
Chapter 3
General Concepts

This chapter introduces, at an elementary level, some general concepts of computer security that 
apply to all applications; it also introduces terms that will be used repeatedly in later chapters. 
Many of the topics discussed here will be covered later in more detail.

3.1 INTERNAL AND EXTERNAL SECURITY

Most of this book addresses internal security controls that are implemented within the hardware 
and software of the system. For these internal controls to be effective, however, they must be 
accompanied by adequate external security controls that govern physical access to the system.

External controls cover all activities for maintaining security of the system that the system 
itself cannot address. External controls can be divided into three classes:

• Physical security
• Personnel security
• Procedural security

Physical security controls (locked rooms, guards, and the like) are an integral part of the secu-
rity solution for a central computing facility, but they alone cannot address the security problems 
of multiuser distributed systems. As networking becomes a more and more pervasive part of com-
puting, the role of physical security will continue to diminish. In a large heterogeneous network, it 
is probably impossible to guarantee (and risky to assume) that any system other than your own is 
physically protected.

Personnel security covers techniques that an employer uses in deciding whom to trust with the 
organization's system and with its information. Most governments have procedures whereby a 
level of security clearance is assigned to individuals based on a personal background investigation 
and (possibly) additional measures such as polygraph examinations. These procedures allow the 
government to assign different degrees of trust to different people, depending on the needs of their 
particular job and the depth of their investigation. Personnel screening in industry is far less for-
mal than in government, and people are usually given “all or none” access. Where selective 
access to information is required, it is determined on a case-by-case basis.

Procedural security covers the processes of granting people access to machines, handling 
physical input and output (such as printouts and tapes), installing system software, attaching user 
terminals, and performing countless other details of daily system administration.

Internal and external controls go hand in hand, and it is possible to trade off a control in one 
area for a control in the other. For example, even the most primitive multiuser systems today have 
password protection. The password mechanism is an internal control that obviates the need for 
external controls such as locked terminal rooms. In designing a secure system, we generally strive 
to minimize the need for external controls, because external controls are usually far more expen-



sive to implement. Procedural controls are also notoriously errorprone, since they rely on people 
each time they are invoked.

3.2 THE SYSTEM BOUNDARY AND THE SECURITY PERIMETER

A system is a vague entity that comprises the totality of the computing and communications envi-
ronment over which the developers have some control. Everything inside the system is protected 
by the system, and everything outside it is unprotected (fig. 3-1). What is important is not the 
generic definition of the term system but the definition as it applies in each particular case. In any 
effort to plan for security features, it is crucial to establish a clear understanding of the system 
boundary and to define the threats (originating outside the boundary) against which the system 
must defend itself. You cannot construct a coherent security environment without understanding 
the threats.

Figure 3-1. System Boundary and Security Perimeter. The entities collected inside 
the system are protected by the security-relevant portions within the security perimeter, 
as long as rules about access to the system from the outside are enforced by means of 
external security controls. Rules for access to the security perimeter interface are 
enforced by the internal controls implemented in the security perimeter.



Identifying the system boundary hinges on precisely specifying the interface between the sys-
tem and the outside world. External security controls enforce this interface; and as long as those 
controls are in place, the internal controls protect information within the system against the speci-
fied threats. All bets are off, however, if something that should not be there bypasses the external 
controls and enters the system or if the system is threatened from the outside in an unanticipated 
way.

For example, a user might walk into the machine room and enter commands on the system 
console, or the system administrator might divulge a password to an outsider. These are failures of 
external controls that the system cannot defend against. It may, however, be able to defeat 
attempted incursions by unauthorized terminals, modems, or users who access the system 
remotely, as long as they are constrained to enter the system according to the rules of the system 
interface.

The components inside the system are of two types: those responsible for maintaining the 
security of the system (those, in other words, that are security-relevant), and all others. The secu-
rity-relevant components implement the internal controls. Separating the two types of compo-
nents is an imaginary boundary called the security perimeter. The operating system and computer 
hardware usually lie within the security perimeter; outside the perimeter are user programs, data, 
terminals, modems, printers, and the items that the system controls and protects. The nature of all 
components within the security perimeter must be precisely defined, because a malfunction in any 
one can lead to a security violation; in contrast, the nature of the components outside the perime-
ter is rather arbitrary, subject only to constraints enforced at the time they enter through the sys-
tem boundary. A malfunction within the security perimeter has the effect of expanding the 
security perimeter to the system boundary, causing components previously outside the perimeter 
to become security-relevant.

