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Abstract

In this paper, new noniterative algorithms for the identification of (multivariable) block-oriented nonlinear models consisting of

the interconnection of linear time invariant systems and static nonlinearities are presented. The proposed algorithms are numerically

robust, since they are based only on least squares estimation and singular value decomposition. Two different block-oriented

nonlinear models are considered in this paper, viz., the Hammerstein model, and the Wiener model. For the Hammerstein model,

the proposed algorithm provides consistent estimates even in the presence of colored output noise, under weak assumptions on the

persistency of excitation of the inputs. For the Wiener model, consistency of the estimates can only be guaranteed in the noise free

case. Key in the derivation of the results is the use of basis functions for the representation of the linear and nonlinear parts of the

models. The performance of the proposed identification algorithms is illustrated through simulation examples of two benchmark

problems drawn from the process control literature, viz., a binary distillation column and a pH neutralization process.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decades, a considerable amount of research

has been carried out on modelling, identification, and

control of nonlinear systems. Most dynamical systems

can be better represented by nonlinear models, which

are able to describe the global behavior of the system

over the whole operating range, rather than by linear

ones that are only able to approximate the system
around a given operating point. One of the most fre-

quently studied classes of nonlinear models are the

so-called block-oriented nonlinear models [1,2], which

consist of the interconnection of linear time invariant

(LTI) systems and static (memoryless) nonlinearities.

Within this class, three of the more common model

structures are:

• the Hammerstein model, which consists of the cas-

cade connection of a static (memoryless) nonlinearity
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followed by a LTI system (see for instance [3] for a
review on identification of Hammerstein models),

• the Wiener model, in which the order of the linear

and the nonlinear blocks in the cascade connection

is reversed (see for instance [4–6] for different meth-

ods for the identification of Wiener models), and

• the feedback block-oriented (FBO) model, which con-

sists of a static nonlinearity in the feedback path

around a LTI system. An identification algorithm
for the estimation of this type of model is presented

in [7], where it is used to represent the phenomenon

of output multiplicity 1 which appears in some distil-

lation processes, and that can not be modelled by

Hammerstein or Wiener models [2].

These model structures have been successfully used to

represent nonlinear systems in a number of practical
applications in the areas of chemical processes [2,3,8,9],

biological processes [10], signal processing [11], com-

munications, and control [12].
1 Output multiplicity is the situation in which more than one steady-

state output value yss corresponds to the same steady-state input value
uss.

mail to: jcgomez@fceia.unr.edu.ar


2 This is actually not a restriction, since it is clear that any

identification algorithm requires some degree of persistency of excita-

tion of the inputs. One can only identify the system modes that are

sufficiently excited by the input and can be observed from the output.
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In particular, in the area of process control, two of

the problems that appear frequently are the control of

distillation processes and pH processes. These have been

recognized as challenging problems due to the highly
nonlinear and time-varying characteristics of the pro-

cesses. Hammerstein and Wiener models have been

successfully used to represent distillation processes and

pH neutralization processes. From an identification

point of view, pH processes have often been considered

in the literature as having a Wiener structure (see for

instance [8,13]). In this structure, the linear block rep-

resents the mixing dynamics of the reagent streams in
the stirring tank reactor (CSTR), while the static non-

linearity represents the nonlinear titration curve which

gives the pH of the effluent solution as a function of the

chemical components. On the other hand, distillation

processes have been modelled using both Hammerstein

and Wiener models (see for instance [2,3,9,14]).

Several techniques have been proposed in the literature

for the identification of Hammerstein and Wiener mod-
els. The reader is referred to [3,15–22], and the references

therein, for identification of Hammerstein models; and to

[4–6,23], and the references therein, for identification of

Wiener models. Although there are well established re-

sults concerning the stability of FBO models [24], less

attention has been paid to the problem of identification

of these model structures (see for instance [2]).

For the purpose of putting into context the present
work, three main approaches for the identification of

Hammerstein and Wiener models will be distinguished.

The first one is the traditional iterative algorithm pro-

posed by Narendra and Gallman in [15] for the identi-

fication of a Hammerstein model. In this algorithm, an

appropriate parametrization of the system allows the

prediction error to be separately linear in each set of

parameters characterizing the linear and the nonlinear
parts. The estimation is then carried out by minimizing

alternatively with respect to each set of parameters, a

quadratic criterion on the prediction errors. An analyt-

ical counterexample by Stoica [20] showed that the ori-

ginal algorithm could be divergent in some particular

cases. A second approach, based on correlation tech-

niques, is introduced in [16–18]. This method relies on a

separation principle, but with the rather restrictive
requirement on the input to be white noise. A more re-

cent approach for the identification of Hammerstein–

Wiener systems has been introduced by Bai in [25]. The

algorithm in [25] is based on least squares estimation

(LSE) and singular value decomposition (SVD), however

it only applies to the single-input/single-output (SISO)

case due to the particular parametrization (the ARX

model in Eq. (1) in [25]) used in that paper. Furthermore,
only polynomial representations of the static nonlinear-

ities can be handled by the algorithm, and consistency of

the estimates can only be guaranteed for the case of the

disturbances being white noise, or in the noise free case.
Due also to the particular parametrization used in [25],

an extension of the results to the MIMO (multiple input,

multiple output) setting does not seem to be straight-

forward. Inspired by the work in [25], G�omez and
Baeyens [26] proposed a noniterative algorithm for the

