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An “Equation of state” for the morphology of Jurassic ammonites : a 
multidimensional law based on classical dimensions

Horacio PareNt1 & andrés F. Greco2

Abstract
characterization of the morphology of the ammonite shell is an old, relevant and open problem in ammonitology. Since many years 
ago the morphology and growth of ammonoids has alternatively been described in terms of the logarithmic law. However a description 
in terms of the variables or dimensions most commonly accessible and used (D : diameter or size ; U : umbilical width ; H1 : whorl 
height ; H2 : whorl ventral or apertural height ; and W : width of whorl section) is still missing due to the lack of relationship between 
these variables with those of the logarithmic law. In this paper we have found the relationship between the spiral logarithmic law 
and a multidimensional law which we have called the equation of state of the post-embryonic shell of Jurassic ammonites. this law 
is written in terms of D, U, H1 and H2 and has been tested on 25 species of Middle and Late Jurassic ammonites of the superfamilies 
Perisphinctoidea, Stephanoceratoidea and Haploceratoidea. results obtained show an agreement with only 1-22% of uncertainty 
between observations and predictions, thus describing, at least, the 80-90% of the morphology of the studied ammonites. It was also 
concluded that H1/D and H2/H1 are fundamental parameters for describing the basic form and growth of ammonites in the equatorial 
plane.
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Resúmen
Una ecuación de estado de la morfología de amonites jurásicos : ley multidimensional basada en las dimensiones clásicas.- La 
caracterización de la morfología de la concha de amonites es un viejo y relevante problema en amonitología que se mantiene abierto. 
Desde hace varias décadas la morfología y el crecimiento de los amonites han sido alternativamente descriptos en términos de la ley 
logarítmica. Por otra parte una descripción en términos de las variables o dimensiones más comúnmente accesibles y usadas (D : 
diámetro ó talla ; U : amplitud umbilical ; H1 : altura de vuelta ; H2 : altura ventral de vuelta ó altura apertural ; y W : ancho de la sección 
de vuelta) no ha sido desarrollada aún debido a la falta del conocimiento de la relación entre dichas variables con aquellas de la ley 
logarítmica. en este trabajo se presenta una relación entre la ley logarítmica espiral y una ley multidimensional que denominamos 
ecuación de estado de la concha post embrionaria de amonites jurásicos. esta ley se presenta escrita en términos de D, U, H1 y H2, y ha 
sido ensayada sobre 25 especies de amonites del Jurásico medio y tardío de las superfamilias Perisphinctoidea, Stephanoceratoidea y 
Haploceratoidea. Los resultados obtenidos muestran un ajuste ó acuerdo con sólo 1-22% de error entre observaciones y predicciones, 
describiendo por lo tanto, al menos, el 80-90% de la morfología básica de los amonites en el plano ecuatorial.
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INTRODUCTION

ammonoids are fossil cephalopods whose shells 
preserve a large part of the history of its ontogeny and 
a significant part of the anatomic organization in the 
successive volutions or whorls, from the embryonic 
chamber or protoconch to the terminal adult border or 
peristome. It is well known that the ammonite shell 
may be assimilated to a coiled cone thus described as a 
logarithmic spiral. It is divided in three portions : (1) the 
protoconch, (2) the phragmocone, segmented by septa, 

and (3) the bodychamber alocating the soft body ; the 
last two portions conform the conch (Arkell, 1957). 
they grew adding segments, at a poorly known rate in 
time, changing the proportions between dimensions by 
differential allometric growth that is commonly described 
as discrete developmental and growth stages. Literature 
available is vast, for simplicity we refer the reader to the 
papers by BAsse (1952), Arkell (1957) and Bucher et	
al. (1996), which, moreover, contain representative lists 
of references.
Basic morphology of the conch of the planispiral 



ammonites may be described by some few dimensions 
whose relationships define a wide spectrum of different 
morphotypes. the study of these relationships may 
provide insights on developmental and evolutionary 
patterns and processes of morphological changes. 
Moreover the understanding of the morphogenetic patterns 
which produce the morphologic variability is crucial for 
distinguishing between intra- and interspecific variation 
what allows reliable definition of species. It requieres the 
quantification of these relationships between dimensions, 
mainly in the form of models which can be expressed by 
approximate mathematical laws.
there exists a strong morphological correlation among 
the dimensions of the ammonite shell, that has been 
historically evaluated by means of studies of correlation 
between pairs of dimensions as variables, or featuring 
multivariate statistical studies. correlations are most 
frequently high according to the existence of some 
unknown multivariate law of relative growth. Perhaps 
the most clear and simple indication of morphologic 
correlation among the shell dimensions is that described 
by the Laws of covariation of BuckmAn (1892), which 
were studied by WestermAnn (1966) and more recently 
revisited by checA et	al. (1997) and hAmmer & Bucher 
(2005). Quantification of the ammonite morphology by 
means of the parameters of the log-spiral law has been 
attempted by many authors based on the geometric nature 
of the shell (see lAndmAn, 1987 and references therein). 
Nevertheless this approach has not been possible using 
the system of dimensional variables typically adopted 

