CHAPTER TWO

Calculus of Variations and

Applications

2.1. Maxima and minima. Applications of the calculus of variations are
concerned chiefly with the determination of maxima and minima of certain
expressions involving unknown functions. Certain techniques involved are
analogous to procedures in the differential calculus, which are briefly
reviewed in this section.

An important problem in the differential calculus is that of determining
maximum and minimum values of a function y = f(x) for values of x in a
certain interval (g, ). If in that interval f(x) has a continuous derivative,
it is recalled that a necessary condition for the existence of a maximum or
minimum at a point x, inside (a, b) is that dyfdx = 0 at x,. A sufficient
condition that y be 2 maximum (or a minimum) at x,, relative to values at
neighboring points, is that, in addition, d%y/dx® < 0 (or d®y/dx? > 0) at
that point.

If z is a function of two independent variables, say z = f(x, y), in a region
Z, and if the partial derivatives dz/dx and 0z/dy exist and are continuous
throughout Z, then necessary conditions that z possess a relative maximum
or minimum at an interior point (x,, y,) of # are that dz/dx = 0 and
0z/dy = 0 simultaneously at (x,, y,). These two requirements are equivalent
to the single requirement that

0z 0z

dz=Zax + Zay—o
‘ Ox x+3y ¥

at a point (x,, y,), for arbitrary values of both dx and dy. Sufficient condi-
tions for either a maximum or a minimum involve certain inequalities

among the second partial derivatives (see Problem 1).
119
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More generally, a necessary condition that a continuously differentiable
function f(x;, x4, -+ -, x,) of n variables x;, x,,---,x, have a relative
maximum or minimum value at an interior point of a region is that

dfzidxl—i—-ﬂdxz—l—“-—!—afdxﬂzo (1)
ox, 0x, ox,
at that point, for all permissible values of the differentials dx,, - -, dx,.

At a point satisfying (1) the function f is said to be stationary.
If the n variables are all independent, the » differentials can be assigned
arbitrarily, and it follows that (1) then is equivalent to the » conditions

)

Sufficient conditions that values of the variables satisfying (1) or (2) actually
determine maxima (or minima) involve certain inequalities among the higher
partial derivatives (see Problem 1).

Suppose, however, that the n variables are not independent, but are
related by, say, N conditions each of the form

q!’k(xl’ R xn) = 0.

Then, at least theoretically, these N equations generally can be solved to
express N of the variables in terms of the n — N remaining variables, and
hence to express f and df in terms of » — N independent variables and their
differentials. Alternatively, N linear relations among the n differentials can
be obtained by differentiation. These conditions permit the expression of N of
the differentials as linear combinations of the differentials of the n — N
independent variables. If (1) is expressed in terms of these differentials, their
coefficients must then vanish, giving n — N conditions for stationary values
of f which supplement the N constraint conditions.

A procedure which is often still more convenient in this case consists of
the introduction of the so-called Lagrange multipliers. To illustrate their
use, we consider here the problem of obtaining stationary values of f(x, y, ),

df =f,dx + f,dy + f,dz =0, (3)

subject to the two constraints
$i(x, v, z) = 0, (4a)
¢2(x9 ys Z) = 0. (4b)

Since the three variables x, y, z must satisfy the two auxiliary conditions
(4a,b), only one variable can be considered as independent. Equations
(4a,b) imply the differential relations
¢lz dx + ¢1v d}' + ¢1z dz = 0) (Sa)
b, dX + by dy + o, dz = 0. (5b)
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The procedure outlined above would consist of first solving (5a,b) for,
say, dx and dy in terms of dz (if this is possible) and of introducing the results
into (3), to give a result of the form

df = (---)dz = 0.
Since dz can be assigned arbitrarily, the vanishing of the indicated expression
in parentheses in this form is the desired condition that f be stationary when
(4a,b) are satisfied.
As an alternative procedure, we first multiply (5a) and (5b) respectively

by the quantities 4, and 4,, to be specified presently, and add the results to (3).
Since the right-hand members are all zeros, there follows

