The Fundamental Theorem of Curves and Submanifolds

Prof. Marcos Melo
Universidade Federal do Ceará - Brasil

JORNADAS DE GEOMETRÍA DIFERENCIAL Y TEORÍA DE LIE
En el marco de los 50 años de la Licenciatura em Matemática
Facultad de Ciencias Exactas, Ingeniería y Agrimensura - FCEIA Universidad Nacional de Rosario - UNR
August 31 and September 1st, 2017
(1) Introduction
(2) The Fundamental Theorem of Curves
(3) The Fundamental Theorem of Submanifolds: the case of Space Forms

4 Some other cases

Introduction

Introduction

What are the questions/problems?

Introduction

What are the questions/problems?
What answers do we have/know?

The Fundamental Theorem of Curves

The Fundamental Theorem of Curves

We know that if $\gamma: I \rightarrow \mathbb{R}^{3}$ is a curve parametrized by the arc length, then its unit tangent vector field $T=\gamma^{\prime}$, its unit normal vector field $N=\gamma^{\prime \prime} /\left|\gamma^{\prime \prime}\right|$, where $\gamma^{\prime \prime} \neq 0$, and its binormal vector field $B=T \wedge N$ give us all the geometric details about the trace of γ.

The Fundamental Theorem of Curves

Furthermore, we know that the Frenet frame $\{T, N, B\}$ satisfies the ordinary differential system of equations

$$
\begin{array}{lll}
T^{\prime} & =\kappa N, & \\
N^{\prime} & =-\kappa T-\tau B, & \text { (Frenet equations) } \\
B^{\prime} & =\tau N, &
\end{array}
$$

where κ and τ are, respectively, the curvature and torsion of the curve γ.

The Fundamental Theorem of Curves

The question:
Given the functions $\kappa, \tau: I \rightarrow \mathbb{R}$, can we guarantee the existence of a curve $\gamma: I \rightarrow \mathbb{R}^{3}$ with curvature κ and torsion τ ? If so, is that curve unique?

The Fundamental Theorem of Curves

The answer:

Theorem (Fundamental Theorem of curves in \mathbb{R}^{3})

(1) Existence: Given smooth functions $\kappa, \tau: I \rightarrow \mathbb{R}$ so that $\kappa(s)>0, s_{0} \in I, p_{0} \in \mathbb{R}^{3}$ and $\left(T_{0}, N_{0}, B_{0}\right)$ a fixed orthonormal basis of \mathbb{R}^{3}, then there exists a unique curve $\gamma: I \rightarrow \mathbb{R}^{3}$ parametrized by arc length such that $\gamma\left(s_{0}\right)=p_{0}$, and $\left(T_{0}, N_{0}, B_{0}\right)$ is the Frenet frame of γ at $s=s_{0}$.
(2) Uniqueness: Suppose that $\gamma, \tilde{\gamma}: I \rightarrow \mathbb{R}^{3}$ are curves parametrized by arc length, and $\gamma, \tilde{\gamma}$ have the same curvature function κ and torsion function τ. Then there exists a rigid motion $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\tilde{\gamma}=f(\gamma)$.

The Fundamental Theorem of Curves

Sketch of the proof.

(1) First, we take the unique solution of the ordinary differential system of equations

$$
\begin{aligned}
T^{\prime} & =\kappa N \\
N^{\prime} & =-\kappa T-\tau B \\
B^{\prime} & =\tau N,
\end{aligned}
$$

(Frenet equations)
with initial data $(T, N, B)\left(s_{0}\right)=\left(T_{0}, N_{0}, B_{0}\right)$. Then, we define $\gamma(s)=p_{0}+\int_{s_{0}}^{s} T(t) d t, \quad s \in I$.

The Fundamental Theorem of Curves

Sketch of the proof.

(2) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rigid motion such that $f\left(\gamma\left(s_{0}\right)\right)=\tilde{\gamma}\left(s_{0}\right)$ and f takes the Frenet frame of γ into the Frenet frame of $\tilde{\gamma}$ at s_{0}.

The Fundamental Theorem of Curves

(1) Existence

(2) Uniqueness

The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of Space Forms

We know that if $f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a parametrized surface in \mathbb{R}^{3} (i.e., U is an open set and f is an immersion), then the frame $\left\{f_{x_{1}}, f_{x_{2}}, N\right\}$, where $N=\frac{f_{x_{1}} \wedge f_{x_{2}}}{\left\|f_{x_{1}} \wedge f_{x_{2}}\right\|}$, give us all the geometric details about the submanifold $f(U)$.

The Fundamental Theorem of Submanifolds: the case of Space Forms

Furthermore, we know that the frame $\left\{f_{x_{1}}, f_{x_{2}}, N\right\}$ satisfies the partial differential system of equations

$$
\begin{aligned}
f_{x_{i} x_{j}} & =\Gamma_{i j}^{k} f_{x_{k}}+b_{i j} N, \\
N_{x_{j}} & =a_{i j} f_{x_{i}},
\end{aligned}
$$

for $1 \leq i, j \leq 2$, where $\Gamma_{i j}^{k}=\frac{1}{2}\left(\frac{\partial}{\partial x_{i}} g_{j l}+\frac{\partial}{\partial x_{j}} g_{i l}-\frac{\partial}{\partial x_{i}} g_{i j}\right) g^{\prime k}$ are the Christoffel symbols, $I=g_{i j} d x_{i} d x_{j}=\left\langle f_{x_{i}}, f_{x_{j}}\right\rangle d x_{i} d x_{j}$ is the first fundamental form, II $=b_{i j} d x_{i} d x_{j}=\left\langle f_{x_{i} x_{j}}, N\right\rangle d x_{i} d x_{j}$ is the second fundamental form, and $a_{i j}=-b_{i k} g^{k j}$ is the matrix of the shape operator associated to the submanifold $f(U)$.