by ammonitologists after Arkell (1957) (see Fig. 1, 
right), since the relationships between these latter and 
the parameters of the log-spiral law are not well known. 
the main gap is related to the overlapping of the whorls 
developed by most ammonoids from the Devonian to 
the cretaceous. this important feature called involution 
is what diferentiates the log-spiral (non-overlapping) 
from the geometry of most ammonites with overlapped 
whorls.
We have worked to override this gap, trying to write 
the log-spiral law in terms of the dimensional variables 
commonly used, based on several species of Jurassic 
ammonites. the objective of this paper is to present some 
relevant results of this research, mainly in the form of an 
equation which relates most of the classical dimensions 
as metric variables. We have called this equation, the 
equation of state for the post-embryonic morphology of 
Jurassic ammonites.

MATERIAL AND METHOD

the material belongs to 25 species covering a wide range 
of the Suborder ammonitina (ammonoidea), representing 
the most typical morphologies within the superfamilies 
Stephanoceratoidea neumAyr, 1875, Haploceratoidea 
Zittel, 1884 and Perisphinctoidea steinmAnn, 1890 
(Fig. 2). Dimensions used are defined in Fig. 1 (right 
side) : D,	U,	H1, H2, and W, which define the morphospace 
A(5) = {D,	U,	H1, H2,	W}. They are quantified as metric 

Fig. 1 : Dimensions of the ammonite as used in this paper. Left : equatorial and transverse planes of an ideal or theoretical ammonite 
with non-overlapping whorls. right : real ammonite with whorls overlapping each other. the number of whorls is the same in 
both figures.
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variables consisting of distances between points. 
Measurements, mostly taken between ribs, are considered 
for D ≥ 3 mm only, excluding in this form the ammonitella. 
In some cases we have obtained measurements for both 
sexual dimorphs ([M] : macroconch-female and [m] : 
micrococonch-male). Samples are heterogeneous in the 
sense that some of them include specimens measured for 
several times along their ontogeny (see table 1). Mean 
values (arithmetic means) are noted by .

the test, that is the original shell diagenetically replaced, 
may be present in ammonites but most frequently is lost 
partially or totally during diagenesis, during collection 
in the field or during preparation of the fossils in the 
laboratory. test thickness is variable and changes 
during ontogeny like any other feature of the shell (see 
WestermAnn, 1971 for details). We have not considered 
the presence or absence of test in outermost whorls but it 
was included when measuring the inner whorls.

table 1 : relative dimensions of the ammonites studied and predictions of U/D based on the means and individual values 
after processing by equation (1), tests 1 and 2. Symbols and abbreviations as explained in text. N : number of 
specimens ; n : total number of measurements. Measurements considered are all for D ≥ 3 mm. ε (%) : percentual 
relative error of estimation using equation (2) ; ε’	(%) : percentual relative error of estimation using equation (9) 
(not including corrective factor).

Species N n D <H1/D> <H2/H1> <W/D> <U/D>obs (U/D)pred ε (%) <U/D>cloud ε’ (%)

Stehnocephalites	gerthi (sPAth, 1928) [M] 53 150 3.6 – 134.5 0.440 0.573 0.621 0.215 0.187 13.0 0.191 46.5

Stehn.	crassicostatus (ricc. & West., 1991) 
[M] 5 6 43.6 – 106.9 0.421 0.624 0.491 0.264 0.214 19.2 0.221 27.1

Eurycephalites	gottschei (torquinst, 1898) 
[M] 18 35 3.8 – 80.3 0.484 0.548 0.636 0.127 0.144 13.7 0.150 109.6

Eurycephalites	gottschei	(torquinst, 1898) 
[m] 14 26 4.4 – 34.0 0.460 0.613 0.602 0.154 0.173 12.2 0.177 88.8

Eurycephalites	rotundus (torquinst, 1898) 
[M] 7 11 3.1 – 37.0 0.488 0.617 0.572 0.137 0.149 9.2 0.153 91.3

Eurycephalites	extremus	(tornquist, 1898) 
[M] 4 4 8.3 – 99.9 0.466 0.571 0.668 0.159 0.163 2.1 0.168 79.5

Lilloettia	steinmanni (sPAth, 1928) [M] 5 5 10.0 – 60.5 0.522 0.605 0.611 0.120 0.122 1.9 0.128 91.2