(fz + “a'l¢lz + Ag,) dx + (fy + 11?51:; + 12¢2y) dy
+ (fz + 31951;; = /12?52;) dz = 0, (6)

for arbitrary values of A, and A;. Now let A, and A, be determined so that
two of the parentheses in (6) vanish.* Then the differential multiplying the
remaining parenthesis can be arbitrarily assigned, and hence that parenthesis
must also vanish. Thus we must have

¢,
A A
a L, x| ’ax =k
of dé, a(ﬁs
A A
R RS

af + ‘11 a¢l +lgaqs2 0
0z 0z

Equations (7a,b,c) and (4a,b) comprise five equations determining x, y, z and
A1, A,. The quantities 4, and A, are known as Lagrange multipliers. Their
introduction frequently simplifies the relevant algebra in problems of the
type just considered. In many applications they are found to have physical
significance as well. We notice that the conditions (7) are the conditions that
[+ Ay + Ay be stationary when no constraints are present.

The procedure outlined is applicable without modification to the general
case of n variables and N < n constraints.

In illustration of the method, we attempt to determine the point on the
curve of intersection of the surfaces

D (7a,b,c)

z=xy+35, x+y+z=1 (8a,b)
which is nearest the origin. Thus, we must minimize the quantity
f= x2 =2 y?. + 72

* It can be shown that if this were not possible, then the functions ¢, and ¢, would be
Junctionally dependent, so that the two constraints (4a) and (4b) would be either equivalent
or incompatible.
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subject to the two constraints (8a,b). With
br=z—xy—5  d=x+y+z—1,
equations (7a,b,c) take the form
2x — Ay + 4, =0,
2y —Ax+ 4,=0, ). (9a,b,c)
2244 +4,=0
The elimination of 4, and 4, from equations (9a,b,c) yields the two alternatives
x+y—z+1=0 or X =y. (10a,b)

The simultaneous solution of (8a,b) and (10a) leads to the coordinates of the
two points (2, —2, 1) and (—2, 2, 1), which are each three units distant from
the origin, whereas the equations (8a,b) and (10b) have no real common
solution. Geometrical considerations indicate that there is indeed at least
one point nearest the origin; since the two points obtained are necessarily the
only possible ones, they must accordingly be the points required.

As an illustration closely related to certain topics in Chapter 1, we may
seek those points on a central quadric surface

¢ = ayx® + ay)? + ag7® + 2a1,xy + 2axyz + 2a13xz = constant

for which distance from the origin is maximum or minimum relative to
neighboring points. We are thus to render the form

f=xtt 4

stationary, subject to the constraint ¢ == constant. Here, if we denote the
Lagrange multiplier by —1/4, the requirement that ¢ — Af be stationary
leads to the conditions

ayx + ayy + ajzz = Ax,
Apex + Qop + g3z = Ay,
Q13X + QpY + A3z = Az

This set of equations comprises a characteristic-value problem of the type
discussed in Section 1.12. Each *‘characteristic value™ of 4, for which a non-
trivial solution exists, leads to the three coordinates of one or more points
(x, y, z), determined within a common arbitrary multiplicative factor which
is available for the satisfaction of the equation of the surface. Section 1.21
shows that it is always possible to rotate the coordinate axes in such a way
that each new axis coincides with the direction from the origin to such a
point, and that the equation of the surface, referred to the new axes, then
involves only squares of the new coordinates. That is, the new axes (which
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coincide with the *‘characteristic vectors” of the problem) are the principal
axes of the quadric surface. The characteristic values of 4 are inversely
proportional to the squares of the semiaxes. Repeated roots of the charac-
teristic equation correspond to surfaces of revolution, in which cases the new
axes can be so chosen in infinitely many ways, while zero roots correspond to
surfaces which extend infinitely far from the origin.

The basic problem in the calculus of variations is to determine a function
such that a certain definite integral involving that function and certain of its
derivatives takes on a maximum or minimum value. The elementary part of
the theory is concerned with a necessary condition (generally in the form of a
differential equation with boundary conditions) which the required function
must satisfy. To show mathematically that the function obtained actually
maximizes (or minimizes) the integral is much more difficult than in the
corresponding problems of differential calculus. Sufficient conditions are
developed in more advanced works. In physicaily motivated problems, such
additional considerations frequently may be avoided.

