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The Fundamental Theorem of Curves

We know that if γ : I → R3 is a curve parametrized by the arc length,
then its unit tangent vector field T = γ′, its unit normal vector field
N = γ′′/|γ′′| , where γ′′ 6= 0, and its binormal vector field B = T ∧ N
give us all the geometric details about the trace of γ.
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The Fundamental Theorem of Curves

Furthermore, we know that the Frenet frame {T ,N,B} satisfies the
ordinary differential system of equations

T ′ = κN,

N ′ = −κT − τB, (Frenet equations)

B ′ = τN,

where κ and τ are, respectively, the curvature and torsion of the curve
γ.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds



Introduction
The Fundamental Theorem of Curves

The Fundamental Theorem of Submanifolds: the case of Space Forms
Some other cases

The Fundamental Theorem of Curves

The question:

Given the functions κ, τ : I → R, can we guarantee the existence of a
curve γ : I → R3 with curvature κ and torsion τ? If so, is that curve
unique?
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The Fundamental Theorem of Curves

The answer:

Theorem (Fundamental Theorem of curves in R3)

(1) Existence: Given smooth functions κ, τ : I → R so that
κ(s) > 0, s0 ∈ I , p0 ∈ R3 and (T0,N0,B0) a fixed orthonormal
basis of R3, then there exists a unique curve γ : I → R3

parametrized by arc length such that γ(s0) = p0, and (T0,N0,B0)
is the Frenet frame of γ at s = s0.

(2) Uniqueness: Suppose that γ, γ̃ : I → R3 are curves parametrized
by arc length, and γ, γ̃ have the same curvature function κ and
torsion function τ . Then there exists a rigid motion f : R3 → R3

such that γ̃ = f (γ).
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The Fundamental Theorem of Curves

Sketch of the proof.

(1) First, we take the unique solution of the ordinary differential
system of equations

T ′ = κN,

N ′ = −κT − τB, (Frenet equations)

B ′ = τN,

with initial data (T ,N,B)(s0) = (T0,N0,B0). Then, we define

γ(s) = p0 +

∫ s

s0

T (t) dt, s ∈ I .

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds



Introduction
The Fundamental Theorem of Curves

The Fundamental Theorem of Submanifolds: the case of Space Forms
Some other cases

The Fundamental Theorem of Curves

Sketch of the proof.

(2) Let f : R3 → R3 be a rigid motion such that f (γ(s0)) = γ̃(s0) and
f takes the Frenet frame of γ into the Frenet frame of γ̃ at s0.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

We know that if f : U ⊂ R2 → R3 is a parametrized surface in R3 (i.e., U
is an open set and f is an immersion), then the frame {fx1 , fx2 ,N}, where

N =
fx1
∧fx2

||fx1
∧fx2
|| , give us all the geometric details about the submanifold

f (U).
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Furthermore, we know that the frame {fx1 , fx2 ,N} satisfies the partial
differential system of equations

fxixj = Γk
ij fxk + bijN,

Nxj = aij fxi ,

for 1 ≤ i , j ≤ 2, where Γk
ij = 1

2

(
∂
∂xi

gjl + ∂
∂xj

gil − ∂
∂xl

gij
)
g lk are

the Christoffel symbols, I = gijdxi dxj = 〈fxi , fxj 〉dxi dxj is the first
fundamental form, II = bijdxi dxj = 〈fxixj ,N〉dxi dxj is the second
fundamental form, and aij = −bikgkj is the matrix of the shape operator
associated to the submanifold f (U).
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The question:

Given the functions gij , bij : U ⊂ R2 → R, for 1 ≤ i , j ≤ 2, with
gij = gji > 0, g11g22 − g2

12 > 0 and bij = bji , can we guarantee the
existence of a parametrized surface f : U → R3 such that the first and
second fundamental forms of the submanifold f (U) are given by (gij)
and (bij) respectively? If so, is that submanifold unique?
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The answer: Not yet!