identification of Hammerstein models, which, in contrast

to [25], applies also to multivariable systems, allows a

more general representation (using basis functions) for

the static nonlinearity, and where the consistency of the

estimates is guaranteed even in the presence of colored

output noise. As in [25], the main computational tools

employed by the algorithm are LSE and SVD, which
results in numerical robustness under weak assumptions

on the persistency of excitation of the inputs. 2 Key on

the derivations of the results in [26] is the use of basis

functions for the representation of the linear and the

nonlinear blocks in the Hammerstein model. The pre-

liminary results in the conference paper [26] are sum-

marized here, since they are used as a paradigm for the

derivation of similar results for the Wiener model.
The use of rational orthonormal bases for the repre-

sentation of LTI systems has come as a natural answer

for the issue of how to incorporate a priori information

on the system dynamics in the identification of black-box

model structures for the systems. Choosing the poles of

the bases close to the (approximately known) system

poles the accuracy of the estimate can be considerably

improved (see [27] for a detailed review on the use of
orthonormal bases in identification of LTI systems). It is

not intended to give here a complete overview on iden-

tification using rational orthonormal bases, and the

reader is referred to [27–32], and the references therein.

An advantage of using orthonormal bases to model LTI

systems is that the input–output equation can be written

as a linear regression. As a consequence, a parameter

estimate can be obtained in closed form by minimizing a
quadratic criterion on the prediction errors (viz., the

least squares estimate). In addition, since the regressors

only depend on past inputs, the estimate is consistent

even if the output is corrupted by colored noise, under

the assumption that the actual system belongs to the

model class (i.e., there is no undermodelling).

In this paper, basis functions are used to represent

both the linear and the nonlinear parts of Hammerstein
and Wiener models. For the Hammerstein model, this

parametrization results in a linear regressor form, so that

least squares techniques can be used to estimate an

oversized parameter matrix. Then, by recurring to SVD

and rank reduction, optimal estimates of the parameter

matrices characterizing the linear and nonlinear parts can

be obtained. For the Wiener model, the parametrization



Fig. 1. Multivariable Hammerstein model.

3 Here, q stands for the forward shift operator, and Hm�n
2 ðTÞ is the

Hardy space of (m� n) transfer matrices whose elements are in H2ðTÞ,
the Hardy space of functions that are square integrable on the unit

circle T, and analytic outside the unit disk. With some abuse of

terminology Hm�n
2 ðTÞ will be referred as the space of all stable, causal,
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also results in a linear regressor from where the param-

eters characterizing the linear and the nonlinear parts can

be estimated using only least squares techniques. A sim-

ilar result can be obtained for the FBO model (see the
conference paper [33]).

In comparison with other works, the proposed algo-

rithms have the following advantages

• They apply to multivariableHammerstein and Wiener

models.

• A more general representation of the static nonlinear-

ity (not limited to polynomial representations) can be
handled by the algorithm.

• No special assumptions on the inputs, other than the

standard persistency of excitation conditions, are re-

quired.

• For the case of the Hammerstein model, the algo-

rithm provides consistent estimates even in the pres-

ence of colored noise. On the other hand, the

consistency of the estimates for the Wiener model
can only be guaranteed in the noise free case.

Even though the proposed identification algorithms

are not application specific, an important area for their

application is, as already mentioned, in the chemical

industry, where Hammerstein and Wiener model struc-

tures have been successfully used to represent nonlinear

processes. In particular, the algorithms proposed here
are suitable for the identification of multivariable, sta-

ble, continuous (as opposed to batch) processes. Since

an input–output model is obtained, no observability

assumptions are required to the processes.

To illustrate the performance of the proposed identi-

fication algorithms, two benchmark processes drawn

from the process control literature are considered in this

paper. Namely, the algorithms are used to estimate
block-oriented nonlinear models for a pH neutralization

process (taken from [34,35]), and for a binary distillation

column considered in [36].

The rest of the paper is organized as follows. In Sec-

tion 2, the multivariable Hammerstein model is intro-

duced, the identification problem is formulated, and the

optimal identification algorithm is derived. The same is

done in Section 3 for multivariable Wiener models.
Simulation examples illustrating the performance of the

algorithms on two benchmark problems are presented in

Section 4, and finally, some concluding remarks are

provided in Section 5.

discrete-time, (m� n) transfer matrices.

4 Any smooth function in an interval can be represented with

arbitrary accuracy by a polynomial of sufficiently high order.
5 The bases are orthonormal in the sense that

hB‘;Bki ¼ d‘k ;

where d‘k is the Kronecker delta, and h�; �i is the standard inner product
in L2ðTÞ, defined as

hB‘;Bki,
1

2p

Z p

	p
B‘ðejxÞBkðejxÞdx:
2. Hammerstein model identification

2.1. Problem formulation

A (multivariable) Hammerstein model is schemati-

cally represented in Fig. 1. The model consists of a zero-
memory nonlinear element Nð�Þ in cascade with a LTI
system with transfer function (matrix) 3 GðqÞ 2
Hm�n
2 ðTÞ. It is assumed that the measured output yk

contains an unknown additive noise component mk.
The input–output relationship is then given by

yk ¼ GðqÞNðukÞ þ mk; ð1Þ
where yk 2 Rm, uk 2 Rn, and mk 2 Rm, are the system
output, input, and measurement noise vectors at time k,
respectively. It will be assumed that the nonlinear block

can be described as

NðukÞ ¼
Xr
i¼1

aigiðukÞ; ð2Þ

where gið�Þ : Rn ! Rn (i ¼ 1; . . . ; r) are known (nonlin-
ear) basis functions, and ai 2 Rn�n (i ¼ 1; . . . ; r) are un-
known matrix parameters. Typically, the nonlinear

functions gið�Þ are polynomials (as for instance in [3])
that allows the representation of smooth nonlinearities, 4

but they can also be radial basis functions (RBF) or basis

functions generated by translations and dilations of a

mother function (e.g., wavelets). It is not the intention of

this paper to give a complete overview of nonlinear
approximation using basis functions, and the reader is

referred to the companion papers [37,38], where a unified

overview of nonlinear black-box modelling using basis

functions, as well as the mathematical foundations be-

hind these modelling approaches are presented.