Macroceph.	macrocephalus	(schlotheim, 
1813) [M] 1 18 3.5 – 204.6 0.469 0.652 0.515 0.210 0.173 17.7 0.176 34.6

Macrocephalites	chrysoolithicus	(WAAGen, 
1875) [M] 1 18 3.7 – 246.0 0.459 0.643 0.742 0.209 0.180 14.1 0.183 40.0

Choffattia aff.	neumayri	(siemirAdZki, 1898) 
[M] 9 9 82.0 – 31.0 0.311 0.779 0.307 0.446 0.392 12.1 0.393 6.3

Perisphinctes	vicinus hAAs, 1955 36 36 4.4 – 50.7 0.348 0.742 0.485 0.402 0.330 18.0 0.333 5.8

Perisphinctes	paneaticus noetlinG, 1887 41 41 4.8 – 23.9 0.394 0.842 0.527 0.346 0.308 10.8 0.309 6.4

Perisphinctes	bernensis de loriol, 1898 67 67 3.5 – 40.9 0.372 0.634 0.601 0.339 0.271 20.1 0.278 16.6

Euaspidoceras	hypselum	(oPPel, 1863) [M] 3 4 8.8 – 113.0 0.387 0.898 0.502 0.369 0.338 8.3 0.338 2.1

Gravesia	gravesiana	(D’Orbigny,  1850) [M] 3 3 315.0 – 367.0 0.322 0.738 0.350 0.400 0.364 9.2 0.364 14.9

Euvirgalithacoceras	malarguense (sPAth, 
1931) [M] 5 9 33.3 – 184.0 0.354 0.763 0.322 0.397 0.329 17.1 0.330 5.3

Catutosphinctes	araucanense (leAnZA, 1980) 
[M] 2 3 29.6 – 192.0 0.325 0.790 0.346 0.431 0.377 12.7 0.378 5.6

Lissoceratoides	erato (D’Orbigny, 1847) 3 3 9.5 – 52.0 0.470 0.809 0.290 0.273 0.214 21.8 0.214 2.7

Scaphitodites	scaphitoides (coquAnd, 1853) 37 37 5.5 – 14.1 0.480 0.676 0.434 0.169 0.168 0.7 0.178 60.2

Taramelliceras	richei (de loriol, 1898) [M] 61 61 5.1 – 15.7 0.541 0.711 0.336 0.149 0.127 15.1 0.128 41.1

Taramelliceras	hermonis (noetlinG, 1887) 
[M] 65 65 4.7 – 39.6 0.543 0.709 0.393 0.153 0.125 18.2 0.128 36.8

Creniceras	renggeri (oPPel, 1863) [m] 10 10 9.9 – 21.3 0.485 0.745 0.280 0.191 0.181 5.3 0.191 39.1

Hecticoceras	socini (noetlinG, 1887) 52 52 3.8 – 37.3 0.413 0.860 0.325 0.338 0.292 13.5 0.292 1.9

Hecticoceras	kersteni (noetlinG, 1887) 5 5 5.9 – 40.7 0.452 0.843 0.260 0.300 0.244 18.8 0.248 0.1

Hecticoceras	schumacheri (noetlinG, 1887) 34 34 3.3 – 33.7 0.396 0.839 0.320 0.362 0.304 16.0 0.306 0.7

Pseudolissoceras	zitteli	(BurckhArdt, 1903) 
[M] 10 16 15.0 – 59.8 0.490 0.761 0.330 0.185 0.181 2.4 0.184 40.6
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For derivation of the equation of state (a mathematical 
model) we have followed theoretical, phenomenological 
and statistical steps based on the geometric properties of 
the ammonite shell and empirical observations on several 
specimens of a moderately large number of species.
our study is mainly based on the dimensions which are 
usually available in fossils, avoiding the use of spiral ra-
dius and other measurements as those defined by rAuP 
(1961, 1966) which can not actually be measured but 
in exceptional cases. Dimensional quantities are trans-
formed into dimensionless quantities such as U/D, H1/D, 
H2/D,	H2/H1 and W/D. these quantities are instantaneous 
character-state measurements (PArent, 1997), irrespec-
tive of any growth model or pattern. Moreover, they are 
very useful for comparison of morphology between dif-
ferent ammonites, even at different sizes (D), for the al-
lometric scale factor is removed.