We need to keep in mind that in order to solve the partial differential
system of equations {

fxixj = Γk
ij fxk + bijN,

Nxj = aij fxi ,

for 1 ≤ i , j ≤ 2, and get a surface, we must ”obey” the Frobenius
Theorem, which states:
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Theorem (Frobenius Theorem in R3)

Let U ⊂ R2 and V ⊂ R3 be open subsets,
A = (A1,A2,A3), B = (B1,B2,B3) : U ×V → R3 smooth maps, u0 ∈ U,
and v0 ∈ V . Then the following first order system φx1 = A(x1, x2, φ(x1, x2))

φx2 = B(x1, x2, φ(x1, x2))
φ(u0) = v0,

has a (unique) smooth solution φ in a neighborhood of u0 for all possible
u0 ∈ U and v0 ∈ V (fixed) if and only if

(Ai )x2 +
∂Ai

∂φj
Bj = (Bi )x1 +

∂Bi

∂φj
Aj , 1 ≤ i ≤ 3,

hold identically on U × V .
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

So if we write the system of equations

fxixj = Γk
ij fxk + bijN,

Nxj = aij fxi ,

for 1 ≤ i , j ≤ 2, as

(fx1 , fx2 ,N)x1 = (fx1 , fx2 ,N)P,

(fx1 , fx2 ,N)x2 = (fx1 , fx2 ,N)Q,

where P,Q are M3×3(R)−value maps given in terms of gij and bij , then
this system has solution if and only if

Px2 − Qx1 = PQ − QP := [P,Q].

This last equation is called the Gauss-Codazzi equation.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Now we have the answer:

Theorem (Bonnet)

Let gij , bij : U ⊂ R2 → R, for 1 ≤ i , j ≤ 2, with
gij = gji > 0, g11g22 − g2

12 > 0 and bij = bji , be smooth maps
satisfying the Gauss-Codazzi equation. Let (x0

1 , x
0
2 ) ∈ U, p0 ∈ R3 and

{u1, u2, u3} a basis for R3 be given such that ui · uj = gij(x
0
1 , x

0
2 ) and

ui · u3 = 0 for 1 ≤ i ≤ 2. Then there exists a neighborhood U0 ⊂ U of
(x0

1 , x
0
2 ) and a unique immersion f : U0 → R3 so that f maps U0

homeomorphically to f (U0) such that

(1) the first and second fundamental forms of the submanifold f (U0)
are given by (gij) and (bij) respectively,

(2) f (x0
1 , x

0
2 ) = p0, and fxi (x

0
1 , x

0
2 ) = ui for i = 1, 2.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Sketch of the proof.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Remark

The Gauss-Codazzi equation (Frobenius condition)

Px2 − Qx1 = [P,Q]

usually appears as Gauss equation

(Γ2
12)x1 − (Γ2

11)x2 + Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ2
11Γ2

22 − Γ1
11Γ2

12 = −g11K ,

where K =
b11b22−b2

12

g11g22−g2
12

is called the Gauss curvature of the submanifold,

and Codazzi equations

(b11)x2 − (b12)x1 = g11Γ1
12 + g12(Γ2

12 − Γ1
11)− b22Γ2

11

(b12)x2 − (b22)x1 = g11Γ1
22 + g12(Γ2

22 − Γ1
12)− b22Γ2

12.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The main question:

What is the most general situation?
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

We know that if f : Mn → M
n+k

is an isometric immersion between
Riemannian manifolds, X ,Y ,Z ,W are tangent to the immersion, η, ζ
are normal, and ∇ is the Riemannian connection of M, then the Gauss
equation

