

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

Análisis Numérico

Licenciatura en Matemática -- Primer Cuatrimestre 2023

Práctica N° 7: Resolución numérica de ecuaciones no lineales¹

Ejercicio 1 Implementar un programa que reciba como input una función f, dos números a, b, y una tolerancia tol y aplique el método de bisección para aproximar una raíz de f en el intervalo [a, b], garantizando que el error cometido sea menor que tol.

Ejercicio 2 Elegir un intervalo apropiado y utilizar el método de bisección para calcular una raíz de la ecuación:

$$2x = \tan(x)$$

 \mathcal{E} Cuántos pasos hay que hacer para garantizar que el error sea menor que 10^{-5} ?

Ejercicio 3 Implementar un programa que reciba como input una función f, su derivada f' y un punto inicial x_0 y aplique el método de Newton-Raphson para buscar una raíz de f a partir de x_0 .

Ejercicio 4 Implementar un programa que reciba como input una función f y dos puntos x_0 y x_1 y aplique el método de la secante para buscar una raíz de f con datos iniciales x_0 y x_1 .

Ejercicio 5 Aproximar $\sqrt[3]{2}$ utilizando el método de bisección con intervalo inicial [1, 2], el método N-R, comenzando con $x_0 = 2$ y el método de la secante con $x_0 = 3$, $x_1 = 2$.

En todos los casos, calcular el error cometido en cada iteración comparando con el valor de $\sqrt[3]{2}$ arrojado por Octave, y graficar el logaritmo del error para verificar el orden de convergencia de cada método.

Ejercicio 6 Considerar la función $f(x) = \frac{x}{1+|x|}$. Determinar para qué valores de x_0 la iteración N-R es convergente, para cuáles es divergente, y cuándo se obtienen ciclos periódicos.

Ejercicio 7 Sea f una función C^1 y sea $(x_n)_{n\in\mathbb{N}}$ la sucesión que se obtiene al aplicar el método N-R a f. Supongamos que x_n converge a r y $f'(r) \neq 0$, mostrar que r es raíz de f.

Ejercicio 8 Sea f una función suave, y a tal que f(a) = 0, y $f'(a) \neq 0$. Suponiendo que en (a, b], f, f', f'' son positivas, probar que la iteración de N-R generada a partir de $x_0 \in (a, b)$ converge decrecientemente hacia a.

¹Esta práctica está esencialmente tomada del curso *Elementos de Cálculo numérico / Cálculo Numérico* del Departamento de Matemática, ECEN, Universidad de Buenos Aires.

Ejercicio 9 Sea $f: \mathbb{R} \to \mathbb{R}, f(x) = (x+1)e^x - 4.$

- a) Probar que el método de Newton-Raphson es convergente para todo $x_0 > 1$.
- b) Analizar la convergencia del método si se toma como valor inicial $x_0 = -3$.

Ejercicio 10 Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f'(x) > \delta > 0$ con una única raíz r. Se desea aplicar el método de Newton Raphson para hallar r.

- 1. Probar que si f(x) > f'(x)(x-r) para todo x > r entonces se tiene que $x_1 < r$ para todo dato inicial $x_0 > r$.
- 2. Probar que si f''(x) < 0 para todo x < r, entonces el método genera una sucesión creciente que converge a r para todo $x_0 < r$. Concluir que si se cumplen ambas condiciones, el método converge.
- 3. Probar que Newton Raphson converge a la única raíz de $f(x) = -e^{-x} + 5x$ para todo dato inicial x_0 .

Ejercicio 11 Dada $F: \mathbb{R}^n \to \mathbb{R}^n$ el método N-R generalizado consiste en realizar la iteración vectorial

$$x^{k+1} = x^k - (DF|_{x^k})^{-1} \cdot F(x^k),$$

donde $(DF|_{x^k})^{-1}$ es la inversa de la matriz diferencial de F evaluada en x^k .

Usar N-R generalizado para hallar un mínimo de la función $f(x,y) = ye^{-x^2} + x^2 + y^4 + x$, comenzando con $(x_0, y_0) = (2, 1)$.

Ejercicio 12 Cuencas de atracción / Fractales de Newton: Sea $P: \mathbb{C} \to \mathbb{C}$ un polinomio de grado 3, con raíces r_1, r_2, r_3 contenidas en el rectángulo $R = [-1, 1] \times [-1, 1]$. Se desea saber, para cada punto z_0 en R, a qué raíz converge el método de Newton, cuando se toma dato inicial z_0 . Hacer un programa que:

- 1. Reciba como input un vector $P = (P_1, P_2, P_3, P_4)$, que representa al polinomio $P(x) = P_1x^3 + P_2x^2 + P_3x + P_4$.
- 2. Calcule las raíces de P utilizando el comando roots.
- 3. Haga una grilla de puntos de la forma $(x_i, y_k) \in R$.
- 4. Para cada punto (x_j, y_k) , corra 5 iteraciones del método de Newton, con dato inicial dado por el complejo $z = x_j + iy_k$.
- 5. Determine la raíz r más próxima al resultado obtenido.
- 6. Realice un gráfico que pinte cada punto (x_j, y_k) de un color distinto de acuerdo a la raíz a la que el método se aproxime. Por ejemplo: si $r = r_1$, (x_j, y_k) se pinta de azul, si $r = r_2$, de rojo y si $r = r_3$, de amarillo.

