor software, the value of closing all other Trojan horse channels is limited.

Probably the only practical technique for screening vendor software—a method used by the
government at certain highly secure installations—is to accept software updates from a vendor
only in the form of source code, to be scrutinized manually for malicious code by site personnel
and to be compiled locally. Programs that highlight only the differences between earlier and later
versions of the source code are used as an aid. This technique, though laborious, is considered
useful because of the assumption that a Trojan horse in source code is easy to spot. Nonetheless, a
clever programmer might be able to hide a Trojan horse, especially within a complex program.
Rather than providing 100 percent assurance, the technique of scrutinizing the source code proba-
bly only serves as a deterrent to penetrators by increasing the work required to hide a Trojan
horse.

Mandatory Controls

As was stated in section 6.3, the only effective way to handle the Trojan horse threat is to use
mandatory access controls. Under mandatory access controls, a Trojan horse is prevented from
giving away information in a way that would violate the mandatory access restrictions. Consider,
for example, the multilevel security model discussed in section 6.4.4 and illustrated in figure 6.3.
The confinement property prevents a Trojan horse in a process running at the SECRET access
class from writing SECRET information into an UNCLASSIFIED file. Everything writable by a
SECRET process must have at least a SECRET access class.

It is important to remember that mandatory controls only thwart Trojan horse attacks that
attempt to cross mandatory access class boundaries. The Trojan horse in our example can still
bypass discretionary rules by copying information from the victim's SECRET file into another
user's SECRET file. Since it is impractical to assign a different mandatory access class to each
user, mandatory controls are only used to protect information that is more sensitive than informa-
tion that is simply private to a single user.

For example, suppose that a corporation allows its competitors to buy time on its computer
system. Corporate proprietary information in that system is assigned a mandatory access category,
and only employees of the corporation are given access to that category. A Trojan horse used by
one of those employees will not be able to pass information to competitors outside the category,
but it will be free to transfer information among users within the category.

7.2 COVERT CHANNELS

A key notion behind the Trojan horse attack is illicit communication through a legitimate infor-
mation channel intended for interprocess communication: a file, an interprocess message, or
shared memory. Mandatory access controls can prevent such communication across access
classes. But a system usually allows processes to communicate in numerous other ways. that are
not normally used for communication and are not normally protected by mandatory controls. We
call these other paths covert information channels, or simply covert channels (Lampson 1973;
Lipner 1975).

Covert channels have also been called leakage paths because information can escape uninten-
tionally. People worry about leakage paths because it is impossible to predict how much informa-
tion an errant program might leak through such a channel. The practical impact of unintentional
leakage, however, is usually minor and not a primary concern to us; much more serious is the
intentional leakage caused by a Trojan horse.

Systems abound with covert channels. Every bit of information in the system (that is, every
object) that can be modified by one process and read by another—directly or indirectly—is poten-
tially a covert channel. Where mandatory controls prevent a Trojan horse from communicating
information through files and other conventional objects, any bit of information not protected by
mandatory controls is potentially an alternate path.

A covert channel's most important parameter is its bandwidth—the rate, in bits per second, at
which information can be communicated between processes. This bandwidth is a function of the
number of bits in the object and of performance characteristics of the system that determine the
rate at which the object can be changed or modulated.

There are two types of covert channels: a storage channel is any communication path that
results when one process causes an object to be written and another process observes the effect; a
timing channel is any communication path that results when a process produces some effect on
system performance that is observable by another process and is measurable with a timing base
such as a real-time clock.

7.2.1 Covert Storage Channels
Covert storage channels use three types of information:
* Object attributes

* Object existence
* Shared resources

Object Attributes

The easiest-to-use and most common storage channels in systems are usually file names. A 32-
character file name can be changed by one process and read by another process, resulting in a 32-
character message transfer between the processes even if the file itself is not readable or writable
by the processes. This channel can usually be eliminated by designing the access controls so that
file names are objects protected by mandatory access controls in the same manner as the files are.

The use of file names is one example of the use of file attributes as storage channels. File
attributes are items of information about a file that the operating system maintains in addition to
the data in the file. Examples of other file attributes include length, format, date modified, and
discretionary access control lists. The file attributes may be directly readable (as are file names),
or their values may be indirectly inferred. Unlike file names, however, the values of most
attributes are not directly modifiable by a process, and communicating via the attributes requires
encoding the message to be sent in a form that uses the legal range of values of those attributes.
For a process to change the file length, for example, the process may have to rewrite part of the
file. This file length channel is limited to communicating a relatively small number of bits at a
time, depending on the range of possible lengths. Changing the file format might be easy and
direct, but the formats possible might be very few, leading to a rather narrow channel. Surpris-
ingly, the access control list often provides one of the largest covert storage channels, since the list
may be quite long and there might be few restrictions on the format of the user names on the list
(see section 6.2 and figure 6.1). The values of the date and time when a file was last modified are
usually difficult to control with any precision. The operating system usually updates the date and
time at relatively long intervals, and the value may be no more accurate than to the nearest sec-
ond. The bandwidth of such a channel can be no greater than one bit every 2 seconds; nonetheless,
over a long period of time, an undetected Trojan horse can patiently transmit a significant amount
of information by modifying a file at specific intervals.

