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• Most physical processes have a nonlinear behaviour, except in a

limited range where they can be considered linear.

• The performance of controllers designed from a linear approxi-

mation is strongly influenced by a change in the operating point

of the system.

• Nonlinear models are able to describe more accurately the global

behaviour of the system, independently of the operating point.

• Many dynamical systems can be represented by the inter-

connection of static nonlinearities and LTI systems. These models

are called block-oriented nonlinear models.

Introduction

 Motivation for Nonlinear (Subspace) Identification
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• Subspace Methods have been very successful for the identification of 

LTI models in many practical applications.

• Although there is a well developed theory for Subspace Identification

methods for LTI systems, this is not the case for nonlinear systems.

Some recent contributions in this area are: (Verhaegen & Westwick,

1996) in Subspace Identification of Hammersterin and Wiener models,

and (Chen & Maciejowski, 2000) and (Favoreel et al., 1999) in

Subspace Identification of bilinear systems.
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• New subspace algorithms for the simultaneous identification of the

linear and nonlinear parts of multivariable Hammerstein and Wiener

models are presented.

• The proposed algorithms consist basically of two steps: 

Step 1: a standard (linear) subspace algorithm applied to an

equivalent linear system whose inputs (outputs) are filtered (by

the basis functions describing the static nonlinearities)

versions of the original inputs (outputs).

Step 2: a 2-norm minimization problem which is solved via

an SVD.

• Provided the conditions for the consistency of the linear subspace

algorithm used in Step 1 are satisfied, consistency of the estimates can

be guaranteed.

 The new results  (Gomez & Baeyens, 2005)
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Subspace State-Space System IDentification

 They combine tools of System Theory, Numerical Linear Algebra

and Geometry (projections).

 They have their origin in Realization Theory as developed in the 

60/70s (Ho & Kalman, 1966).

 They provide reliable state-space models of multivariable LTI 

systems directly from input-output data.

 They don’t require iterative optimization procedures  no problems 

with local minima, convergence and initialization.

4SID  Methods

 Properties
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 They don’t require a particular (canonical) state-space realization 

numerical conditioning improves.

 They require a modest computational load in comparison to tradi-

tional identification methods like PEM.

 The algorithms can be (they have been) efficiently implemented in

software like Matlab.

Main computational tools are QR and SVD.

 All subspace methods compute at some stage the subspace spanned

by the columns of the extended observability matrix.

 The various algorithms (e.g., N4SID, MOESP, CVA) differ in the way

the extended observability matrix is estimated and also in the way it is

used to compute the system matrices.



LSD - September 2005 J.C. Gómez 9

 The system model
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 The identification problem

To estimate the system matrices (A, B, C, D) and K , and the model

order n, from an (N+α-1)-point data set of input and output

measurements
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Realization-based 4SID Methods
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For a LTI system, a minimal state-space realization (A, B, C, D)

completely defines the input-output properties of the system through

where the impulse response coefficients          are related to the system 

matrices by

convolution sum
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In the absence of noise, Hij will be a rank n matrix, and Σ1 will contain 

the n non-zero singular values    model order is computed. In the 

presence of noise, Hij will have full rank and a rank reduction stage will 

be required for the model order determination.

rank reduction

Problems: it is necessary to measure or to estimate (for example, via 

correlation analysis)  the impulse response of the system  not good
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Direct 4SID Methods
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 The main idea of Direct 4SID methods

In the absence of noise (Nα = 0), eq. (1) becomes

and the part of the output which does not emanate from the state can

be removed by multiplying (from the right) both sides of eq. (2) by the

orthogonal projection onto the null space of Uα, i.e. by

 UXY H (2)
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Note that the matrix on the left depends exclusively on the input-output

data. Then, a full rank factorization of this matrix will provide an

estimate of the extended observability matrix. Estimates of the

corresponding system matrices can be obtained by resorting to the shift

invariance property of the extended observability matrix, and by solving

a system of linear equations in the least squares sense.

(3)

̂

such that



LSD - September 2005 J.C. Gómez 16

The factorization is provided by the SVD of the matrix on the left side
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rank reduction

(model order estimation)

(In the absence of noise Σ2 = 0)

Weighting Matrices

Row and column weighting matrices can be introduced in (4) before 

performing the SVD of the matrix in the left hand side. Any choice of 

positive-definite weighting matrices Wr and  Wc will result in consistent 

estimates of the extended observability matrix.

(4)
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Existing algorithms employ the following choices for matrices Wr and Wc ,

• MOESP (Verhaegen, 1994):  

• CVA (Larimore, 1990):

• N4SID (Van Overschee and de Moor, 1994):
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 Computation of the system matrices

Given an estimate          of the extended observability matrix, estimates 

of the system matrices can be computed as: 
̂

• : first row block of

• : solving in the least squares sense 

Ĉ ̂

Â

Â  shift-invariance property

• solving a system of linear equations :ˆ   and  ˆ DB
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In the presence of noise

 NUXY  H

   UNXUY

and

noise term needs to be 

removed

The noise term can be removed by correlating it away with a suitable 

matrix. This can be interpreted as an oblique projection.

 Presence of noise
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Block-oriented Nonlinear Models

Fig. 4: Hammerstein-Wiener Model (LNL)
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Fig. 3: Hammerstein-Wiener Model (NLN)
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Fig. 1: Hammerstein Model (NL)
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Hammerstein Model Identification

Nonlinear subsystem
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Identification problem: to estimate the unknown parameter matrices

, and A, B, C, and D characterizing the nonlinear and the linear

parts, respectively, and the model order n, from an N-point data set of

observed input-output measurements.
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Defining                              , then                                           , so that Tr ,,1  TT DDBB  
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Let                               have rank s>p, and let its economy size SVD be 

partitioned as
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Identification Algorithm

The subspace algorithm can be summarized as follows.