As an example of a problem of this sort, we notice that in order to
determine the surface of revolution, obtained by rotating about the x axis a
curve passing through two given points (x;, y;) and (x,, y,;), which has
minimum surface area, we must determine the function y(x) which specifies
the curve to be revolved, in such a way that the integral

I
I :2wj Y+ M dx
L |
is a minimum, and also so that y(x;) = y, and y(x,) = y,. Here it is assumed
that y, and y, are nonnegative.
In most cases it is to be required that the function and the derivatives
explicitly involved be continuous in the region of definition.
2.2. The simplest case. We now consider the problem of determining
a continuously differentiable function y(x) for which the integral

1 =f *F(x, y, y')dx (1)
T

takes on a maximum or minimum value,* and which satisfies the prescribed
end conditions

Y(xy) = ns Hxy) = ya.

To fix ideas, we may suppose that / is to be minimized.
Suppose that y(x) is the actual minimizing function, and choose any
continuously differentiable function #(x) which vanishes at the end points

* We suppose that F has continuous second partial derivatives with respect to its three
arguments
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x = x; and x = x;. Then for any constant e the function y(x) 4 en(x) will
satisfy the end conditions (Figure 2.1). The integral

I(¢€) =f Flx,y +en,y +en')dx, (12)

obtained by replacing y by y + en in (11), is then a function of €, once y and
7 are assigned, which takes on its minimum value when ¢ = 0. But this is
possible only if

& di(e¢)

de

=0 when €=0. (13)

If we denote the integrand in (12) by
F,
F= F(x,y + en,y + €7),

and notice that

X we obtain from (12) the result
FIGURE 2.1 dl(e) =f32(3_Fn oF i’_}) dox
de oy ay’ dx!

by differentiating under the integral sign. Finally, since F— F when ¢ — 0,
and the same is true of the partial derivatives, the necessary condition (13)

takes the form
f ’(BF a—F ﬂ) dx = 0. (14)
ay dy' dx

The next step in the development consists of integrating the second term
by parts, to transform (14) to the condition

[Er-spes B0 o

But since 7(x) vanishes at the end points, by assumption, the integrated terms
vanish and (15) becomes

2[ 9F oF )]
¥ dx = 0. 16
-[:1 [ay dx(ay s = (16)
Finally, since #(x) is arbitrary, we conclude that its coefficient in (16)

must vanish identically over (x;, x;). For if this were not so we could choose
a continuously differentiable function 7(x), which vanishes at the ends of the
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interval, in such a way that the (continuous) integrand in (16) is positive
whenever it is not zero,* and a contradiction would be obtained.

The end result is that if y(x) minimizes (or maximizes) the integral (11),
it must satisfy the Euler equation

d(00)_oF _

Here the partial derivatives 0F|0y and 0F[dy’ have been formed by treating
x, y, and y' as independent variables. Since 0F|0y’ is, in general, a function
of x explicitly and also implicitly through y and y’ = dy/dx, the first term
in (17a) can be written in the expanded form

8(8)“) n a(aF)dy_!__a_(Q}i)Q
Ox\dy’ ay\dy'/dx = 9y'\oy'/dx

Thus (17a) is equivalent to the equation

d’y 2 dy
Fy vy’ i T3 + Fy v’y dsc
This equation is of second order in y unless F,, , = 0*F/dy'2 = 0, so that
in general two constants are available for the satisfaction of the end conditions.
It is useful to notice that (17b) is equivalent to the form

1{d oF dy) BF:I
-~ Lg .. &R 0, 17
y’[dx( dy' dx ox (L7

as can be verified by expansion (see also Problem 7). From this result it
follows that if F does not involve x explicitly a first integral of Euler’s

equation is

4+ (F,, — F,)=0. (17b)

, OF oF

F—y —=C = (), 18a
y 2y if W (18a)
while (17a) shows that if F does not involve y explicitly a first integral is
oF oF
=1 —= 18b
2y if % (18b)

Solutions of Euler’s equation are known as extremals of the problem
considered. In general, they comprise a two-parameter family of functions

in the case just treated.
An extremal which satisfies the appropriate end conditions is often called

a stationary function of the variational problem, and is said to make the
relevant integral srationary, whether or not it also makes the integral maximum
or minimum, relative to all slightly varied admissible functions.

