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Applications to Eigenvalue Problems*

FEigenvalue problems infest applied mathematics. These problems consist of
finding nontrivial solutions to a linear differential equation subject to bound-
ary conditions that admit the trivial solution. The differential equation con-
tains an eigenvalue parameter, and nontrivial solutions exist only for special
values of this parameter, the eigenvalues. Generally, finding the eigenvalues
and the corresponding nontrivial solutions poses a formidable task.

Certain eigenvalue problems can be recast as isoperimetric problems. In-
deed, many of the eigenvalue problems have their origin in the calculus of
variations. Although the Euler-Lagrange equation is essentially the original
differential equation and thus of limited value for deriving solutions, the vari-
ational formulation is helpful for extracting results about the distribution of
eigenvalues. In this chapter we discuss a few simple applications of the varia-
tional approach to Sturm-Liouville problems. The standard reference on this
material is Courant and Hilbert [25]. Moiseiwitsch [54] also discusses at length
eigenvalue problems in the framework of the calculus of variations. Our brief

account is a blend of material from Courant and Hilbert op. cit. and Wan
[71].

5.1 The Sturm-Liouville Problem

The (regular) Sturm-Liouville problem entails finding nontrivial solutions to
differential equations of the form

(—p(x)y'(x))" + q(2)y(x) — Ar(z)y(z) =0, (5.1)
for the unknown function y : [zo,21] — R subject to boundary conditions of
the form

aoy(x0) + Poy'(x0) = 0,
(5.2)
ary(r1) + Sy (x1) = 0.
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Here, ¢ and r are functions continuous on the interval [xg, 21|, and p €
Cllzo, 1]. In addition, p(x) > 0 and r(x) > 0 for all € [xo,21]. The ay
and fj in the boundary conditions are constants such that o3 + 87 # 0, and
A is a parameter.

Generically, the only solution to equation (5.1) that satisfies the boundary
conditions (5.2) is the trivial solution, y(x) = 0 for all x € [zg, z1]|. There are,
however, certain values of A that lead to nontrivial solutions. These special
values are called eigenvalues and the corresponding nontrivial solutions are
called eigenfunctions. The set of all eigenvalues for the problem is called the
spectrum.

An extensive theory has been developed for the Sturm-Liouville problem.
Here, we limit ourselves to citing a few basic results and direct the reader to
standard works such as Birkhoff and Rota [9], Coddington and Levinson [24],
and Titchmarsh [70] for further details.

The “natural” function space in which to study the Sturm-Liouville
problem is the (real) Hilbert space L?[xp, 1], which consists of functions
f : [xo,21] — R such that

/x1 f2(x) dx < oo.

The inner product on this Hilbert space is defined by
T

(ho) = [ r@)f@yte) da,
o

for all f,g € L?[xp, x1].! The norm induced by this inner product is defined
by

erVUJ>¢/mmeWMa

for all f € L*[xo, x1]. Note that the norm .|| - ||2 is equivalent to the usual

norm || - ||z defined by
f2¢/ 12 () da,

because r is continuous on [zo,x1] and positive; hence, r is bounded above
and below by positive numbers.?
Some notable results from the theory are:

! Strictly speaking, the integrals defining the Hilbert space are Lebesgue integrals
and the elements of the space are equivalence classes of functions. We deal here
with solutions to the Sturm-Liouville problem and these functions are continuous
on [xo, x1]. For such functions the Lebesgue and Riemann integrals are equivalent.
Note that L*[xo, x1] also includes much “rougher” functions that are not Riemann
integrable.

? See Appendix B.1.



5.1 The Sturm-Liouville Problem 105

(a) There exist an infinite number of eigenvalues. All the eigenvalues are real
and isolated. The spectrum can be represented as a monotonic increasing
sequence {A,} with lim,_,. A, = 0co. The least element in the spectrum
is called the first eigenvalue.

(b) The eigenvalues are simple. This means that there exists precisely one
eigenfunction (apart from multiplicative factors) corresponding to each
eigenvalue.

(¢) If A\, and A, are distinct eigenvalues with corresponding eigenfunctions
¢ and ¢, respectively, the orthogonality relation

<¢m7 ¢n> =0

is satisfied. (Note that (¢, ¢m) > 0, since ¢y, is a nontrivial solution.)