Just as a precise interface must be identified across the system boundary, a well-defined inter-
face across the security perimeter is crucial, as well. This interface is enforced by the security-rel-
evant components. For example, the list of system calls in an operating system or the electrical 
specifications of a communications line are interfaces into the security perimeter. As long as the 
system boundary is enforced externally, the security perimeter will be maintained by the security-
relevant components. In order to implement the components within the security perimeter, great 
care must go into defining a complete, consistent, and enforceable set of perimeter interface rules.

3.3 USERS AND TRUST

The user is the person whose information the system protects and whose access to information the 
system controls. A person who does not use the system, but who indirectly accesses the system 
through another user, is not a user as far as the system is concerned. For example, if your secretary 
is responsible for reading your electronic mail on your behalf, as well as the mail of others in your 
department, your secretary is the user and, as far as the system is concerned, this same user has 
access to all the mail in the department. You must trust your secretary, in addition to the system, to 
keep your mail separate from that of others.

3.3.1 Protecting the User from Self-betrayal



The system must assume that the user who owns a given piece of data or who has created that 
piece of data, is trusted not to disclose it willfully to another user who should not see it, nor to 
modify it in an inappropriate way. Of course, the user might be tricked into mishandling his data, 
but that's a different threat.

Though it may seem obvious, people often lose sight of the fact that computers cannot possi-
bly protect information if the owner of the information wants to give it away.1 It is in fact possible 
to design a system that does not allow users to give others access to their data, intentionally or 
otherwise; but such a design would be silly, because a person determined to disclose information 
doesn't need a computer to do so. The ability to read a file is tantamount to the ability to give that 
file to someone else.

While it does not make sense to go to great lengths to prevent a user from giving away infor-
mation, it does make sense to ensure that the user knows when he or she is doing so. The access 
controls on the system must have a well-engineered user interface to minimize accidental disclo-
sures.

3.3.2 Identification and Authentication

In order for a system to make meaningful decisions about whether a user should be allowed to 
access a file, the system (and other users must have a means of identifying each user. A unique 
identifier is a name for each user such as a last name, initials, or account number) that everyone 
knows, that nobody can forge or change, and that all access requests can be checked against. The 
identifier must be unique because that is the only way the system can tell users apart. The identi-
fier must be unforgeable so that one user cannot impersonate another.

The act of associating a user (or more accurately, a program running on behalf of a user) with 
a unique identifier is called authentication. The authentication process almost always requires the 
user to enter a password, but some more advanced techniques, such as fingerprint readers, may 
soon be available. The process of identification (associating a user ID with a program) is easy to 
confuse with authentication (associating the real user with the user ID), but it is important to 
maintain the distinction. The system must separate authentication information (passwords) from 
identification information (unique IDs) to the maximum extent possible, because passwords are 
secret and user IDs are public. The password need only be presented when the user first accesses 
the system. Once the unique ID is determined, the system need not refer to the password again. 
The unique ID, on the other hand, is used many times to make access decisions. Since the entire 
security of the system may be based on the secrecy of the passwords, the fewer times and fewer 
places they are used, the less the risk of exposure will be.

Authentication and identification are general concerns that pertain to systems and programs as 
well as to users. Users may need to know which system or which programs on the system they are 
interacting with and they need to obtain this information in a way that cannot be forged by the 

1. Various “copy protection” schemes attempt to prevent the user from copying a file (usually on a medium 
such as a floppy disk) in order to protect copyrighted software, but these schemes address an entirely dif-
ferent threat from the data protection threats that this book is about. (They also don’t work very well.)



system or the programs. Moreover, systems on a network may need to authenticate each other, as 
if each were a user of the other. In many cases, the ability of a program to impersonate another 
program—or of a system to impersonate another system—is a serious security concern. The 
authentication techniques for systems and programs are quite different from those for users. In 
particular, passwords make very poor authenticators for systems and programs because each use 
of a password results in disclosure to the recipient and (therefore) the potential for abuse. Section 
10.4 describes ways that systems and programs identify themselves to users. Section 13.2.2 dis-
cusses system-to-system authentication within a network.

3.4 TRUSTED SYSTEMS

Although users must be trusted to protect data to which they have access, the same is not true for 
the computer programs that they run. Everybody knows that computer programs are not com-
pletely trustworthy. And no matter how much we trust certain users, we cannot let the programs 
they use have total freedom with the data. The best programmers would agree that even their own 
programs can make mistakes. It would be nice (but it is usually impractical) to give programs lim-
ited access rights on a case-by-case basis, depending on what the programs need.

We can group software into three broad categories of trust:

1. Trusted – The software is responsible for enforcing security, and consequently the security 
of the system depends on its flawless operation.

2. Benign – The software is not responsible for enforcing security but uses special privileges 
or has access to sensitive information, so it must be trusted not to violate the rules inten-
tionally. Flaws in benign software are presumed to be accidental, and such flaws are not 
likely to affect the security of the system.

