

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático III - PM - LM - PF - LF - segundo cuatrimestre 2024

PRÁCTICA 6 - Sucesiones y series de funciones

1. Estudiar la convergencia de las sucesiones de funciones $\{f_k\}$ a continuación. En cada caso determinar la función límite y si la convergencia es uniforme.

(i)
$$f_k(x) = \frac{\operatorname{sen}(kx)}{\sqrt{L}}$$
 $x \in \mathbb{R}$

(i)
$$f_k(x) = \frac{\operatorname{sen}(kx)}{\sqrt{k}}$$
 $x \in \mathbb{R}$ (ii) $f_k(x) = \frac{x^{2k}}{1 + x^{2k}}$ $x \in \mathbb{R}$

(iii)
$$f_k(x) = kx(1-x)^k \quad x \in [0,1]$$

(iii)
$$f_k(x) = kx(1-x)^k$$
 $x \in [0,1]$ (iv) $f_k(x) = \frac{1}{1+x^{2k}}$ $x \in \mathbb{R}$

2. Estudiar la convergencia de las siguientes series de funciones. Determinar, en cada caso, si la convergencia es uniforme.

(i)
$$\sum_{k=0}^{\infty} \frac{x^2}{(1+x^2)^k}$$
 $|x| < 1$

(i)
$$\sum_{k=0}^{\infty} \frac{x^2}{(1+x^2)^k}$$
 $|x| < 1$ (ii) $\sum_{k=1}^{\infty} (x^k - x^{k-1})$ $x \in [0,1]$

(iii)
$$\sum_{k=1}^{\infty} \frac{\operatorname{sen}(kx)}{k^2} \qquad x \in \mathbb{I}$$

(v)
$$\sum_{k=1}^{\infty} \exp(kx)$$
 $x \in [-2]$

(v)
$$\sum_{k=1}^{\infty} \exp(kx) \qquad x \in [-2, -1] \quad \text{(vi)} \quad \sum_{k=1}^{\infty} \frac{x}{x^2 k^2 + k} \qquad x \in [0, \infty)$$

3. Sea f_0 continua en [0,a]. Se define la sucesión $\{f_k\}$ por

$$f_k(x) = \int_0^x f_{k-1}(t) dt \quad k \in \mathbb{N}, \ x \in [0, a]$$
.

Probar que $\{f_k\}$ converge uniformemente a la función nula.

- 4. Verificar que la serie $\sum_{n} (-1)^{n} / (n+x^{2})$ es uniformemente convergente en el intervalo $0 \le x < \infty$, pero no es absolutamente convergente para ningún $x \ge 0$.
- 5. A partir de la serie geométrica $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$, en los casos en que sea posible, derivar o integrar término a término para obtener los siguientes resultados, válidos si |x| < 1.

(i)
$$\sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

(i)
$$\sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
 (ii) $\sum_{k=1}^{\infty} k^2 x^k = \frac{x^2 + x}{(1-x)^3}$

(iii)
$$\sum_{k=1}^{\infty} k^3 x^k = \frac{x^3 + 4x^2 + x}{(1-x)^2}$$
 (iv) $\sum_{k=1}^{\infty} \frac{x^k}{k} = \log\left(\frac{1}{1-x}\right)$

(iv)
$$\sum_{k=1}^{\infty} \frac{x^k}{k} = \log\left(\frac{1}{1-x}\right)$$

$$\text{(v)} \quad \sum_{k=1}^{\infty} \frac{x^{2k-1}}{2k-1} = \tfrac{1}{2} \log \left(\frac{1+x}{1-x} \right) \quad \text{(vi)} \quad \sum_{k=0}^{\infty} (k+1) x^k = \frac{1}{\left(1-x \right)^2}$$

(vi)
$$\sum_{k=0}^{\infty} (k+1)x^k = \frac{1}{(1-x)^2}$$

6. Si $f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$, probar que

$$\int_0^{\pi/2} f(x)dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}.$$

7. Sea $f_n(x) = nx/(1+nx)$ para $0 \le x < \infty$. Probar que

$$\int_0^x f_n(t)dt \to x \quad \text{as } n \to \infty.$$

8. Sea $f_n(x) = n^2xe^{-nx}$ para $0 \le x \le 1$. Luego $f_n(x) \to 0$ puntualmente. Probar que, para cada $0 < x \le 1$, $\int_0^x f_n(t)dt \to 1 \text{ si } n \to \infty.$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático III - PM - LM - PF - LF - segundo cuatrimestre 2024