De este modo, la región pintada de azul es la cuenca de atracción de la raíz r_1 , etc. Comunmente, las cuencas de atracción resultan ser fractales. Puede repetirse el experimento para polinomios de mayor grado.

Ejercicio 13 Sea $f(x) = x^3 - x - 1$. La ecuación f(x) = 0 tiene una única raíz r en el intervalo (1,2). Se consideran las funciones:

$$g(x) = x^3 - 1,$$
 $h(x) = \sqrt[3]{x+1}.$

- a) Probar que r es un punto fijo tanto de g como de h.
- b) Decidir si g o h pueden utilizarse para buscar r a través de un método de punto fijo.
- c) Cuando sea posible, determinar un intervalo inicial I en el cual el método converja, y dar un valor inicial $x_0 \in I$ y la cantidad de iteraciones necesarias para aproximar r con error menor que 10^{-5} .

Ejercicio 14 Sea $f: \mathbb{R}_{>0} \to \mathbb{R}$ definida como $f(x) = \frac{8x-1}{x} - e^x$.

- a) Determinar, mediante gráficos convenientes, el número de raíces de f, localizando cada una de ellas entre dos enteros consecutivos.
- b) Proponer tres métodos de punto fijo para f y determinar si convergen a alguna de sus raíces si se toma dato inicial $x_0 = 1$.

Ejercicio 15 Sea g una función tal que g' es continua en [s,b], donde s es un punto fijo de g. Si además, se verifica que $0 \le g'(x) \le K < 1$ para todo $x \in [s,b]$, mostrar que la iteración, comenzando con $x_0 \in [s,b]$, converge decrecientemente a s.

Ejercicio 16 Dada la función $f(x) = x + \frac{1}{x} - 2$, $f: \mathbb{R}_{>0} \to \mathbb{R}$, se construye el siguiente algoritmo para aproximar la raíz r = 1:

$$x_{n+1} = 2 - \frac{1}{x_n}$$

Verificar que si $x_0 > 1$ entonces la sucesión $\{x_n\}$ es monótona decreciente y acotada inferiormente por 1. Concluir que $x_n \to 1$, aunque esta iteración no está en las hipótesis del teorema del punto fijo. ¿Qué hipótesis no se cumple?

Ejercicio 17 Sea f una función C^1 en las condiciones del método N-R. Sea $g(x) = x - \frac{f(x)}{f'(x)}$. Mostrar que el método N-R es un método de punto fijo.

Ejercicio 18 Para f una función C^2 que tiene una raíz de orden 2 en r:

- a) Demostrar que el método N-R converge sólo linealmente a r (Sugerencia: Notar que en este caso la g del ejercicio anterior no está definida para x=r, redefinirla como g(r)=r, probar la diferenciabilidad de g y demostrar que $g'(r) \neq 0$).
- b) ¿Cuál es el orden de convergencia de la siguiente modificación?

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)} \tag{1}$$

c) Sea $f(x) = 4x^3 - 3x + 1$. f tiene una raíz doble. Aproximarla calculando las 10 primeras iteraciones de los métodos N-R y del método (1), con dato inicial $x_0 = 25$. Graficar simultáneamente las dos sucesiones obtenidas.

Ejercicio 19 Se tiene la siguiente tabla de datos:

\overline{x}	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
\overline{y}	0.756	0.561	0.407	0.372	0.305	0.24	0.219	0.209	0.21	0.194	0.140

Se propone un ajuste de los puntos a través de una función de la forma $f(x) = \frac{1}{x+b}$. Para determinar el valor de b si desea resolver el problema de cuadrados mínimos:

$$\min_{b} F(b) = \sum_{i=0}^{10} \left(y_i - \frac{1}{x_i + b} \right)^2.$$

Para ello se propone una iteración de punto fijo de la forma $b_{n+1} = g(b_n)$, donde:

$$g(b) = \frac{1}{y_0 + \sum_{i=1}^{10} \left(y_i - \frac{1}{x_i + b} \right) \left(\frac{x_0 + b}{x_i + b} \right)^2} - x_0 \tag{2}$$

- a) Progar que (2) define efectivamente un método de punto fijo del problema F'(b) = 0.
- b) Hallar b utilizando el método de punto fijo, tomando $b_0 = 1$.
- c) Graficar los puntos, junto con la f que los ajusta. Agregar, en un mismo gráfico, los polinomios de grado 2 y 3 que ajustan los datos por cuadrados mínimos.

Esta práctica está esencialmente tomada del curso *Elementos de Cálculo numérico / Cálculo Numérico* del Departamento de Matemática, ECEN, Universidad de Buenos Aires