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What are the questions/problems?
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Introduction

What are the questions/problems?

What answers do we have/know?
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The Fundamental Theorem of Curves

We know that if v : | — R3 is a curve parametrized by the arc length,
then its unit tangent vector field T = 4/, its unit normal vector field
N =~"/|7"| , where 4" # 0, and its binormal vector field B = T A N
give us all the geometric details about the trace of ~.
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The Fundamental Theorem of Curves

Furthermore, we know that the Frenet frame {T, N, B} satisfies the
ordinary differential system of equations

T = &N,
N = —kT—71B, (Frenet equations)
B = TN,

where x and 7 are, respectively, the curvature and torsion of the curve
5.
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The Fundamental Theorem of Curves

The Fundamental Theorem of Curves

The question:

Given the functions k,7 : | — R, can we guarantee the existence of a
curve v : | — R3 with curvature k and torsion 77 If so, is that curve
unique?
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The Fundamental Theorem of Curves

The answer:

Theorem (Fundamental Theorem of curves in R3)

(1) Existence: Given smooth functions r,7 : | — R so that
k(s) >0, sop € I, po € R® and (T, No, By) a fixed orthonormal
basis of R3, then there exists a unique curve y : | — R3
parametrized by arc length such that v(so) = po, and (To, No, Bo)
is the Frenet frame of y at s = sp.

(2) Uniqueness: Suppose that v, : | — R3 are curves parametrized
by arc length, and ~y,7 have the same curvature function x and
torsion function . Then there exists a rigid motion f : R® — R3
such that 4 = f(7).
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The Fundamental Theorem of Curves

Sketch of the proof.

(1) First, we take the unique solution of the ordinary differential
system of equations

T = &N,
N = —kT-17B, (Frenet equations)
B = TN,

with initial data (T, N, B)(so) = (To, No, Bo). Then, we define
S

7(5):Po+/ T(t)dt, sel.

(1) Existence
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The Fundamental Theorem of Curves

The Fundamental Theorem of Curves

Sketch of the proof.

(2) Let f: R® — R3? be a rigid motion such that f(y(so)) = 5(so) and
f takes the Frenet frame of - into the Frenet frame of 7 at sp.

(2) Uniqueness
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The Fundamental Theorem of Curves

(1) Existence

No

Na

(2) Uniqueness
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The Fundamental Theorem of Submanifolds: the case of
Space Forms
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

We know that if f : U C R? — R3 is a parametrized surface in R® (i.e., U

is an open set and f is an immersion), then the frame {f,, f,, N}, where

foy Ay . . . .
N = I3 Xf e give us all the geometric details about the submanifold

@
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Furthermore, we know that the frame {f,, f,,, N} satisfies the partial
differential system of equations

Foxg Mfife + biN,
NXj - aijf;q-a
for 1 < i,j < 2, where Ff-j- = %<8%,-gf’+ai>gg”78%/g’j g are

the Christoffel symbols, | = gydx;dx; = (f,f;)dx; dx; is the first
fundamental form, Il = bjdx;dx; = (fqx, N)dx;dx; is the second
fundamental form, and aj; = —big" is the matrix of the shape operator
associated to the submanifold f(U).
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The question:

Given the functions gy, b; : U C R2 5 R, for 1 < i,j < 2, with
gi = &i >0, guugn — gs > 0 and bj = bj;, can we guarantee the
existence of a parametrized surface f : U — R3 such that the first and
second fundamental forms of the submanifold f(U) are given by (gj)
and (bj;) respectively? If so, is that submanifold unique?

P

¢ g \

\\\ \\
\/ P
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The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of
Space Forms

The answer: Not yet!
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The answer: Not yet!