A MULTIDIMENSIONAL LAW OF 
MORPHOLOGY : THE AMMONITE “EQUATION 
OF STATE”

the equation is written in terms of a sub-morphospace 
A1

(4) = {D,	U,	H1, H2} restricted to the equatorial plane 
of the shell :
 

(equation 1)

the aim of this section is to present the “equation of state” 
(eq. 1) and its evaluation with our data matrix, showing 
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Fig. 2 : Geological age of the ammonites used in this study. Geochronology in Ma (= 106 years) after odin & odin (1990). origin 
of material : (1) PArent (1998), (2) PArent (1997), (3) hAAs (1955), (4) thierry (1978), (5) unpublished material from 
Picún Leufú, cerro Lotena, Pampa tril and La amarga localities of the Neuquén-Mendoza Basin, argentina (Museo olsacher, 
Zapala), (6) unpublished material from Gräfenberg, Germany (col. armin scherZinGer, Hattingen), (7) unpublished material 
from Swabia, Germany (col. Laboratorio de Paleontología y Biocronología, Universidad Nacional de rosario, donated by 
Victor schlAmPP).
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to the reader about its practical usage for describing the 
morphology of the ammonite conch. We show how it was 
obtained in the following chapter.
the meaning of our model is that the morphology of the 
ammonite in the equatorial plane is characterized by D,	
U,	H1 and H2 and these dimensions are constrained each 
other to fit equation (1), which is then called the “equation 

of state”. If the equation of state is meaningful, we must 
be able to estimate one of the dimensions involved, 
given the remaining ones, with close approximation to 
actual values. evaluation of equation (1) was based on 
the 25 species studied (table 1), on which we estimated 
U/D. estimations were then evaluated by means of 
three different tests. three cases have been selected to 

Fig. 3 : Stehnocephalites gerthi (sPAth). a : Growth of H1 with size (D). B : Variation of H2/H1 with size (D). c : observed and predicted 
U/D versus D.
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show details of the analysis : Stehnocephalites	 gerthi	
(Fig. 3),	Euvirgalithacoceras	malarguense	(Fig. 4),	and	
Pseudolissoceras	zitteli	(Fig. 5).

Test	1. Figures 3a-5a show H1 versus D for the selected 
species. Within all pairs of dimensions the best linearly 
correlated are H1 with D. It is true in all species studied 
and most probably in most of the ammonitina (e.g., 
dAvid-henriet, 1962 : p. 27, AtroPs, 1982, cAllomon 
et	al., 1992, thierry, 1978, PArent, 1997, 1998). the 

linear correlation is so high (r > 0.9) in regressions forced 
to the origin that the slope is virtually equal to the mean 

1 /H D〈 〉 . Figures 3B-5B show H2/H1 versus D, the solid 
line is the average value 2 1/〈 〉H H  around which the 
observed values appear to be tightly concentrated. Being 
that all the species studied tend to have constant H1/D 
and H2/H1 values, we can use 1 /H D〈 〉  and 2 1/〈 〉H H  in 
the right hand of the equation (1). after this assumption 
the term between brackets on the right hand is a constant 
value called (U/D)pred whose magnitude depends on 

Fig. 4 : Euvirgalithacoceras malarguense (sPAth). a : Growth of H1 with size (D). B : Variation of H2/H1 with size (D). c : observed 
and predicted U/D versus D.
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the average ratios 1 /H D〈 〉  and 2 1/〈 〉H H  of a given 
species. therefore, we assume that U and D are linearly 
correlated with slope (U/D)pred (equation 2) :

 (equation 2)

In order to corroborate the validity of our analysis we 
have compared (U	/	D)pred (calculated following the steps 

described above) with the average value 
obs

/U D  of the 
ratio U/D of all available measurements for each species. 
columns 7 and 8 of table 1 show the values of 

obs
/U D  

and (U	/	D)pred respectively. The first inspection of these 
numbers shows that they are very close. In order to better 
evaluate the degree of agreement, we have calculated the 
relative error between 

obs
/U D  and (U	/	D)pred. table 1 

(column 9) shows the percentual error of estimation as 
-1

pred obs obs
(%) 100 ( / ) / /ε = −U D U D U D , ranging from 

0.7 % to 21.8 %, indicating that the “equation of state” 

Fig. 5 : Pseudolissoceras zitteli (BurkchArdt). a : Growth of H1 with size (D). B : Variation of H2/H1 with size (D). c : observed and 
predicted U/D versus D.
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is, from a general point of view, capturing or describing 
about 80-90% of the mean morphology of the ammonite 
conch in the equatorial plane.
In Figs. 3c-5c the ratio U/D versus D for each individual 
measurement of the corresponding species (observational 
cloud) is plotted by open circles. In these figures the 
solid and dashed lines represent 

obs
/U D  and (U	/	D)pred 

respectively. the reader can easily note that the dashed 
line is inside the observational cloud and close to the solid 
line. It can be observed in table 1 that 

obs
/U D  takes 

values in a broad range, and, in spite of this, equation (1) 
can predict U/D with small relative errors following the 
ontogenetic changes.
In other words, if all the individuals of a given species 
have the same H1/D and H2/H1 proportions (as they 
actually tend to do) the observational cloud given by 
open circles in Figs. 3c-5c will collapse in a straight line 
given by the predicted dashed line.
the plot of (U	/	D)pred versus 

obs
/U D  for all the species 

studied (Fig. 6a) shows, as a whole, a very good correlation 
between predictions and observations as indicated by 
the tight concentration of points around the solid line 

