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3.2. CHARACTERISTICS

3.2.1. Derivation of characteristic ODE.

. We return to our basic nonlinear first-order PDE
Graduate Studies

in Mathematics (1) F(Du,u,z) =0 inU,

Volume 19 subject now to the boundary condition

(2) u=g¢g onl,

where I' C 9U and g : T' — R are given. We hereafter suppose that F, g are
smooth functions.

We develop next the method of characteristics, which solves (1), (2) by
: converting the PDE into an appropriate system of ODE. This is the plan.
Providence, Rhode Island Suppose u solves (1), (2) and fix any point z € U. We would like to calculate
u(z) by finding some curve lying within U, connecting x with a point 2% € T
and along which we can compute u. Since (2) says u = g on I', we know
the value of u at the one end 2°. We hope then to be able to calculate  all

along the curve, and so in particular at z.

American Mathematical Society



usuario
Rectangle


3.2. CHARACTERISTICS 97

Finding the characteristic ODE. How can we choose a path in U so all
this will work? Let us suppose the curve is described parametrically by the
function x(s) = (z'(s),...,z"(s)), the parameter s lying in some subinterval
I CR. Assuming u is a C? solution of (1), we define also

(3) z(s) = u(x(s)).

In addition, set

(4) p(s) := Du(x(s));

that is, p(s) = (p' (), ---,p"(s)), where

(5) P'(s) = ug(x(s)) (i=1,...,n).

So z(-) gives the values of u along the curve and p(-) records the values of
the gradient Du. We must choose the function x(:) in such a way that we
can compute z(-) and p(-).

For this, first differentiate (5):

©) P9 = D D) (= 5)-

This expression is not too promising, since it involves the second derivatives
of u. On the other hand, we can also differentiate the PDE (1) with respect
to x;:

n
(7) Z Fy;(Du, u, TYuz,q, + Fz(Du, u, x)ug; + Fz,(Dy,u,z) = 0.
7=1

We are able to employ this identity to get rid of the second derivative terms
in (6), provided we first set

(8) #9(s) = Fy, (p(s), 2(s), x() (G =1,...,m).

Assuming now (8) holds, we evaluate (7) at z = x(s), obtaining thereby
from (3), (4) the identity:

> By, (p(s), 2(8), %(8)) gz, (%(5))
=1

+ Fx(p(s), 2(s),x(5))p"(s) + Fa,(p(s), 2(5), x(s)) = 0.
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Substitute this expression and (8) into (6):

pt(‘s) = _Frg (p(s)a Z(S),X(S))
- Fz(p(‘s)a z(s): X(S))pi(s) (i = 1: Lty n)'

Finally we differentiate (3):

(9)

n

(10)  2(s) =D us, (x(s))d7 (s) = Y _ 9/ (s)F, (p(s), 2(s), x(5)),

j=1 j=1

the second equality holding by (5) and (8).

The characteristic equations. We summarize by rewriting equations
(8)—(10) in vector notation:

(a) p(s) = —DzF(p(s), 2(s),x(s)) — DF(p(s), 2(s), x(s))p(s)
(11) (b) 2(s) = DpF(p(s), 2(s), x(s)) - p(s)
(c) %(s) = DpF(p(s), 2(s),%(s))-

Furthermore,
(12) F(p(s), z(s),x(s)) = 0.
These identities hold for s € I.

The important system (11) of 2n + 1 first-order ODE comprises the
characteristic equations of the nonlinear first-order PDE (1). The functions
p() = (P'(),...,p"(), (), x(-) = (z*(-),...,2™(-)) are called the charac-
teristics. We will sometimes refer to x(-) as the projected characteristic: it
is the projection of the full characteristics (p(-), z(-),x(:)) € R®™*1 onto the
physical region U C R™.

We have proved:

THEOREM 1 (Structure of characteristic ODE). Let u € C2%(U) solve
the nonlinear, first-order partial differential equation (1) in U. Assume x(-)
solves the ODE (11)(c), where p(-) = Du(x(-)), z(:) = u(x(-)). Then p(:)
solves the ODE (11)(a) and z(-) solves the ODE (11)(b), for those s such
that x(s) € U.

We still need to discover appropriate initial conditions for the system
of ODE (11), in order that this theorem be useful. We accomplish this in
£3.2.3 below.
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Remark. The characteristic ODE are truly remarkable in that they form
an exact system of equations for x(:), z(-) = u(x(-)), and p(-) = Du(x(-)),
whenever u is a smooth solution of the general nonlinear PDE (1). The
key step in the derivation is our setting x = DpF', so that—as explained
above—the terms involving second derivatives drop out. We thereby obtain
closure and in particular are not forced to introduce ODE for the second
and higher derivatives of u.