We need to keep in mind that in order to solve the partial differential
system of equations

fog = Tk, + byN,
NXJ = aijfxn

for 1 < i,j < 2, and get a surface, we must "obey" the Frobenius
Theorem, which states:
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Theorem (Frobenius Theorem in R3)

Let U C R? and V C R3 be open subsets,
A= (A1,A2,A3), B=(Bi,B>,Bs): UxV — R3smooth maps, uy € U,
and vy € V. Then the following first order system

¢X1 = A(Xla X2, ¢(X1; XZ))
b, = B(x1, %2, ¢(x1,X2))
#(uo) = vo,

has a (unique) smooth solution ¢ in a neighborhood of ug for all possible
up € U and vy € V (fixed) if and only if

0A; 0B;

Ai)x - B = (Bi)«x A, 1<i<3,
( )2+a¢)lj ( )1+a¢11 / 3

hold identically on U x V.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

So if we write the system of equations

f;(,'Xj = rfjﬁ(k + bUN7
NXj = aijﬁ(ia
for1<i,j <2, as
(&17&27/\/))(1 = (f;<17f;<27N)P7
(&17&27N)X2 = (f;q,sz,N)Q,

where P, Q are M3, 3(R)—value maps given in terms of g;; and bj;, then
this system has solution if and only if

Px2_Qx1:PQ_QP::[P7Q]~

This last equation is called the Gauss-Codazzi equation.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Now we have the answer:

Theorem (Bonnet)

Let gijj, b : UCR? R, for1<i,j<2, with

8i = &i >0, gu182» — g122 > 0 and bjj = bj;, be smooth maps
satisfying the Gauss-Codazzi equation. Let (x?,x3) € U, po € R® and
{u1, up, us} a basis for R be given such that u; - u; = gi(x?, x9) and
ui-uz3 =0 for1 < i < 2. Then there exists a neighborhood Uy C U of
(x?,x3) and a unique immersion f : Uy — R3 so that f maps Uy
homeomorphically to f(Uy) such that

(1) the first and second fundamental forms of the submanifold f(Up)
are given by (gjj) and (bjj) respectively,

(2) F(x2,x8) = po, and . (x0,x8) = u; for i = 1,2.
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The Fundamental Theorem of Submanifolds: the case of

Space Forms

Sketch of the proof.

Existence Uniqueness

/\
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f(Us) Y o ~
Rigid motion T(f(Ua))

O
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The Gauss-Codazzi equation (Frobenius condition)

PX270X1:[PvQ]
usually appears as Gauss equation
(M) — (M) + Tl Ty + T5oT 5, — T1i15, — T = —gukK,

_p? . .
where K = % is called the Gauss curvature of the submanifold,
12

and Codazzi equations

(b11)s, — (b12)xy, = g11l1p +g12(M% —M1y) — bool}
(b12)x, — (b22)xs = &11T5 + &12(T35 — [1n) — baol%,.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The main question:

What is the most general situation?
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

We know that if f : M" — W"H is an isometric immersion between
Riemannian manifolds, X, Y, Z, W are tangent to the immersion, 7,(
are normal, and V is the Riemannian connection of M, then the Gauss
equation

RX.Y)Z,W) = (R(X,Y)Z,W)
the Codazzi equation
(RX,Y)Z.m) = (VyB)(X,Z.n) = (VxB)(Y,Z,n),
and the Ricci equation

<ﬁ(X7 Y)Tl, <> = <RJ_(X7 Y)%C) + <[A7]7 AC]X7 Y>7
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

R (resp. I-() = Riemannian tensor curvature of M (resp. !\-A)
R'= normal curvature tensor

A = shape operator

B = second fundamental form

<,> = Riemannian metric (first fundamental form)
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The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of
Space Forms

Remark

In the case of a hypersurface f : M" — WHH, the Ricci equation
(ROX, Y0, €)= (RE(X, Y0, ©) + ([Ag, AX, Y)

disappears and we only have the Gauss and Codazzi equations, as we
saw in the case of surfaces in R3.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Are Gauss, Codazzi and Ricci equations sufficient to guarantee the
. . . .. . —n+k
existence and uniqueness of an isometric immersion f : M" — M 7
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The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of

Space Forms

Are Gauss, Codazzi and Ricci equations sufficient to guarantee the

. . . - . —n+k
existence and uniqueness of an isometric immersion f : M" — M 7

In fact, if we give a Riemannian manifold M, how couﬁ we express
Gauss, Codazzi and Ricci equations for a target manifold M?

