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0 Metivation for Nonlinear (Subspace) Identification

* Most physical processes have a nonlinear behaviour, except in a
limited range where they can be considered linear.

 The performance of controllers designed from a linear approxi-
mation 1s strongly influenced by a change in the operating point
of the system.

« Nonlinear models are able to describe more accurately the global
behaviour of the system, independently of the operating point.

« Many dynamical systems can be represented by the inter-
connection of static nonlinearities and LTI systems. These models

are called block-oriented nonlinear models.
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« Subspace Methods have been very successful for the identification of
LTI models in many practical applications.

« Although there is a well developed theory for Subspace Identification
methods for LTI systems, this is not the case for nonlinear systems.
Some recent contributions In this area are: (Verhaegen & Westwick,
1996) in Subspace Identification of Hammersterin and Wiener models,
and (Chen & Maciejowski, 2000) and (Favoreel et al., 1999) In
Subspace Identification of bilinear systems.
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0 The new results (Gomez & Baeyens, 2005)

« New subspace algorithms for the simultaneous identification of the

linear and nonlinear parts of multivariable Hammerstein and Wiener
models are presented.

 The proposed algorithms consist basically of two steps:

Step 1: a standard (linear) subspace algorithm applied to an
equivalent linear system whose inputs (outputs) are filtered (by
the basis functions describing the static nonlinearities)
versions of the original inputs (outputs).

Step 2: a 2-norm minimization problem which is solved via
an SVD.

 Provided the conditions for the consistency of the linear subspace
algorithm used in Step 1 are satisfied, consistency of the estimates can
be guaranteed.
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4SID Methods

3 Properties

d They combine tools of System Theory, Numerical Linear Algebra
and Geometry (projections).

 They have their origin in Realization Theory as developed in the
60/70s (Ho & Kalman, 1966).

O They provide reliable state-space models of multivariable LTI
systems directly from input-output data.

 They don’t require iterative optimization procedures = no problems
with local minima, convergence and initialization.
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U They don’t require a particular (canonical) state-space realization -
numerical conditioning improves.

 They require a modest computational load in comparison to tradi-
tional identification methods like PEM.

O The algorithms can be (they have been) efficiently implemented in
software like Matlab.

 Main computational tools are QR and SVD.

 All subspace methods compute at some stage the subspace spanned
by the columns of the extended observability matrix.

O The various algorithms (e.g., N4SID, MOESP, CVA) differ in the way
the extended observability matrix is estimated and also in the way it Is
used to compute the system matrices.
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3 The system model

X = AXy + BU + Ke, State-space model in

y, =Cx, +Du, +e, innovation form

3 The identification problem

To estimate the system matrices (A, B, C, D) and K , and the model
order n, from an (N+a-1)-point data set of Input and output

measurements
N+a—1

{uk » Yk }kzl
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0 Realization-based 4SID Methods

For a LTI system, a minifmal state-space realization (A, B, C, D)
completely defines the input-output properties of the system through

Y = Z hu,_, convolution sum
(=0
where the impulse response coefficients h, are related to the system
matrices by
o D , =0
" |CATB , (>0
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_hl h, h, _
P heoo hy | mmm) H, =TC,
j ] . ", .
hi hi+1 hi+j—1 / \
Extended Extended
[T{pa.;lizlﬁ:r;:;se Observability Controlability
Matrix Matrix
(>n) (>n)

An estimate of the extended observability matrix can be computed by a
full rank factorization of the impulse response Hankel matrix. This
factorization is provided by the SVD of matrix H.
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> 0 !
Hij — [Ul U2] : VlT zUlZlvlT Z(UlZl% )(Z%VJ)
0 %, V

2 _ o ~ J \ ~ J
£ &

J

rank reduction

In the absence of noise, H;; will be a rank n matrix, and 2 will contain
the n non-zero singular values — model order is computed. In the
presence of noise, H;; will have full rank and a rank reduction stage will
be required for the model order determination.

Problems: it IS necessary to measure or to estimate (for example, via
correlation analysis) the impulse response of the system — not good
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2 Direct 4SID Methods

Y =I X+H U +N_  fundamental equation (1)

Yo Yo o Y Output block Hankel matrix
Y, = y? ¥3 y“.'” (In a similar way are defined the
: S : Input block Hankel matrix U, and
Vou Yo ' Yniaa the Noise block Hankel matrix N .)
o -
CA X:[X1’X2"”1XN]
r = . Extended (a > n)
3 Observability Matrix State Sequence Matrix
CAa—l
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D 0 0 - 0

CB D 0 - 0 Lower triangular block
H =| CAB CB D ... 0 Toeplitz matrix of impulse
: : : oo responses (unknown).