3.2.2. Examples.

Before continuing our investigation of the characteristic equations (11),
we pause to consider some special cases for which the structure of these
equations is especially simple. We illustrate as well how we can sometimes
actually solve the characteristic ODE and thereby explicitly compute solu-
tions of certain first-order PDE, subject to appropriate boundary conditions.

a. F linear. Consider first the situation that our PDE (1) is linear and
homogeneous and thus has the form

(13) F(Du,u,z) = b(z) - Du(z) + c(z)u(z) =0 (z € V).
Then F(p, z,z) = b(z) - p + ¢(z)z, and so
D,F = b(z).
In this circumstance equation (11)(c) becomes
(14) %(s) = b(x(s)),

an ODE involving only the function x(-). Furthermore equation (11)(b)
becomes

(15) z(s) = b(x(s)) - p(s)-
Then equation (12) simplifies (15), yielding
(16) (s) = —c(x(s))2(s)-

This ODE is linear in z(-), once we know the function x(-) by solving (14).
In summary,

- {19 ) -biet)

(b) 2(s) = —e(x(s))z(s)

comprise the characteristic equations for the linear, first-order PDE (13).
(We will see later that the equation for p(-) is not needed.) |
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Example 1. We demonstrate the utility of equations (17) by explicitly
solving the problem

(18)

TiUgy — T2Uy, = U In U
u=g onl,

where U is the quadrant {z; > 0,z > 0} and T' = {z; > 0,z, = 0} C 8U.
The PDE in (18) is of the form (12), for b = (—xz2,2;1) and ¢ = —1. Thus
the equations (17) read

(19)

Accordingly we have

z*(s) =z%cos s, 2(s) = 2%sins
z(s) = 2%° = g(z°) ¢?,

where z¢ > 0, 0 < s < 5. Fix a point (z1,22) € U. We select 5 > 0,
2% > 0 so that (z1,22) = (z!(s),z2(s)) = (2" cos s,z%sins). That is, 20 =
(22 + 23)/?, s = arctan (%‘f) . Therefore

u(z) = u(z (), 2(s)) = 2(s) = 9(a%) & = g((a? + a3)/2) ().

a

b. F quasilinear. The partial differential equation (1) is quasilinear should
it have the form
(20) F(Du,u,z) = b(z,u(z)) - Du(z) + c(z,u(z)) = 0.
In this circumstance F(p, z, z) = b(z, z) - p + ¢(z, z), whence
DpF = b(z, z).
Hence equation (11)(c) reads
X(s) = b(x(s), 2(s)),
and (11)(b) becomes
2(s) = b(x(s), 2(s)) - p(s) = —c(x(s), 2(s)), by (12).
Consequently
- (@ 30—btoh )
(b)  2(s) = —e(x(s), 2(s))
are the characteristic equations for the quasilinear first-order PDE (20).
(Once again we do not require the equation for p(-).) a
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Example 2. The characteristic ODE (21) are in general difficult to solve,
and so we work out in this example the simpler case of a boundary-value
problem for a semilinear PDE:

Ugy +Ug, = w2 in U
(22) { u=g onl.
Now U is the half-space {z2 > 0} and I' = {2 = 0} = OU. Here b = (1,1)
and ¢ = —2%. Then (21) becomes

#l=1, 2 =1
3= 22,

Consequently
{z‘(s) = gP +s &%(s) = s
$U
(5) = sy,
where 27 € R, s > 0, provided the denominator is not zero.

Fix a point (z1,z2) € U. We select s > 0 and z2° € R so that (z,22) =
(z'(s), %(s)) = (z° + s, 5); that is, 2° = 7 — z9, s = x2. Then

] =
Ue) =l (0)a%(e) = a(s) = T2 - L

This solution of course makes sense only if 1 — z2g(z1 — x2) # 0. a

c. F fully nonlinear. In the general case, we must integrate the full
characteristic equations (11), if possible.

Example 3. Consider the fully nonlinear problem

Ug Uz, = U DU
%) { u=2x% onT,

where U = {z; > 0}, ' = {z; = 0} = 9U. Here F(p, z,z) = p1p2 — 2, and
hence the characteristic ODE (11) become

p ', p2 p’
2p v
r’, p.

We integrate these equations to find
{xl( ) —Po(e’—l , 2%(s) = 2%+ pi(e* — 1)

)
z(s) = 20+ plp J(e* 1)
Pl( ) = 13133 (S) _Pzes
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where z° € R, s € R, and 20 = (20)°.