k<

The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

—n+k —n+k . . . . . .
When M* = M_ " is a Riemannian manifold with constant secional
curvature c, then the Gauss equation becomes

R(X,Y)Z=c((Y,Z)X —(X,2)Y) + Apiy.2)X — Asx,2) Y,
the Codazzi has the version
(VxB)(Y,Z) = (VyB)(X, 2),
whereas the Ricci equation reduces to

RE(X,Y)n = B(X,A,Y) — B(A,X, Y).
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

In particular, the equations

R(X,Y)Z = c({Y,Z)X —(X,2)Y)+ Apry.2)X — Apx.2)Y
(VxB)(Y,Z) = (VyB)(X,2),
REH(X,Y)n = B(X,AY)—B(A,X,Y),

—ntk . .
hold when Mg is one of the simply connected complete space forms
Qntk, ie., Euclidean space R"*X, the sphere ST or the hyperbolic
space H™*¥, according as ¢ =0, ¢ > 0 or ¢ < 0, respectively.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

"
f
e

S
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The Fundamental Theorem of Submanifolds: the case of Space Forms

Theorem (lsometric immersions into space forms)

(1) Existence: Let M" be a simply connected Riemannian manifold, let
& be a Riemannian vector bundle of rank k over M" with compatible
connection V¢ and curvature tensor R® and let BE be a symmetric
section of Hom(TM x TM, E). For each n € T(£), define
Ai € I(Hom(TM, TM)) by <Af7X, Y) = (B¢(X,Y),n).

Assume that (V€, BE, A R?) satisfies Gauss, Ricci and Codazzi
equations for a fixed space form Q™K. Then, there exist an
isometric immersion f : M"™ — Q"% and a vector bundle isometry
¢ & = TeM~+ such that B = ¢ o B and V+¢ = ¢V°.

(2) Uniqueness: Let f, g : M" — Q™** be isometric immersions.
Assume that there exists a vector bundle isometry
¢: TeM+ — ToM* such that

¢poBrf =B, and ¢’V =8Vig.

Then, there exists an isometry T : Q7tk — Q2 such that Tof = g
and T*|TfMJ‘ = ¢
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

TMXTM
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

What is behind the proof of this theorem?
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

What is behind the proof of this theorem?

When we consider an orthonormal frame {E,}™¥ defined in an open

set U of a Riemannian manifold m" . then its curvature tensor can be
described by the 2-forms {OS}ZE’;I given by

n+k

dob+> 02 N 65 = @b,
c=1

where {6}77F denotes the co-frame dual to {E,}77F, and {65}71%, are
the corresponding connection forms characterized by

n+k
d0® +> 02A0°=0, 05 =-03.
c=1
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

If we consider another orthonormal frame {e, Zif with corresponding

co-frame {w?}71X, connection forms {w?}”, | and curvature forms

{Qg}gj;,k:l, then those differential forms are related by
w= P 'dP+ P loP,
Q=P lOP,
where P-Uc M 5 SOt is the map

n+k
e, = § PLE,.
b=1
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

In particular, when we have an isometric immersion f : M" — W”+k and
{e,}*k is chosen to be adapted to the immersion, that is, in such a way
that, along points of M, the first n fields in this frame are tangent to
M and the other k ones are local sections of the normal bundle T M+,

then
n+k

dwj + > w?Awg=Qj = (P'OP);
c=1
corresponds to Gauss, Codazzi and Ricci equations, considering suitable
ranges of indices a and b.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms
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The Fundamental Theorem of Submanifolds: the case of
Space Forms
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But what if we don't have the immersion f : M" — M
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The Fundamental Theorem of Submanifolds: the case of
Space Forms
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. , . ) —ntk
But what if we don't have the immersion f : M" — M

Go to the realm of vector bundles!
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The idea is the following:

Given a frame {E,}"*X in TM @ & (where & is a vector bundle over M),

a=1
we try to build a smooth map

P:UCM— SOpik,
(which will play the role of producing an adapted frame) such that
P7rdP =w — ),

where A has to be expressed (if possible) in terms of a given data (re-
member that A\ = P~10P when the immersion is given).
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

For solving the equation

PldP = w-— A
P(xx) = Id

we consider on U x SO, the distribution ker L(, 7), where L(, 7) =
w—X—Z71dZ, and use (in the presence of Gauss, Codazzi and Ricci
equations) the Frobenius Theorem (in the context of differential forms)
to get an integral submanifold in U x SO, 1k, which is the graph of a map
P : U — S0O,.k. Finally, the idea is to use the map P : U — 50, «
to build the isometric immersion f : U ¢ M" — f(U) C M (for
example, the graph of f : U C M" — f(U) C M s an integral
submanifold in M x M obtained from a suitable distribution on M x M).
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

U X SOn Vi

graph(P)
graph(f}
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The Fundamental Theorem of Submanifolds: the case of

Space Forms

Remark

In the case of Space Forms, the differential form A = P~10P, which
originally appears in the change of coordinates w = P~*dP + ), can be
expressed in terms of a given data, and the equation

PldP = w-— A
P(x) = Id

is "easily” solved using only Gauss, Codazzi and Ricci equations.
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The Fundamental Theorem of Submanifolds: the case of

Space Forms

Remark

In the case of Space Forms, the differential form A = P~10P, which
originally appears in the change of coordinates w = P~*dP + ), can be
expressed in terms of a given data, and the equation

PldP = w-— A
P(x) = Id

is "easily” solved using only Gauss, Codazzi and Ricci equations.

What about other cases?
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Some other cases

In 2007, Benoit Daniel showed that the Gauss and Codazzi equations
are not sufficient to guarantee the existence of isometric immersions
into 3-dimensional homogeneous manifold with 4-dimensional isometry
group, which includes the spaces Q2 x R (for ¢ # 0) and the Heisenberg
Lie group Nils. In 2009, he obtained a similar result for isometric
immersion into the produt space Q7 x R.

He proved the following results:
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Theorem (B. Daniel, 2007)

Let M? be a simply connected oriented Riemannian manifold, ds? its
metric, V its Riemannian connection and J the rotation of angle % on
TM. Let A be a field of symmetric operators A, : T M — T,M, T a
vector field on M and v a smooth function on M such that

||T||> + v = 1. Let E be a 3-dimensional homogeneous manifold with
4-dimensional isometry group and £ its vertical vector field. Let k be its
base curvature and T its bundle curvature. Then, there exists an isometric
immersion f : M — E such that the shape operator with respect to the
normal N associated to f is df o Ao df ~! and such that £ = df(T) + N
if and only if (ds?, A, T,v) satisfies the Gauss and Codazzi equations for
E and, for all vector fields X on M, the following equations:

VxT =v(AX —7JX), dv(X)+ (AX —7JX, T) =0.

In this case, the immersion is unique up to a global isometry of E
preserving the orientations of both the fibers and the base of the fibration.
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Theorem (B. Daniel, 2009)

Let M" be simply connected oriented Riemannian manifold, ds® its
metric and V its Riemannian connection. Let A be a field of symmetric
operators A, : T,M — T,M, T a vector field on M and v a smooth
function on M such that || T||?> + v = 1. Assume that (ds?, A, T,v)
satisfies the Gauss and Codazzi equations for Q2 x R (with ¢ # 0) and
the following equations:

VxT =vAX, dv(X)=—(SX,T).

Then, there exists an isometric immersion f : M" — Q2 x R such that
the shape operator with respect to the normal N associated to f is given
by df o Ao df =1 and such that 2 = df(T)+ N.

Moreover, the immersion is unique up to a global isometry of Q7 x R
preserving the orientations of both Q7 and R.
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Some other cases
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Some other cases

In 2010, J.H. Lira, R. Tojero and F. Vitério extended to semi-

. ! n n . .
.Rlemanlnlan product .of space form; o X QR L, the isometric
immersion result obtained by B. Daniel.