On the other hand, the LTI system will be represented

using rational orthonormal bases as follows

GðqÞ ¼
Xp	1
‘¼0

b‘B‘ðqÞ; ð3Þ

where b‘ 2 Rm�n are unknown matrix parameters, and

fB‘ðqÞg1‘¼0 are rational orthonormal bases
5 on H2ðTÞ.



6 The inverse exists, provided that the regressors /k are persistently

exciting (PE) in the sense that there exist some integer ‘0, and positive

constants a1 and a2 such that

a2I P
Xk0þ‘0

k¼k0

/k/
T
k P a1I > 0:

7 The 2-norm of a matrix A ¼ ðaijÞðm�nÞ is the norm induced by the

2-norm (or Euclidean norm) of vectors

kAk2 ¼ Supw 6¼0
kAwk2
kwk2

:
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The identification problem is to estimate the un-

known parameter matrices ai (i ¼ 1; . . . ; r) and b‘
(‘ ¼ 0; . . . ; p 	 1) characterizing the nonlinear and the

linear parts, respectively, from an N -point data set
fuk; ykgNk¼1 of observed input–output measurements.
In the following subsection, an optimal identification

algorithm is presented, which is based only in LSE and

SVD. Under weak conditions the algorithm delivers

unbiased estimates of the parameter matrices.

2.2. Identification algorithm

Substituting Eqs. (2) and (3) in (1), the input–output

relationship can be written as

yk ¼
Xp	1
‘¼0

b‘B‘ðqÞ
 ! Xr

i¼1
aigiðukÞ

 !
þ mk ð4Þ

¼
Xp	1
‘¼0

Xr
i¼1

b‘aiB‘ðqÞgiðukÞ þ mk: ð5Þ

It is clear from Eq. (5) that the parametrization (2) and

(3) is not unique, since any parameter matrices b‘a and
a	1ai, for some nonsingular matrix a 2 Rn�n, provide the

same input–output equation (5).

In other words, any identification experiment can

not distinguish between the parameters ðb‘; aiÞ and
ðb‘a; a	1aiÞ. As it is common in the literature [25,39],

these two sets of parameters will be called equivalent. To

obtain a one-to-one parametrization, i.e. for the system

to be identifiable, additional constrains must be imposed

on the parameters. A technique that can be used to

obtain uniqueness is to normalize the parameter matri-

ces ai (or b‘), for instance assuming that kaik2 ¼ 1 (or

kb‘k2 ¼ 1). A similar methodology was employed in [25]
for a scalar Hammerstein–Wiener model. Under this

assumption the parametrization (2) and (3) is unique.

Defining now

h,½b0a1; . . . ; b0ar; . . . ; bp	1a1; . . . ; bp	1ar�T; ð6Þ

/k,½B0ðqÞgT1 ðukÞ; . . . ;B0ðqÞgTr ðukÞ; . . . ;

..

.

Bp	1ðqÞgT1 ðukÞ; . . . ;Bp	1ðqÞgTr ðukÞ�
T
;

ð7Þ

Eq. (5) can be written as

yk ¼ hT/k þ mk; ð8Þ

which is in linear regression form. Considering the N -
point data set, the last equation, and defining

YN,½y1; y2; . . . ; yN �T; ð9Þ

VN,½m1; m2; . . . ; mN �T; ð10Þ

UN,½/1;/2; . . . ;/N �; ð11Þ

the following equation can be written
YN ¼ UT
Nh þ VN : ð12Þ

It is well known [40] that the estimate ĥ that mini-

mizes a quadratic criterion on the prediction errors

�N ¼ YN 	 UT
Nh (that is the least squares estimate) is

given by

ĥ ¼ ðUNUT
NÞ

	1UNYN ¼ Uy
NYN ; ð13Þ

provided the indicated inverse exists 6 [41].

The problem is how to estimate the parameter

matrices ai (i ¼ 1; . . . ; r) and b‘ (‘ ¼ 0; . . . ; p 	 1) from

the estimate ĥ in (13).
From the definition of the parameter matrix h in (6),

it is easy to see that

h ¼ blockvecðHabÞ; ð14Þ

where blockvecðHabÞ is the block column matrix ob-

tained by stacking the block columns of Hab on top of

each other, and where Hab has been defined as

Hab,

aT1 b
T
0 aT1 b

T
1 � � � aT1 b

T
p	1

aT2 b
T
0 aT2 b

T
1 � � � aT2 b

T
p	1

..

. ..
.