(U	/	D)pred = 
obs

/U D . However, the first impression 
after looking at Fig. 6a is that the Perisphinctoidea 
have the larger errors of estimation. Nevertheless, the 
distribution of the errors of estimation ε(%) relative to 

obs
/U D , with no allometric factor influencing, indicates 

the absence of any pattern or trend in this sense (Fig. 6B-
c). the points are randomly distributed, unrelated to any 
particular morphotype, indicating that the “equation of 
state” has no preferential bias and, as a model, is well 
suited for description of a large and significant part of the 
ammonite morphology.

Test	2. a more constraining evaluation is to apply equation 
(1) for individual measurements, one by one, and for 
each species. therefore, for a given individual using its 
actual values H1/D and H2/H1 we estimated U/D. In Figs 
3c-5c we show by solid black circles the predicted U/D 
for each individual mesurement (the predicted cloud), 
which is plotted with the actual measurements (open 
circles). In the three graphs ej shows, as an example, the 
deviation of a predicted value from the actual one. 
column 10 of table 1 shows the averages 

cloud
/U D  

Fig. 6 : a. comparison of mean values of observed U/D with predicted U/D for all the ammonites studied. the line represents identity 
between observation and prediction. B : Distribution of percentual relative error of estimation of U/D versus mean observed 
values of U/D. c : Histograms of distribution of relative errors of estimation after prediction with and without correction factor 
cF. D : Distribution of errors of estimation of U/D respect mean observed whorl width W/D.
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obtained from the predicted cloud of each species, 
resulting always very close to (U	/	D)pred.

Test	3.	In order to evaluate the limits of the model (eq. 
1) for describing quantitatively other coiled cephalopod 
shells, it was used for estimation of U/D in some Juras-
sic nautilids described by tintAnt et	al.	(2002). results 
(table 2) show predictions of U/D strongly biased res-
pect the actual values. relative errors are not only very 
high (ranging from 51 to 184%) but they are very hetero-
geneous, indicating high inestability of the equation of 
state for describing the relationships between dimensions 
in nautilids. this behaviour is originated in the growth 
mode of the nautilids, very different to that of the am-
monites. In terms of the logarithmic spiral law (see be-
low) on which was based our model : ρ0  (diameter of 
the initial chamber) is much larger in nautilids (about 1-
3 mm, lAndmAn, 1988) than in ammonites (about 0.30-
0.70 mm, lAndmAn et	 al., 1996). therefore the num-
ber of whorls for comparable diameter is always lower 
in nautilids. In other words, the ratio of the diameter of 

the embryonic shell to that of the adult’s is about 10-2 to 
10-3 in ammonites but about 10-1 in nautilids (lAndmAn, 
1988). the few cases evaluated are enough to prove that 
equation (1) does not represent the natutilid shell, i.e., the 
morphospace A1

(4) = {D,	U,	H1, H2 } of Jurassic ammo-
nites is different from that of the nautiloids.

From tests 1 and 2 we conclude that equation (1) 
efectively capturates about 80-90% of the morphology 
of the shell, indicating that the variables are constrained 
to take values fitting equation (1). The missing 10-20% 
could be due to fluctuations of source unknown and/or 
another variable not included in equation (1), such as W. 
Nevertheless, the errors of estimation ε(%)of equation 
(2) are uncorrelated with (W	/	D)obs  as shown in Fig. 6D, 
where the random distribution indicates no patterns of 
distribution related to W.
In Fig. 7 each one of the species studied is represen-
ted by the pair of numbers ( )1 2 1/ , /H D H H , which 
confidently may be considered constants as pointed out 
above. on the other hand, as can be seen in equation (1), 

table 2 : Nautilid species described by tintAnt et	al. (2002). Measured relative dimensions and predictions of U/D 
based on the mean values and using equation (1). Symbols and abbreviations as explained in text. N : number of 
specimens ; n : total number of measurements.