Step 1: Compute estimates of the system matrices                      , and the 

model order n,  using any available (linear) subspace algorithm, such as 

N4SID, MOESP, CVA.     

Step 2: Based on the estimates                     compute an estimate             of 

matrix           .

Step 3: Compute the SVD of             and its partition as in (4).

Step 4: Compute the estimates of the parameter matrices B, D, and  as

BD̂

BD
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Result 2: Consistency Analysis

N

Under some assumptions on persistency of excitation of the inputs, which 

depend on the particular subspace method used in Step 1 of the algorithm, 

the estimates                         are consistent in the sense that they converge 

to the true values when the number of data points                      .
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Wiener Model Identification

Nonlinear subsystem
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Identification problem: to estimate the unknown parameter matrices 

, and  A, B, C, and D characterizing the nonlinear and the 

linear parts, respectively, and the model order n, from an N-point data set                     

of observed input-output measurements.
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The problem is how to compute estimates of matrices C, D,  and +

from the estimates of  the matrices  
~

 and  ,
~

DC

̂ and  ,ˆ  ,ˆ DC
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argminˆ,ˆ,ˆ DCDCDC

DC




The solution to this optimization problem is provided by the SVD of 

the matrix          

Similarly to what was done for the Hammerstein model the closest, in the 

2-norm sense, estimates                              are such that
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
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Let                                  have rank s>m, and let its economy size SVD 

be partitioned as

)(~̂~̂ pnmrDC 
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and the approximation error is given by
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Result 3

Normalization 

in + provided 

by the SVD
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Identification Algorithm

The subspace algorithm can be summarized as follows.

Step 1: Compute estimates of the system matrices                      , and the 

model order n,  using any available (linear) subspace algorithm, such as 

N4SID, MOESP, CVA.     

Step 2: Compute the SVD of                 and its partition as in (8).

Step 3: Compute the estimates of the parameter matrices C, D, and + as

respectively.
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Simulation Examples

 The True System

002.015.09.0

5.17.0
)(

23

2






zzz

zz
zG

linear subsystem

  432  0263.0 5113.0 0149.0 8589.0 kkkkk uuuuuN  nonlinear subsystem

 The input and noise

input

 
 


cos 4.02.1

1064.0 8








Spectrum of the zero

mean coloured noise

Example 1: Hammerstein Model ID (“academic”)
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0015.0sin 5.00005.0sin

(      white noise with

variance          )
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 The Estimated Nonlinear Subsystem

  432  0260.0 5113.0 0142.0 8589.0ˆ
kkkkk uuuuuN  Estimated nonlinear subsystem

Fig.9: True (blue) and Estimated (green) 

nonlinear characteristic.

 The Estimated Linear Subsystem

 
0014.01495.09002.0

4984.16997.09986.0ˆ
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2




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zzz
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zG Estimated linear subsystem
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 Validation results

Fig. 10: True (green) and Estimated (blue) Output.
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Example 2: Hammerstein Model ID (Binary Distillation Column)

Fig. 11: Schematic representation of the 

distillation column

(Weischedel & McAvoy, 1980)

Input: reflux ratio (u)

Outputs: overhead flow rate (y1)

overhead methanol concentration (y2)

bottom flow rate (y3)

bottom methanol concentration (y4)
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Fig. 12: Left Plot: Estimation (first 1000 points), and validation (remaining 

1000 points) Input Data. Right Plot: Estimation (first 1000 points) and 

Validation (remaining 1000 points) Output Data. 
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Fig. 13: True (blue) and Estimated (red) Outputs (validation data)
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 The Estimated Linear Subsystem

Third order model with eigenvalues at  9726.0 , 9557.0 ,4916.0

 The Estimated Nonlinear Subsystem

Third order polynomial

Fig. 14: Estimated Nonlinear 

Characteristic
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Example 3: Wiener Model ID (pH Neutralization Process)

Fig. 15: Schematic representation of the pH 

Neutralization Process

(Henson & Seborg, 92, 94, 97)

• base: NaOH   acid: HNO3

buffer: NaHCO3

effluent solution

• Manipulated variable: base

flow rate (u1)

• Disturbances: buffer flow rate

(u2) and acid flow rate (u3)

• Output: pH of the effluent

solution (y)

(u3)
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 Simulation Model based on first principles (introducing two reaction 

invariants for each inlet stream)
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Fig. 16: Estimation (first 1000 points) and validation 

(remaining 600 points) input-output data.

 Estimation and Validation data
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 The Estimated Linear Subsystem

Third order model   
9474.08940.29466.2

006.00122.00062.0ˆ
23

2






zzz

zz
zG

Third order polynomial

kkkk yyyyN 9989.00358.00319.0)(ˆ 231 

 The Estimated Nonlinear Subsystem

Fig. 17: Estimated Nonlinear Characteristic.
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Validation results

Fig. 18: True (blue) and estimated (red) Output (Estimation/Validation data).
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Conclusions

• New subspace methods for the simultaneous identification of the
linear and nonlinear parts of multivariable Hammerstein and
Wiener models have been presented.

• The proposed methods make use of a standard (linear) subspace
method followed by a 2-norm minimization problem which is
solved via an SVD.

• The proposed methods generalize all the families of linear
subspace methods to this class of nonlinear models.

• The method provides consistent estimates under the same
conditions on persistency of excitation required by the (linear)
subspace method used as the first step of the algorithm.

• The estimated models are in a format which is suitable for their
use in standard (linear) Model Predictive Control schemes.
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