9. Para cada una de las sucesiones $\{f_n\}$ dadas, encontrar $f(x) = \lim_{n \to \infty} f_n(x)$ en el intervalo [a,b] indicado, y chequear si

$$\int_a^b f_n(x)dx \to \int_a^b f(x)dx; \quad f'_n(x) \to f'(x):$$

a)
$$f_n(x) = \frac{nx}{1+n^2x^4}$$
 en $[0,b]$;

b)
$$f_n(x) = \frac{2x+n}{x+n}$$
 en $[0,b]$;

b)
$$f_n(x) = \frac{2x+n}{x+n}$$
 en $[0,b]$;
c) $f_n(x) = \frac{nx^2+1}{nx+1}$ en $[0,1]$.

10. Probar que

$$\frac{d}{dx} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \frac{1}{1+x} \quad \text{ si } |x| < 1.$$

¿Converge también en un intervalo más grande que contenga a x = 1?

11. Encontrar el radio de convergencia de cada una de las siguientes series:

a)
$$\sum \frac{n}{n+1} x^n$$

b)
$$\sum \alpha^n x^n, \alpha \neq 0$$

c)
$$\sum \frac{(2n)!}{2^n} x^n$$

c)
$$\sum \frac{(2n)!}{2^n} x^n$$
;
d) $\sum \frac{x^n}{n^{\alpha}}$, $\alpha > 0$.

12. Para cada una de las siguientes series reales de potencias determinar el conjunto de todos los valores reales x para los que converge y calcular su suma.

(i)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 (ii) $\sum_{k=0}^{\infty} \frac{x^k}{3^{k+1}}$ (iii) $\sum_{k=0}^{\infty} k x^k$

$$\text{(iv)} \quad \sum_{k=0}^{\infty} (-1)^k k x^k \quad \text{(v)} \quad \sum_{k=0}^{\infty} (-2)^k \tfrac{k+2}{k+1} x^k \quad \text{(vi)} \quad \sum_{k=1}^{\infty} \frac{2^k x^k}{k}$$

13. Calcular la suma de las siguientes series para |x| < 1:

(i)
$$\sum_{n=0}^{\infty} (n+1)(n+2)x^{n+1}$$
; (ii) $\sum_{n=1}^{\infty} (-1)^n n x^n$; (iii) $\sum_{n=1}^{\infty} n^3 x^n$; (iv) $\sum_{n=1}^{\infty} \frac{n x^n}{n+1}$.

i)
$$\sum_{n=1}^{\infty} n^3 x^n$$
; (iv) $\sum_{n=1}^{\infty} \frac{n x^n}{n+1}$

14. Encontrar la serie de Taylor para cada una de las siguientes funciones en x = 0, y calcular el radio de convergencia:

(i)
$$\int_0^x \frac{\sin t}{t} dt$$
 (ii) $\int_0^x e^{-t^2} dt$
(iii) $a^x, a > 0$ (iv) $\int_0^x \cos t^2 dt$

15. Para cada una de las siguiente funciones, encontrar su serie de Fourier de cosenos y su serie de Fourier de senos en el intervalo $(0,\pi)$.

a)
$$f(x) = \pi - x$$

b)
$$f(x) = x^2$$

c)
$$f(x) = x(\pi - x)$$

16. Encontrar la serie de Fourier de las siguientes funciones en el intervalo $(-\pi,\pi)$.

a)
$$f(x) = x + \pi$$

b)
$$f(x) = \begin{cases} -\frac{\pi}{2} & \text{si } -\pi < x < 0 \\ \frac{\pi}{2} & \text{si } 0 \le x < \pi \end{cases}$$

c)
$$f(x) = \begin{cases} x + \pi & \text{si } -\pi < x < 0 \\ \pi & \text{si } 0 \le x < \pi \end{cases}$$