� � � ..
.

aTr b
T
0 aTr b

T
1 � � � aTr b

T
p	1

266664
377775 ¼ abT ð15Þ

with the following definitions for the matrices a and b,

a,½a1; a2; . . . ; ar�T; ð16Þ

b,½bT0 ; bT1 ; . . . ; bTp	1�
T
: ð17Þ

An estimate bHab of the matrix Hab can then be obtained

from the estimate ĥ in (13). The problem now is how to

estimate the parameter matrices a and b from the esti-

mate bHab. It is clear that the closest, in the 2-norm
7

sense, estimates â and b̂ are those that solve the fol-
lowing optimization problem

ðâ; b̂Þ ¼ argmin
a;b

fk bHab 	 abTk22g: ð18Þ

The solution to this optimization problem is provided by
the SVD [42] of the matrix bHab. The result is summa-

rized in the following theorem.
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Theorem 1. Let bHab 2 Rnr�mp have rank k > n, and let the
economy-size SVD of bHab be given by

bHab ¼ UkRkV T
k ¼

Xk
i¼1

riuivTi ; ð19Þ

where Rk is a diagonal matrix containing the k nonzero
singular values (ri, i ¼ 1; . . . ; k) of bHab in nonincreasing
order, and where the matrices Uk ¼ ½ u1 u2 � � � uk � 2
Rnr�k and Vk ¼ ½ v1 v2 � � � vk � 2 Rmp�k contain only
the first k columns of the unitary matrices U 2 Rnr�nr and
V 2 Rmp�mp provided by the full SVD of bHab,bHab ¼ URV T; ð20Þ
respectively. 8 Then, the matrices â 2 Rnr�n and b̂ 2 Rmp�n

that minimize the norm k bHab 	 abTk22, are given by

ðâ; b̂Þ ¼ argmin
a;b

fk bHab 	 abTk22g ¼ ðU1; V1R1Þ; ð21Þ

where U1 2 Rnr�n, V1 2 Rmp�n, and R1 ¼ diagfr1; r2;
. . . ; rng are given by the following partition of the econ-
omy-size SVD in (19),

bHab ¼ U1 U2½ � R1 0

0 R2

� 
V T
1

V T
2

� 
; ð22Þ

and the approximation error is given by

k bHab 	 âb̂Tk22 ¼ r2nþ1: ð23Þ
Proof. See Appendix A. h

Based on this result, the nonlinear identification

algorithm can then be summarized as follows.

Algorithm 1

Step 1: Compute the least squares estimate ĥ as in

(13), and the matrix bHab such that

ĥ ¼ blockvecð bHabÞ: ð24Þ
Step 2: Compute the economy-size SVD of bHab as in

Theorem 1, and the partition of this decomposition

as in Eq. (22).

Step 3: Compute the estimates of the parameter

matrices a and b as

â ¼ U1; ð25Þ

b̂ ¼ V1R1; ð26Þ
respectively.
8 In Eq. (20), the matrix R 2 Rnr�mp is given by

R ¼ Rmp

0

� 
; for nrPmp

or

R ¼ Rnr 0½ �; for nr6mp:
Remark 1. It is important to note that the algorithm

intrinsically delivers estimates that satisfy the unique-

ness condition kaik2 ¼ 1, since matrix U1 in the SVD ofbHab is a unitary matrix.

An important issue in any identification method is

that of the consistency of the estimates, i.e., the con-

vergence of the estimated parameters to the true values
as the number of data points N tends to infinity. Sup-

pose that the real system belongs to the model class

(defined by Eqs. (1)–(8)). Therefore, the observed data

have actually been generated by

yk ¼ hT0/k þ m0k ð27Þ

for some sequence fm0kg, where h0 can be considered as
the true parameter vector. Since the regressors /k de-

pend only on past inputs, then they are uncorrelated

from the noise. It is well known [40] that, under these

conditions, the least squares estimate ĥ is strongly con-
sistent, in the sense that ĥ converges (with probability
one) to h0 as N ! 1, under the assumption on persis-

tency of excitation of the regressors (as expressed
in Footnote 6). Moreover, the consistency of the esti-

mate ĥ holds even in the presence of colored noise.
The convergence of the estimate ĥ implies thatbHab ! Hab with probability one as N tends to infinity

(denoted bHab!
a:s:

Hab). Noting now that

kâb̂T 	 abTk22 ¼ kâb̂T 	 bHab þ bHab 	 Habk22;
6 kâb̂T 	 bHabk22 þ k bHab 	 Habk22;
¼ r2nþ1 þ k bHab 	 Habk22;

ð28Þ

and taking into account that Hab is a rank nmatrix, then

kâb̂T 	 abTk22!
a:s:
0

as N tends to infinity. Now, from the uniqueness of the

decomposition abT, it can be concluded that â!a:s:a, and
b̂!a:s:b as N tends to infinity. The result is summarized in

the following theorem.

Theorem 2. Let â and b̂ be computed using the identifi-
cation Algorithm 1. Then, under the uniqueness condition,
and the assumption on persistency of excitation of the
regressors (as expressed in Footnote 6), â!a:s:a, and b̂!a:s:b
as N tends to infinity. The result holds even in the presence
of colored noise.

Remark 2. It is interesting to note that the structure (1)–

(3) of the identified Hammerstein model can be inter-

preted as an equivalent LTI model whose inputs are the

actual inputs uk filtered by the nonlinear basis func-

tions gið�Þ used to represent the static nonlinearity in

the Hammerstein model. This interpretation of the



Fig. 2. Equivalent LTI model.

