Análisis Matemático III

DM ECEN -- Segundo Cuatrimestre 2024

Demostración del Teorema de la Función Implícita

Por simplicidad consideramos el caso particular del teorema de la Función Implícita en el que la ecuación

$$F(x,y) = 0, \quad x, y \in \mathbb{R}$$

define implícitamente una función y = g(x). La demostración del caso en que la ecuación

$$F(x_1, x_2, \dots, x_n, z) = 0$$

define implícitamente a $z = g(x_1, x_2, \dots, x_n)$ es análoga.

Theorem 1 Sea $F: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^1 tal que para un punto $(x_0, y_0) \in \mathbb{R}^2$ se tiene

$$F(x_0, y_0) = 0$$
 y $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$

Entonces existen $\delta, \varepsilon > 0$ y una única función $g: U \to V$, siendo $U = (x_0 - \delta, x_0 + \delta)$ y $V = (y_0 - \varepsilon, y_0 + \varepsilon)$ tal que

- i. $g(x_0) = y_0$.
- ii. F(x, g(x)) = 0 para todo $x \in U$.
- iii. Si F(x,y) = 0 para $x \in U$, $y \in V$ entonces y = g(x).

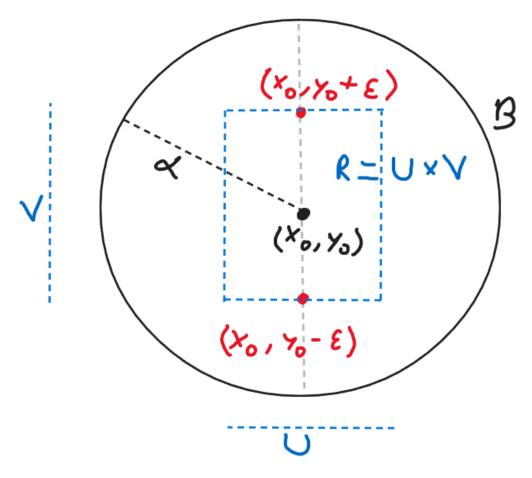
Además $g \in \mathcal{C}^1(U)$ y

$$g'(x) = -\frac{\frac{\partial F}{\partial x}(x, g(x))}{\frac{\partial F}{\partial x}(x, g(x))}.$$
 (1)

Demostración. Como F_y es continua existe $\alpha > 0$ tal que $F_y \neq 0$ en $B = B_{\alpha}(x_0, y_0) = \{(x, y) : \|(x, y) - (x_0, y_0)\| < \alpha\}$, y en particular F_y no cambia de signo en B. Asumimos que $F_y > 0$ en B (si es < 0 la demostración es análoga).

Tenemos que $F(x_0, y)$, como función de y, es estrictamente creciente para $y_0 - \alpha < y < y_0 + \alpha$, y además se anula en y_0 . Entonces $F(x_0, y_0 + \frac{\alpha}{2}) > 0$ y $F(x_0, y_0 - \frac{\alpha}{2}) < 0$. Sea $\varepsilon = \frac{\alpha}{2}$.

Función implícita Página 2



Como Fes continua, podemos elegir $\delta < \frac{\alpha}{2} = \varepsilon$ tal que

$$F(x, y_0 + \varepsilon) > 0$$
 y $F(x, y_0 - \varepsilon) < 0$ $\forall x \text{ tal que } x_0 - \delta < x < x_0 + \delta.$ (2)

Notemos que $R = (x_0 - \delta, x_0 + \delta) \times (y_0 - \epsilon, y_0 + \epsilon)$ verifica $R \subset B$. Por lo tanto $F_y > 0$ en R y así, para cada $x \in (x_0 - \delta, x_0 + \delta)$ la función $h_x(y) = F(x, y)$ es estrictamente creciente en el intervalo $(y_0 - \epsilon, y_0 + \epsilon)$. Por (2), el Teorema de Bolzano resulta que para cada $x \in (x_0 - \delta, x_0 + \delta)$ existe un único $y_x \in (y_0 - \epsilon, y_0 + \epsilon)$ tal que $h_x(y_x) = F(x, y_x) = 0$. La unicidad de y_x sigue pues h_y es estrictamente creciente. Definimos entonces $U = (x_0 - \delta, x_0 + \delta)$, $V = (y_0 - \epsilon, y_0 + \epsilon)$ y