The Fundamental Theorem of Submanifolds: the case of Space Forms

The question:
Given the functions $g_{i j}, b_{i j}: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, for $1 \leq i, j \leq 2$, with $g_{i j}=g_{j i}>0, g_{11} g_{22}-g_{12}^{2}>0$ and $b_{i j}=b_{j i}$, can we guarantee the existence of a parametrized surface $f: U \rightarrow \mathbb{R}^{3}$ such that the first and second fundamental forms of the submanifold $f(U)$ are given by $\left(g_{i j}\right)$ and ($b_{i j}$) respectively? If so, is that submanifold unique?

The Fundamental Theorem of Submanifolds: the case of Space Forms

The answer: Not yet!

The Fundamental Theorem of Submanifolds: the case of Space Forms

The answer: Not yet!
We need to keep in mind that in order to solve the partial differential system of equations

$$
\left\{\begin{array}{l}
f_{x_{i} x_{j}}=\Gamma_{i j}^{k} f_{x_{k}}+b_{i j} N, \\
N_{x_{j}}=a_{i j} f_{x_{i}},
\end{array}\right.
$$

for $1 \leq i, j \leq 2$, and get a surface, we must "obey" the Frobenius Theorem, which states:

Theorem (Frobenius Theorem in \mathbb{R}^{3})

Let $U \subset \mathbb{R}^{2}$ and $V \subset \mathbb{R}^{3}$ be open subsets,
$A=\left(A_{1}, A_{2}, A_{3}\right), B=\left(B_{1}, B_{2}, B_{3}\right): U \times V \rightarrow \mathbb{R}^{3}$ smooth maps, $u_{0} \in U$, and $v_{0} \in V$. Then the following first order system

$$
\left\{\begin{array}{l}
\phi_{x_{1}}=A\left(x_{1}, x_{2}, \phi\left(x_{1}, x_{2}\right)\right) \\
\phi_{x_{2}}=B\left(x_{1}, x_{2}, \phi\left(x_{1}, x_{2}\right)\right) \\
\phi\left(u_{0}\right)=v_{0}
\end{array}\right.
$$

has a (unique) smooth solution ϕ in a neighborhood of u_{0} for all possible $u_{0} \in U$ and $v_{0} \in V$ (fixed) if and only if

$$
\left(A_{i}\right)_{x_{2}}+\frac{\partial A_{i}}{\partial \phi_{j}} B_{j}=\left(B_{i}\right)_{x_{1}}+\frac{\partial B_{i}}{\partial \phi_{j}} A_{j}, \quad 1 \leq i \leq 3
$$

hold identically on $U \times V$.

The Fundamental Theorem of Submanifolds: the case of Space Forms

So if we write the system of equations

$$
\begin{aligned}
f_{x_{i} x_{j}} & =\Gamma_{i j}^{k} f_{x_{k}}+b_{i j} N, \\
N_{x_{j}} & =a_{i j} f_{x_{i}},
\end{aligned}
$$

for $1 \leq i, j \leq 2$, as

$$
\begin{aligned}
& \left(f_{x_{1}}, f_{x_{2}}, N\right)_{x_{1}}=\left(f_{x_{1}}, f_{x_{2}}, N\right) P, \\
& \left(f_{x_{1}}, f_{x_{2}}, N\right)_{x_{2}}=\left(f_{x_{1}}, f_{x_{2}}, N\right) Q,
\end{aligned}
$$

where P, Q are $M_{3 \times 3}(\mathbb{R})$-value maps given in terms of $g_{i j}$ and $b_{i j}$, then this system has solution if and only if

$$
P_{x_{2}}-Q_{x_{1}}=P Q-Q P:=[P, Q] .
$$

This last equation is called the Gauss-Codazzi equation.

The Fundamental Theorem of Submanifolds: the case of Space Forms

Now we have the answer:

Theorem (Bonnet)

Let $g_{i j}, b_{i j}: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, for $1 \leq i, j \leq 2$, with $g_{i j}=g_{j i}>0, g_{11} g_{22}-g_{12}^{2}>0$ and $b_{i j}=b_{j i}$, be smooth maps satisfying the Gauss-Codazzi equation. Let $\left(x_{1}^{0}, x_{2}^{0}\right) \in U, p_{0} \in \mathbb{R}^{3}$ and $\left\{u_{1}, u_{2}, u_{3}\right\}$ a basis for \mathbb{R}^{3} be given such that $u_{i} \cdot u_{j}=g_{i j}\left(x_{1}^{0}, x_{2}^{0}\right)$ and $u_{i} \cdot u_{3}=0$ for $1 \leq i \leq 2$. Then there exists a neighborhood $U_{0} \subset U$ of $\left(x_{1}^{0}, x_{2}^{0}\right)$ and a unique immersion $f: U_{0} \rightarrow \mathbb{R}^{3}$ so that f maps U_{0} homeomorphically to $f\left(U_{0}\right)$ such that
(1) the first and second fundamental forms of the submanifold $f\left(U_{0}\right)$ are given by $\left(g_{i j}\right)$ and $\left(b_{i j}\right)$ respectively,
(2) $f\left(x_{1}^{0}, x_{2}^{0}\right)=p_{0}$, and $f_{x_{i}}\left(x_{1}^{0}, x_{2}^{0}\right)=u_{i}$ for $i=1,2$.