〈R(X ,Y )Z ,W 〉 = 〈R(X ,Y )Z ,W 〉
−〈B(Y ,W ),B(X ,Z )〉+ 〈B(X ,W ),B(Y ,Z )〉,

the Codazzi equation

〈R(X ,Y )Z , η〉 = (∇YB)(X ,Z , η)− (∇XB)(Y ,Z , η),

and the Ricci equation

〈R(X ,Y )η, ζ〉 = 〈R⊥(X ,Y )η, ζ〉+ 〈[Aη,Aζ ]X ,Y 〉,

hold.
Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Remark

In the case of a hypersurface f : Mn → M
n+1

, the Ricci equation

〈R(X ,Y )η, ζ〉 = 〈R⊥(X ,Y )η, ζ〉+ 〈[Aη,Aζ ]X ,Y 〉

disappears and we only have the Gauss and Codazzi equations, as we
saw in the case of surfaces in R3.
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Are Gauss, Codazzi and Ricci equations sufficient to guarantee the

existence and uniqueness of an isometric immersion f : Mn → M
n+k

?

In fact, if we give a Riemannian manifold M, how could we express
Gauss, Codazzi and Ricci equations for a target manifold M?

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

When M
n+k

= M
n+k

c is a Riemannian manifold with constant secional
curvature c , then the Gauss equation becomes

R(X ,Y )Z = c (〈Y ,Z 〉X − 〈X ,Z 〉Y ) + AB(Y ,Z)X − AB(X ,Z)Y ,

the Codazzi has the version

(∇⊥XB)(Y ,Z ) = (∇⊥YB)(X ,Z ),

whereas the Ricci equation reduces to

R⊥(X ,Y )η = B(X ,AηY )− B(AηX ,Y ).

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

In particular, the equations

R(X ,Y )Z = c (〈Y ,Z 〉X − 〈X ,Z 〉Y ) + AB(Y ,Z)X − AB(X ,Z)Y ,

(∇⊥XB)(Y ,Z ) = (∇⊥YB)(X ,Z ),

R⊥(X ,Y )η = B(X ,AηY )− B(AηX ,Y ),

hold when M
n+k

c is one of the simply connected complete space forms
Qn+k

c , i.e., Euclidean space Rn+k , the sphere Sn+k
c or the hyperbolic

space Hn+k
c , according as c = 0, c > 0 or c < 0, respectively.
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Theorem (Isometric immersions into space forms)

(1) Existence: Let Mn be a simply connected Riemannian manifold, let
E be a Riemannian vector bundle of rank k over Mn with compatible
connection ∇E and curvature tensor RE and let BE be a symmetric
section of Hom(TM × TM, E). For each η ∈ Γ(E), define
AEη ∈ Γ(Hom(TM,TM)) by 〈AEηX ,Y 〉 = 〈BE(X ,Y ), η〉.
Assume that (∇E ,BE ,AE ,RE) satisfies Gauss, Ricci and Codazzi
equations for a fixed space form Qn+k

c . Then, there exist an
isometric immersion f : Mn → Qn+k

c and a vector bundle isometry
φ : E → TfM

⊥ such that Bf = φ ◦ BE and ∇⊥φ = φ∇E .
(2) Uniqueness: Let f , g : Mn → Qn+k

c be isometric immersions.
Assume that there exists a vector bundle isometry
φ : TfM

⊥ → TgM
⊥ such that

φ ◦ Bf = Bg and φf∇⊥ = g∇⊥φ.

Then, there exists an isometry τ : Qn+k
c → Qn+k

c such that τ ◦ f = g
and τ∗|Tf M⊥ = φ.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

What is behind the proof of this theorem?

When we consider an orthonormal frame {Ea}n+k
a=1 defined in an open

set U of a Riemannian manifold M
n+k

, then its curvature tensor can be
described by the 2-forms {Θb

a}n+k
a,b=1 given by

dθba +
n+k∑
c=1

θbc ∧ θca = Θb
a ,

where {θa}n+k
a=1 denotes the co-frame dual to {Ea}n+k

a=1 , and {θba}n+k
a,b=1 are

the corresponding connection forms characterized by

dθa +
n+k∑
c=1

θac ∧ θc = 0, θba = −θab.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds



Introduction
The Fundamental Theorem of Curves

The Fundamental Theorem of Submanifolds: the case of Space Forms
Some other cases

The Fundamental Theorem of Submanifolds: the case of
Space Forms

What is behind the proof of this theorem?