(d) The set of all eigenfunctions {¢, } forms a basis for the space L?[xg, x1].
In other words, for any function f € L?[xo, x1] there exist constants {a,, }
such that the series

n=1

converges in the .|| - ||2 norm to f;i.e.,
o0
lim .|| f — Z anPnll2 = 0.
k—oo
n=1

The series representing f is called an eigenfunction expansion or gen-
eralized Fourier series of f.

The Sturm-Liouville problem can be recast as a variational problem. We
do this for the case 3y = 1 = 0. The formulation for the general boundary
conditions (5.2) can be found in Wan, op. cit., p. 285. Let J be the functional
defined by

J(y) = / B (py” + qv?) du, (5.3)

0

and consider the problem of finding the extremals for J subject to boundary
conditions of the form

y(xo) = y(x1) =0, (5-4)

and the isoperimetric constraint

1
I(y) = / r(z)y?(z) dz = 1. (5.5)
The Euler-Lagrange equation for the functional I is
—2r(x)y(z) =0,

which is satisfied only for the trivial solution y = 0, because r is positive. No
extremals for I can therefore satisfy the isoperimetric condition (5.5). If y is
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an extremal for the isoperimetric problem, then Theorem 4.2.1 implies that
there is a constant A such that y satisfies the Euler-Lagrange equation

d OF OF
it | 5.6
dx Oy’ Oy ’ (56)
for
F=py” +qp — My,

But the Euler-Lagrange equation for this choice of F' is equivalent to the
differential equation (5.1). The isoperimetric problem thus corresponds to the
Sturm-Liouville problem augmented by the normalizing condition (5.5), which
simply scales the eigenfunctions. Here, the Lagrange multiplier plays the role
of the eigenvalue parameter.

Example 5.1.1:  Let p(z) = 1, q(x) = 0, r(z) = 1, and [xg,z1] = [0, 7].
Then the Euler-Lagrange equation reduces to

y" () + Ay(z) =0, (5.7)

and the boundary conditions are

If A <0, then the general solution to equation (5.7) is

y(x) = AeV AT 4 Be_‘/__m,

where A and B are constants. The boundary conditions imply that A = B = 0,
and therefore there are only trivial solutions if A < 0. If A = 0, then equation
(5.7) has the general solution

y(x) = Az + B.

Again the boundary conditions imply that A = B = 0, and therefore preclude
the possibility of nontrivial solutions. Hence, any eigenvalues for this problem
must be positive.

If A > 0, then the general solution to equation (5.7) is

y(z) = Acos(VAx) + Bsin(VAx).

The condition y(0) = 0 implies that A = 0; the condition y(7) = 0 implies
that
Bsin(vVAr) = 0. (5.9)

Equation (5.9) is satisfied for B # 0 provided v/ is a positive integer, and
this leads to the nontrivial solution y(z) = Bsin(v/Az). The eigenvalues for
this problem are therefore \,, = n?, and the first eigenvalue is Ay = 1. The
eigenfunctions corresponding to A, are of the form
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¢n(x) = Bsin(nz), (5.10)

where B is an arbitrary constant.

In terms of the isoperimetric problem, there are an infinite number of
Lagrange multipliers that can be used. Each Lagrange multiplier corresponds
to an eigenvalue, and the linearity of the Euler-Lagrange equation implies that
any function of the form

flx) = Zansin(nx), (5.11)

such that the Fourier series is convergent and twice term by term differen-
tiable, is an extremal for the problem, provided f satisfies the isoperimetric
condition (5.5). Now,

2

™ ) _ ™ o0 . y
/o fe(x)dx /o (;an&n(nx)) x
2 [T
—;an/o sin“(nx) dx
n=1

where we have used the orthogonality relation

bo |

) ) 0, if m # n,
(sin(mx), sin(nz)) = { ™ ifm=n.
Hence, any eigenfunction expansion of the form (5.11) having the requisite
convergence properties and satisfying the condition

= 2
Y ap == (5.12)
n—1 Q

is an extremal for the problem. Any finite combination of the eigenfunctions
such as
f(x) = aisin(x) + azsin(2z) + - - - + apsin(mz),

where

for example, is an extremal.