Fig. 3. Multivariable Wiener model.
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Hammerstein model is illustrated in the block-diagram

of Fig. 2, where for simplicity the SISO case has been

represented. The equivalent LTI model can be used, for

instance, in a standard (i.e., based on a linear model)

model predictive control (MPC) scheme [43]. In this

way, a nonlinear model predictive control (NMPC)
scheme based on a Hammerstein model can be devel-

oped with the same stability and numerical properties of

a standard MPC scheme. In particular, if a quadratic

performance index, and linear constraints are consid-

ered, the optimization algorithm in the NMPC scheme

based on the Hammerstein model retains the convexity

characteristic of linear MPC.
Remark 3. For control purposes, usually a state-space

realization of the identified model is required. A state-

space realization of the identified Hammerstein model
can be constructed resorting to existing results on min-

imal state-space realizations for systems represented

using orthonormal bases (see for instance Chapter 3 in

[27]).
9 As pointed out in [2], this condition exclude the possibility of

representing processes where the phenomenon of input multiplicity is

present (see next footnote).
10 Input multiplicity is the situation in which more than one steady-

state input value uss corresponds to the same steady-state output value
yss.
3. Wiener model identification

3.1. Problem formulation

A (multivariable) Wiener model is schematically de-

picted in Fig. 3. The model consists of the cascade

of a LTI system with transfer function (matrix)
GðzÞ 2 Hm�n

2 ðTÞ, followed by a zero-memory nonlinear
element with input–output characteristic given byNð�Þ.
In this case, yk 2 Rm, uk 2 Rn, and mk 2 Rm, represent the

system output, input, and process noise vectors at time

k, respectively.
As in the case of the Hammerstein model, it will be

assumed that the transfer function matrix GðzÞ of the
LTI subsystem is represented as an orthonormal basis
expansion of the form (3). On the other hand, and as it

is common in most existing identification algorithms

for Wiener models [2,5,8], the nonlinear functionNð�Þ :
Rm ! Rm will be assumed to be invertible, 9;10 and that

its inverse N	1ð�Þ can be described as

N	1ðykÞ ¼
Xr
i¼1

aigiðykÞ; ð29Þ

where now gið�Þ : Rm ! Rm (i ¼ 1; . . . ; r) are known

(nonlinear) basis functions, and ai 2 Rm�m (i ¼ 1; . . . ; r)
are unknown matrix parameters. Without loss of gen-

erality, it will also be assumed that a1 ¼ Im, with Im
standing for the identity matrix of dimensions ðm� mÞ.
The identification problem is to estimate the un-

known parameter matrices ai (i ¼ 2; . . . ; r) and b‘
(‘ ¼ 0; . . . ; p 	 1) characterizing the nonlinear and the
linear parts, respectively, from an N -point data set

fuk; ykgNk¼1 of observed input–output measurements.

3.2. Identification algorithm

The intermediate variable vk in Fig. 3, can be written
as

vk ¼ GðqÞuk þ mk; ð30Þ
and also as

vk ¼ N	1ðykÞ: ð31Þ
Equating the right-hand sides of the above two equa-

tions, and considering the parameterizations (3) and (29)

of the linear and the nonlinear subsystems, respectively,
the following equation is obtained

g1ðykÞ þ
Xr
i¼2

aigiðykÞ ¼
Xp	1
‘¼0

b‘B‘ðqÞuk þ mk; ð32Þ

or equivalently

g1ðykÞ ¼ 	
Xr
i¼2

aigiðykÞ þ
Xp	1
‘¼0

b‘B‘ðqÞuk þ mk; ð33Þ

which is a linear regression. Defining

h,½a2; a3; . . . ; ar; b0; b1; . . . ; bp	1�T; ð34Þ
/k,½	gT2 ðykÞ;	gT3 ðykÞ; . . . ;	gTr ðykÞ;

B0ðqÞuTk ;B1ðqÞuTk ; . . . ;Bp	1ðqÞuTk �
T
; ð35Þ

Eq. (33) can be written as
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g1ðykÞ ¼ hT/k þ mk: ð36Þ
Now, an estimate ĥ of h can be computed by minimizing
a quadratic criterion on the prediction errors �k ¼
g1ðykÞ 	 hT/k (i.e., the least squares estimate). It is well

known [40] that this estimate is given by 11

ĥ ¼ ðUNUT
N Þ

	1UNYN ¼ Uy
NYN ; ð37Þ

where the following definitions have been made

YN,½g1ðy1Þ; g1ðy2Þ; . . . ; g1ðyN Þ�T; ð38Þ

UN,½/1;/2; . . . ;/N �: ð39Þ
Now, estimates of the parameters ai (i ¼ 2; . . . ; r) and b‘
(‘ ¼ 0; . . . ; p 	 1) can be computed by partitioning the

estimate ĥ in (37), according to the definition of h in

(34).
The nonlinear identification algorithm can then be

summarized as follows.

Algorithm 2

Step 1: Compute the least squares estimate of h as in
(37).

Step 2: Compute estimates of the matrices a and b by
partitioning the estimate ĥ obtained in Step 1, accord-
ing to the definition of h in (34).

Remark 4. In this case, the consistency of the estimate ĥ
in (37), can only be guaranteed in the noise free case,
since in the presence of noise the regressors f/kg at time
k will be correlated with the disturbances fmkg at the

same instant, even if the disturbance is a white noise

process [40].

Remark 5. Comments similar to the ones in Remarks 2

and 3 also hold for the identified Wiener model.
4. Simulation examples

To illustrate the performance of the proposed iden-

tification algorithms, two simulation examples drawn

from the process control literature, are provided in this

section.