Species N n <H1/D> <H2/H>1 <U/D>obs (U/D)pre ε (%)

Pseudaganides	royeri (de loriol, 1872) 3 3 0.521 0.612 0.061 0.123 101.6
Pseudaganides	loeschi tintAnt et	al.,	2002 1 1 0.538 0.589 0.038 0.108 184.2
Pseudaganides	pulchellus tintAnt et	al., 2002 2 2 0.642 0.596 0.109 0.053 51.4
Pseudaganides n. sp. in tintAnt et	al.	(2002 : 434) 1 1 0.597 0.595 0.032 0.074 131.3

Fig. 7 : Mean values of H1/D respect to H2/H1 for all the ammonites studied.
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the term between brackets on the right hand depends on 
these two dimensionless quantities rather than on H1, H2 
and D separately. there are well delimited clusters cor-
responding to each superfamily : the Perisphinctoidea 
and Stephanoceratoidea are well separated, and the Hap-
loceratoidea is somewhat more loosely and broadly dis-
tributed between them. the variables H1/D and H2/H1 are 
associated in such form that clusters correspond clearly 
to the current classification, at superfamily and family 
levels (e.g., donovAn et	al., 1981), which was adopted 
for the studied ammonites before design of model and 
calculations (cf. Fig. 2).

DERIVATION OF THE EQUATION OF STATE. 
THE CONCEPT OF THE IDEAL  AMMONITE

The first step was to consider an ammonite with non-
ovelaping whorls, as represented in Fig. 1 (left), which 
grows ideally following the logarithmic law

ρ = ρ0e
λθ (equation 3),

where ρ is the spiral radius,  λ is the growth rate (assumed 
constant), θ is the spiral angle (e.g.,	θ =	π	= half-whorl) 
and ρ0 is the initial radio or protoconch diameter. 
Following this simple model (Fig. 1, left side) :

F F( �)
1 1 0 e eD  (equation 4), and

F F( 2�)
0 e eH  (equation 5),

where θF is the final angle or number of whorls. Using the 
expression for H and D we have :

2 ) 1(1 e ) (1 e )/ λ π λ π− − −= − +H D  (equation 6)
which indeed is a constant as mentioned above, and being 
relevant for the subsequent analysis. this equation does 
not include any of the quantities : spiral radius, number 
of whorls and protoconch diameter. Growth rate may be 
written :

 (equation 7).

then from Fig. 1, we have U = D – H – H’. thus writing 
H’  in terms of the logarithmic law and using equation 
(7) for λ we obtain the following relationship for the non-
overlapping whorls ammonite : 

  (equation 8).

H is the distance between points p0 and p1 in the ideal 
ammonite of Fig. 1 (left side), thus the equivalent of H 
in the real ammonite (Fig. 1, rigth side) should be H2. 
Nevertheless, for satisfying the condition U = D – H – H’ 
it must be used H1 for obtainig U	=	D	–	H	–	H1’, and 
equation (8) is transformed into

 (equation 9)

the difference between the coiling of the real ammonite 
with respect to the logarithmic spiral model is that whorls 
of the former overlap one another, thus the distance 
between p0 and p1 becomes smaller. consequently the 
umbilicus (U) and diameter (D) become smaller too (see 
Fig. 1).
after testing equation (9) with our data matrix by means 
of prediction of U/D we immediately noted that this is not 
enough accurate and homogeneous (stable) in predicting. 
Last column of table 1 shows the percentual error ε’(%), 
between observations and predictions from equation (9). 
a simple inspection on these numbers shows that errors 
are very heterogeneous and running from small values of 
the order of 0.1 % (Hecticoceras	kersteni) to very large 
values of the order of 100% (Eurycephalites	gottschei). 
In all cases where large errors are produced, U was over-
estimated. Figures 3c and 5c show, by a shaded area, the 
region where the predicted values for U/D are located 
when they are estimated using equation (9). clearly, the 
shaded areas are only slightly overlapped with the ob-
served cloud, indicating overestimation of U/D. Note that 
this is not the case for Euvirgalithacoceras malarguense 
(Fig. 4c) where the shaded area is partially overlapped 
by the observed cloud in a consistent way with the low 
error ε’(%) of about 5%.
the percentual errors ε’(%) for the Stephanoceratoidea 
are all systematically large while those for the 
Perisphinctoidea are all systematically low (table 1). on 
the other hand H2/H1 is larger in Perisphinctoidea than in 
Stephanoceratoidea (Fig. 7). therefore, it is evident that 
the source of the large ε’(%) in Stephanoceratoidea is 
originated in the preliminary assumption of null-overlap 
(H = H2 = H1) of the ammonite model used (Fig. 1, left 
side), whereas the ammonites of interest  (Fig. 1, right 
side) have a clearly evident and variable overlap (H2 < 
H1). as Peripshinctoidea has H2/H1 closer to one, equation 
(9) gives better results in these superfamilies.
Following phenomenological arguments based on the 
discussed observations we included a correcting factor 
CF in the denominator of the third term of equation (9) 
obtaining equation (1). this correcting factor must be 
H2/H1-dependent in order to take into account the above 
observed pattern. We have evaluated several forms for CF, 
finding that an appropriate one is ( )( ) 11 1