The Fundamental Theorem of Submanifolds: the case of Space Forms

Sketch of the proof.

Existence

Uniqueness

The Fundamental Theorem of Submanifolds: the case of Space Forms

Remark

The Gauss-Codazzi equation (Frobenius condition)

$$
P_{x_{2}}-Q_{x_{1}}=[P, Q]
$$

usually appears as Gauss equation

$$
\left(\Gamma_{12}^{2}\right)_{x_{1}}-\left(\Gamma_{11}^{2}\right)_{x_{2}}+\Gamma_{12}^{1} \Gamma_{11}^{2}+\Gamma_{12}^{2} \Gamma_{12}^{2}-\Gamma_{11}^{2} \Gamma_{22}^{2}-\Gamma_{11}^{1} \Gamma_{12}^{2}=-g_{11} K,
$$

where $K=\frac{b_{11} b_{22}-b_{12}^{2}}{g_{11} g_{22}-g_{12}^{2}}$ is called the Gauss curvature of the submanifold, and Codazzi equations

$$
\begin{aligned}
& \left(b_{11}\right)_{x_{2}}-\left(b_{12}\right)_{x_{1}}=g_{11} \Gamma_{12}^{1}+g_{12}\left(\Gamma_{12}^{2}-\Gamma_{11}^{1}\right)-b_{22} \Gamma_{11}^{2} \\
& \left(b_{12}\right)_{x_{2}}-\left(b_{22}\right)_{x_{1}}=g_{11} \Gamma_{22}^{1}+g_{12}\left(\Gamma_{22}^{2}-\Gamma_{12}^{1}\right)-b_{22} \Gamma_{12}^{2} .
\end{aligned}
$$

The Fundamental Theorem of Submanifolds: the case of Space Forms

The main question:
What is the most general situation?

The Fundamental Theorem of Submanifolds: the case of Space Forms

We know that if $f: M^{n} \rightarrow \bar{M}^{n+k}$ is an isometric immersion between Riemannian manifolds, X, Y, Z, W are tangent to the immersion, η, ζ are normal, and $\bar{\nabla}$ is the Riemannian connection of \bar{M}, then the Gauss equation

$$
\begin{aligned}
\langle\bar{R}(X, Y) Z, W\rangle= & \langle R(X, Y) Z, W\rangle \\
& -\langle B(Y, W), B(X, Z)\rangle+\langle B(X, W), B(Y, Z)\rangle
\end{aligned}
$$

the Codazzi equation

$$
\langle\bar{R}(X, Y) Z, \eta\rangle=\left(\bar{\nabla}_{Y} B\right)(X, Z, \eta)-\left(\bar{\nabla}_{X} B\right)(Y, Z, \eta)
$$

and the Ricci equation

$$
\langle\bar{R}(X, Y) \eta, \zeta\rangle=\left\langle R^{\perp}(X, Y) \eta, \zeta\right\rangle+\left\langle\left[A_{\eta}, A_{\zeta}\right] X, Y\right\rangle
$$

The Fundamental Theorem of Submanifolds: the case of Space Forms

$R($ resp. $\overline{\mathrm{R}})=$ Riemannian tensor curvature of $\mathrm{M}($ resp. $\overline{\mathrm{M}})$
$\mathrm{R}^{2}=$ normal curvature tensor
$A=$ shape operator
$B=$ second fundamental form
<,> = Riemannian metric (first fundamental form)

The Fundamental Theorem of Submanifolds: the case of Space Forms

Remark

In the case of a hypersurface $f: M^{n} \rightarrow \bar{M}^{n+1}$, the Ricci equation

$$
\langle\bar{R}(X, Y) \eta, \zeta\rangle=\left\langle R^{\perp}(X, Y) \eta, \zeta\right\rangle+\left\langle\left[A_{\eta}, A_{\zeta}\right] X, Y\right\rangle
$$

disappears and we only have the Gauss and Codazzi equations, as we saw in the case of surfaces in \mathbb{R}^{3}.

The Fundamental Theorem of Submanifolds: the case of Space Forms

Are Gauss, Codazzi and Ricci equations sufficient to guarantee the existence and uniqueness of an isometric immersion $f: M^{n} \rightarrow \bar{M}^{n+k}$?

The Fundamental Theorem of Submanifolds: the case of Space Forms

Are Gauss, Codazzi and Ricci equations sufficient to guarantee the existence and uniqueness of an isometric immersion $f: M^{n} \rightarrow \bar{M}^{n+k}$?

In fact, if we give a Riemannian manifold M, how could we express Gauss, Codazzi and Ricci equations for a target manifold \bar{M} ?

The Fundamental Theorem of Submanifolds: the case of Space Forms

When $\bar{M}^{n+k}=\bar{M}_{c}^{n+k}$ is a Riemannian manifold with constant secional curvature c, then the Gauss equation becomes

$$
R(X, Y) Z=c(\langle Y, Z\rangle X-\langle X, Z\rangle Y)+A_{B(Y, Z)} X-A_{B(X, Z)} Y
$$

the Codazzi has the version

$$
\left(\nabla \frac{1}{X} B\right)(Y, Z)=\left(\nabla \frac{1}{Y} B\right)(X, Z),
$$

whereas the Ricci equation reduces to

$$
R^{\perp}(X, Y) \eta=B\left(X, A_{\eta} Y\right)-B\left(A_{\eta} X, Y\right) .
$$

The Fundamental Theorem of Submanifolds: the case of Space Forms

In particular, the equations

$$
\begin{aligned}
R(X, Y) Z & =c(\langle Y, Z\rangle X-\langle X, Z\rangle Y)+A_{B(Y, Z)} X-A_{B(X, Z)} Y, \\
\left(\nabla \frac{1}{X} B\right)(Y, Z) & =\left(\nabla \frac{1}{Y} B\right)(X, Z), \\
R^{\perp}(X, Y) \eta & =B\left(X, A_{\eta} Y\right)-B\left(A_{\eta} X, Y\right),
\end{aligned}
$$

hold when \bar{M}_{c}^{n+k} is one of the simply connected complete space forms \mathbb{Q}_{c}^{n+k}, i.e., Euclidean space \mathbb{R}^{n+k}, the sphere \mathbb{S}_{c}^{n+k} or the hyperbolic space \mathbb{H}_{c}^{n+k}, according as $c=0, c>0$ or $c<0$, respectively.