When we consider an orthonormal frame {Ea}n+k
a=1 defined in an open

set U of a Riemannian manifold M
n+k

, then its curvature tensor can be
described by the 2-forms {Θb

a}n+k
a,b=1 given by

dθba +
n+k∑
c=1

θbc ∧ θca = Θb
a ,

where {θa}n+k
a=1 denotes the co-frame dual to {Ea}n+k

a=1 , and {θba}n+k
a,b=1 are

the corresponding connection forms characterized by

dθa +
n+k∑
c=1

θac ∧ θc = 0, θba = −θab.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds



Introduction
The Fundamental Theorem of Curves

The Fundamental Theorem of Submanifolds: the case of Space Forms
Some other cases

The Fundamental Theorem of Submanifolds: the case of
Space Forms

If we consider another orthonormal frame {ea}n+k
a=1 with corresponding

co-frame {ωa}n+k
a=1 , connection forms {ωb

a}na,b=1 and curvature forms

{Ωb
a}n+k

a,b=1, then those differential forms are related by

ω = P−1dP + P−1θP,

Ω = P−1ΘP,

where P : U ⊂ M
n+k → SOn+k is the map

ea =
n+k∑
b=1

Pb
a Eb.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

In particular, when we have an isometric immersion f : Mn → M
n+k

and
{ea}n+k

a=1 is chosen to be adapted to the immersion, that is, in such a way
that, along points of M, the first n fields in this frame are tangent to
M and the other k ones are local sections of the normal bundle TfM

⊥,
then

dωa
b +

n+k∑
c=1

ωa
c ∧ ωc

b = Ωa
b = (P−1ΘP)ab

corresponds to Gauss, Codazzi and Ricci equations, considering suitable
ranges of indices a and b.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

But what if we don’t have the immersion f : Mn → M
n+k

?
Go to the realm of vector bundles!

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

The idea is the following:

Given a frame {Ea}n+k
a=1 in TM ⊕E (where E is a vector bundle over M),

we try to build a smooth map

P : U ⊂ M → SOn+k ,

(which will play the role of producing an adapted frame) such that

P−1dP = ω − λ,

where λ has to be expressed (if possible) in terms of a given data (re-
member that λ = P−1θP when the immersion is given).

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

For solving the equation{
P−1dP = ω − λ
P(x0) = Id

we consider on U × SOn+k the distribution ker L(x,Z), where L(x,Z) =
ω − λ − Z−1dZ , and use (in the presence of Gauss, Codazzi and Ricci
equations) the Frobenius Theorem (in the context of differential forms)
to get an integral submanifold in U×SOn+k , which is the graph of a map
P : U → SOn+k . Finally, the idea is to use the map P : U → SOn+k

to build the isometric immersion f : U ⊂ Mn → f (U) ⊂ M
n+k

(for

example, the graph of f : U ⊂ Mn → f (U) ⊂ M
n+k

is an integral
submanifold in M×M obtained from a suitable distribution on M×M).

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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The Fundamental Theorem of Submanifolds: the case of
Space Forms

Remark

In the case of Space Forms, the differential form λ = P−1θP, which
originally appears in the change of coordinates ω = P−1dP + λ, can be
expressed in terms of a given data, and the equation{

P−1dP = ω − λ
P(x0) = Id

is ”easily” solved using only Gauss, Codazzi and Ricci equations.

What about other cases?

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds
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Some other cases

In 2007, Benoit Daniel showed that the Gauss and Codazzi equations
are not sufficient to guarantee the existence of isometric immersions
into 3-dimensional homogeneous manifold with 4-dimensional isometry
group, which includes the spaces Q2

c ×R (for c 6= 0) and the Heisenberg
Lie group Nil3. In 2009, he obtained a similar result for isometric
immersion into the produt space Qn

c × R.

