Análisis Numérico Primer cuatrimestre 2022

Clases de aproximación de autovalores

Outline

1 Localización de autovalores

2 Aproximación de autovalores

Outline

1 Localización de autovalores

2 Aproximación de autovalores

Teorema de Gershgorin

El conjunto de autovalores de una matriz $A \in \mathbb{C}^{n \times n}$ está contenido en la unión de n discos D_i , i = 1, ..., n, en el plano complejo, definidos por

$$D_i = \left\{ z: |z-a_{ii}| \leq \sum_{\substack{j=1 \ i \neq i}}^n |a_{ij}|
ight\}$$
 (discos de Gershgorin)

Ejemplo

$$A = \begin{pmatrix} -1+i & 0 & \frac{1}{4} \\ \frac{1}{4} & 1 & \frac{1}{4} \\ 1 & 1 & 3 \end{pmatrix}$$

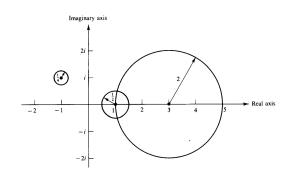


Figure: Discos de Gershgorim para A

Demostración (Gershgorin):

• λ autovalor de A, x autovector con

$$Ax = \lambda x$$
, $||x||_{\infty} = 1$, $|x_i| = ||x||_{\infty}$

Demostración (Gershgorin):

 \bullet λ autovalor de A, x autovector con

$$Ax = \lambda x, \quad ||x||_{\infty} = 1, \qquad |x_i| = ||x||_{\infty}$$

• Como $(Ax)_i = \lambda x_i$ tenemos

$$\lambda x_i = \sum_{j=1}^n a_{ij} x_j$$

Demostración (Gershgorin):

 \bullet λ autovalor de A, x autovector con

$$Ax = \lambda x, \quad ||x||_{\infty} = 1, \qquad |x_i| = ||x||_{\infty}$$

• Como $(Ax)_i = \lambda x_i$ tenemos

$$\lambda x_i = \sum_{j=1}^n a_{ij} x_j$$

Entonces

$$(\lambda - a_{ii}) x_i = \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j$$

Demostración (Gershgorin):

 \bullet λ autovalor de A, x autovector con

$$Ax = \lambda x, \quad ||x||_{\infty} = 1, \qquad |x_i| = ||x||_{\infty}$$

• Como $(Ax)_i = \lambda x_i$ tenemos

$$\lambda x_i = \sum_{j=1}^n a_{ij} x_j$$

Entonces

$$(\lambda - a_{ii}) x_i = \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j \qquad \stackrel{|x_i|=1, \ |x_j| \leq 1}{\Longrightarrow} \qquad |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$$

Demostración (Gershgorin):

 \bullet λ autovalor de A, x autovector con

$$Ax = \lambda x, \quad ||x||_{\infty} = 1, \qquad |x_i| = ||x||_{\infty}$$

• Como $(Ax)_i = \lambda x_i$ tenemos

$$\lambda x_i = \sum_{j=1}^n a_{ij} x_j$$

Entonces

$$(\lambda - a_{ii}) x_i = \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j \qquad \stackrel{|x_i|=1, |x_j| \leq 1}{\Longrightarrow} \qquad |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$$

• Entonces $\lambda \in D_i$

Observaciones:

Observaciones:

• Como A y A^t tienen los mismos autovalores, también tenemos que los autovalores de A están en la unión de los discos E_i con

$$E_j = \left\{z: |z-a_{jj}| \leq \sum_{\substack{i=1\i\neq j}}^n |a_{ij}| \right\}, \quad j=1,\ldots,n$$

Observaciones:

• Como A y A^t tienen los mismos autovalores, también tenemos que los autovalores de A están en la unión de los discos E_i con

$$E_j = \left\{ z : |z - a_{jj}| \le \sum_{\substack{i=1 \ i \neq j}}^n |a_{ij}| \right\}, \quad j = 1, \dots, n$$

Por lo tanto,

$$\{\lambda: \lambda \text{ autovalor de } A\} \subset \left(\cup_{i=i}^n D_i\right) \cap \left(\cup_{j=1}^n E_j\right)$$