2 1 2 14 1

F = e
−− −− −H H H H

C . 
this corrective factor can be written as ( ) 1

1 2 24

F = e
−− −H H HC  

in the form of another measurement of involution. It is 
important to note that inclusion of this correcting factor 
leads to the reduction and homogenization of all predic-
tions as shown by the even distribution of values of ε(%) 
(Fig. 6c), restricting them in within a range of 1-22% (cf. 
table 1). this regularization allows to treat all species on 
equal footing.

1
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π
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another form for equation (1) is :

 (equation 10)

which shows the third factor, on the second hand sign, 
as a correction to the second one in order to approximate 
the ideal ammonite to that with overlapping of its whorls, 
that is H1 > H2. 
In the Haploceratoidea, differently to Perisphinctoidea 
and Stephanoceratoidea, the errors ε’(%) are very 
heterogeneous. as can be seen in Fig. 7, Perisphinctoidea 
and Stephanoceratoidea form well separated clusters 
in the plane (H2/H1, H1/D) while Haploceratoidea is 
widely distributed between both groups. In agreement 
with this pattern, the percentual errors ε’(%) obtained 
with equation (9) are also heterogeneous in contrast to 
Perisphinctoidea and Stephanoceratoidea. the open 
squares in Fig. 7 with large ε’(%) tend to be close to 
Stephanoceratoidea which also has large	ε’(%). on the 
other hand, open squares with small ε’(%) tend to be 
close to Perisphinctoidea which also have small ε’(%). 
the meaning of these patterns is that equation (9), which 
describes the ideal amonite with non-overlapping whorls, 
does not make a clear distinction of Haploceratoidea from 
the other superfamilies.
equation (1) is robust and captures, with less than 20% 
of uncertainty, the morphology of completely different 
ammonites. In this sense the main contributions of this 
modelization are : (1) the translation of the old discussion 
about the logarithmic spiral growth to a language in 
terms of the clearly measurable variables H1, U and D 
in the form of equation (9) ; (2) the inclusion of a H2/H1-
dependent correcting factor CF fulfils the gap between 
the ideal ammonite described by equation (9) and the 
real ammonite described by equation (1) ; and (3) as 
a corollary, another interesting consequence is that 
from equation (7) may be derived the so called “whorl 
expansion rate” (WER, korn, 2000) : 

, 

where n is whorl number (cf. cAllomon et	al., 1992 for 
the last term).

the dimension which controls or regulates the growth 
in A1

(4) = {D,	U,	H1, H2} is hard to identificate. During is hard to identificate. During 
the initial part of our research we have not made any 
a-priori assumption on this matter. Prima-facie, H2, 
direct representative of the growth rate (see equation 
7), seems to be the natural candidate. Nevertheless 
accounting for results obtained and for the greatest 
developmental stability of H1 (better than canalization 
suggested in PArent, 1998), both during the ontogenetic 

development and as intraspecific variation, we believe 
that H1 is the most constraining dimension of the post-is the most constraining dimension of the post-
embryonic ammonite growth. the control exerted by H1 
on shell morphogenesis seems to go beyond the external 
shell geometry ; a direct relationship between sutural 
complexity (measured as fractal dimension) and whorl 
height was statistically demonstrated by olóriZ et	 al. 
(2002 : 161). on the other hand it is clear that H2/D is 
a measure of the relative growth rate of shell diameter, 
and H2/H1 is a measure of involution not ambiguous 
as the currently used U/D. after comprobation of the 
importance of H2 for characterization of the ammonite 
shell, we take the opportunity to suggest the measurement 
of this dimension whenever possible.