The Fundamental Theorem of Submanifolds: the case of Space Forms

Theorem (Isometric immersions into space forms)

(1) Existence: Let M^{n} be a simply connected Riemannian manifold, let \mathcal{E} be a Riemannian vector bundle of rank k over M^{n} with compatible connection $\nabla^{\mathcal{E}}$ and curvature tensor $R^{\mathcal{E}}$ and let $B^{\mathcal{E}}$ be a symmetric section of $\operatorname{Hom}(T M \times T M, \mathcal{E})$. For each $\eta \in \Gamma(\mathcal{E})$, define $A_{\eta}^{\mathcal{E}} \in \Gamma(H o m(T M, T M))$ by $\left\langle A_{\eta}^{\mathcal{E}} X, Y\right\rangle=\left\langle B^{\mathcal{E}}(X, Y), \eta\right\rangle$. Assume that $\left(\nabla^{\mathcal{E}}, B^{\mathcal{E}}, A^{\mathcal{E}}, R^{\mathcal{E}}\right)$ satisfies Gauss, Ricci and Codazzi equations for a fixed space form \mathbb{Q}_{c}^{n+k}. Then, there exist an isometric immersion $f: M^{n} \rightarrow \mathbb{Q}_{c}^{n+k}$ and a vector bundle isometry $\phi: \mathcal{E} \rightarrow T_{f} M^{\perp}$ such that $B_{f}=\phi \circ B^{\mathcal{E}}$ and $\nabla^{\perp} \phi=\phi \nabla^{\mathcal{E}}$.
(2) Uniqueness: Let $f, g: M^{n} \rightarrow \mathbb{Q}_{c}^{n+k}$ be isometric immersions. Assume that there exists a vector bundle isometry $\phi: T_{f} M^{\perp} \rightarrow T_{g} M^{\perp}$ such that

$$
\phi \circ B_{f}=B_{g} \text { and } \phi^{f} \nabla^{\perp}={ }^{g} \nabla^{\perp} \phi .
$$

Then, there exists an isometry $\tau: \mathbb{Q}_{c}^{n+k} \rightarrow \mathbb{Q}_{c}^{n+k}$ such that $\tau \circ f=g$ and $\left.\tau_{*}\right|_{T_{f} M^{\perp}}=\phi$.

The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of Space Forms

What is behind the proof of this theorem?

The Fundamental Theorem of Submanifolds: the case of Space Forms

What is behind the proof of this theorem?
When we consider an orthonormal frame $\left\{E_{a}\right\}_{a=1}^{n+k}$ defined in an open set \bar{U} of a Riemannian manifold \bar{M}^{n+k}, then its curvature tensor can be described by the 2-forms $\left\{\Theta_{a}^{b}\right\}_{a, b=1}^{n+k}$ given by

$$
d \theta_{a}^{b}+\sum_{c=1}^{n+k} \theta_{c}^{b} \wedge \theta_{a}^{c}=\Theta_{a}^{b}
$$

where $\left\{\theta^{a}\right\}_{a=1}^{n+k}$ denotes the co-frame dual to $\left\{E_{a}\right\}_{a=1}^{n+k}$, and $\left\{\theta_{a}^{b}\right\}_{a, b=1}^{n+k}$ are the corresponding connection forms characterized by

$$
d \theta^{a}+\sum_{c=1}^{n+k} \theta_{c}^{a} \wedge \theta^{c}=0, \quad \theta_{a}^{b}=-\theta_{b}^{a}
$$

The Fundamental Theorem of Submanifolds: the case of Space Forms

If we consider another orthonormal frame $\left\{e_{a}\right\}_{a=1}^{n+k}$ with corresponding co-frame $\left\{\omega^{a}\right\}_{a=1}^{n+k}$, connection forms $\left\{\omega_{a}^{b}\right\}_{a, b=1}^{n}$ and curvature forms $\left\{\Omega_{a}^{b}\right\}_{a, b=1}^{n+k}$, then those differential forms are related by

$$
\begin{gathered}
\omega=P^{-1} d P+P^{-1} \theta P, \\
\Omega=P^{-1} \Theta P
\end{gathered}
$$

where $P: \bar{U} \subset \bar{M}^{n+k} \rightarrow \mathrm{SO}_{n+k}$ is the map

$$
e_{a}=\sum_{b=1}^{n+k} P_{a}^{b} E_{b}
$$

The Fundamental Theorem of Submanifolds: the case of Space Forms

In particular, when we have an isometric immersion $f: M^{n} \rightarrow \bar{M}^{n+k}$ and $\left\{e_{a}\right\}_{a=1}^{n+k}$ is chosen to be adapted to the immersion, that is, in such a way that, along points of M, the first n fields in this frame are tangent to M and the other k ones are local sections of the normal bundle $T_{f} M^{\perp}$, then

$$
d \omega_{b}^{a}+\sum_{c=1}^{n+k} \omega_{c}^{a} \wedge \omega_{b}^{c}=\Omega_{b}^{a}=\left(P^{-1} \Theta P\right)_{b}^{a}
$$

corresponds to Gauss, Codazzi and Ricci equations, considering suitable ranges of indices a and b.