Observaciones:

• Como A y A^t tienen los mismos autovalores, también tenemos que los autovalores de A están en la unión de los discos E_i con

$$E_j = \left\{ z : |z - a_{jj}| \le \sum_{\substack{i=1 \ i \neq j}}^n |a_{ij}| \right\}, \quad j = 1, \dots, n$$

Por lo tanto,

$$\{\lambda:\lambda \text{ autovalor de }A\}\subset \left(\cup_{i=i}^nD_i\right)\cap \left(\cup_{j=1}^nE_j\right)$$

Si uno de los discos D_i o E_i degenera a un punto z = a_{ii}, entonces a_{ii} es un autovalor de A. Es equivalente a decir que si la fila i o columna i de A contiene solo el elemento i-ésimo, a_{ii}, distinto de 0, entonces a_{ii} es autovalor de A

Outline

Localización de autovalores

2 Aproximación de autovalores

Método de potencias

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Método de potencias

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1| {>} |\lambda_2| \geq \ldots \geq |\lambda_n|$$

notar: único autovalor dominante y simple

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$$

notar: único autovalor dominante y simple

Existe una base de autovectores:

$$Au^{(i)} = \lambda_i u^{(i)}, \qquad i = 1, \dots, n$$

con
$$\left\{u^{(1)},\ldots,u^{(n)}\right\}$$
 l.i.

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$$

notar: único autovalor dominante y simple

• Existe una base de autovectores:

$$Au^{(i)}=\lambda_iu^{(i)}, \qquad i=1,\ldots,n$$

con
$$\left\{u^{(1)},\ldots,u^{(n)}\right\}$$
 l.i.

tenemos una funcional lineal

$$\phi: \mathbb{C}^n \to \mathbb{C}$$

tal que
$$\phi(u^{(1)}) \neq 0$$

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$$

notar: único autovalor dominante y simple

Existe una base de autovectores:

$$Au^{(i)} = \lambda_i u^{(i)}, \qquad i = 1, \dots, n$$

con
$$\left\{u^{(1)},\ldots,u^{(n)}\right\}$$
 l.i.

tenemos una funcional lineal

$$\phi: \mathbb{C}^n \to \mathbb{C}$$

tal que
$$\phi(u^{(1)}) \neq 0$$

Algoritmo

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1|{>}|\lambda_2|\geq\ldots\geq|\lambda_n|$$

notar: único autovalor dominante y simple

• Existe una base de autovectores:

$$Au^{(i)}=\lambda_iu^{(i)}, \qquad i=1,\ldots,n$$

con
$$\left\{u^{(1)},\ldots,u^{(n)}\right\}$$
 l.i.

tenemos una funcional lineal

$$\phi: \mathbb{C}^n \to \mathbb{C}$$

tal que
$$\phi(u^{(1)}) \neq 0$$

Algoritmo

Dados

A: matriz $n \times n$

M: # iteraciones

 $x^{(0)}$: aproximación inicial

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$$

notar: único autovalor dominante y simple

• Existe una base de autovectores:

$$Au^{(i)}=\lambda_i u^{(i)}, \qquad i=1,\ldots,n$$
 con $\left\{u^{(1)},\ldots,u^{(n)}
ight\}$ I.i.

tenemos una funcional lineal

$$\phi: \mathbb{C}^n \to \mathbb{C}$$

tal que $\phi(u^{(1)}) \neq 0$

Algoritmo

```
Dados

A: matriz n \times n

M: # iteraciones

x^{(0)}: aproximación inicial
```

```
for i = 1 : M
y = A * x;
r = Phi(y) / Phi(x);
x = y; %o: x=y/norm(y);
endfor
```

Método de potencias

Objetivo: aproximar el autovalor de mayor valor absoluto de $A \in \mathbb{C}^{n \times n}$

Hipótesis

• $\lambda_1, \ldots, \lambda_n$ autovalores de A con

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$$

notar: único autovalor dominante y simple

• Existe una base de autovectores:

$$Au^{(i)}=\lambda_i u^{(i)}, \qquad i=1,\ldots,n$$
 con $\left\{u^{(1)},\ldots,u^{(n)}
ight\}$ l.i.