CONCLUSION

We have worked with three “ammonites” : (1) the real 
or actual ammonite (our target with H2 < H1) ; (2) an 
intermediate figure : the non-overlapping whorls or ideal 
ammonite (H1 = H2) described by equation (8) ; andequation (8) ; and ; and 
(3) the theoretical ammonite, that is, an approximation 
to the real ammonite by means of the equation of state 
(equation 1). the equation of the intermediate, or ideal,equation 1). the equation of the intermediate, or ideal,. the equation of the intermediate, or ideal, 
ammonite (H1 = H2) should be the equation of state 
for a large group of Jurassic (and possibly cretaceous) 
ammonites whose whorls do not overlap. It opens another 
line of research, similar to the presented here, beginning 
with the evaluation of equation (1) for predicting thoseequation (1) for predicting those for predicting those 
types of ammonites.
Working to write the log spiral law in terms of the variables 
most commonly used to describe the morphology of 
ammonites, it was obtained, at first, equation (�) writtenequation (9) written written 
in terms of U,	D and H1. this equation which we called 
“equation of state for the ideal ammonite” leads to very 
large and heterogeneous errors, between predictions and 
observations of U/D, running from 1 to 100%. the source 
for these errors lies on the fact that the ideal ammonite 
has null-overlap while the real ammonite shows clear 
overlapping in its whorls expressed through the relation 
H2 < H1. Introducing into equation (9) a corrective factorequation (9) a corrective factor a corrective factor 
in the form of a measure of the overlap of whorls (H2/
H1) we arrived to the proposed “equation of state of the 
real ammonite”. applying this model on our samples 
from 25 species relative errors become homogeneously 
distributed and relatively small, running from 1% to 
20%. We interpret these results in the sense that equationequation 
(1) capturates 80-90% of the morphogenetic relationships capturates 80-90% of the morphogenetic relationshipsmorphogenetic relationships 
between dimensions in the morphospace A1

(4), at least 
for Middle and Upper Jurassic ammonites. In this formIn this form 
the gap between the mathematical description of the 
ammonite shells with overlapping and non-overlapping 
whorls is mostly fulfilled.
the width of whorl section (W) is not associated in direct 
or explicit form with the development in the equatorial 
plane, which is in accord with the characteristically wide 
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intraspecific variation of W/D seen in most ammonoids.
It is important to note that the main variables involved in 
equation (1) are the dimensionless quantities are the dimensionless quantities H1/D and 
H2/H1 and that the mean values of these two quantities, 
for each species, correlate forming well delimited 
clusters for each superfamily (Fig. 7). It is concluded 
that H1/D and H2/H1 keep relevant information of the 
corresponding species and superfamily and can be 
considered as fundamental parametres to describe the 
basic form of ammonites.
application of equation (1) into Jurassic nautilidsequation (1) into Jurassic nautilids into Jurassic nautilids 
produces estimations with large and heterogeneously 
distributed errors, in accord with the different growth 
mode of nautilids with respect to ammonites. It is well 
known that Nautilus is a poor model for comparative 
morpho-functional studies on ammonites (see JAkoBs & 
lAndmAn, 1993) ; results presented in present paper give 
additional support, from an independent line of evidence, 
to this fact.
As a final reflection it is interesting to point out some 
analogies between the present study and others in 
physics which have given us inspiration at the beginning 
of this work. In thermodynamics it is well known that 
the state of a given gas is characterized by the relevant 
variables T (temperature), P (pressure) and V (volume). 
these are not free to take any value. they are always 
connected by an equation of state. the most known is 
the equation of state for the ideal gas : PV = nrT, where 
n is the number of moles and r is the constant of gases 
(see, e.g, kAuZmAnn, 1966). this is, of course, not an 
exact expression but without doubts captures a relevant 
behaviour of the system. How the gas arrives to a given 
state is not relevant for thermodynamics but in this 
state the equation of state is fulfilled. Much time passed 
until researchers undestood the role of molecules in the 
behaviour of gases. For instance, it is well known that the 
macroscopic constant r can be expressed in terms of the 
Boltzman constant kB and the avogadro number Na (r = 
kBNa), both having a clear atomic meaning. It may be, that 
in biology something similar can be expected. May it be 
that in the future, biologists can describe the phenotype in 
terms of genes as physicists describe the gases in terms of 
molecules? However, what was always clear in physics 
is that, before understanding the role of molecules it was 
relevant to have a very clear picture at a macroscopic level. 
that is, the deep knowledge of the equation of state. We 
hope our work will contribute as regards this. Most of the 
time, people consider Physics as an exact science ; this is, 
in our opinion, a naïve approach. this is mainly inspired 
by the reduccionist conception that if we know the law of 
the parts we will know the law of everything. We share 
the opinion of Anderson (1972) that “more is different” 
in the sense that there are emergent laws and properties at 
every different level of organization (see also lAuGhlin 
& Pines, 2000 ; lAuGhlin et	al., 2000). the reduccionist 
conception leads to think that Physics can describe the 
reality in an exact form. We reject this idea and point out 

that Physics, as an experimental science, capturates some 
behaviour of the system and not the whole reality. For 
instance, two different gases can obey the same equation 
of state but they can have completely different magnetic 
properties. thus if we wish to describe all properties 
at the same time we will arrive probably to a problem 
whose degree of complexity will be of high order, like 
in biological systems. these concepts are important for 
understanding what we mean by “an equation of state for 
the (postembryonic) ammonite shell”. Indeed, we hope to 
have capturated some regular behaviour of the ammonite 
morphology.
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