In 2012, J.H. Lira and M. Melo studied the existence of isometric

immersion into (two-step) Nilpotent Lie groups, which include all
Heisenberg spaces and more generally H-type groups.
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Some other cases

Some other cases

In 2010, J.H. Lira, R. Tojero and F. Vitério extended to semi-

. ! n n . .
.Rlemanlnlan product .of space form; o X QR L, the isometric
immersion result obtained by B. Daniel.

In 2012, J.H. Lira and M. Melo studied the existence of isometric
immersion into (two-step) Nilpotent Lie groups, which include all

Heisenberg spaces and more generally H-type groups.

How does the case of Lie groups work?
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Some other cases

For the case of a two-step nilpotent Lie group N, we use the decompo-
sition of its Lie algebra n = v & 3 with the Lie bracket relations

[o,0] C 3, [3,n] ={0}

to write the co-frame, connection forms and curvature forms associated
to a fixed orthonormal left-invariant frame field

E17 tee 7Ena En+17 e aEn+n/

so that the first n vector are in b and the next n’ ones are in 3. The
additional conditions are given by the tensor Jz : n — n, Z € 3, given
by

Jz=-2VZ.
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Some other cases

The work is done when we denote Ji = Jg,,,, 1 < k < n’, obtain

n+n/
(VW) = "(VENW, E)apth,
I,r=1
where [E, E] = Zi'l'/ ofEy are the structure constants of N, and

write the form A (which is related to a future adapted frame) and the

curvature form associated do the frame {Ea}gif/ in terms of the tensors
J, 1< k<n.
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Some other cases

Some other cases

The work is done when we denote Ji = Jg,,,, 1 < k < n’, obtain

n+n/
(e V, Wy = "(V,ENW,E)opth

I,r=1

?

where [Ej,E;] = Y717 ol Ex are the structure constants of N, and

write the form A (which is related to a future adapted frame) and the
curvature form associated do the frame {E,}7%] in terms of the tensors
Ji, 1 < k < n'. Precisely, the form A comes from the tensor field in N

’
n

1 1
LX. Y. V) = =5 Y (Vo XNY B + 5 D (Y XNV, En)
k=1 k=1

’

1 n
+§ kz_:l<~jkyv V><Xa En+k>7 Xv Y,VG r(TN)»
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Some other cases

and the curvature tensor is the (0,4) covariant tensor Q in N given by
QIX,Y,V,W)=Q(X,Y,V,W)+Q(X,Y,V, W), X,Y,V,WeTl(TN),
where Q; and Q; are the (0,4)—tensor fields given by

Ql(Xa Ya Va W)

(X, WYV, YY) + %(JkY, X)W, V) — %ukv, W) (e V, X)
1 1
2 2
F3UY Ered (TxJOW, V) + S (W, BTy )V, X)

1
4

(W, Enei) (VI V, Y) + SV, B ) (Vx W, Y)

AV BTy W, X) = 2 (X, Enid(Ty JW, V)
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and

QZ(X7 Y7 V7 W) =

n

1< 1
~2 > (Enpi W)(Enyr, V) (i Y, JiX)— > (Entses W) (Enit, X) (Y, V)
KI=1 k=1

1< 1
=3 2 Envie YNEnat, VYW, X) =2 D (Eniies Y ) (Enits X)W, V)
k,1=1 k,l=1

/
n

1 1
2N E o WY Enit VYUX, DY 4= ST By WHE s, Y IX, SV
+4kz/::1< ks W)Y (Enpr, V(I X, i >+4k21::1< ks WY (Enpt, YY) (X, S V)

/
n

1 1
2N E i XM Ens s VW, I 4= ST (Enis X Enmirs Y)W, S V).
+2 kz/::1< ks X)(Enrs V) (W, ) >+4 kZI::1< ks X)(Engt, YY) (LW, S V)
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The theorem is the following:
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Theorem (J.H. Lira, -, 2012)

Let M™ be a Riemannian simply connected manifold and let £ be a real
Riemannian vector bundle with rank m' = n+ n’ — m so that

S =TM @& is a trivial vector bundle. Let V and R be respectively the
compatible connection and curvature tensor in S and V and V¢ the
compatible connections induced in TM and &, respectively. We fix a
global orthonormal frame {E,}7" in S. Define tensors J and Q (as
those defined in a fixed two-step nilpotent Lie group N), and assume that

these fields satisfy the Gauss, Codazzi and Ricci equations
R=Q
and the additional equations
VEuk=—-1/2Jk, k=1,--- 1.