* This fact, which is intuitively plausible, can be proved analytically.
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Thus, by definition, the integral 7 of equation (11) will be said to be
stationary when y(x) is so determined that equation (15) holds for every
permissible function #(x).*

2.3. Illustrative examples. In Section 2.1 it was pointed out that to find
the minimal surface of revolution passing through two given points it is
necessary to minimize the integral

ziw =f Y1+ ) dx. (19)

With F = y(1 4 y'?)1/2, the Euler equation (17a) becomes

d [ .Vy' ] . (l + y;z)l,m — 0

a (1 + yfz)lgz
or, after a reduction or use of (17b),
w' —y?—1=0. (20)
Following the usual procedure for solving equations of this type, we set
i ._dp _ dp
y P, y I P i s

so that (20) becomes

d

pyE=p"+1.
dy

This equation is separable, and is integrated to give

1/2
y=¢c(1 + p»)V* = cl[l + (Qﬂ :
dx.

as would be obtained more directly by use of (18a), since here F does not
explicitly involve x. There follows

2 12
dy _ (y__ _ 1) ’
dx 2y

and hence finally
y = ¢; cosh (i + cz). (21)
€1
Thus, as is well known, the required minimal surface (if it exists) must be
obtained by revolving a catenary. It then remains to be seen whether the

arbitrary constants ¢; and c, can indeed be so chosen that the curve (21)
passes through any two assigned potints in the upper half plane.

* The usage of the terms ‘“extremal” and “stationary function™ varies within the
literature.
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The determination of these constants is found to involve the solution of a
transcendental equation which possesses two, one, or no solutions, depending
upon the prescribed values y(x;) and y(x,). In particular, 1t is found that ail
curves representing (21) and passing through one prescribed point P (x,, y,)
are tangent to a certain curve €, which passes through the point (x,, 0), and
that no such curve crosses ¥,. When the second prescribed point Py(x,, y;)
is separated from P, by %, there is accordingly no curve representing (21)
passing through both points, and hence no admissible minimal surface of
revolution. When P, and P, are on the same side of %,, there are two
“‘stationary curves,” the shorter of which generates a minimal surface.
Finally, when P, is on %, there is one stationary curve but the surface of
revolution which it generates is nof minimal.

The situations in which there is no admissible minimizing curve are those
in which smaller and smaller areas are generated by rotating curves which
more and more nearly approach a broken line consisting of segments from
(x1, y1) to (xy, 0) to (x5, 0) to (x,, y;), and in which that unartainable limiting
area is smaller than the area generated by any admissible curve.

Physically, the problem can be interpreted as that of determining the
shape of a soap film connecting parallel circular wire hoops of radii y, and y,,
perpendicular to the x axis, with centers at (x;, 0) and (x;,, 0). The exceptional
cases arise when the separation x, — x; is increased to or beyond the point
where the film no longer can join the hoops, but breaks into two parts, each
then spanning a hoop in its plane.

The classical “‘elementary™ application of the calculus of variations con-
sists of proving mathematically that the shortest distance between two points
in a plane is a straight line. If the points, in the xy plane, are (x;, y,) and
(x4, y3) and if the equation of the minimizing curve is y = y(x), we are then
to minimize

- J. U+ yB2 dx.

x]

Since here F = (1 + y'#'/2 does not involve either x or y explicitly, either of
the forms (18a,b) can be used to give a first integral of Euler’s equation
directly. However, here it is easier to use the form (17b) to deduce that
y" = 0 and consequently y = ¢;x + ¢,. From this result we can conclude
that if @ minimizing curve exists and if it can be specified by an equation of the
form y = y(x), then that curve necessarily must be a straight line. It is clear
that the case in which x; = x, is exceptional, and must be treated separately.