If we are searching among the eigenfunction expansions for extremals that
make J a minimum, then the situation changes considerably. Suppose that f
is an eigenfunction extremal for the problem. Then
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o>
= Z Nna,cos(nx),
n=1

so that

J(y):/O7T 2(x dx—/ (Znancosn:r>2d:1;

m

cos? (nx) dx
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Here, we have used the orthogonality relation

(cos(mx), cos(nx)) = { 2’ it m # n,

g,lfm:n

The eigenfunction extremal for the first eigenvalue is

() = ) 2 sine),

J(y1) = 1.

In fact, y; produces the minimum value for J. To see this, let f be another
extremal for the problem. Then the completeness property of the Fourier
series implies that f can be expressed as an eigenfunction expansion of the
form (5.11), where the coefficients a,, satisfy relation (5.12). If f is distinct
from g then there is an integer m > 2 such that a,, # 0. Now,

and for this extremal

and hence J(f) > J(y1).
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Exercises 5.1:

1. The Cauchy-Euler equation is

(/@) + y(a) = 0.

Show that

y(x) = cycosh (\/——)\ln x) + ¢osinh (\/——)\ln x) ,

where ¢; and ¢y are constants, is a general solution to this equation. Given
the boundary conditions y(0) = y(e™) = 0 find the eigenvalues.
2. Reformulate the differential equation

y (@) + A+ p(a))y(x) = 0

along with the boundary values y(0) = 4'(0) =0, y(1) = ’(1) = 0 as an
isoperimetric problem.

5.2 The First Eigenvalue

The first eigenvalue in Example 5.1.1 has the notable property that the cor-
responding eigenfunction produced the minimum value for J. If fact, this
relationship persists for the general Sturm-Liouville problem.

Theorem 5.2.1 Let Ay be the first eigenvalue for the Sturm-Liouville prob-
lem (5.1) with boundary conditions (5.4), and let y1 be the corresponding
eigenfunction normalized to satisfy the isoperimetric constraint (5.5). Then,
among functions in C?[xo, x1] that satisfy the boundary conditions (5.4) and
the isoperimetric condition (5.5), the functional J defined by equation (5.3) is
minimum at y = y1. Moreover,

J(yl) = )\1.

Proof: Suppose that J has a minimum at y. Then y is an extremal and thus
satisfies equation (5.1) and conditions (5.4) and (5.5). Multiplying equation
(5.1) by y and integrating from xo to x1 gives

Z1

" +/ (py” + qy°) do = A/ ry” dz.

xo 0 o

—pyy’

The first term on the left-hand side of the above expression is zero since
y(xo) = y(x1) = 0; the integral on the left-hand side of the equation is one by
the isoperimetric condition. Hence we have
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J(y) = A

Any extremal to the problem must be a nontrivial solution to equation (5.1)
because of the isoperimetric condition; consequently, A must be an eigenvalue.
By property (a) there must be a least element in the spectrum, the first
eigenvalue A1, and a corresponding eigenfunction y; normalized to meet the
isoperimetric condition. Hence the minimum value for J is Ay and J(y1) = A;.

0

Figenvalues for the Sturm-Liouville problem signal a bifurcation: in a
deleted neighbourhood of an eigenvalue there is only the trivial solution avail-
able; at an eigenvalue there are nontrivial solutions (multiples of the eigen-
function) available in addition to the trivial solution. In applications such as
those involving the stability of elastic bodies, eigenvalues indicate potential
abrupt changes. Often the most vital piece of information in a model is the
location of the first eigenvalue. For example, an engineer may wish to design
a column so that the first eigenvalue in the problem modelling the deflection
of the column is sufficiently high that it will not be attained under normal
loadings.?

Theorem 5.2.1 suggests a characterization of the first eigenvalue in terms
of the functionals J and I. Let R be the functional defined by

J(y)
R(y) = —=. 5.13
) =75 (5.13)
The functional R is called the Rayleigh quotient for the Sturm-Liouville

problem. If I(y) = 1, then for any nontrivial solution y we have
A= R(y). (5.14)

We can, however, drop this normalization restriction on I because both J and
I are homogeneous quadratic functions in y and 3’ so that any normalization
factors cancel out in the quotient. Relation (5.14) is thus valid for any non-
trivial solution, and we can make use of this observation to characterize the
first eigenvalue as the minimum of the Rayleigh quotient.

