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4SID Methods

Q Properties

0 They combine tools of System Theory, Numerical Linear Algebra
and Geometry (projections).

O They have their origin in Realization Theory as developed in the
60/70s (Ho & Kalman, 1966).

O They provide reliable state-space models of multivariable LTI
systems directly from input-output data.

O They don’t require iterative optimization procedures - no problems
with local minima, convergence and initialization.
ISIS J. C. Gémez 2




O They don't require a particular (canonical) state-space
realization - numerical conditioning improves.

0 They require a modest computational load in comparison to
traditional identification methods like PEM.

0 The algorithms can be (they have been) efficiently implemented
in software like Matlab.

0 Main computational tools are QR and SVD.

O All subspace methods compute at some stage the subspace
spanned by the columns of the extended observability matrix.

O The various algorithms (e.g., N4SID, MOESP, CVA) differ in the
way the extended observability matrix is estimated and also in
the way it is used to compute the system matrices.
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A The system model

Xpn = AX, + Bu, + Ke, State-space model in
v, =Cx, + Du, +e, innovation form

Q The identification problem

To estimate the system matrices (A, B, C, D) and K, and the
model order n, from an (N+a-1)-point data set of input and
output measurements

{ }N+a—1
Uis Vi Sz
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O Realization-based 4SID Methods

For a LTI system, a minimal state-space realization (A, B, C, D)
completely defines the input-output properties of the system

through B
Vi = thuk_f \ convolution sum
=0

where the impulse response coefficients /%, are related to the
system matrices by

D , /=0
he: -1
cCA B , />0
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_hl h2 h] _
H = hz h3 h]+1 -
;=
_hi hi+1 hi+j—1_
Extended Extended

Impulse Response

Hankel Matrix Observa_bility Controla!bility
Matrix Matrix
(1>n) (1 >n)

An estimate of the extended observability matrix can be computed
by a full rank factorization of the impulse response Hankel matrix.
This factorization is provided by the SVD of matrix H;.
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rank reduction

In the absence of noise, H; will be a rank n matrix, and 2, will
contain the n non-zero singular values — model order is compu-
ted. In the presence of noise, H; will have full rank and a rank
reduction stage will be required for the model order determination.
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Computation of the system matrices

Given estimates fi and Cj of the extended observability
matrix, and the extended controllability matrix, respectively,
estimates of the system matrices can be computed as:

oY

o (C :first row block of fi

S A

e B :first column block of Cj

N

« A :solving in the least squares sense

1"1. = Fl.A\ shift-invariance property
o D - hO
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Problems: it is necessary to measure or to estimate (for example,

via correlation analysis) the impulse response of the system — not
good
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Q Direct 4SID Methods

Y =1 X+HU_ + Nal fundamental equation (1)

B R Output block Hankel matrix
Y = 2o Vs Y (In a similar way are defined the
' S ' Input block Hankel matrix U, and
| Vo Vaur 7 Yiiaa the Noise block Hankel matrix N,.)
P
o4 X =[x,%,, -, xy]
r = | Extended (a > n)
3 Observability Matrix State Sequence Matrix
CcA*™
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D
CB
CAB

CB

| CA“?B CA“’B CA“"B

D

Lower
0 Toeplitz matrix of impulse
responses (unknown).

triangular

block

To derive equation (1), let us consider the case =3 and N = 3.

Then we have

[)Cl R X5 X3 ]
C || Cx Cx, Cx, |
CA ||| CAx, CAx, CAx, |=T X
2
CA” ||| CA’x, CA’x, CA’x,
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7/[1 uZ 7/[3
u, u, u,
u, u, Us
D 0 0 Du, Du, Du,
CB D 0 CBu, + Du, CBu, + Du, CBu, + Du, =HU,
CAB CB D | ||CABu,+CBu,+Du, CABu,+CBu,+ Du, CABu,+CBu,+ Du,
Then, we can see that
r xX+HU,=
Cx, + Du, Cx, +Du, Cx; + Du,
= CAx, + CBu, + Du, CAx, + CBu, + Du, CAx, + CBu, + Du,

CA’x, + CABu, + CBu, + Du,

ISIS

CA’x, + CABu, + CBu, + Du,
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CA’x, + CABu, + CBu, + Du,
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Vi W
' X+HU, =|y,