$$g: U \to V, \qquad g(x) = y_x.$$

Claramente tenemos que i, ii, y iii se cumplen. Falta demostrar que g es derivable con continuidad. Sean $x_1, x \in U$ con $x \neq x_1$. Entonces

$$0 = F(x, g(x)) - F(x_1, g(x_1))$$

= $[F(x, g(x)) - F(x_1, g(x))] + [F(x_1, g(x)) - F(x_1, g(x_1))].$

Podemos aplicar el Teorema del Valor Medio de Lagrange a las funciones $F(\cdot, g(x))$ y $F(x_1, \cdot)$ (· indica la variable dependiente), para llegar a que

$$F(x, g(x)) - F(x_1, g(x)) = F_x(\xi(x), g(x))(x - x_1)$$

$$F(x_1, g(x)) - F(x_1, g(x_1)) = F_y(x_1, \eta(x))(g(x) - g(x_1)).$$

Departamento de Matemática - ECEN - FCEIA - UNR

con $\xi(x)$ algún punto intermedio entre x_1 y x (y por lo tanto en U) y $\eta(x)$ un punto intermedio entre $g(x_1)$ y g(x) (y por lo tanto en V). Así llegamos a

$$0 = F_x(\xi(x), g(x))(x - x_1) + F_y(x_1, \eta(x))(g(x) - g(x_1))$$
(3)

y como $(x_1, \eta(x)) \in U \times V \subset B$ se tiene que

$$F_y(x_1, \eta(x)) \neq 0.$$

Entonces podemos despejar $g(x) - g(x_1)$ de (3) obteniendo

$$g(x) - g(x_1) = -\frac{F_x(\xi(x), g(x))(x - x_1)}{F_y(x_1, \eta(x))}.$$
(4)

Sabemos que F_x es continua, en particular es continua en \overline{R} (clausura de R), y por lo tanto F_x es acotada en \overline{R} , digamos $|F_x| < M$. También F_y es continua, y en particular es continua en \overline{R} , y alcanza allí su valor mínimo, que llamemos m. Como $\overline{R} \subset B$ y $F_y > 0$ en B, resulta m > 0. Entonces se sigue de (4) que

$$|g(x) - g(x_1)| = \frac{|F_x(\xi(x), g(x))| |x - x_1|}{|F_y(x_1, \eta(x))|}$$

$$\leq \frac{M}{m} |x - x_1|$$

Luego

$$\lim_{x \to x_1} (g(x) - g(x_1)) = 0$$

y por lo tanto g es continua en $x = x_1$, y como x_1 es arbitrario en U, g es continua en U. La ecuación (4), siendo $x \neq x_1$, puede escribirse también

$$\frac{g(x) - g(x_1)}{x - x_1} = -\frac{F_x(\xi(x), g(x))}{F_y(x_1, \eta(x))}.$$
 (5)

Notemos que los puntos intermedios $\xi(x)$ y $\eta(x)$ verifican

$$\xi(x) \to x_1$$
 y $\eta(x) \to g(x_1)$ si $x \to x_1$,

donde, para $\eta(x)$, que está entre g(x) y $g(x_1)$ usamos la continuidad de g que acabamos de probar $(g(x) \to g(x_1)$ si $x \to x_1)$. Usando nuevamente la continuidad de F_x y F_y (como funciones de dos variables) tenemos que si $x \to x_1$ entonces

$$F_x(\xi(x), g(x)) \to F_x(x_1, g(x_1))$$

 $F_y(x_1, \eta(x)) \to F_y(x_1, g(x_1)).$

Como $F_y(x_1, g(x_1)) \neq 0$, tomando límite en (5) obtenemos

$$g'(x_1) = \lim_{x \to x_1} \frac{g(x) - g(x_1)}{x - x_1} = -\frac{F_x(x_1, g(x_1))}{F_y(x_1, g(x_1))}.$$

Esto vale para cualquier $x_1 \in U$, por lo tanto probamos la fórmula (1). Ahora sabiendo que F_x , F_y son continuas en R, g es continua en U y $F_y(x, g(x))$ no se anula para $x \in U$, resulta que g' es continua en U, o sea $g \in \mathcal{C}^1(U)$ como queríamos probar.