Object Existence

File attributes are storage objects that are indirectly writable. Storage channels also include any
items of information about the file that can be deduced by a process. For example, the fact that a
given file exists is a bit of information; and even if you have no access to any of a file's attributes,
you may still be able to infer whether a particular file exists. A simple way to do so would be to
try to access the file and check the returned status condition. Some systems obligingly tell you
whether your problem is file does not existor you have no access to the
file. If the system can support ten file creations or deletions per second, the Trojan horse can
communicate ten bits of information per second.

If the system does not tell you directly whether a file inaccessible to you exists, you might try
to create a new file with the same name as that file. If the system gives you a
nameduplication or other error, you will have confirmed that the file already exists. If the
system allows you to create and use the new file, you will have established that the file did not
previously exist.

The single bit of information about existence of a file may not seem like much information,
but some systems strive to provide high-speed file creation and deletion. Thus, though the infor-
mation channel is narrow, its bandwidth can be high, especially if multiple files are used.

Shared Resources

The use of file existence as a one-bit covert storage channel is an example of a more general sin-
gle-bit channel involving shared or global resources. Almost every system contains certain
resources that are pooled among a number of active processes or users. Such resources include
disk blocks, physical memory, I/O buffers, allocated I/O devices, and various queues for shared
devices such as printers and plotters. Without per-process quotas, these types of shared resources
can be consumed by a single process. For example, one process could submit so many print jobs
that the printer queue fills up. When that happens, other processes on the system simply receive
some kind of error condition when they try to submit a job. A one-bit channel exists between the
sending process that fills the queue and the receiving process that gets the error message. The
sending process can transmit multiple bits in a serial fashion by alternately submitting and then
canceling the last job on the queue. Some systems tell a process how many total jobs there are on
a printer queue; communication via the queue is then easy and does not require filling the whole
queue, and the information about the total number of jobs provides a channel that is wider than a
single bit.

One way to minimize the queue overflow channel (or any shared resource exhaustion chan-
nel) is to use a per-process quota. In our printer queue example, a limit could be imposed on the
number of jobs that any one process might place on the queue. If the system guarantees that a pro-
cess will always be able to submit jobs up to its quota, then for all practical purposes the queue
appears to each process as a private, queue, revealing no information about other processes' jobs
on the queue. But a queue structured in this way is not actually a shared queue, and all of the ben-
efits of resource sharing are eliminated when resources are statically allocated to each process.
Nonetheless, static allocation is often necessary to ensure complete. closure of certain high-band-
width shared-resource covert channels.

A way to reduce the bandwidth of resource exhaustion channels is to limit the rate at which a
process can discover that the resource is y exhausted. Usually a process cannot directly ask how
much of a shared resource is available. The only way it can determine how much space is on a
printer queue is to see how many jobs it can submit to the queue. When the process reaches the
end of the queue, the system can delay the process for a certain amount of time before allowing it
to attempt to put additional jobs on the queue. Since it is highly abnormal for a process to con-
stantly bang away at the end of a queue, delaying a process trying to do so—even for several sec-
onds-is unlikely to affect the performance of any legitimate operation.

One problem with such a bandwidth-limiting scheme is that the process may have access to
many different shared resources. Therefore the limit must be based on the total number of
resource exhaustion conditions that a process may be able to detect, not just on each resource indi-
vidually. We also have to worry about the possibility that several processes can work in collusion,
thereby multiplying the bandwidth by the number of processes.

Probably the simplest way to address the shared resource channel is to audit each case of
resource exhaustion, in order to detect an excessive number of such cases within a given time
interval. The threat of audit and detection might well suffice to deter a penetrator from using this
technique. While auditing is usually not a reliable method of distinguishing between legitimate
and illegitimate actions, resource exhaustion happens rarely enough that establishing a relatively
low audit threshold (minimum number of incidents to trigger an audit) could be a valuable secu-
rity measure.

7.2.2 Covert Timing Channels

Because the usefulness of covert storage channels is measured as a bandwidth, in bits per second,
people often mistake certain types of storage channels for timing channels. In order for a covert
channel to be classified as a timing channel, a real-time clock, interval timer, or the equivalent
must be involved. The clock allows the receiving process to calculate relative amounts of real
time between successive events. A channel that does not require a clock or timer is a storage chan-
nel. The distinction is important because, without any way for a process to determine the passage
of time, a timing channel disappears. Storage channels, on the other hand, are not affected when
access to a clock is eliminated.

A simple example of a timing channel is the percentage of CPU time available to a process. A
Trojan horse in one process transmits 1’s and 0’s by using up varying fractions of CPU time at 1-
second intervals in a busy loop. The receiving process reads the bits by counting the number of its
own loops that it is able to perform in each interval. If these two processes are the only ones run-
ning on the machine, the receiving process's loop count in each second is a direct function of the
sending process’s CPU utilization. The bandwidth of this channel depends on the range of values
for the loop count that can be predictably communicated.