In the preceding examples no proof was given that the stationary function
obtained actually possesses the required minimizing property. Such con-
siderations comprise most of the less elementary theory of the calculus of
variations. In a great number of physically motivated problems it is in-
tuitively clear that a minimizing function does indeed exisr. Then if the
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present methods and their extensions show that only the particular function
obtained could possibly be the minimizing function, the problem can be
considered as solved for practical purposes. If several alternatives (stationary
functions) are determined, direct calculation will show which one actually
leads to the smaller value of the quantity to be minimized.

In many practical situations the stationary functions are of importance
whether or not they maximize or minimize the relevant integral. This fact is
illustrated, for example, in Section 2.9.

2.4. Natural boundary conditions and transition conditions. When the
value of the unknown function y(x) is not preassigned at one or both of the
end points x = x,, x, the difference e7(x) between the true function y(x) and
the varied function y(x) + en(x) need not vanish there. However, the left-
hand member of (15) must vanish when y(x) is identified with the minimizing
(or maximizing) function, for all permissible variations en(x). Thus it must
vanish, in particular, for all variations which are zero at both ends. For all
such #’s the second term in (15) is zero and equation (16) again follows, and
yields the Euler equation (17) as before.

Hence the first term in (15) must be zero for all permissible %’s, since the
coefficient of 7 in the integrand must be zero. Thus it follows that the second
term in (15) must itself vanish,

[gf vz(x)]m - [%F n(x)L —o, @)

=zl

for all permissible values of 7(x;) and #(x;). If y(x) is not preassigned at
either end point, then #(x;) and #(x,) are both completely arbitrary and we
conclude that their coefficients in (22) must each vanish, yielding the condi-
tions

[—a—- = (), [2— =0 (23a,b)
0y’ dams, ) S p
which must be satisfied instead.

The requirements that (23a) hold when y(x,) is not given, and that (23b)
hold when y(x,) is not given, are often called the natural boundary conditions
of the problem.* If, for example, y(x,) were preassigned as y, whereas y(x,)
were not given in advance, then the relevant end conditions would be
¥(x;) = y, and (9F/0y’),_,, = 0, and (23a) would not apply.

In some situations the integrand F in (11) is such that one or both of the
terms 0F/dy and d(dF/dy’)/dx are discontinuous at one or more points inside
the interval (x,, x;), but the conditions assumed in the preceding section
are satisfied in the subintervals separated by these points. To illustrate the
treatment of such cases, we suppose here that there is only one point of

* In some references, only the conditions (23a,b) themselves are called the “‘natural
boundary conditions.”
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discontinuity, at x = ¢. Then the integral (11) must be expressed as the sum
of integrals over (x;, c—) and (c+, x,) before the steps leading to (15) are
taken, and equation (15) is replaced by the relation

fc_[?y - E(ay )]” ol +[aa_1; - 5(25)]?; dx
+ B‘; ?7(")] + [gf; n(x)] "o (4

If we require that the minimizing (or maximizing) function y(x) be
continuous at x = ¢, and accordingly require that all admissible functions

y(x) + en(x) have the same property, it follows that
nlc+) = nlc—) = (o),

so that (24) can be written in the form
c— Tz aF (aF):I [BF]
-L [ay dx(ay )]’? o+ ob [By dx\dy’ X + Ty n(xz)

Bﬂ ol — {B;] B—;]Jn(c)r-o. (25)

Hence we may deduce that the Euler equation (17) must hold in each of

the subintervals (x;, ¢) and (c, x,), that dF/dy’ must vanish at any end point
X = x, or x = x, where y is not prescribed, as before, and also that the

natural transition conditions

ylc+) = y(c—), lim oF _ lim aF (26a,b)
=+ ay z—e— 3y'

must be satisfied at the point x = ¢. Whereas (26a) represents the requirement
that y itself be continuous at x = c, the condition (26b) may demand that the

derivative y’ be discontinuous at that point.
To illustrate the preceding considerations, we consider the determination

of stationary functions associated with the integral

1
1 =f (Ty? — pwy?) dx, (27)
)

where T, p, and w are given constants or furictions of x. The Euler equation
is

d d)
w*y = 0, 28
dx( ax) TPV \2H

regardless of what (if anything) is prescribed in advance at the ends of the
interval.
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Thus, in particular, when 7, p, and w are positive constants, the extremals
are of the form