tenemos una funcional lineal

$$\phi: \mathbb{C}^n \to \mathbb{C}$$

tal que $\phi(u^{(1)}) \neq 0$

Algoritmo

```
Dados
```

A: matriz $n \times n$

M: # iteraciones

 $x^{(0)}$: aproximación inicial

```
for i = 1 : M
y = A * x;
r = Phi(y) / Phi(x);
x = y; %o: x=y/norm(y);
endfor
```

r: aprox autovalor λ_1

x: aprox autovector $u^{(1)}$

Convergencia del método de potencias

Suponiendo las hipótesis anteriores, generamos una sucesión

$$x^{(0)}$$
 dado, $x^{(k+1)} = Ax^{(k)}$, $k = 1, 2, ...$

con $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$.

Si definimos

$$r_{k} = \frac{\phi\left(x^{(k+1)}\right)}{\phi\left(x^{(k)}\right)}$$

entonces tenemos

$$\lim_{k\to\infty} r_k = \lambda_1$$

Además $x^{(k)}/\|x^{(k)}\|$ aproxima a la dirección de $u^{(1)}$

Convergencia del método de potencias

Suponiendo las hipótesis anteriores, generamos una sucesión

$$x^{(0)}$$
 dado, $x^{(k+1)} = Ax^{(k)}$, $k = 1, 2, ...$

con $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$. Si definimos

$$r_{k} = \frac{\phi\left(x^{(k+1)}\right)}{\phi\left(x^{(k)}\right)}$$

entonces tenemos

$$\lim_{k\to\infty} r_k = \lambda_1$$

Además $x^{(k)}/\|x^{(k)}\|$ aproxima a la dirección de $u^{(1)}$

Nota: Como $\phi:\mathbb{C}^n\to\mathbb{C}$ podemos tomar por ejemplo la evaluación de la componente i-ésima: $\phi(x)=x_i$, suponiendo que $u_1^{(i)}\neq 0$.

Demostración (método de potencias):

Demostración (método de potencias):

• Supongamos $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$

Demostración (método de potencias):

- Supongamos $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$
- Entonces $x^{(k)} = A^k x^{(0)} = a_1 \lambda_1^k u^{(1)} + a_2 \lambda_2^k u^{(2)} + \ldots + a_n \lambda_n^k u^{(n)}$

Demostración (método de potencias):

- Supongamos $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$
- Entonces $x^{(k)} = A^k x^{(0)} = a_1 \lambda_1^k u^{(1)} + a_2 \lambda_2^k u^{(2)} + \ldots + a_n \lambda_n^k u^{(n)}$
- Podemos reescribirlo como

$$x^{(k)} = \lambda_1^k \left[a_1 u^{(1)} + a_2 \frac{\lambda_2^k}{\lambda_1^k} u^{(2)} + \ldots + a_n \frac{\lambda_n^k}{\lambda_1^k} u^{(n)} \right] = \lambda_1^k \left[a_1 u^{(1)} + \varepsilon_k \right]$$

con $\varepsilon_k \to 0$ si $k \to \infty$ siendo que $|\lambda_i/\lambda_k| < 1$ para $i = 2, \dots, n$

Demostración (método de potencias):

- Supongamos $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$
- Entonces $x^{(k)} = A^k x^{(0)} = a_1 \lambda_1^k u^{(1)} + a_2 \lambda_2^k u^{(2)} + \ldots + a_n \lambda_n^k u^{(n)}$
- Podemos reescribirlo como

$$x^{(k)} = \lambda_1^k \left[a_1 u^{(1)} + a_2 \frac{\lambda_2^k}{\lambda_1^k} u^{(2)} + \ldots + a_n \frac{\lambda_n^k}{\lambda_1^k} u^{(n)} \right] = \lambda_1^k \left[a_1 u^{(1)} + \varepsilon_k \right]$$

con $\varepsilon_k o 0$ si $k o \infty$ siendo que $|\lambda_i/\lambda_k| < 1$ para $i=2,\dots,n$

ullet Como ϕ es lineal y continuo, tenemos

$$\frac{\phi(\mathbf{x}^{k+1})}{\phi(\mathbf{x}^{k})} = \frac{\phi\left\{\lambda_{1}^{k+1}\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k+1}\right]\right\}}{\phi\left\{\lambda_{1}^{k}\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k}\right]\right\}} = \lambda_{1}\frac{\phi\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k+1}\right]}{\phi\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k}\right]} \longrightarrow \lambda_{1}$$

donde usamos que $a_1 \neq 0$ y $\phi(u^{(1)}) \neq 0$

Demostración (método de potencias):