CA“*B CA“°B CA“"B --- D

0 The main idea of Direct 4SID methods
In the absence of noise (N, = 0), eq. (1) becomes

Y = X+H U, @

and the part of the output which does not emanate from the state can
be removed by multiplying (from the right) both sides of eq. (2) by the
orthogonal projection onto the null space of U, i.e. by
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A - A
T, =1 - UL(UQUL) ‘U =U" orthogonal projection
suchthat U U~ =1

This yields
Y U =T XU’ (3)

Note that the matrix on the left depends exclusively on the input-output

data. Then, a full rank factorization of this matrix will provide an
estimate 1, of the extended observability matrix. Estimates of the

corresponding system matrices can be obtained by resorting to the shift
invariance property of the extended observability matrix, and by solving
a system of linear equations in the least squares sense.
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The factorization is provided by the SVD of the matrix on the left side

>, 0 ||Vv'
Yaui:[ul Uz]{ 1 } ; zulzlvlT:(Ulzl}é)(zl}évlT) (4)

0 %, _VZT_|

rank reduction
(rmodel order estimation)

(In the absence of noise £, = 0)

J Weighting Matrices

Row and column weighting matrices can be introduced in (4) before
performing the SVD of the matrix in the left hand side. Any choice of
positive-definite weighting matrices W, and W, will result in consistent
estimates of the extended observability matrix.

LSD - September 2005 J.C. GOmez 16



>, 0 |V'
WrYanWc = [Ul Uz{ 01 5 } ' zU121V1T :(Ulzl% )(zl%vlT)
{ 201 Y2

o J/

~~
A
FOC

\ change of coordinates in state-space

Existing algorithms employ the following choices for matrices W, and W_,

-1
« MOESP (Verhaegen, 1994): W =1, W =(1cDHﬂcDTj OIT,
N U, U,

C

- _}/ _}/
- CVA (Larimore, 1990): w =(1Y My, Y, Tj 2’ W :(1CDHL (DTJ |
"N N

a U; a

« N4SID (Van Overschee and de Moor, 1994):
-1

W =1, W =(%®HL CDTj @
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O Computation of the system matrices

N

Given an estimate I of the extended observability matrix, estimates

a

of the system matrices can be computed as:

N

- first row block of I

a

. C
. A

: solving in the least squares sense

I' =1 A shift-invariance property

N

. Band D: solving a system of linear equations
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] Presence of noise
In the presence of noise

Y, =I X+H U_+N_
and

1 1
Y U= X+N U’
noise term needs to be

removed

The noise term can be removed by correlating it away with a suitable
matrix. This can be interpreted as an obligue projection.
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Static Static Static
Nonlinearity LTI System Nonlinearity LTI System  Nonlinearity LTI System

Fig. 3: Hammerstein-Wiener Model (NLN) Fig. 4: Hammerstein-Wiener Model (LNL)
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Yk

Vi ,
Uy N A | B
() CID
Fig. 5. Hammerstein model
LTI subsysterm

Xk+l = AXk +BVk +a)k
yk :ka + DVk + Uy

yk ESRm, Xk ESRn, Vk e%p
Wy Emn, Uy eiRm
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Nonlinear subsystem

Vi = N(Uk):iaigi(uk) 3)

g;(¢):®P - RP,(i=1,---,r) known basis

functions

a, e R (i=1---r) unknown matrix

parameters
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Xk+1_AX|( +ZBC¥ g Uk +a)k

3)—- D), 2 = :
Y = CXy +ZD05 i (U )+ vy

Normalization |o|, =1 _ Identifiability
problem
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| >

—_ _ A
Defining B=[Bay.--Ba,] , B[Day,Da,], Uy =g, (o) 0,7 (we)]
Wy O,
Xk+1:AXk+§Uk +0)k y —
{Yk=ka+I5Uk +0, Uy 1A Ei Vi
CID

Fig. 6: Equivalent LTI system
with input U,
Linear Subspace Algorithms

(N4SID, MOESP,CVA)

Estimates A B,C. D, model order n
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Defining a=|a,---,a, | ,then B=Ba",and D=Da" , so that

A é B
O, = ~|= a'
BD 5 {D}

The problem then Is how to compute estimates of matrices B, D, and «
from the estimate of the matrices B, and D (i.e.,froman estimate of © ;)

It is clear that the closest, in the 2-norm sense, estimates B, D, and &
are such that

(é, Iﬁ,o?):argmim

B,D,o

e

N

The solution to this optimization problem is provided by the SVD of Oy .
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Let ©,, e R™™® have rank s>p, and let its economy size SVD be
partitioned as

A S X, 0|V
Ogp =UZV' :go-iuivi-r :[Ul Uz{ 01 zj{vl;} “)
Wlth Ul em(mm)xp’ V1 ESRFPXD’ and Zl :diag(al’az’...’gp) .
Then _ _ ,
Bl . A B| -
L& |=argmin|@,, —| _ la'|| =UZ,V,),
D B.D . D ,

Normalization
In o provided by
the SVD

and the approximation error is given by
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The subspace algorithm can be summarized as follows.