3. Malicious – The software is of unknown origin. From a security standpoint, it must be 
treated as malicious and likely to attempt actively to subvert the system.

The quality of software that falls into each of these groups varies greatly from system to system. 
Most software we use daily is benign, whether the software was written by a good programmer or 
by an incompetent programmer, and whether that software is a system program or an application. 
The software is not trusted because it is not responsible for enforcing security of the system, and it 
is not malicious because the programmer did not intend to deceive the user. Some systems.trust 
software that has received minimal scrutiny, while others consider anything not written by a 
trusted system programmer to be malicious. Hence, one system's trusted software may be as unre-
liable as another system's malicious software.

Within a system, a fine line separates a malicious program from a benign program with many 
bugs: there is no guarantee that a buggy benign program will not give away or destroy data, unin-
tentionally having the same effect as a malicious program. Lacking an objective way to measure 
the difference, we often (but not always) consider both benign and malicious software to be in a 
single category that we call untrusted. This interpretation is especially common in environments 
where extremely sensitive information is handled, and it constitutes a fundamental tenet of the 
security kernel approach to building a secure system.



In most cases, the operating system is trusted and the user programs and applications are not; 
therefore, the system is designed so that the untrusted software cannot cause harm to the operating 
system, even if it turns out to be malicious. A few systems are secure even if significant portions 
of the operating system are not trusted, while others are secure only if all of the operating system 
and a great deal of software outside the operating system are trusted.

When we speak of trusted software in a secure operating system, we are usually talking about 
software that first has been developed by trusted individuals according to strict standards and sec-
ond has been demonstrated to be correct by means of advanced engineering techniques such as 
formal modeling and verification. Our standards for trust in a secure operating system far exceed 
the standards applied to most existing operating systems, and they are considerably more costly to 
implement. Trusting all the software in a large system to this extent is hopeless; hence, the system 
must be structured in a way that minimizes the amount of software needing trust. The trusted soft-
ware is only the portion that is security-relevant and lies within the security perimeter, where a 
malfunction could have an adverse effect on the security of the system. The untrusted software is 
not security-relevant and lies outside the security perimeter: it may be needed to keep the system 
running, but it cannot violate system security.

Within a single system, it is normally not useful to distinguish between different degrees of 
trusted software. Software either is responsible for security or is not. It does no good to assign 
more trust to some security-relevant programs than to others, because any one of them can do 
your system in. Similarly, we usually try to avoid establishing degrees of untrustworthiness. In 
most conventional systems where the security perimeter is not precisely defined, however, it is 
useful to distinguish between benign and malicious programs. In some instances, certain pro-
grams need not work correctly to maintain security of the system, but they nonetheless have the 
potential to cause damage if they are malicious. Such benign programs fall into a gray area strad-
dling the security perimeter.

3.4.1 Trojan Horses

Most people’s model of how malicious programs do their damage involves a user—the penetra-
tor—writing and executing such programs from a remote terminal. Certainly systems do have to 
protect against this direct threat. But another type of malicious program, called the Trojan horse, 
requires no active user at a terminal.

A Trojan horse is a program or subroutine that masquerades as a friendly program and is used 
by trusted people to do what they believe is legitimate work. A Trojan horse may be embedded in 
a wordprocessing program, a compiler, or a game. An effective Trojan horse has no obvious effect 
on the program’s expected output, and its damage may never be detected. A simple Trojan horse 
in a text editor might discreetly make a copy of all files that the user asks to edit, and store the 
copies in a location where the penetrator—the person who wrote the program—can later access 
them. As long as the unsuspecting user can voluntarily and legitimately give away the file, there is 
no way the system can prevent a Trojan horse from doing so, because the system is unable to tell 
the difference between a Trojan horse and a legitimate program. A more clever Trojan horse in a 
text editor need not limit itself to the file the user is trying to edit; any file potentially accessible to 
the user via the editor is accessible to the Trojan horse.



The reason Trojan horses work is because a program run by a user usually inherits the same 
unique ID, privileges, and access rights as the user. The Trojan horse therefore does its dirty work 
without violating any of the security rules of the system—making it one of the most difficult 
threats to counter. Most systems not specifically designed to counter Trojan horses are able to do 
so only for limited environments. Chapter 7 presents a detailed discussion of the problem, along 
with some implications that may seem surprising.

3.5 SUBJECTS, OBJECTS, AND ACCESS CONTROL

All activities within a system can be viewed as sequences of operations on objects. You can usu-
ally think of an object as a file, but in general anything that holds data may be an object, including 
memory, directories, queues, interprocess messages, network packets, input/output (I/O) devices, 
and physical media.