- Supongamos $x^{(0)} = a_1 u^{(1)} + a_2 u^{(2)} + \ldots + a_n u^{(n)}$ con $a_1 \neq 0$
- Entonces $x^{(k)} = A^k x^{(0)} = a_1 \lambda_1^k u^{(1)} + a_2 \lambda_2^k u^{(2)} + \ldots + a_n \lambda_n^k u^{(n)}$
- Podemos reescribirlo como

$$x^{(k)} = \lambda_1^k \left[a_1 u^{(1)} + a_2 \frac{\lambda_2^k}{\lambda_1^k} u^{(2)} + \ldots + a_n \frac{\lambda_n^k}{\lambda_1^k} u^{(n)} \right] = \lambda_1^k \left[a_1 u^{(1)} + \varepsilon_k \right]$$

con $\varepsilon_k o 0$ si $k o \infty$ siendo que $|\lambda_i/\lambda_k| < 1$ para $i=2,\dots,n$

ullet Como ϕ es lineal y continuo, tenemos

$$\frac{\phi(\mathbf{x}^{k+1})}{\phi(\mathbf{x}^{k})} = \frac{\phi\left\{\lambda_{1}^{k+1}\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k+1}\right]\right\}}{\phi\left\{\lambda_{1}^{k}\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k}\right]\right\}} = \lambda_{1}\frac{\phi\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k+1}\right]}{\phi\left[\mathbf{a}_{1}u^{(1)} + \varepsilon_{k}\right]} \longrightarrow \lambda_{1}$$

donde usamos que $a_1 \neq 0$ y $\phi(u^{(1)}) \neq 0$

ullet Notemos que $rac{x^{(k)}}{\lambda_1^k} o a_1 u^{(1)}$

Método de potencias inverso

Método de potencias inverso

• La idea es aplicar el método de potencias a A^{-1} , así aproximamos el autovalor de mayor valor absoluto de A^{-1} , que es (usando la notación anterior) λ_n^{-1} , el inverso del autovalor de menor valor absoluto de A

Método de potencias inverso

- La idea es aplicar el método de potencias a A^{-1} , así aproximamos el autovalor de mayor valor absoluto de A^{-1} , que es (usando la notación anterior) λ_n^{-1} , el inverso del autovalor de menor valor absoluto de A
- Se asume que existe un único autovalor simple de menor valor absoluto, que no es nulo

Método de potencias inverso

- La idea es aplicar el método de potencias a A^{-1} , así aproximamos el autovalor de mayor valor absoluto de A^{-1} , que es (usando la notación anterior) λ_n^{-1} , el inverso del autovalor de menor valor absoluto de A
- Se asume que existe un único autovalor simple de menor valor absoluto, que no es nulo
- Es posible evitar invertir A

Método de potencias inverso

- La idea es aplicar el método de potencias a A^{-1} , así aproximamos el autovalor de mayor valor absoluto de A^{-1} , que es (usando la notación anterior) λ_n^{-1} , el inverso del autovalor de menor valor absoluto de A
- Se asume que existe un único autovalor simple de menor valor absoluto, que no es nulo
- Es posible evitar invertir A

```
for i = 1 : M
    y = A^(-1) * x;
    r = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor
```

```
1 for i = 1 : M
No invertir A 2  y = A \ x;
3  r = Phi(y) / Phi(x);
4  x = y; %o:x=y/norm(y);
5 endfor
```