The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of Space Forms

But what if we don't have the immersion $f: M^{n} \rightarrow \bar{M}^{n+k}$?

The Fundamental Theorem of Submanifolds: the case of Space Forms

But what if we don't have the immersion $f: M^{n} \rightarrow \bar{M}^{n+k}$?
Go to the realm of vector bundles!

The Fundamental Theorem of Submanifolds: the case of Space Forms

The idea is the following:
Given a frame $\left\{E_{a}\right\}_{a=1}^{n+k}$ in $T M \oplus \mathcal{E}$ (where \mathcal{E} is a vector bundle over M), we try to build a smooth map

$$
P: U \subset M \rightarrow \mathrm{SO}_{n+k},
$$

(which will play the role of producing an adapted frame) such that

$$
P^{-1} d P=\omega-\lambda,
$$

where λ has to be expressed (if possible) in terms of a given data (remember that $\lambda=P^{-1} \theta P$ when the immersion is given).

The Fundamental Theorem of Submanifolds: the case of Space Forms

For solving the equation

$$
\left\{\begin{array}{rll}
P^{-1} d P & =\omega-\lambda \\
P\left(x_{0}\right) & =l d
\end{array}\right.
$$

we consider on $U \times S O_{n+k}$ the distribution $\operatorname{ker} L_{(x, Z)}$, where $L_{(x, z)}=$ $\omega-\lambda-Z^{-1} d Z$, and use (in the presence of Gauss, Codazzi and Ricci equations) the Frobenius Theorem (in the context of differential forms) to get an integral submanifold in $U \times S O_{n+k}$, which is the graph of a map $P: U \rightarrow S O_{n+k}$. Finally, the idea is to use the map $P: U \rightarrow S O_{n+k}$ to build the isometric immersion $f: U \subset M^{n} \rightarrow f(U) \subset \bar{M}^{n+k}$ (for example, the graph of $f: U \subset M^{n} \rightarrow f(U) \subset \bar{M}^{n+k}$ is an integral submanifold in $M \times \bar{M}$ obtained from a suitable distribution on $M \times \bar{M})$.

The Fundamental Theorem of Submanifolds: the case of Space Forms

The Fundamental Theorem of Submanifolds: the case of Space Forms

Remark

In the case of Space Forms, the differential form $\lambda=P^{-1} \theta P$, which originally appears in the change of coordinates $\omega=P^{-1} d P+\lambda$, can be expressed in terms of a given data, and the equation

$$
\left\{\begin{array}{rll}
P^{-1} d P & =\omega-\lambda \\
P\left(x_{0}\right) & =1 d
\end{array}\right.
$$

is "easily" solved using only Gauss, Codazzi and Ricci equations.

The Fundamental Theorem of Submanifolds: the case of Space Forms

Remark

In the case of Space Forms, the differential form $\lambda=P^{-1} \theta P$, which originally appears in the change of coordinates $\omega=P^{-1} d P+\lambda$, can be expressed in terms of a given data, and the equation

$$
\left\{\begin{array}{rll}
P^{-1} d P & =\omega-\lambda \\
P\left(x_{0}\right) & =1 d
\end{array}\right.
$$

is "easily" solved using only Gauss, Codazzi and Ricci equations.

What about other cases?

Some other cases

Some other cases

In 2007, Benoit Daniel showed that the Gauss and Codazzi equations are not sufficient to guarantee the existence of isometric immersions into 3-dimensional homogeneous manifold with 4-dimensional isometry group, which includes the spaces $\mathbb{Q}_{c}^{2} \times \mathbb{R}($ for $c \neq 0)$ and the Heisenberg Lie group Nil_{3}. In 2009, he obtained a similar result for isometric immersion into the produt space $\mathbb{Q}_{c}^{n} \times \mathbb{R}$.

He proved the following results:

Theorem (B. Daniel, 2007)

Let M^{2} be a simply connected oriented Riemannian manifold, $d s^{2}$ its metric, ∇ its Riemannian connection and J the rotation of angle $\frac{\pi}{2}$ on $T M$. Let A be a field of symmetric operators $A_{y}: T_{y} M \rightarrow T_{y} M, T$ a vector field on M and ν a smooth function on M such that
$\|T\|^{2}+\nu^{2}=1$. Let \mathbb{E} be a 3 -dimensional homogeneous manifold with 4-dimensional isometry group and ξ its vertical vector field. Let κ be its base curvature and τ its bundle curvature. Then, there exists an isometric immersion $f: M \rightarrow \mathbb{E}$ such that the shape operator with respect to the normal N associated to f is $d f \circ A \circ d f^{-1}$ and such that $\xi=d f(T)+N$ if and only if $\left(d s^{2}, A, T, \nu\right)$ satisfies the Gauss and Codazzi equations for \mathbb{E} and, for all vector fields X on M, the following equations:

$$
\nabla_{X} T=\nu(A X-\tau J X), \quad d \nu(X)+\langle A X-\tau J X, T\rangle=0
$$

In this case, the immersion is unique up to a global isometry of \mathbb{E} preserving the orientations of both the fibers and the base of the fibration.