Example 1 (pH neutralization process). In this example,
Algorithm 2 is used to identify a Wiener model based on

simulation data of a pH neutralization process. The

process consists of an acid (HNO3) stream, a base

(NaOH) stream, and a buffer (NaHCO3) stream that are

mixed in a constant volume (V ) stirring tank. The pro-
cess is schematically depicted in Fig. 4, and corresponds

to a bench-scale plant at the University of California,

Santa Barbara (see [34,35,44]).
11 Provided the indicated inverse exists (see Footnote 6).
The inputs to the system are the (volumetric) base

flow rate (u1), the buffer flow rate (u2), and the acid flow
rate (u3), while the output (y) is the pH of the effluent

solution. The acid flow rate (u3), as well as the volume
(V ) of the tank are assumed to be constant. Usually, the
objective is to control the pH of the effluent solution by

manipulating the base flow rate u1, despite the variations
of the unmeasured buffer flow rate u2.
A simulation model, based on first principles, was

presented in [35] introducing two reaction invariants (one
related to a charge balance and the other to a balance on

the carbonate ion) for each inlet/outlet stream. The
reaction invariants will be denoted here as ðWa1;Wb1Þ,
ðWa2;Wb2Þ, ðWa3;Wb3Þ and ðWa;WbÞ, for the base stream,
the buffer stream, the acid stream, and the effluent

solution, respectively. The model is highly nonlinear due

to the implicit output equation, known as titration curve
(Eq. (46)). The dynamic model for the reaction invari-

ants of the effluent solution ðWa;WbÞ, in state-space

form, is given by [35,44]:

_x ¼ f ðxÞ þ gðxÞu1 þ pðxÞu2; ð40Þ
hðx; yÞ ¼ 0; ð41Þ
where

x,½x1; x2�T ¼ ½Wa;Wb�T; ð42Þ

f ðxÞ ¼ u3
V
ðWa3

h
	 x1Þ;

u3
V
ðWb3 	 x2Þ

iT
; ð43Þ

gðxÞ ¼ 1

V
ðWa1

�
	 x1Þ;

1

V
ðWb1 	 x2Þ

T
; ð44Þ

pðxÞ ¼ 1

V
ðWa2

�
	 x1Þ;

1

V
ðWb2 	 x2Þ

T
; ð45Þ

hðx; yÞ ¼ x1 þ 10y	14 	 10	y þ x2
1þ 2� 10y	pK2

1þ 10pK1	y þ 10y	pK2
:

ð46Þ
The parameters pK1 and pK2 in (46) are the first and

second disassociation constants of the weak acid

H2CO3.

The nominal operating conditions of the system are

given in [34,35,44], and they are reproduced in Table 1

for the sake of completeness.



Table 1

Nominal operating conditions of the pH neutralization process

�u3 ¼ 16:60 ml/s �u2 ¼ 0:55 ml/s

�u1 ¼ 15:55 ml/s V ¼ 2900 ml

Wa1 ¼ 	3:05� 10	3 M Wa2 ¼ 	3� 10	2 M

Wa3 ¼ 3� 10	3 M Wa ¼ 	4:32� 10	4 M

Wb1 ¼ 5� 10	5 M Wb2 ¼ 3� 10	2 M

Wb3 ¼ 0 M Wb ¼ 5:28� 10	4 M

pK1 ¼ 6:35 pK2 ¼ 10:25

�y ¼ 7:0
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Fig. 5. Estimation (first 1000 points) and validation (remaining 600 points) input–output data.

12 CVA: canonical variate analysis.

692 J.C. G�omez, E. Baeyens / Journal of Process Control 14 (2004) 685–697
For the purposes of identification, the model (40) and
(41) was excited with band-limited white noise around

the nominal value of the base flow rate, keeping the

buffer flow rate and the acid flow rate constant in their

nominal values. Changes in the base flow rate were

produced every 10 s, with a maximum amplitude of

±70% of the nominal value. In order to simulate the

more realistic situation of having measurement noise,

the output of the system was corrupted with additive
Gaussian white noise with zero mean and standard

deviation r ¼ 0:001. A set of 1600 data points was col-

lected from the simulation with a sampling time of 1 s.

The first 1000 data were used for the estimation of the

Wiener model, while the following 600 data were used

for validation purposes. The estimation and validation

input–output data are represented in Fig. 5.

The linear subsystem in the Wiener model was rep-
resented using the rational orthonormal bases with fixed

poles (OBFP) studied in [27,28], that have the more

common FIR, Laguerre [29,31], and Kautz [30,31] bases

as special cases. The bases are defined as
B‘ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 jn‘j2

q
q	 n‘

0@ 1AY‘	1
i¼0

1	 niq
q	 ni

� �
; ‘P 1; ð47Þ

B0ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 n0j j2

q
q	 n0

; ð48Þ
and they allow prior knowledge about an arbitrary

number of system modes to be incorporated in the

identification process. By choosing the poles of the bases

(n0; n1; . . . ; np	1), close to the (approximately known)

dominant system poles, the accuracy of the estimation

can be considerably improved with respect to the case of

using FIR, Laguerre or Kautz bases, where the poles

need all to be at the same fixed location [27].
In order to determine the model order of the linear

subsystem, as well as initial guesses for the location of

the poles of the bases, the same input–output data were

used to identify a linear model of the process using a

subspace method. Namely, the CVA 12 algorithm [45] as

implemented by Ljung in the n4sid routine in version 5
of the System Identification Toolbox for use with Mat-

lab (hereafter referred as SIT) [46] was used for the
identification of the linear model. The default option