Método de potencias inverso

- La idea es aplicar el método de potencias a A^{-1} , así aproximamos el autovalor de mayor valor absoluto de A^{-1} , que es (usando la notación anterior) λ_n^{-1} , el inverso del autovalor de menor valor absoluto de A
- Se asume que existe un único autovalor simple de menor valor absoluto, que no es nulo
- Es posible evitar invertir A

```
for i = 1 : M
    y = A^(-1) * x;
    r = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor
1 for i = 1 : M
    y = A \ x;
    r = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor

1    for i = 1 : M
    y = A \ x;
    x = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor

1    for i = 1 : M
    y = A \ x;
    r = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor
```

• Si A tiene una descomposición LU, solo se necesita calcularla una vez, y usar solo backward substitution en cada paso del algoritmo

Método de potencias inverso

- La idea es aplicar el método de potencias a A^{-1} , así aproximamos el autovalor de mayor valor absoluto de A^{-1} , que es (usando la notación anterior) λ_n^{-1} , el inverso del autovalor de menor valor absoluto de A
- Se asume que existe un único autovalor simple de menor valor absoluto, que no es nulo
- Es posible evitar invertir A

```
for i = 1 : M
    y = A^(-1) * x;
    r = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor

for i = 1 : M
    y = A \ x;
    r = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor

for i = 1 : M
    y = A \ x;
    x = Phi(y) / Phi(x);
    x = y; %o:x=y/norm(y);
endfor
```

- Si A tiene una descomposición LU, solo se necesita calcularla una vez, y usar solo backward substitution en cada paso del algoritmo
- La aproximación de λ_n es $\frac{1}{r}$

Shifted inverse power method

Shifted inverse power method

• La idea es hallar el autovalor más cercano a un complejo dado μ (se supone que este es único y simple)

Shifted inverse power method

- \bullet La idea es hallar el autovalor más cercano a un complejo dado μ (se supone que este es único y simple)
- Esto equivale a hallar el autovalor de menor valor absoluto de $A \mu I$, por lo que podemos aplicar el método de potencias inversa a esta matriz (shifted matrix)

Shifted inverse power method

- La idea es hallar el autovalor más cercano a un complejo dado μ (se supone que este es único y simple)
- Esto equivale a hallar el autovalor de menor valor absoluto de $A-\mu I$, por lo que podemos aplicar el método de potencias inversa a esta matriz (shifted matrix)
- Algoritmo:

```
for i = 1 : M

y = (A-mu) \ x;

r = Phi(y) / Phi(x);

x = y; %o: x=y/norm(y);
endfor
```

Shifted inverse power method

- La idea es hallar el autovalor más cercano a un complejo dado μ (se supone que este es único y simple)
- Esto equivale a hallar el autovalor de menor valor absoluto de $A-\mu I$, por lo que podemos aplicar el método de potencias inversa a esta matriz (shifted matrix)
- Algoritmo:

```
1 for i = 1 : M
2    y = (A-mu) \ x;
3    r = Phi(y) / Phi(x);
4    x = y; %o: x=y/norm(y);
5 endfor
```

• si λ es el autovalor buscado, ahora r da una aproximación de $\frac{1}{\lambda-\mu}$, por lo tanto una aproximación de λ es

$$\lambda \sim \frac{1}{r} + \mu$$

Proceso de deflación

Proceso de deflación

Objetivo: obtener aproximaciones de todos los autovalores de una matriz

Proceso de deflación

Objetivo: obtener aproximaciones de todos los autovalores de una matriz

• Se supone que los autovalores son simples y de módulos distintos

Proceso de deflación

Objetivo: obtener aproximaciones de todos los autovalores de una matriz

- Se supone que los autovalores son simples y de módulos distintos
- Idea: obtener aproximaciones de un autovalor de A y su correspondiente autovector, y con ellos construir una matriz de una dimensión menor, que tenga como autovalores los restantes autovalores de A

Proceso de deflación

Objetivo: obtener aproximaciones de todos los autovalores de una matriz

- Se supone que los autovalores son simples y de módulos distintos
- Idea: obtener aproximaciones de un autovalor de A y su correspondiente autovector, y con ellos construir una matriz de una dimensión menor, que tenga como autovalores los restantes autovalores de A
- Detalles: ver ejercicio 6 de la práctica 4