Theorem (B. Daniel, 2009)

Let M^{n} be simply connected oriented Riemannian manifold, $d s^{2}$ its metric and ∇ its Riemannian connection. Let A be a field of symmetric operators $A_{y}: T_{y} M \rightarrow T_{y} M, T$ a vector field on M and ν a smooth function on M such that $\|T\|^{2}+\nu^{2}=1$. Assume that ($d s^{2}, A, T, \nu$) satisfies the Gauss and Codazzi equations for $\mathbb{Q}_{c}^{n} \times \mathbb{R}($ with $c \neq 0)$ and the following equations:

$$
\nabla_{X} T=\nu A X, \quad d \nu(X)=-\langle S X, T\rangle .
$$

Then, there exists an isometric immersion $f: M^{n} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ such that the shape operator with respect to the normal N associated to f is given by $d f \circ A \circ d f^{-1}$ and such that $\frac{\partial}{\partial t}=d f(T)+N$.
Moreover, the immersion is unique up to a global isometry of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$ preserving the orientations of both \mathbb{Q}_{c}^{n} and \mathbb{R}.

Some other cases

Some other cases

In 2010, J.H. Lira, R. Tojero and F. Vitório extended to semiRiemannian product of space forms $\mathbb{Q}_{\kappa_{1}, \mu_{1}}^{n_{1}} \times \mathbb{Q}_{\kappa_{2}, \mu_{2}}^{n_{2}}$ the isometric immersion result obtained by B. Daniel.

In 2012, J.H. Lira and M. Melo studied the existence of isometric immersion into (two-step) Nilpotent Lie groups, which include all Heisenberg spaces and more generally H -type groups.

Some other cases

In 2010, J.H. Lira, R. Tojero and F. Vitório extended to semiRiemannian product of space forms $\mathbb{Q}_{\kappa_{1}, \mu_{1}}^{n_{1}} \times \mathbb{Q}_{\kappa_{2}, \mu_{2}}^{n_{2}}$ the isometric immersion result obtained by B. Daniel.

In 2012, J.H. Lira and M. Melo studied the existence of isometric immersion into (two-step) Nilpotent Lie groups, which include all Heisenberg spaces and more generally H -type groups.

How does the case of Lie groups work?

Some other cases

For the case of a two-step nilpotent Lie group N, we use the decomposition of its Lie algebra $\mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ with the Lie bracket relations

$$
[\mathfrak{v}, \mathfrak{v}] \subset \mathfrak{z}, \quad[\mathfrak{z}, \mathfrak{n}]=\{0\}
$$

to write the co-frame, connection forms and curvature forms associated to a fixed orthonormal left-invariant frame field

$$
E_{1}, \cdots, E_{n}, E_{n+1}, \cdots, E_{n+n^{\prime}}
$$

so that the first n vector are in \mathfrak{v} and the next n^{\prime} ones are in \mathfrak{z}. The additional conditions are given by the tensor $J_{Z}: \mathfrak{n} \rightarrow \mathfrak{n}, Z \in \mathfrak{z}$, given by

$$
J_{Z}=-2 \bar{\nabla} Z
$$

Some other cases

The work is done when we denote $J_{k}=J_{E_{n+k}}, 1 \leq k \leq n^{\prime}$, obtain

$$
\left\langle J_{k} V, W\right\rangle=\sum_{l, r=1}^{n+n^{\prime}}\left\langle V, E_{l}\right\rangle\left\langle W, E_{r}\right\rangle \sigma_{l r}^{n+k},
$$

where $\left[E_{l}, E_{r}\right]=\sum_{k=1}^{n+n^{\prime}} \sigma_{l r}^{k} E_{k}$ are the structure constants of N, and write the form λ (which is related to a future adapted frame) and the curvature form associated do the frame $\left\{E_{a}\right\}_{a=1}^{n+n^{\prime}}$ in terms of the tensors $J_{k}, 1 \leq k \leq n^{\prime}$.

Some other cases

The work is done when we denote $J_{k}=J_{E_{n+k}}, 1 \leq k \leq n^{\prime}$, obtain

$$
\left\langle J_{k} V, W\right\rangle=\sum_{l, r=1}^{n+n^{\prime}}\left\langle V, E_{l}\right\rangle\left\langle W, E_{r}\right\rangle \sigma_{l r}^{n+k},
$$

where $\left[E_{l}, E_{r}\right]=\sum_{k=1}^{n+n^{\prime}} \sigma_{l r}^{k} E_{k}$ are the structure constants of N, and write the form λ (which is related to a future adapted frame) and the curvature form associated do the frame $\left\{E_{a}\right\}_{a=1}^{n+n^{\prime}}$ in terms of the tensors $J_{k}, 1 \leq k \leq n^{\prime}$. Precisely, the form λ comes from the tensor field in N

$$
\begin{aligned}
L(X, Y, V)= & -\frac{1}{2} \sum_{k=1}^{n^{\prime}}\left\langle J_{k} V, X\right\rangle\left\langle Y, E_{n+k}\right\rangle+\frac{1}{2} \sum_{k=1}^{n^{\prime}}\left\langle J_{k} Y, X\right\rangle\left\langle V, E_{n+k}\right\rangle \\
& +\frac{1}{2} \sum_{k=1}^{n^{\prime}}\left\langle J_{k} Y, V\right\rangle\left\langle X, E_{n+k}\right\rangle, \quad X, Y, V \in \Gamma(T N),
\end{aligned}
$$