Step 1: Compute estimates of the system matrices (A, B.C, [~)) ,and the

model order n, using any available (linear) subspace algorithm, such as
N4SID, MOESP, CVA.

Step 2: Based on the estimates B and D compute an estimate ®,, of
matrix Ogp -

A

Step 3: Compute the SVD of ®,, and its partition as in (4).
Step 4: Compute the estimates o he parameter matrices B, D, and « as

respectively.
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Under some assumptions on persistency of excitation of the inputs, which
depend on the particular subspace method used in Step 1 of the algorithm,
the estimates (A, §, C, 5) are consistent In the sense that they converge

to the true values when the number of data points N — oo .

The consistency of B and D , implies that of B, D, and « .
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Uy Al|lB

O

= |

Fig. 7: Wiener model

LTI subsysterm
X = A% + BU + @, (5)
=Cx, +Du, +v, (6)

u R’ x, eR", v, e R”

@, €R", v €R"
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Nonlinear subsystem
=N"(y,) Zag (V) @
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X, = AX, + BU, + o,

(X, = AX, +BU, +®,
(7)) > (6) =4 , 2 L
L i=1
~ A ~ A
CZZ[(Zl,"',ar] ! Yk :[g]-_r(yk)’“.’g:-(yk)].r C:a+C y D:a+D

a+

Normalization ‘ Identifiability

-1 <4—
: problem
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o

Y

) U,

{xk+1 = Ax, +BuU, + o,

T Al B
Yk=CXk+DUk+Uk 5| S

Fig. 8: Equivalent LTI model
with output Y,

Linear Subspace Algorithms
(N4SID, MOESP,CVA)

Estimates A, B, C, D, model order n
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The problem Is how to compute estimates of matrices C, D, and o*
from the estimates of the matrices C, and D

Similarly to what was done for the Hammerstein model the closest, in the
2-norm sense, estimates C, D, andg* are such that

2

2}

[é S} ~a*[C Dl
The solution to this optimization problem is provided by the SVD of
the matrix [é‘ 5}

C,D,a”

(A, ﬁ,&*)zargmin{
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A\ o)
~ ~

Let [C D|eR™™P have rank s>m, and let its economy size SVD
be partitioned as

2 & S £, 0TV
[C D}:UZVT =Y ouv =U, U] o (8)
i=1 O 22 V2

with U, e R™ ", V, e R™P" and ¥, =diag(o,,0,, -, 0, ).
Then

(o?*, [é I5D= argmin

C,D,a”

[5 S}—oﬁ[C D]Zz(ul,zlvlT),
2

\

Normalization
In o* provided

and the approximation error is given by

[é 6}—07[6 [3] =0’
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The subspace algorithm can be summarized as follows.

Step 1: Compute estimates of the system matrices (A, B.C, [~)) , and the

model order n, using any available (linear) subspace algorithm, such as
N4SID, MOESP, CVA.

Step 2: Compute the SVD of [5 5} and its partition as in (8).
Step 3: Compute the estimates of the parameter matrices C, D, and o* as

N

& Bl=zv]
—yUr

respectively.
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J The True System

2 +0.72-15 linear subsystem

G(z) = 3 5
z° +0.9z2° +0.152+0.002

N(u, )=0.8589u, +0.0149u? —0.5113u? —0.0263u;  nonlinear subsystem

J The input and noise
u, =sin(0.00057k )+ 0.5sin(0.00157k )+ input
+0.35in(0.00257% )+ 0.15in (0.00357 ) + 7, (7« white noise with

variance 10°°)

0.64x1078
D, ()

~12-0.4cos(e) Spectrum of the zero

mean coloured noise
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J The Estimated Nonlinear Subsystem
N(u, )=0.8589u, +0.0142u’ —0.5113u} —0.0260u;  Estimated nonlinear subsystem

I:IE T T T T Fy

0.4 r

03r

0.2

0.1

1]

¥

0.1 r
02
03

04} - Fig.9: True (blue) and Estimated (green)

05 ' ' ' ' ' ' ' ' nonlinear characteristic.
-1 -08 OB -04 02 0 0.2 0.4 0.5 0.8 1

J The Estimated Linear Subsystem

2 —_
G(z)= 0.99862° +0.69972 ~1.4954 Estimated linear subsystem

© 7340.9002z% +0.14957 +0.0014
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J Validation results