(�Prediction’) for the �focus’ property of the n4sid routine
was chosen. This option means that the models are

determined by minimizing the prediction errors, and it

corresponds to the optimal weighting from a statistical

variance point of view. To determine the optimal model

order, the default option �best’ was chosen for the input
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argument �order’ of the routine. The algorithm computes

and plots the singular values of the Hankel matrices of

the impulse response for orders in the range 1:10, and
the optimal order, in the sense that the singular values

for higher orders are comparatively smaller, is calcu-

lated. Following this procedure, the resulting optimal

model order was n ¼ 3. The eigenvalues of the transition

matrix of the identified linear model were used as initial

guesses for the location of the poles of the OBFP in the

nonlinear identification algorithm. The final choice for

the location of the poles was {0.9897, 0.9784, 0.9479}.
On the other hand, a third order polynomial was used

to represent the nonlinear static block of the Wiener

model. This choice for the order of the polynomial was a

compromise between model complexity and variance

error (bias-variance trade-off), and the decision was

taken based on the values of Akaike’s Information

theoretic Criterion (AIC) 13 for polynomials with orders

in the range 2:5.
The estimated transfer function of the linear block in

the Wiener model is

where yk denotes the real output, ŷk denotes the output of the model,
and N is the number of validation data [40].

15 The best fit is defined as

bGðzÞ ¼ 0:0049z2 	 0:0094zþ 0:0045

z3 	 2:9160z2 þ 2:8339z	 0:9179
; ð49Þ
FIT ¼ 1

�
	 kY 	 Yvk
kY 	 ymeank

�
� 100;

where Y is a vector containing the output of the model when simulated
with the validation input data, Yv is a vector with the validation output
data, and ymean is the mean value of the output y.
while the estimated static nonlinearity is represented in

Fig. 6. Note that the amplitude of the output signal in

Fig. 5 is large enough to cover the dynamic range of the

static nonlinearity.
13 Akaike’s Information theoretic Criterion is defined as:

AIC ¼ logðV Þ þ 2d
N

;

where V is the loss function, d the number of estimated parameters,
and N the number of validation data [40].
The true and estimated output corresponding to the

identified Wiener model are represented in the left plot

of Fig. 7, while the corresponding to the identified linear

model are represented in the right plot of the same fig-
ure.

For the purposes of comparison between the identi-

fied Wiener and linear models, three different perfor-

mance criteria have been computed. Namely, the mean

square error (MSE), 14 the best fit, 15 and the variance

accounted for (VAF) criterion. 16 The computed values

of these criteria, as well as the total number of estimated

parameters for the identified Wiener and linear models
are shown in Table 2. Clearly, the Wiener model out-

performs the linear model for each of the three consid-

ered criteria.

Example 2 (Binary distillation column). In this example,
Algorithm 1 is used to estimate a Hammerstein model

based on simulation data of a binary distillation column

which separates a mixture of methanol and ethanol. The

column was originally modelled by Weischedel and

McAvoy in [47] based on component mass balances and

steady-state energy balances. The resulting white-box
model consists of a set of coupled nonlinear differential

algebraic equations. In [47], the objective was to study

the feasibility of control decoupling for this particular

column. The column has 27 trays, a reboiler on the

bottom tray and a condenser on the overhead stream.

The column is fed at the 14th tray (counted from the

bottom) with a 50–50% mixture of methanol and etha-

nol. A schematic representation of the process is de-
picted in Fig. 8.

This process represents a benchmark problem that

has been studied by a number of researchers [36,47]. The

inputs to the system are the feed flow rate (u1), the feed
composition (u2), the vapor flow rate (u3), and the reflux
16 The VAF is defined as

VAF ¼ max 1

(
	 Varfy 	 ŷg

Varfyg ; 0

)
� 100%;

where y ¼ fykgNk¼1 denotes the real output sequence, ŷ ¼ fŷkgNk¼1 de-
notes the model output sequence, and Varf�g denotes the variance of
a quasi-stationary signal.
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Fig. 7. Left plot: true (––) and estimated (- - -) output for the identified Wiener model. Right plot: true (––) and estimated (- - -) output for the

identified linear model.

Table 2

Performance criteria for the identified Wiener and linear models

# Parameters MSE FIT VAF (%)

Wiener 5 0.0063 78.1098 96.4950

Linear 17 0.0280 53.7798 78.7740

Table 3

Nominal operating conditions of the distillation column

�u1 ¼ 0:025 m3/s �u2 ¼ 0:5

�u3 ¼ 0:033 m3/s �u4 ¼ 1:75

�y1 ¼ 0:0125 m3/s �y2 ¼ 0:85

�y3 ¼ 0:0125 m3/s �y4 ¼ 0:15

Overhead

Product

Product
Reflux

Reflux
Condenser

Feed

Bottom

Reboiler
Vapor

Fig. 8. Schematic representation of the distillation column.
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ratio (u4). Typically, the manipulated variables are the
reflux ratio (u4) and the vapor flow rate (u3), while the
other inputs are kept constant and their variations

around the nominal values are considered as distur-

bances. This configuration corresponds to the so-called

L-V control scheme [48]. The outputs of the system are

the overhead flow rate (y1), the overhead methanol

composition (y2), the bottom flow rate (y3), and the

bottom methanol composition (y4). The outputs of
interest (i.e., the controlled variables) are the overhead

and the bottom methanol compositions (y2 and y4,
respectively), and typically the control objective is to

achieve a given percentage of methanol composition in

the overhead stream and a given percentage of ethanol

composition in the bottom stream. This is known as

dual composition control problem. In the formulation

considered here, the vapor flow rate is assumed to be
constant and only the reflux ratio is considered as the
manipulated variable. Similar assumptions has been

considered in [2], where the authors estimate Hammer-

stein, Wiener and FBO models for a binary distillation

column with similar characteristics.