Theorem 5.2.2 Let S’ denote the set of all functions in C?[xg, z1] that sat-
isfy the boundary conditions (5.4) except the trivial solution y = 0. The min-
imum of the Rayleigh quotient R for the Sturm-Liouville problem (5.1), (5.4)
over all functions in S’ is the first eigenvalue; i.e.,

| — A\ 1
min R(y) = As (5.15)

# The governing differential equation for this model is in fact of fourth order, but
similar comments apply. The variational formulation of this model is discussed in
Courant and Hilbert, op. cit., p. 272.
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Proof: Suppose that R has minimum value A at y € S/, and let

y=y+en,
where € is small and 7 is a smooth function such that n(zo) = n(z1) = 0, to
ensure that § € S’. Now,

Tl

Iy+en)=1(y)+ 26/ nry do + O(€?),

o

so that

where I(y) # 0, and

J@)szwHk/“n«ﬂwW+@wdx+0@%

Zo

:14Hy)+2e/mln(bﬂw@’+qy)¢r+<?@%,

xo

so that

+ 0O(€?)
We thus have
R _J@)  Jy) _ J@) - AL()
RO =B =150 " T = 16)

Lo ((=py) +qy — Ary) dx
I(y)

and since R is minimum at ¥, the terms of order ¢ must vanish in the above
expression for arbitrary n. We can apply Lemma 2.2.2 to the numerator of
the order € term and deduce that y must satisfy equation (5.1). Since y € S’,
the constant A must be an eigenvalue. Any extremal for R must therefore be
a nontrivial solution to the Sturm-Liouville problem.

If A\, is an eigenvalue for the problem and y,, is a corresponding eigen-
function, then the calculation in the proof of Theorem 5.2.1 can be used to
show that

_ Jym) _

fuym)——](%n)—— "

Since R is minimum at y and A is the corresponding eigenvalue we have that

+0(),

Am = R(ym) > A
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for all eigenvalues. Therefore we have A = Aq. O

Generally, the eigenvalues (and hence eigenfunctions) for a Sturm-Liouville
problem cannot be determined explicitly. Bounds for the first eigenvalue, how-
ever, can be obtained using the Rayleigh quotient. Upper bounds for A; can
be readily obtained since A; is a minimum value: for any function ¢ € S’ we
have

R(¢) = i, (5.16)

so that an upper bound can be derived by using any function in S’. Lower
bounds require a bit more work.

To get a lower bound, the strategy is to construct a comparison problem
that can be solved explicitly, the first eigenvalue A; of which is guaranteed
to be no greater than A;. To construct a comparison problem, we make the
following simple observations.

(a) Let p € Clwp, 1] be any function such that p(z) > p(xz) > 0 for all
x € [x0,21], and let 7 € C°[z0, 21] be any function such that q(x) > g(x)
for all = € [z, z1]. Then, for

J(y) = / (py” + qy°) dz,

0

we have

J(y) < J(y).

(b) Let ¥ € C°xp,21] be any function such that 7(z) > r(z) > 0 for all

x € [xo,x1]. Then, for
T

I(y) :/x ry* d

0

we have
I(y) > I(y).
If we choose p, ¢, and 7 as above, then
5 J) _ J)
R(y) () ST~ R(y),
and hence ~
A1 < g (5.17)

Inequality (5.17) is useful only if we can determine \; explicitly. We have
considerable freedom, however, in our choices for p, ¢, and 7, and the simplest
choice is when these functions are constants; i.e.,

p(r) = min p(x) = ppm,

xE[xo,x1]

q(r) = min q(x) = gm,

xE[xo,x1]

r(z) = max r(x)=rm.
x€[xo,x1]
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For this choice, the differential equation is
(=pmy") + dmy — Arary = 0;

lLe.,
1 -
y' +— (Aras — gm) y =0, (5.18)

m

The solution of equation (5.18) subject to boundary conditions (5.4) follows
essentially along the same lines as that given in Example 5.1.1. The eigenvalues

for this problem are
- 1 a2
ra \ (2o — 21)

We thus get the lower bound

- 1 pm7r2
A = ((x 2 + qm> < A (5.19)

rp 0— X1

Example 5.2.1: Mathieu’s Equation
Let p(z) = r(z) = 1, and g(x) = 260 cos(2z), where 6 € R is a constant. Let
xo = 0 and xy = 7. For this choice of functions equation (5.1) is equivalent to

y" + (A —20cos(2z))y =0, (5.20)
and the boundary conditions are

y(0) = y(m) = 0. (5.21)