Vi Vs
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V3

Vs
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d The main idea of Direct 4SID methods
In the absence of noise (N, = 0), eq. (1) becomes

Y, =I,X+H,U,| 2

and the part of the output which does not emanate from the
state can be removed by multiplying (from the right) both sides
of eq. (2) by the orthogonal projection onto the null space of

U, i.e. by
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A - A
I, =I-1U, (UQUZ) 'u, =U: orthogonal projection
suchthat U_U. =0

Y U, = FaXU§| 3)

Note that the matrix on the left depends exclusively on the input-
output data. Then, a full rank factorization of this matrix will
provide an estimate I, of the extended observability matrix.
Estimates of the corresponding system matrices can be obtained by
resorting to the shift invariance property of the extended
observability matrix, and by solving a system of linear equations in

the least squares sense.
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This yields

The factorization is provided by the SVD of the matrix on the left
side

> 0 ||V
Yan; = [Ul Uz{ 01 > :||:I/1T:| ~ UIZIVIT = (UlZl%)(zl%VlT) (4)
2 L7 2 N

rank reduction
(model order estimation)

(In the absence of noise X, = 0)
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Computation of the system matrices

Given an estimate fa of the extended observability matrix,
estimates of the system matrices can be computed as:

N

- first row block of I'

o

. C
. A4

: solving in the least squares sense

I' =1 A4 \ shift-invariance property

- Band D: solving a system of linear equations
Pre-multiply (2) by U2T and post-multiply it by
-1
Uy =U,(U,U;)
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Equation (2) becomes

Ulvyul=UI'T XU +UIH U.U!
= =
=0

U,Y, Ul =U,H, — Linear equations on B and D
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O Presence of noise
In the presence of noise

Y, =[,X+H,U, +N,]|

Y U =T XU, +N U

and

noise term needs to
be removed

The noise term can be removed by correlating it away with a
suitable matrix (Instrumental Variable). This can be interpreted
as an oblique projection.
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For this to work, the noise variables in the output must be uncorrelated
with the Instrumental Variables (IVs).

Let us partition the input and output Hankel matrices into the past and
future parts (somewhat arbitrary names !!)

[ M oy e YN ]
V2 Y3 0 Va
v o 2r e Vwe| N
Ypi1  Vpi2 YNip YF
ya ya+1 yN+a—1
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The model for the future outputs becomes

Y, :FFXF+HFUF+NFI

The first step is to eliminate the input by post-multiplying by U7

(orthogonal projection)

Y. U.=T_X.U;+ NFU;|

Noting that the noise is not correlated to the inputs, and the future
inputs are not correlated to the past outputs, good candidates for
the Vs are the past inputs and outputs.
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Under the assumption of ergodicity, it can be proved that

1
jlvlilgoﬁNFU;Ui 0
.1
ilggoﬁNFU;Yg =0

which imply that the IV matrix

. ) 1
can be used to asymptotically decorrelate the noise from Y. Us
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11mIYUPT—hmlFXUPT+11m1NUPT
N—>ooN N—)ooN N—)ooN

J/

—0

lim — 1 Y. U.P' = lim — 1 r.X . U.P' (5)

N—)ooN N—)ooN

The signal subspace can then be estimated consistently from the n
principal left singular vectors of matrix

1
—Y.U.P'
N FUF
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1 Weighting Matrices

Row and column weighting matrices can be introduced in (5)
before performing the SVD of the matrix in the left hand side. Any
choice of positive-definite weighting matrices W, and W, will result
in consistent estimates of the extended observability matrix.

0 X

0|V
Lwy uiew =[u, U]{ }{ } ~UZV = (Ulzl%)(zl%rff)
N yr S
FF

change of coordinates in state-space

ISIS J. C. Gomez 24




Existing algorithms employ different choices for matrices W, and
W

c!
« MOESP (Verhaegen, 1994).

(6}

2
w.=1I1, W :(iPU;PTj
N

* CVA (Larimore, 1990):
L

Lo o) 1Y
W= YUY, |, W =| S PULP

r c

* N4SID (Van Overschee and de Moor, 1994):

1 e /2
Wo=1, W:(—Pu;PTj (—PPTJ
N N

c
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