Thus, there exists an isometric immersion f : M — N covered by a
bundle isomorphism ® : £ — TfM~*, where TfM~ is the normal bundle
along f, so that ® is an isometry when restrited to the fibers and satisfies
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Theorem (J.H. Lira, -, 2012)

OVEV = VLoV, X el(TM), V el(€),
OBE(X,Y) =Vexf,Y —f(VxY) = Be(X,Y), X,Y el (TM),

where ¥V and VL denote, respectively, the connections in N and TrM~+
and the covariant symmetric tensor B € T(T*M ® T*M ® &) is defined
by

VxY =VxY +BE(X,Y), X,Y el(TM).

Moreover, if f,g : M — N are isometric immersions such that ®Br = B,
and ®fV+ = &VLo, for an isometry & : TM+ — ToM~+ such that
<f*X7 En+k> = <g*X, En+k>, X < r(TM), k = 1, coo n/

9

and

) )

(V, Enpi) = (S(V), Enii), V € TEMY, k=1, 0
for a fixed left-invariant frame { Ek}Zi’l’l in N, then there exists an

isometry 7 : N — N such that 7o f = g and 7|7, = .
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TMxTM

£ Br

% .
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Remark

The same can be done for a three-step nilpotent Lie group S whose Lie
algebra may be decomposed as

s=300Da,

where a = RH is a one-dimensional factor, with

[Uvb] cs3 [3?0] = {0}7 [373] = {O}a

and the Lie bracket extended to a by the relations

[H, E]= %E, [H,Z] =2,

for E€ v and Z € ;.
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Recently, we found necessary and sufficient conditions for a non-
degenerate arbitrary signature manifold M” to be realized as a subman-
ifold in the large class of warped product manifolds e/ x, QY, where
e==land a:/ CR — RT is the scale factor.

We have proved the following result:
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Theorem (C.A.D. Ribeiro, - ,2017)

Let M" be a semi-Riemannian manifold of index p and E a
semi-Riemannian vector bundle of index q and rank m = N + 1 — n over
M with compatible connection VE and curvature operator RE. Let us
algo give BE a symmetric section in T(T*M ® T*M ® E), £ a section in
F'(E), real numbers c,e € {—1,1} and smooth functions a: | — R* and
7 M — I. We define the vector field T € TM by T = ¢ - grad(n) and,
for each 1) € T(E), we define a section AL € T(T*M ® TM) by
(BE(X,Y),m) = (ALX,Y). Assume that (VE, BE, AF, RE) satisfies
Gauss, Codazzi and Ricci equations for el x, QN, and the additional
equations

a/

(T.T)+(68) =& VxT = (XX, T)) +AEX

vEE =~ (X, T)E - BE(T. X),
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Theorem (C.A.D. Ribeiro, - ,2017)

Then, there exists an isometric immersion f : M" — el x, Q’CV and a
vector bundle isometry ® : E — TeM-~+, such that:
1. 0t =df(T) + ®(&),
2. m=mof, where : el x,QN — I is the projection,
3. Bf = ®o BE o df 1, where By is the second fundamental form of f,
4. Vo = oVE.
Moreover, if f,g : M — el x, QY are isometric immersions such that
®Br = By and oL = &VLo, for an isometry ® : TeM+ — TgMJ-,
then there exists an isometry T : el x, QN — el x, QN such that
Tof =g and 1|1,y = P.
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Muito obrigado!
Thank you very much!

Muchas gracias!
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