He proved the following results:
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Theorem (B. Daniel, 2007)

Let M2 be a simply connected oriented Riemannian manifold, ds2 its
metric, ∇ its Riemannian connection and J the rotation of angle π

2 on
TM. Let A be a field of symmetric operators Ay : TyM → TyM, T a
vector field on M and ν a smooth function on M such that
||T ||2 + ν2 = 1. Let E be a 3-dimensional homogeneous manifold with
4-dimensional isometry group and ξ its vertical vector field. Let κ be its
base curvature and τ its bundle curvature. Then, there exists an isometric
immersion f : M → E such that the shape operator with respect to the
normal N associated to f is df ◦ A ◦ df −1 and such that ξ = df (T ) + N
if and only if (ds2,A,T , ν) satisfies the Gauss and Codazzi equations for
E and, for all vector fields X on M, the following equations:

∇XT = ν(AX − τJX ), dν(X ) + 〈AX − τJX ,T 〉 = 0.

In this case, the immersion is unique up to a global isometry of E
preserving the orientations of both the fibers and the base of the fibration.

Prof. Marcos Melo The Fundamental Theorem of Curves and Submanifolds



Introduction
The Fundamental Theorem of Curves

The Fundamental Theorem of Submanifolds: the case of Space Forms
Some other cases

Theorem (B. Daniel, 2009)

Let Mn be simply connected oriented Riemannian manifold, ds2 its
metric and ∇ its Riemannian connection. Let A be a field of symmetric
operators Ay : TyM → TyM, T a vector field on M and ν a smooth
function on M such that ||T ||2 + ν2 = 1. Assume that (ds2,A,T , ν)
satisfies the Gauss and Codazzi equations for Qn

c × R (with c 6= 0) and
the following equations:

∇XT = νAX , dν(X ) = −〈SX ,T 〉.

Then, there exists an isometric immersion f : Mn → Qn
c × R such that

the shape operator with respect to the normal N associated to f is given
by df ◦ A ◦ df −1 and such that ∂

∂t = df (T ) + N.
Moreover, the immersion is unique up to a global isometry of Qn

c × R
preserving the orientations of both Qn

c and R.
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In 2010, J.H. Lira, R. Tojero and F. Vitório extended to semi-
Riemannian product of space forms Qn1

κ1,µ1
× Qn2

κ2,µ2
the isometric

immersion result obtained by B. Daniel.

In 2012, J.H. Lira and M. Melo studied the existence of isometric
immersion into (two-step) Nilpotent Lie groups, which include all
Heisenberg spaces and more generally H-type groups.

How does the case of Lie groups work?
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For the case of a two-step nilpotent Lie group N, we use the decompo-
sition of its Lie algebra n = v⊕ z with the Lie bracket relations

[v, v] ⊂ z, [z, n] = {0}

to write the co-frame, connection forms and curvature forms associated
to a fixed orthonormal left-invariant frame field

E1, · · · ,En,En+1, · · · ,En+n′

so that the first n vector are in v and the next n′ ones are in z. The
additional conditions are given by the tensor JZ : n → n, Z ∈ z, given
by

JZ = −2∇̄Z .
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The work is done when we denote Jk = JEn+k
, 1 ≤ k ≤ n′, obtain

〈JkV ,W 〉 =
n+n′∑
l,r=1

〈V ,El〉〈W ,Er 〉σn+k
lr ,

where [El ,Er ] =
∑n+n′

k=1 σ
k
lrEk are the structure constants of N, and

write the form λ (which is related to a future adapted frame) and the

curvature form associated do the frame {Ea}n+n′

a=1 in terms of the tensors
Jk , 1 ≤ k ≤ n′.