2
y = €; €OS X + ¢, sin ax (oc2 = E%}-), (29)

where ¢; and ¢, are constants. When the conditions

y©0)=0, y)=1

are prescribed, there follows ¢; = 0, ¢; sin « = 1 and hence

y=2 (wEm2m ), (30)
sin «
When the condition
»0) =1

is prescribed, but y(1) is not preassigned, the appropriate condition at x = 1
follows from (23b), with F = Ty'? — pw?? in the form

Ty(0)=0
and hence
- (aae"—’,g’—’,-.-). 31)
cos & 2 2

When neither y(0) nor y(1) is prescribed, the conditions (23a,b) require
Ty0)=1(1)=0
and hence

0 (a#‘ﬂ’, 217:..')3
y= { (32)

¢y COS aX (a0 =, 2%, -+ %),

where ¢, is arbitrary. In the exceptional cases noted in (30) and (31), no
stationary function exists. The limiting cases in which « = 0 must be treated
separately, since (29) is incomplete in that case.

If T=T,and p = p, when 0 £ x < ¢ whereas T = T, and p = p, when
c<x =1, where Ty, Ty, p1, pss and @ are positive constants, and if the
conditions

y0 =0, y(1)=1
are prescribed, there follows
€, Cos X 4 cpsinayx (0= x <o),
Y= d; cos ayx + d, sin ayx (c<x=l),
where a2 = p,w?/T;. The natural transition conditions (26a,b) also give

lim y(x) = lim y(x), Ty lim y'(x) = T, lim y'(x).

x> e— a—ct+ —+c— = e+
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Thus we have four conditions which are to be satisfied by the four constants
of integration, and a stationary function is determined provided that « does
not take on one of a certain infinite set of exceptional values (which correspond
to the vanishing of the determinant of a certain coefficient matrix).

2.5. The variational notation. We next introduce the notation of
“variations” in order to establish more clearly the analogy between the
calculus of variations and the differential calculus.

Suppose that we consider a set .%” of functions satisfying certain conditions.
For example, we might define %’ to be the set of all functions of a single
variable x which possess a continuous first derivative at all points in an
interval @ < x < b. Then any quantity which takes on a specific numerical
value corresponding to each function in .% is said to be a functional on the
set <.

In illustration, we may speak of the quantities

[/] b
I, =f y(xydx, I ==f {vx)y"(x) — V' ()PP} dx

as functionals, since corresponding to any function y(x) for whichk the
indicated operations are defined each quantity has a definite numerical value.
With the above definition, it is proper also to speak of such quantities as
S(x)] and g[x, y(x), y'(x), - - -, ¥*"¥(x)] as functionals in those cases when
the variable x is considered as fixed in a given discussion and the function
y(x) is varied.
In Section 2.2, we considered an integrand of the form

Fe= F{.3%7)

which for a fixed value of x depends upon the function y(x) and its derivative.
We then changed the function y(x), to be determined, into a new function
W(x) + ey(x). The change en(x) in y(x) is called the variation of y and is
conventionally denoted by dy,

oy —= en(x). (33)

Corresponding to this change in y(x), for a fixed value of x, the functional
F changes by an amount AF, where

AF = F(x,y + e,y + en') — F(x, 3, y"). (34)
If the right-hand member is expanded in powers of ¢, there follows
oF oF , .
AF = N en + ? en’ + (terms involving higher powers of €).  (35)
¥ ¥

In analogy with the definition of the differential, the first two terms in the
right-hand member of (35) are defined to be the variation of F,
dF oF

0F = —en - . 36
3 €n -+ 5 €n (36)