0.05

0.04

0.03
0.02 +

0.01 -

-0.01 F
-0.02 F
-0.03 F
-0.04 F

-0.05
O

LSD - September 2005

Time [5]

Fig. 10: True (green) and Estimated (blue) Output.
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@rﬁ I ser Input: reflux ratio (u)
- o Outputs: overhead flow rate (y,)

)
—— | Retl d '
eflux (Qyerhiea overhead methanol concentration (y,)
> — bottom flow rate (ys)
Feed bottom methanol concentration (y,)
N

QR

Reboiler

Fig. 11 Schematic representation of the
distillation column

(Weischedel & McAvoy, 1980)

LSD - September 2005 J.C. GOmez 37



Estimation -— | —p Validation Estimation -4— : —p= Validation

25 , 0.02 :
~ om LMHLMNWM
- i

0 ] 10
1 T

2 “‘11" | MENWWW

| 0E 5
- | 0 5 10
0.0z ;

5 m | g 01 AR

0.4
5 = DEWW
1 f 0 :
0 5 10 0 5 10
Time [5] « 10t Time [g] « 10t

Fig. 12: Left Plot: Estimation (first 1000 points), and validation (remaining

1000 points) Input Data. Right Plot: Estimation (first 1000 points) and
Validation (remaining 1000 points) Output Data.
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0.5
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a

0.25

0.2

= 015

0.1

0.05

—p Validation

a 1 2 3 4 5 & 7 g = 10

Time [5] « 10°

Fig. 13: True (blue) and Estimated (red) Outputs (validation data)
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J The Estimated Linear Subsystem
Third order model with eigenvalues at {0.4916,0.9557,0.9726}

J The Estimated Nonlinear Subsystem

18 . S . . Third order polynomial

058

SR

135 1 05 0 05 1| 15 2 Fig. 14: Estimated Nonlinear
Characteristic
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e L) 5y Dse (u1) * base: NaOH acid: HNO;
— ll l buffer: NaHCO,
;PH ()  Manipulated variable: base
v @ flow rate (u,)

e » Disturbances: buffer flow rate
efffuent solution (u,) and acid flow rate (u,)

e Output: pH of the effluent

Fig. 15: Schematic representation of the pH solution (y)
Neutralization Process

(Henson & Seborg, 92, 94, 97)
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QO Simulation Model based on first prineiples (introducing two reaction
Invariants for each inlet stream)
x=1(x)+9(x)u; + p(x)u,
h(x,y)=0

h A
RS T =W, W,

f(x)= [“7 e =), 5 (W )}

T

1 1 !
g(x) = _\7 (Wal —X )’ \7(Wb1 — X, ):l

(1 1 !
D09 =| o Wy =) (W)

1+2x10Y7PKe

“1+10°7Y 410V 7%
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] Estimation and Validation data

Estimation -« ! = Validation

15
16 H -
=
14 H
12 I I I I I I
0 200 400 ROO 800 1000 1200 1400 1R00
Time [z]
I_'lr"q' T T T T ] T T
1
1
1
1
72t ! 1
1
= !
T.-" E -
1
1
1
5 A 1 1 1 1 | 1 1
0 200 400 kOO g0 1000 1200 1400 TR0
Time [s]

Fig. 16: Estimation (first 1000 points) and validation

LSD - September 2005

(remaining 600 points) input-output data.
J.C. GOmez
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O The Estimated Linear Subsystem
&(2) 0.0062z2 —0.01227 +0.006

Third order model =— ;
72°—2.9466z° +2.89402 -0.9474

O The Estimated Nonlinear Subsystem

Third order polynomial

N(y,) =0.0319y? +0.0358y2 +0.9989y,

| | 1 | |
=20 -5 -10 5 o ) 1o 15 20

Fig. 17: Estimated Nonlinear Characteristic.
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O Validation results

Estimation -=— I —- Validation
7.4 I

far

f2r

7.1

b9+

b.or

b7

| 1 1 1 1 1
a 200 400 GO0 a00 1000 1200 1400 1600
Time [g]

Fig. 18: True (blue) and estimated (red) Output (Estimation/Validation data).
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New subspace methods for the simultaneous identification of the
linear and nonlinear parts of multivariable Hammerstein and
Wiener models have been presented.

The proposed methods make use of a standard (linear) subspace
method followed by a 2-norm minimization problem which is
solved via an SVD.

The proposed methods generalize all the families of linear
subspace methods to this class of nonlinear models.

The method provides comnsistent estimates under the same
conditions on persistency of excitation required by the (linear)
subspace method used as the first step of the algorithm.

The estimated models are in a format which Is suitable for their
use in standard (linear) Model Predictive Control schemes.
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