Precisely, the form λ comes from the tensor field in N

L(X ,Y ,V ) = −1

2

n′∑
k=1

〈JkV ,X 〉〈Y ,En+k〉+
1

2

n′∑
k=1

〈JkY ,X 〉〈V ,En+k〉

+
1

2

n′∑
k=1

〈JkY ,V 〉〈X ,En+k〉, X ,Y ,V ∈ Γ(TN),
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and the curvature tensor is the (0, 4) covariant tensor Q in N given by

Q(X ,Y ,V ,W ) = Q1(X ,Y ,V ,W )+Q2(X ,Y ,V ,W ), X ,Y ,V ,W ∈ Γ(TN),

where Q1 and Q2 are the (0, 4)−tensor fields given by

Q1(X ,Y ,V ,W )

=
1

4
〈JkX ,W 〉〈JkV ,Y 〉+

1

2
〈JkY ,X 〉〈JkW ,V 〉 − 1

4
〈JkY ,W 〉〈JkV ,X 〉

−1

2
〈W ,En+k〉〈(∇̄X Jk)V ,Y 〉+

1

2
〈V ,En+k〉〈(∇̄X Jk)W ,Y 〉

+
1

2
〈Y ,En+k〉〈(∇̄X Jk)W ,V 〉+

1

2
〈W ,En+k〉〈(∇̄Y Jk)V ,X 〉

−1

2
〈V ,En+k〉〈(∇̄Y Jk)W ,X 〉 − 1

2
〈X ,En+k〉〈(∇̄Y Jk)W ,V 〉
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and

Q2(X ,Y ,V ,W ) =

−1

4

n′∑
k,l=1

〈En+k ,W 〉〈En+l ,V 〉〈JkY , JlX 〉−
1

4

n′∑
k,l=1

〈En+k ,W 〉〈En+l ,X 〉〈JkY , JlV 〉

−1

4

n′∑
k,l=1

〈En+k ,Y 〉〈En+l ,V 〉〈JkW , JlX 〉−
1

4

n′∑
k,l=1

〈En+k ,Y 〉〈En+l ,X 〉〈JkW , JlV 〉

+
1

4

n′∑
k,l=1

〈En+k ,W 〉〈En+l ,V 〉〈JkX , JlY 〉+
1

4

n′∑
k,l=1

〈En+k ,W 〉〈En+l ,Y 〉〈JkX , JlV 〉

+
1

4

n′∑
k,l=1

〈En+k ,X 〉〈En+l ,V 〉〈JkW , JlY 〉+
1

4

n′∑
k,l=1

〈En+k ,X 〉〈En+l ,Y 〉〈JkW , JlV 〉.
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The theorem is the following:
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Theorem (J.H. Lira, - , 2012)

Let Mm be a Riemannian simply connected manifold and let E be a real
Riemannian vector bundle with rank m′ = n + n′ −m so that
S = TM ⊕ E is a trivial vector bundle. Let ∇̂ and R̂ be respectively the
compatible connection and curvature tensor in S and ∇ and ∇E the
compatible connections induced in TM and E , respectively. We fix a
global orthonormal frame {Êk}n+n′

k=1 in S. Define tensors Ĵk and Q̂ (as
those defined in a fixed two-step nilpotent Lie group N), and assume that
these fields satisfy the Gauss, Codazzi and Ricci equations

R̂ = Q̂

and the additional equations

∇̂Ên+k = −1/2Ĵk , k = 1, · · · , n′.

Thus, there exists an isometric immersion f : M → N covered by a
bundle isomorphism Φ : E → TfM

⊥, where TfM
⊥ is the normal bundle

along f , so that Φ is an isometry when restrited to the fibers and satisfies
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Theorem (J.H. Lira, - , 2012)

Φ∇EXV = ∇⊥X ΦV , X ∈ Γ(TM), V ∈ Γ(E),

ΦBE(X ,Y ) = ∇̄f∗X f∗Y − f∗(∇XY ) =: Bf (X ,Y ), X ,Y ∈ Γ(TM),

where ∇̄ and ∇⊥ denote, respectively, the connections in N and TfM
⊥

and the covariant symmetric tensor BE ∈ Γ(T ∗M ⊗ T ∗M ⊗ E) is defined
by

∇̂XY = ∇XY + BE(X ,Y ), X ,Y ∈ Γ(TM).