The nominal operating conditions of the column

considered in this example are given in Table 3.

For the purposes of identification, the white-box

model of the column was excited with band-limited
white noise around the nominal value of the reflux ratio

(u4), while all the other inputs were kept constant in
their nominal values. Changes in the reflux ratio were

produced every 200 s, with a maximum amplitude of

±100% of the nominal value. A set of 8000 data point

were collected from the simulation with a sampling time

of 1 s. The first 4000 data were used for the estimation of

a Hammerstein model of the column, while the
remaining 4000 data were used for validation purposes.

The estimation and validation data are represented in

Fig. 9.

The linear subsystem in the Hammerstein model was

represented using the same rational OBFP (47) and (48),

as in Example 1, while the static nonlinearity was rep-

resented by a polynomial. A procedure similar to the

one employed in the previous example was used to
determine the optimal model order of the linear sub-

system, initial guesses for the location of the poles of the

basis functions, and the optimal order of the polynomial

representing the static nonlinearity.

As a result of the identification process a sixth order

model was estimated as the linear part of the Ham-

merstein model, with eigenvalues (the chosen poles of

the basis functions) at {0.9988, 0.9958, 0.9935, 0.9846,
0.9835, 0.98}. On the other hand, a third order poly-
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Fig. 10. Left plot: true (––) and estimated (� � �) outputs (y2 and y4) for the identified Hammerstein model. Right plot: true (––) and estimated (� � �)
outputs (y2 and y4) for the identified linear model.
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nomial was used to represent the static nonlinearity. The

true (solid line) and estimated (dotted line) outputs (y2
and y4) for the identified Hammerstein model are rep-
resented in the left plots of Fig. 10, where a good

agreement between them can be observed. The estimated

nonlinear characteristic is represented in Fig. 11. Note

that the amplitude of the input signal in Fig. 9 is large

enough to cover the dynamic range of the static non-
linearity.

For the purposes of comparison, the same input–

output data were used to identify a linear model of the

process using the CVA subspace algorithm [45] as

implemented by Ljung in the SIT [46]. A sixth order

linear model was estimated with eigenvalues at

{0.9940 ± 0.0355i, 0.9969 ± 0.0037i, 0.9892, 0.9990}. The

true (solid line) and estimated (dotted line) outputs (y2
and y4) for the identified linear model are represented in



Table 4

Performance criteria for the identified Hammerstein and linear models

y1 y2 y3 y4

MSE (linear) 0.0091· 10	3 0.6329· 10	3 0.0133· 10	3 0.3287· 10	3
MSE (Hammerstein) 0.0064· 10	3 0.0642· 10	3 0.0011· 10	3 0.0525· 10	3
VAF (linear) 14.3277 36.0207 0 65.0629

VAF (Hammerstein) 40.2700 97.1433 89.4490 96.9223

FIT (linear) 7.4366 19.8203 )20.4021 40.6572

FIT (Hammerstein) 22.5716 74.4696 65.6285 76.2728
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the right plots of Fig. 10. To compare the predictive

capabilities of the identified Hammerstein and linear

models of the column, the same three criteria as in the

previous example were computed. Namely, the MSE,

the VAF and the best fit criteria were computed, and the

results are shown in Table 4. Clearly, the Hammerstein

model outperforms the linear model for each of the three

considered criteria.
5. Concluding remarks

In this paper, noniterative algorithms for the identi-

fication of multivariable Hammerstein, and Wiener

systems have been presented. The proposed algorithms

are numerically robust, since they rely only on LSE and

SVD. For the case of the Hammerstein model, the
algorithm provides consistent estimates under weak

assumptions on the persistency of excitation of the in-

puts, even in the presence of colored noise. For the case

of the Wiener model, consistency of the estimates can be

guaranteed only in the noise free case. The key issue in

the derivation of the results is the representation of the

linear and nonlinear parts of the system using basis

functions which allows to put the system in linear
regressor form. In addition, the use of rational ortho-

normal bases for the representation of the linear sub-

system allows a priori information one can have about

the dominant dynamics, to be incorporated in the

identification process, to improve the estimation accu-

racy. The suitability of the proposed methods for their

use in the identification of pH neutralization processes

and distillation columns has been illustrated through
simulation of two benchmark processes.
Appendix A

Proof of Theorem 1. Let the SVD of the matrix bHab 2
Rnr�mp be given by

bHab ¼
Xk
i¼1

riuivTi ; ðA:1Þ

where k is the rank of bHab. Appealing to Theorem 2.5.2

in [42], the rank-n matrix H 2 Rnr�mp (n < k) which is
closest, in the 2-norm sense, to bHab is given by
H ¼ Hn,

Xn
i¼1

riuivTi ; ðA:2Þ

and the approximation error is given by

k bHab 	 Hnk22 ¼ r2nþ1: ðA:3Þ
Considering now the partition of the economy-size SVD
of bHab in (22), it is clear that

Hn ¼ U1R1V T
1 ¼ ðU1ÞðV1R1ÞT;

what concludes the proof, by equating

â ¼ U1; ðA:4Þ
b̂ ¼ V1R1: � ðA:5Þ
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