Some other cases

and the curvature tensor is the $(0,4)$ covariant tensor Q in N given by
$Q(X, Y, V, W)=Q_{1}(X, Y, V, W)+Q_{2}(X, Y, V, W), \quad X, Y, V, W \in \Gamma(T N)$,
where Q_{1} and Q_{2} are the (0,4)-tensor fields given by
$Q_{1}(X, Y, V, W)$

$$
\begin{aligned}
= & \frac{1}{4}\left\langle J_{k} X, W\right\rangle\left\langle J_{k} V, Y\right\rangle+\frac{1}{2}\left\langle J_{k} Y, X\right\rangle\left\langle J_{k} W, V\right\rangle-\frac{1}{4}\left\langle J_{k} Y, W\right\rangle\left\langle J_{k} V, X\right\rangle \\
& -\frac{1}{2}\left\langle W, E_{n+k}\right\rangle\left\langle\left(\bar{\nabla}_{X} J_{k}\right) V, Y\right\rangle+\frac{1}{2}\left\langle V, E_{n+k}\right\rangle\left\langle\left(\bar{\nabla}_{X} J_{k}\right) W, Y\right\rangle \\
& +\frac{1}{2}\left\langle Y, E_{n+k}\right\rangle\left\langle\left(\bar{\nabla}_{X} J_{k}\right) W, V\right\rangle+\frac{1}{2}\left\langle W, E_{n+k}\right\rangle\left\langle\left(\bar{\nabla}_{Y} J_{k}\right) V, X\right\rangle \\
& -\frac{1}{2}\left\langle V, E_{n+k}\right\rangle\left\langle\left(\bar{\nabla}_{Y} J_{k}\right) W, X\right\rangle-\frac{1}{2}\left\langle X, E_{n+k}\right\rangle\left\langle\left(\bar{\nabla}_{Y} J_{k}\right) W, V\right\rangle
\end{aligned}
$$

Some other cases

and
$Q_{2}(X, Y, V, W)=$
$-\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, W\right\rangle\left\langle E_{n+l}, V\right\rangle\left\langle J_{k} Y, J_{l} X\right\rangle-\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, W\right\rangle\left\langle E_{n+l}, X\right\rangle\left\langle J_{k} Y, J_{l} V\right\rangle$
$-\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, Y\right\rangle\left\langle E_{n+l}, V\right\rangle\left\langle J_{k} W, J_{l} X\right\rangle-\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, Y\right\rangle\left\langle E_{n+l}, X\right\rangle\left\langle J_{k} W, J_{l} V\right\rangle$
$+\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, W\right\rangle\left\langle E_{n+l}, V\right\rangle\left\langle J_{k} X, J_{l} Y\right\rangle+\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, W\right\rangle\left\langle E_{n+l}, Y\right\rangle\left\langle J_{k} X, J_{l} V\right\rangle$
$+\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, X\right\rangle\left\langle E_{n+l}, V\right\rangle\left\langle J_{k} W, J_{l} Y\right\rangle+\frac{1}{4} \sum_{k, l=1}^{n^{\prime}}\left\langle E_{n+k}, X\right\rangle\left\langle E_{n+l}, Y\right\rangle\left\langle J_{k} W, J_{l} V\right\rangle$.

Some other cases

The theorem is the following:

Theorem (J.H. Lira, - , 2012)

Let M^{m} be a Riemannian simply connected manifold and let \mathcal{E} be a real Riemannian vector bundle with rank $m^{\prime}=n+n^{\prime}-m$ so that $\mathcal{S}=T M \oplus \mathcal{E}$ is a trivial vector bundle. Let $\hat{\nabla}$ and \hat{R} be respectively the compatible connection and curvature tensor in \mathcal{S} and ∇ and $\nabla^{\mathcal{E}}$ the compatible connections induced in TM and \mathcal{E}, respectively. We fix a global orthonormal frame $\left\{\hat{E}_{k}\right\}_{k=1}^{n+n^{\prime}}$ in \mathcal{S}. Define tensors \hat{J}_{k} and \hat{Q} (as those defined in a fixed two-step nilpotent Lie group N), and assume that these fields satisfy the Gauss, Codazzi and Ricci equations

$$
\hat{R}=\hat{Q}
$$

and the additional equations

$$
\hat{\nabla} \hat{E}_{n+k}=-1 / 2 \hat{J}_{k}, \quad k=1, \cdots, n^{\prime}
$$

Thus, there exists an isometric immersion $f: M \rightarrow N$ covered by a bundle isomorphism $\Phi: \mathcal{E} \rightarrow T_{f} M^{\perp}$, where $T_{f} M^{\perp}$ is the normal bundle along f, so that Φ is an isometry when restrited to the fibers and satisfies

Theorem (J.H. Lira, - , 2012)

$$
\begin{gathered}
\Phi \nabla_{X}^{\mathcal{E}} V=\nabla \frac{1}{X} \Phi V, \quad X \in \Gamma(T M), \quad V \in \Gamma(\mathcal{E}), \\
\Phi B^{\mathcal{E}}(X, Y)=\bar{\nabla}_{f_{*}} \chi f_{*} Y-f_{*}\left(\nabla_{X} Y\right)=: B_{f}(X, Y), \quad X, Y \in \Gamma(T M),
\end{gathered}
$$

where $\bar{\nabla}$ and ∇^{\perp} denote, respectively, the connections in N and $T_{f} M^{\perp}$ and the covariant symmetric tensor $B^{\mathcal{E}} \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes \mathcal{E}\right)$ is defined by

$$
\hat{\nabla}_{X} Y=\nabla_{X} Y+B^{\mathcal{E}}(X, Y), \quad X, Y \in \Gamma(T M) .
$$