Moreover, if f , g : M → N are isometric immersions such that ΦBf = Bg

and Φf∇⊥ = g∇⊥Φ, for an isometry Φ : TfM
⊥ → TgM

⊥ such that

〈f∗X ,En+k〉 = 〈g∗X ,En+k〉, X ∈ Γ(TM), k = 1, · · · , n′

and
〈V ,En+k〉 = 〈Φ(V ),En+k〉, V ∈ TfM

⊥, k = 1, · · · , n′,

for a fixed left-invariant frame {Ek}n+n′

k=1 in N, then there exists an
isometry τ : N → N such that τ ◦ f = g and τ∗|Tf M⊥ = Φ.
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Remark

The same can be done for a three-step nilpotent Lie group S whose Lie
algebra may be decomposed as

s = z⊕ v⊕ a,

where a = RH is a one-dimensional factor, with

[v, v] ⊂ z, [z, v] = {0}, [z, z] = {0},

and the Lie bracket extended to a by the relations

[H,E ] =
1

2
E , [H,Z ] = Z ,

for E ∈ v and Z ∈ z.
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Recently, we found necessary and sufficient conditions for a non-
degenerate arbitrary signature manifold Mn to be realized as a subman-
ifold in the large class of warped product manifolds εI ×a QN

c , where
ε = ±1 and a : I ⊂ R→ R+ is the scale factor.
We have proved the following result:
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Theorem (C.A.D. Ribeiro, - ,2017)

Let Mn be a semi-Riemannian manifold of index p and E a
semi-Riemannian vector bundle of index q and rank m = N + 1− n over
M with compatible connection ∇E and curvature operator RE . Let us
algo give BE a symmetric section in Γ(T ∗M ⊗ T ∗M ⊗ E ), ξ a section in
Γ(E ), real numbers c , ε ∈ {−1, 1} and smooth functions a : I → R+ and
π : M → I . We define the vector field T ∈ TM by T = ε · grad(π) and,
for each η ∈ Γ(E ), we define a section AE

η ∈ Γ(T ∗M ⊗ TM) by

〈BE (X ,Y ), η〉 = 〈AE
ηX ,Y 〉. Assume that (∇E ,BE ,AE ,RE ) satisfies

Gauss, Codazzi and Ricci equations for εI ×a QN
c , and the additional

equations

〈T ,T 〉+ 〈ξ, ξ〉 = ε, ∇XT =
a′

a
(X − ε〈X ,T 〉) + AE

ηX

∇E
X ξ =

−εa′

a
〈X ,T 〉ξ − BE (T ,X ).
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Theorem (C.A.D. Ribeiro, - ,2017)

Then, there exists an isometric immersion f : Mn → εI ×a QN
c and a

vector bundle isometry Φ : E → TfM
⊥, such that:

1. ∂t = df (T ) + Φ(ξ),

2. π = πI ◦ f , where πI : εI ×a QN
c → I is the projection,

3. Bf = Φ ◦ BE ◦ df −1, where Bf is the second fundamental form of f ,

4. ∇⊥Φ = Φ∇E .

Moreover, if f , g : M → εI ×a QN
c are isometric immersions such that

ΦBf = Bg and Φf∇⊥ = g∇⊥Φ, for an isometry Φ : TfM
⊥ → TgM

⊥,
then there exists an isometry τ : εI ×a QN

c → εI ×a QN
c such that

τ ◦ f = g and τ∗|Tf M⊥ = Φ.
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Muito obrigado!

Thank you very much!

Muchas gracias!
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