Timing channels tend to be noisy because they are affected by processes on the system other
than the ones actually communicating. The noisier a channel is, the lower the effective bandwidth
becomes; however, it is usually possible to minimize the noise caused by other processes by run-
ning late at night, when few other processes are running. An effective Trojan horse can choose the
times it runs.

It is often suggested that timing channels be eliminated by removing the ability for a process
to read a clock. Our example above does not work if the receiving process has no time reference.
But even if the receiving process has no direct access to a clock, there are ways for it to determine
passage of time. For example, the process can measure 0.1-second intervals by counting charac-
ters received from a terminal while the user (who is the penetrator on the receiving end) holds
down a repeat key that enters characters at the fixed rate of 10 per second. The process may even
be able to manufacture its own clock by counting the number of disk accesses it can make or the
number of characters it can write to a terminal between specific events to be timed. On multipro-
cessor systems, one process can use program loops to determine time intervals on behalf of
another process. Even if none of these techniques works, the user can always operate a stopwatch
at his or her terminal and count the seconds between events.

Timing channels are insidious for two reasons: there are no formal techniques for finding
them in a system; and there is usually no way to detect their use and hence to audit them. Whereas
storage channels can often be countered by controlling the rate at which specific, identifiable
objects in the system are modified, timing channels do not involve observation of any identifiable
objects.

Computer security technology has little to offer those who wish to find and block timing chan-
nels. Computer security projects to date have failed, by and large, to address the problem in a sys-
tematic way. The best advice for planners designing a new system would be to understand the
timing channel problem from the start of the system design and to be constantly aware of the
threat. Most obvious channels are, uncovered during the design and development process. You
cannot'; completely close many of the channels you find, but at least you will have a good idea of
where they are and can deal with them on an individual basis.

At the current state of the art in secure operating systems, the timing channel is far more diffi-
cult for a penetrator to exploit than many other avenues. Perhaps someday, when these other
routes are closed, we will have better solutions to the timing channel problem.

7.3 TRAP DOORS

The trap door (Karger and Schell 1974) is an illicit piece of software in an operating system that
provides a way for a penetrator to break into the operating system reliably and without detection.
The trap door is activated by a special command or unlikely sequence of events that the penetrator
can cause at will and that no one else is likely to discover by accident. A trap door is only useful
in software that runs with privileges that the penetrator does not otherwise have; otherwise, the
trap door does not give the penetrator anything not already obtainable. For this reason, we usually
think of trap doors in operating systems and not in applications.

A trap door is much like a bug in an operating system that permits a penetration. Indeed, a
penetration might be necessary to install the trap door in the first place. A trap door may also be
installed by a dishonest employee of the vendor of the operating system. The techniques for
inserting trap doors are much like those for inserting Trojan horses, but they are more difficult to
carry out in an operating system.

Unlike Trojan horses and covert channels, trap doors can only be installed by exploiting flaws
in the operating system or by infiltrating the system's development team. Hence, trap doors can be
avoided by employing the usual techniques for developing reliable trusted software: no special
techniques are required.

REFERENCES

Anderson, J. P. 1972. “Computer Security Technology Planning Study.” ESD-TR-73-51, vols. 1
and 2. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
Defense Technical Information Center, Alexandria, Va., DTIC AD-758206.)

The first study to document the government's computer security problem and the proposed
solutions in the form of the reference monitor and the security kernel; now no longer useful as
a primary technical reference, but historically significant.

Cohen, F. 1984. “Computer Viruses: Theory and Experiments.” In Proceedings of the 7th
National Computer Security Conference, pp. 24063. Gaithersburg, Md.: National Bureau of
Standards.

The term virus was first introduced in this paper.

Karger, P. A. 1987. “Limiting the Potential Damage of Discretionary Trojan Horses.” In Proceed-
ings of the 1987 Symposium on Security and Privacy, pp. 32-37. Washington, D.C.: IEEE
Computer Society.

Discusses a technique to limit discretionary Trojan horses on the basis of built-in knowledge
of usage patterns, and provides a good overview of the problem and helpful references to
related techniques.

Karger, P. A., and Schell, R. R. 1974. “Multics Security Evaluation: Vulnerability Analysis.”
ESD-TR-74-193, vol. 2. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also
available through National Technical Information Service, Springfield, Va., NTIS AD-
A001120.)

A discussion of penetrations of Multics, pointing out several classic types of flaws in various
areas; useful as a guide to detecting flaws in other operating systems.

Lampson, B. W. 1973. “A Note on the Confinement Problem.” Communications of the ACM
16(10):613-15.

One of the first papers to discuss covert channels (called confinement or leakage paths) and
techniques for closing them.

Lipner, S. B. 1975. “A Comment on the Confinement Problem.” ACM Operating Systems Review
9(5):192-96.

In response to Lampson's paper, this paper discusses some fundamental problems involved in
attempting to close covert channels in a system with shared resources.

