

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático III - PM - LM - PF - LF - segundo cuatrimestre 2024

PRÁCTICA 3 - Integrales de Línea

- 1. Determinar los vectores velocidad y aceleración, y la ecuación de la recta tangente para cada una de las trayectorias siguientes en el valor especificado de t.
 - a) $\mathbf{r}(t) = (6t, 3t^2, t^3), \quad t = 0$
 - b) $\sigma(t) = (\cos^2 t, 3t t^3, t), \quad t = 0$
 - c) $\sigma(t) = (\sin 3t, \cos 3t, 2t^{\frac{3}{2}}), \quad t = 1$
- 2. Considerar el punto con función de posición $\sigma: t \mapsto (t \sin t, 1 \cos t)$. Hallar la velocidad, rapidez, y la longitud de arco entre los puntos $\sigma(0)$ y $\sigma(2\pi)$. Observar que σ describe la función de posición de un punto en un círculo de radio 1, que va rodando; su curva se conoce como cicloide.
- 3. Calcular la longitud de arco de la curva $\sigma(t)$ en el intervalo [a,b], siendo:

 - (a) $\sigma(t) = (t, t^2)$ a = 0, b = 1 (b) $\sigma(t) = (\sqrt{t}, t + 1, t)$ a = 10 b = 20.
- 4. La longitud de arco s(t) para una trayectoria dada $\sigma(t)$, definida por $s(t) = \int_a^t \|\sigma'(\tau)\| d\tau$, representa la distancia que una partícula viajando por la trayectoria σ habrá recorrido en el tiempo t si comienza en el instante a, es decir, da la longitud de σ entre $\sigma(a)$ y $\sigma(t)$. Encontrar las funciones longitud de arco para las curvas $\alpha(t) = (\cosh(t), \sinh(t), t)$ y $\beta(t) = (\cos(t), \sin(t), t)$, con a = 0.
- a) Sea α cualquier trayectoria diferenciable cuya velocidad nunca es cero. Sea s(t) la función longitud de arco para α . Sea t(s) la función inversa de s(t). Probar que la curva $\beta = \alpha \circ t$ tiene velocidad unitaria, es decir, $\|\boldsymbol{\beta}'(s)\| = 1 \,\forall s$.
 - b) Sea σ la trayectoria $\sigma(t)=(a\cos(t),a\sin(t),bt)$, t>0. Encontrar una trayectoria que trace la misma curva que σ pero con velocidad unitaria.
- 6. Calcular la integral de trayectoria de los siguientes campos escalares sobre las curvas C indicadas.
 - a) $f(x,y) = x^2 + y^2$, C la curva de ecuaciones paramátricas $\sigma(t) = (\cos t + t \sin t, \sin t t \cos t)$, $t \in [0,2\pi]$.
 - b) f(x,y) = 2x + y, C el arco de la circunferencia $x^2 + y^2 = 25$ que une (3,4) con (4,3).
- a) Mostrar que la integral de trayectoria de f(x,y) a lo largo de una trayectoria dada en coordenadas polares por $r = r(\theta)$, $\theta_1 \le \theta \le \theta_2$ es

$$\int_{\theta_1}^{\theta_2} f(r\cos\theta, r\sin\theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

- b) Calcular la longitud de arco de $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.
- 8. Sea $f(x,y)=2x-y, x=t^4, y=t^4, -1 \le t \le 1$. Calcular la integral de f a lo largo de esta trayectoria e interpretar geométricamente la respuesta.
- 9. Considerar un alambre semicircular uniforme (densidad de masa constante) de radio R, de masa M.
 - a) Mostrar que el centro de masa está situado en el eje de simetría a distancia $\frac{2R}{\pi}$ del centro.
 - b) Mostrar que el momento de inercia respecto del diámetro que pasa por los extremos del alambre es $\frac{1}{2}MR^2$.
- 10. Hallar la coordenada z promedio (es decir, el valor promedio de la función f(x,y,z)=z) de los puntos en la semicírunferencia parametrizada por $\sigma(t) = (0, a \operatorname{sen}(t), a \operatorname{cos}(t)), t \in [0, \pi].$
- 11. Un alambre uniforme tiene la forma de la porción de curva de intersección de la superficie de ecuación $x^2 + y^2 = z^2$ con la de ecuación $y^2 = x$, que une los puntos (0,0,0) y $(1,1,\sqrt{2})$. Hallar la coordenada z del centro de masa.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático III - PM - LM - PF - LF - segundo cuatrimestre 2024

- 12. En cada caso calcular la integral de línea del campo vectorial dado a lo largo del camino que se indica:
 - a) $F(x,y) = (\exp(x-1),xy)$, sobre la curva de ecuación paramétrica $\sigma(t) = (t^2,t^3)$, $t \in [0,1]$.
 - b) F(x,y) = (x+y,x-y) a lo largo de la elipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$ en el sentido antihorario.
 - c) F(x,y,z) = (yz,xz,xy) a lo largo de la intersección del paraboloide $z = x^2 + y^2$ con el plano z = 4.
- 13. El trabajo del campo $F(x,y) = \left(3y^2 + 2,16x\right)$ al mover una partícula desde (-1,0) hacia (1,0) a lo largo de la mitad superior de la elipse $x^2 + \frac{y^2}{h} = 1$ depende de b. Hallar b tal que el trabajo sea mínimo.
- 14. Sea σ una trayectoria suave.
 - a) Suponer que \mathbf{F} es perpendicular a $\sigma'(t)$ en $\sigma(t)$. Mostrar que

$$\int_{\sigma} \mathbf{F} \cdot d\mathbf{s} = 0.$$

b) Si \mathbf{F} es paralelo a $\sigma'(t)$ en $\sigma(t)$, mostrar que

$$\int_{\sigma} \mathbf{F} \cdot d\mathbf{s} = \int_{\sigma} \|\mathbf{F}\| \, ds.$$

(Por paralelo a $\sigma'(t)$ se entiende que $\mathbf{F}(\sigma(t)) = \lambda(t)\sigma'(t)$, donde $\lambda(t) > 0$.)

15. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ un campo escalar tal que

$$\nabla f(x, y, z) = (2xyze^{x^2}, ze^{x^2}, ye^{x^2})$$
.

Calcular f(1,1,2), sabiendo que f(0,0,0) = 5.

16. Evaluar

$$\int_C 2xyz \, dx + x^2z \, dy + x^2y \, dz \,,$$

donde C es una curva orientada simple que conecta (1,1,1) con (1,2,4).

17. Considerar el campo de fuerza gravitacional (con G = m = M = 1) definido por

$$F(x,y,z) = \frac{-1}{(x^2 + y^2 + z^2)^{3/2}}(x, y, z) \quad \text{para } (x,y,z) \neq (0,0,0).$$

Mostrar que el trabajo realizado por la fuerza gravitacional conforme una partícula se mueve desde (x_1,y_1,z_1) a (x_2,y_2,z_2) a lo largo de cualquier trayectoria, depende solo de los radios : $R_1=\sqrt{x_1^2+y_1^2+z_1^2}$ y $R_2=\sqrt{x_2^2+y_2^2+z_2^2}$.

- 18. Para los siguientes campos vectoriales $F: \mathbb{R}^n \to \mathbb{R}$,
 - a) Demuestre que es un campo conservativo.
 - b) Determine una función potencial de F.
 - c) Calcule la integral de línea de F a lo largo de alguna curva, la que quieran, que una el origen con el punto indicado.
 - 1) $F(x,y) = (2xy^3 + y + 1, 3x^2y^2 + x + 7), P = (1,1).$
 - 2) $F(x,y) = (y^2e^{x+y} + 1, ye^{x+y}(y+2) + 1), P = (1,1).$
 - 3) $F(x,y,z) = (e^{y+2z}, xe^{y+2z}, 2xe^{y+2z}), P = (1,1,1).$
- 19. Calcular

(a)
$$\int_{(1,0)}^{(3,2)} 2xy \, dx + x^2 \, dy;$$
 (b) $\int_{(0,0,0)}^{(3,-2,5)} 3x \, dx + y^3 \, dy - z^2 \, dz.$

¿Por qué en ninguno de los dos casos se da una curva que una los extremos de integración? Justificar.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático III - PM - LM - PF - LF - segundo cuatrimestre 2024

20. Calcular la integral de línea del campo $F: \mathbb{R}^3 \to \mathbb{R}^3$ dado por

$$F(x,y,z) = (e^{xz}(xyz^2 + yz), xze^{xz}, e^{xz}(x^2yz + xy))$$

a lo largo de la curva $\sigma:[0,1]\to\mathbb{R}^3$ dada por

$$\sigma(t) = \left(\frac{\sinh 5t}{\sinh 5}, t^4 + 5t^3 - 3t^2 - 2t, \frac{1}{\ln 7}\ln(1 + 6t^8)\right)$$

21. Sea $f: \mathbb{R} \to \mathbb{R}$ una función de clase C^1 . Demuestre que

$$\int_C f(x^2 + y^2)(x \, dx + y \, dy) = 0,$$

para toda curva cerrada C.

22. Verificar el teorema de Green para el disco D con centro en el origen y radio R y las funciones:

a)
$$P(x,y) = xy^2$$
, $Q(x,y) = -yx^2$.

b)
$$P(x,y) = x + y$$
, $Q(x,y) = y$.

23. Usar el teorema de Green para evaluar el trabajo realizado por el campo de fuerzas

$$f(x,y) = (x^3 + y^2, x^4)$$

al mover una partícula rodeando al cuadrado $[0,1] \times [0,1]$ en sentido antihorario.

24. Verificar el teorema de Green y calcular $\int_C y^2 dx + x dy$, siendo C la curva recorrida en sentido positivo:

- a) cuadrado con vértices (0,0), (2,0), (2,2), (0,2),
- b) elipse dada por $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,
- c) $C = C_1 \cup C_2$, donde $C_1 : y = x, x \in [0, 1]$, y $C_2 : y = x^2, x \in [0, 1]$.

25. Usando el teorema de Green, hallar el área de:

- a) el disco D con centro (0,0) y radio R,
- b) la región dentro de la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

26. Sea D la región encerrada por el eje x y el arco de la cicloide:

$$x = \theta - \sin \theta$$
, $y = 1 - \cos \theta$, $0 < \theta < 2\pi$.

Usando el teorema de Green, calcular el área de D.

27. (*) Probar la siguiente fórmula de integración por partes: Si $D \subset \mathbb{R}^2$ es un dominio elemental, ∂D su frontera orientada en sentido antihorario y $\mathbf{n} = (n_1, n_2)$ la normal exterior a D, entonces

$$\int_D u v_x dx dy = -\int_D u_x v dx dy + \int_{\partial D} u v n_1 ds,$$

para todo par de funciones $u, v \in C(\bar{D}) \cap C^1(D)$.