Moreover, if $f, g: M \rightarrow N$ are isometric immersions such that $\Phi B_{f}=B_{g}$ and $\Phi^{f} \nabla^{\perp}={ }^{g} \nabla^{\perp} \Phi$, for an isometry $\Phi: T_{f} M^{\perp} \rightarrow T_{g} M^{\perp}$ such that

$$
\left\langle f_{*} X, E_{n+k}\right\rangle=\left\langle g_{*} X, E_{n+k}\right\rangle, \quad X \in \Gamma(T M), k=1, \cdots, n^{\prime}
$$

and

$$
\left\langle V, E_{n+k}\right\rangle=\left\langle\Phi(V), E_{n+k}\right\rangle, \quad V \in T_{f} M^{\perp}, k=1, \cdots, n^{\prime},
$$

for a fixed left-invariant frame $\left\{E_{k}\right\}_{k=1}^{n+n^{\prime}}$ in N, then there exists an isometry $\tau: N \rightarrow N$ such that $\tau \circ f=g$ and $\left.\tau_{*}\right|_{T_{f} M^{\perp}}=\Phi$.

Some other cases

Some other cases

Remark

The same can be done for a three-step nilpotent Lie group S whose Lie algebra may be decomposed as

$$
\mathfrak{s}=\mathfrak{z} \oplus \mathfrak{v} \oplus \mathfrak{a}
$$

where $\mathfrak{a}=\mathbb{R} H$ is a one-dimensional factor, with

$$
[\mathfrak{v}, \mathfrak{v}] \subset \mathfrak{z}, \quad[\mathfrak{z}, \mathfrak{v}]=\{0\}, \quad[\mathfrak{z}, \mathfrak{z}]=\{0\},
$$

and the Lie bracket extended to \mathfrak{a} by the relations

$$
[H, E]=\frac{1}{2} E, \quad[H, Z]=Z,
$$

for $E \in \mathfrak{v}$ and $Z \in \mathfrak{z}$.

Some other cases

Recently, we found necessary and sufficient conditions for a nondegenerate arbitrary signature manifold M^{n} to be realized as a submanifold in the large class of warped product manifolds $\varepsilon l \times{ }_{a} \mathbb{Q}_{c}^{N}$, where $\varepsilon= \pm 1$ and $a: I \subset \mathbb{R} \rightarrow \mathbb{R}^{+}$is the scale factor.
We have proved the following result:

Theorem (C.A.D. Ribeiro, - ,2017)

Let M^{n} be a semi-Riemannian manifold of index p and E a semi-Riemannian vector bundle of index q and rank $m=N+1-n$ over M with compatible connection ∇^{E} and curvature operator R^{E}. Let us algo give B^{E} a symmetric section in $\Gamma\left(T^{*} M \otimes T^{*} M \otimes E\right)$, ξ a section in $\Gamma(E)$, real numbers $c, \varepsilon \in\{-1,1\}$ and smooth functions $a: I \rightarrow \mathbb{R}^{+}$and $\pi: M \rightarrow I$. We define the vector field $T \in T M$ by $T=\varepsilon \cdot \operatorname{grad}(\pi)$ and, for each $\eta \in \Gamma(E)$, we define a section $A_{\eta}^{E} \in \Gamma\left(T^{*} M \otimes T M\right)$ by $\left\langle B^{E}(X, Y), \eta\right\rangle=\left\langle A_{\eta}^{E} X, Y\right\rangle$. Assume that $\left(\nabla^{E}, B^{E}, A^{E}, R^{E}\right)$ satisfies Gauss, Codazzi and Ricci equations for $\varepsilon l \times a \mathbb{Q}_{c}^{N}$, and the additional equations

$$
\begin{gathered}
\langle T, T\rangle+\langle\xi, \xi\rangle=\varepsilon, \quad \nabla_{X} T=\frac{a^{\prime}}{a}(X-\varepsilon\langle X, T\rangle)+A_{\eta}^{E} X \\
\nabla_{X}^{E} \xi=\frac{-\varepsilon a^{\prime}}{a}\langle X, T\rangle \xi-B^{E}(T, X) .
\end{gathered}
$$

Theorem (C.A.D. Ribeiro, - ,2017)

Then, there exists an isometric immersion $f: M^{n} \rightarrow \varepsilon l \times{ }_{a} \mathbb{Q}_{c}^{N}$ and a vector bundle isometry $\Phi: E \rightarrow T_{f} M^{\perp}$, such that:

1. $\partial t=d f(T)+\Phi(\xi)$,
2. $\pi=\pi_{l} \circ f$, where $\pi_{l}: \varepsilon l \times{ }_{a} \mathbb{Q}_{c}^{N} \rightarrow I$ is the projection,
3. $B_{f}=\Phi \circ B^{E} \circ d f^{-1}$, where B_{f} is the second fundamental form of f,
4. $\nabla^{\perp} \Phi=\Phi \nabla^{E}$.

Moreover, if $f, g: M \rightarrow \varepsilon l \times{ }_{a} \mathbb{Q}_{c}^{N}$ are isometric immersions such that $\Phi B_{f}=B_{g}$ and $\Phi^{f} \nabla^{\perp}={ }^{g} \nabla^{\perp} \Phi$, for an isometry $\Phi: T_{f} M^{\perp} \rightarrow T_{g} M^{\perp}$, then there exists an isometry $\tau: \varepsilon I \times_{a} \mathbb{Q}_{c}^{N} \rightarrow \varepsilon I \times_{a} \mathbb{Q}_{c}^{N}$ such that $\tau \circ f=g$ and $\left.\tau_{*}\right|_{T_{f} M^{\perp}}=\varnothing$.

Muito obrigado!

Thank you very much!

Muchas gracias!