The expression (5.20) is called Mathieu’s equation, and its solutions have
been investigated in depth (cf. McLachlan [52] and Whittaker and Watson
[74]). If § = 0, then the problem reduces to that studied in Example 5.1.1. If
6 # 0, then the nontrivial solutions to this problem cannot be expressed in
closed form in terms of elementary functions. Indeed, this problem defines a
new class of functions {se, } called Mathieu functions,* that correspond to
the eigenfunctions of the problem. The determination of the eigenvalues for
this problem is a more complicated affair compared to the simple problem of
Example 5.1.1. Briefly, it can be shown that the first eigenvalue A1 and the
corresponding eigenfunction se; are given asymptotically by
1 1, 11

Lo 3 5 6
—1_f_ = 3 pr .
AM=1-10 0° + —0 3 7 6° + 0(0"), (5.22)

and

* The notation se, is an abbreviation for “sine-elliptic.” There are also “cosine-
elliptic” Mathieu functions ce,, .
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: L, . L of . L.
sei(x) = sin(x) — §0 sin(3x) + 6—40 sin(3x) + 3 sin(5x)

1 1 4 1
— mﬁg <§ sin(3x) + 5 sin(bx) + 18 sin(?:z:))

+0(0Y),

for |6| small (cf. McLachlan, op. cit. p. 10-14).

In contrast, a rough lower bound for A\; can be readily gleaned from in-
equality (5.19). Suppose that 8 > 0, and let p,, = rpp = 1, ¢ = —20 <
26 cos(2x). Inequality (5.19) then implies

1—20 < A (5.23)

Given the asymptotic expression (5.22), if # > 0 is small then the lower bound
(5.23) can be verified directly. But inequality (5.23) is also valid for 8 large,
and this is not so obvious.

Note that if 8 < 0, we cannot use ¢,, = 26 in our comparison problem
since —260 > 26 cos(2x) for x € [xg, 21|. For this case we can use ¢, = 26 and
thus get the lower bound

1420 < )\

Exercises 5.2:

1. Mathieu’s equation (5.20) can have a first eigenvalue A\; that is negative
depending on the constant 6. Write out the Rayleigh quotient for Math-
ieu’s equation. Now, ¢ = sin(z) is in the space S’. Use this function and
inequality (5.16) to get an upper bound for Ay, and show that A\; < 0
whenever ¢ > 1. Compare this with expression (5.22). (For the choice
6 = 5 the value of Ay is given in table 5.1 at the end of Section 5.3.)

2. Halm’s equation is

1+ 27)y" (x) + Ay(x) = 0.

Under the boundary conditions y(0) = y(w) = 0, find a lower bound for
Al.
3. The Titchmarsh equation is

y" (@) + (A —2*)y(z) =0,

where n is a nonnegative integer. Under the boundary conditions y(0) =
y(1) = 0 show that the first eigenvalue \; satisfies 72 < A\; < 11. (The
function ¢ = z(x — 1) can be used to get the upper bound.)
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5.3 Higher Eigenvalues

The Rayleigh quotient can be used to frame a variational characterization of
higher eigenvalues. The eigenfunctions for the Sturm-Liouville problem are
mutually orthogonal, and this relationship can be exploited to give such a
characterization. For example, it can be shown that the eigenvalue Ao corre-
sponds to the minimum of R among functions in y € S’ that also satisfy the
orthogonality condition

<y7 y1> =0,

where y; is an eigenfunction corresponding to A1. More generally, we have the
following result the proof of which we omit.

Theorem 5.3.1 Let yr denote the eigenfunction associated with the eigen-
value A, and let S!, be the set of functions y € S such that

(Y, yx) =0 (5.24)

fork=1,2,....,n—1. Then
An = min R(y). 5.25
min R(y) (5.25)

The above theorem is of limited practical value because, in general, the
eigenvalues A, ..., A\,—1 and corresponding eigenfunction yq,...,y,—1 are not
known explicitly. Constraints such as (5.24) require precise knowledge of the
eigenfunctions as opposed to approximations. Fortunately, we can characterize
higher eigenvalues with a “max-min” type principle involving the Rayleigh
quotient, and circumvent the problem of finding eigenfunctions. The next
results we state without proof. Some details can be found in Wan op. cit., p.
284, and in Courant and Hilbert op. cit., p. 406.