Active entities that can access or manipulate objects are called subjects. At a high level of 
abstraction, users are subjects; but within the system, a subject is usually considered to be a pro-
cess, job, or task, operating on behalf of (and as a surrogate for) the user. I/O devices can be 
treated as either subjects or objects, depending on the observer’s point of view, as we will discuss 
in section 8.5. The concepts of authentication and identification, discussed in section 3.3.2, apply 
to all types of subjects, although authenticating subjects internal to the computer may be implicit. 
It is particularly important that all subjects have an unforgeable unique identifier. Subjects operat-
ing as surrogates for users inherit the unique ID of the user, but in some cases users may invoke 
subjects possessing another user's unique ID.

A computer program residing in memory or stored on disk is treated as an object, like any 
other type of data. But when the program is run, it becomes part of a subject or process. Distin-
guishing between the program and the process is important because the same program may be run 
simultaneously by different processes on behalf of different users, where each process possesses a 
different unique ID. Often we loosely identify a subject as a program rather than as the process in 
which the program executes, but it should usually be clear when we are talking about a running 
program as a subject versus a program as data.

Like subjects, objects should have unique IDs. Not all systems implement explicit unique IDs 
for objects, but doing so is important for a secure system. Section 11.4.2 discusses this topic fur-
ther.

3.5.1 Access Control

The primary purpose for security mechanisms in a computer system is access control, which con-
sists of three tasks:

• Authorization: determining which subjects are entitled to have access to which objects
• Determining the access rights (a combination of access modes such as read, write, exe-

cute, delete, and append)
• Enforcing the access rights



In a computer system, the term access control applies only to subjects and objects within the sys-
tem, not to access to the system by outsiders. Techniques for controlling access to the system from 
outside fall under the topics of user authentication and identification discussed in section 3.3.2. 
Nonetheless, the access controls in a network of systems must deal with outsiders and remote sys-
tems, as well as with subjects inside the system. Network access control is covered in section 
13.3.1.

While systems may implement many types of access modes, security concerns usually center 
on the difference between read and write. In addition, it is occasionally useful to define access 
modes.that distinguish between the ability to delete a file and the ability to write zeros into it (for 
example) or between the ability to write random data anywhere into a file and the ability to 
append information to the end of it only.

Subjects grant or rescind access rights to objects. Usually, a subject that possesses the ability 
to modify the access rights of an object is considered the object's owner, although there may be 
multiple owners. Not all systems explicitly identify an owner; and often subjects other than the 
owner (such as system administrators) have the ability to grant access.

Associated with each object is a set of security attributes used to help determine authorization 
and access rights. A security attribute of an object may be something as simple as two bits of 
information-one for read and one for write-indicating the modes of access that all subjects have to 
the object. On the other hand, a security attribute may be complex, containing a lengthy access 
control list of individual subjects and their access rights to the object. Other examples of security 
attributes of objects are passwords, access bits, and security levels.

Some systems assign security attributes to subjects as well as to objects. These may consist of 
identifiers or security levels that are used, in addition to the subject’s unique ID, as the basis for 
authorization.

Instead of using subject and object attributes as a basis for access control, some systems use 
capability lists. A capability is a key to a specific object: if a subject possesses the capability, it 
may access the object. Subjects may possess very long lists of capabilities. A more detailed dis-
cussion of capability lists is offered in section 6.2.2.

In talking about how access controls are implemented, we need to distinguish between the 
granting of access rights (which happens in advance) and the exercising of rights (which happens 
at the time of access), because security violations do not occur until an improper access takes 
place. For example, placing confidential information into a public file does not cause any harm 
until an unauthorized user reads the file. This distinction may seem rather subtle, but the design of 
some systems forces us to apply certain controls at the time access is granted and certain different 
controls when the access occurs.

3.5.2 Security Policy

In the real world, a security policy describes how people may access documents or other informa-
tion. In order for the policy to be reflected in a computer environment, we must rewrite it using 



terms such as subjects and objects that are meaningful to the computer. Strictly speaking, the com-
puter obeys security properties, while people obey a security policy. We will, however, loosely 
talk about the computer’s security properties as if they were a policy of the computer system. In 
cases where the distinction between security policy and security properties is especially important 
(as when we discuss formal models), we will use more precise terminology.

The computer’s version of the policy consists of a precise set of rules for determining authori-
zation as a basis for making access control decisions. Authorization depends on the security 
attributes of users and information, unique IDs, and perhaps other information about the current 
state of the system. While all systems have security properties, the properties are not always 
explicit, and the policy on which they. are based may be difficult to deduce. Often the policy is a 
hodgepodge of ad hoc rules that have evolved over the years and are inconsistently enforced. 
Lack of a clear policy—and not programming errors—is a major reason why the security controls 
of many systems are flawed. Section 9.5.1 shows how a security policy is converted into security 
properties for a system.