Lemma 5.3.2 Let z1,..., 2,1 be any functions in S" and let \,, be the min-
imum of R subject to the n — 1 constraints
<y7 Zk> = 07

where k =1,...n—1. Then
An < A

Lemma 5.3.2 is a key result used to establish the following “max-min” prin-
ciple for higher eigenvalues.

Theorem 5.3.3 Let (2,,_1 be the set of all functions z = (21,...,2,—1) Such
that 2z € S’ fork=1,...,n—1. Then

A = max {\.(z)},

VAS Qn— 1
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where

)\n(z)—;rélg}{R( y):(y,zk) =0, k=1,...,n—1}.

The “max-min” property of eigenvalues can be exploited to get a simple
asymptotic estimate of the eigenvalues A, as n — oo. Note that the problem

(—py") + qy — Ary =0,

y(0) =y(m) =0,
can be converted into the problem
¢"(t) — f(£)o(t) + Ao(t) = 0, (5.26)
$(0) = ¢(¢) =0, (5.27)

by the transformation

6 = /rpy, t:/;\/%dg, KZ/OW@/%M

Here, the function f is given by

f — g_ + g
g
where g = ¢rp. We can thus restrict our attention to the problem (5.26),

(5.27).° The Rayleigh quotient for this problem is

J(¢)
R()= 75
where ,
10)= [ (6% + F0)0%) d
and
;
= / ¢ dt.
0
Let
k= masc [£(0)] (5.28)
and

® This formulation is called the Liouville normal form of the problem. Details
on this transformation and extensions to more general intervals can be found in

Birkhoff and Rota [9], p. 320.
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&

THe) = [ (9" +ke?) dt,

R'(¢) = J;éj),
J7(9) = Oe (6 — k¢?) dt,
R0 =
Then,
R'(¢) = (flq(ﬁ)dt +k,

and, since J (@) > J(¢) > T~ (9),
R'(¢) = R(¢) = R™(9);

- R(¢) - R(6)| <k, (5.20)
where f@

_ O¢Qﬁ

R(9) = " (5.30)

The Rayleigh quotient defined by equation (5.30) is associated with the
Sturm-Liouville problem

" + Ao =0, (5.31)
$(0) = ¢(£) =0, (5.32)
and the eigenvalues for this problem are given by
< n?m?
Ap = 7 (5.33)

Inequality (5.29) indicates that R(¢) can differ from R(¢) by no more than
+k. By the “max-min” principle for higher eigenvalues we see that A,, and A,
can differ by no more than +k and thus deduce the asymptotic relation

n?m?

Ap = 2 + O(1), (5.34)
as n — o0. The function f influences only the O(1) term (a term that is
bounded as n — o0); A, is approximately n?m2/#? for large values of n. If we

return back to the original problem, the relation (5.34) can be recast as
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nn®

1 1 —5.790
2 4 2.099
3 9 9.236
4 16 16.648
5 25 25.511
6 36 36.359

Table 5.1. Eigenvalues for Mathieu’s equation, § = 5

A = {L; pmyi} +O(1); (5.35)

w1 i U
nh_)rr;o N T {/o p(:l;)d } (5.36)

Note that g does not influence the leading order behaviour for the asymptotic
distribution of eigenvalues.

Equation (5.35), for example, predicts that the higher eigenvalues for
Mathieu’s equation (Example 5.2.1) are

le.,

A =n? +0(1), (5.37)

as n — oc. In fact, the approximation is not “too bad” for # small even with
n small (cf. Table 5.1).

In closing, we note that the results of this chapter can be extended for
the general Sturm-Liouville boundary conditions (5.2). Some extensions can
also be made to cope with singular Sturm-Liouville problems. The reader is
directed to Courant and Hilbert, op. cit. Chapter 5, for a fuller discussion and
a wealth of examples from mathematical physics.

Exercises 5.3:

1. For Mathieu’s equation (5.20) show that |\, — n?| < 26 for all n.
2. Determine a constant A such that for Halm’s equation (Exercise 5.2-2)

An = An? + O(1).

Derive a number M such that |\, — An?| < M for all n.