We must determine p® = (p?,p3). Since u =22 on T, p§ = u,,(0,2°) =
22°. Furthermore the PDE u,, u,, = u itself implies plpg = 2% = (2)?, and
so p) = % Consequently the formulas above become

zl(s) = 2z%(e® — 1),2%(s) = %(es +1)
2(s) = ()%

pi(s) = G €°, p?(s) = 220",

Fix a point (9"1, ) € U. Select s and z° so that (z1, z2) = (z'(s), %(s))
EIZTU(E — 1), % (¢° + 1)). This equality implies 20 = %2221 8 = ié:ﬁ'l
and so 21222,
4 2
u(z) = u(z'(s), 2%(s)) = 2(s) = (a°)%e* = gxl-z_Tmz)"‘-

3.2.3. Boundary conditions.

We return now to developing the general theory and intend in the sec-
tion following to invoke the characteristic ODE (11) actually to solve the
boundary-value problem (1), (2), at least in a small region near an appro-
priate portion I" of 8U.

a. Straightening the boundary. To simplify subsequent calculations,
it is convenient first to change variables, so as to “flatten out” part of the
boundary AU. To accomplish this, we first fix any point z¥ € 8U. Then
utilizing the notation from §C.1, we find smooth mappings o ¥ :R"— R
such that ¥ = &~ ! and @ stralghtens out AU near 2°. (See the illustration
in §C.1.)

Given any function u: U — R, let us write V := ®(U) and set

(24) u(y) =u(¥(y) eV).
Then
(25) u(z) =v(®(z)) (z€U).

Now suppose that u is a C? solution of our boundary-value problem (1), (2)
in /. What PDE does v then satisfy in V7

According to (25), we see

mn

um‘(a:):Zvyk b(x )(I> () (=10

k=1
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that is,
Du(z) = Du(y)D®(x).

Thus (1) implies
(26)  F(Dv(y)D2(¥(y)),v(y), ¥(y)) = F(Du(z),u(z),z) = 0.
This is an expression having the form
G(Dv(y),v(y),y) =0 inV.
In addition v = h on A, where A := ®(T") and h(y) := g(¥(y)).

In summary, our problem (1), (2) transforms to read
G(Dv,v,y) =0 inV
&%) { v=~h onA,

for G, h as above. The point is that if we change variables to straighten out
the boundary near z°, the boundary-value problem (1), (2) converts into a
problem having the same form.

b. Compatibility conditions on boundary data. In view of the fore-
going computations, if we are given a point z° € T, we may as well assume
from the outset that T is flat near z°, lying in the plane {z,, = 0}.

‘We intend now to utilize the characteristic ODE to construct a solution
(1), (2), at least near z°, and for this we must discover appropriate initial
conditions

(28) p(0) = p°, 2(0) = 2%, x(0) = z°.
Now clearly if the curve x(-) passes through z°, we should insist that
(29) 2 = g(a").
What should we require concerning p(0) = p°? Since (2) implies
U1y oo s T3 0) = G(E150 05 Tn—1) NGAT zY, we may differentiate to find
te, (27) = g (Y @E=1,...,n—1).

As we also want the PDE (1) to hold, we should therefore insist p® =
(9, ...,p%) satisfies these relations:

p?:gxi(xa) (‘.’:=1,...,n—1)
(30) 0.0 .0
F(p® 22" =0.
These identities provide n equations for the n quantities p° = (p9,...,p2).

We call (29) and (30) the compatibility conditions. A triple (p°, 2%,2°) €
R2*+1 verifying (29), (30) is admissible. Note 2° is uniquely determined
by the boundary condition and our choice of the point z°, but a vector p°
satisfying (30) may not exist or may not be unique.
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c. Noncharacteristic boundary data. So now assume as above that
z¥ € T, that T near z° lies in the plane {x, = 0}, and that the triple
(p°, 2%, 20) is admissible. We are planning to construct a solution u of (1),
(2) in U near z° by integrating the characteristic ODE (11). So far we
have ascertained x(0) = z°, z(0) = 2%, p(0) = p° are appropriate boundary
conditions for the characteristic ODE, with x(-) intersecting T' at z°. But
we will need in fact to solve these ODE for nearby initial points as well
and must consequently now ask if we can somehow appropriately perturb
(p°, 2%, 2°), keeping the compatibility conditions.

In other words, given a point y = (y1,...,¥n-1,0) € T, with y close to

29, we intend to solve the characteristic ODE

(a) p(s) = =Dz F(p(s), 2(s), x(s)) — D= F(p(s), 2(s), x(s))p(s)
(31) (b) 2(s) = DpF(p(s), 2(s),x(s)) - p(s)
(c) %(s) = DpF(p(s), 2(s), x(s)),

with the initial conditions

(32) P(0) = q(y), 2(0) = g(y), x(0) =y.
Our task then is to find a function q(-) = (¢*(-),...,¢"()), so that
(33) q(z’) =9

and (q(y), g(v),v) is admissible; that is, the compatibility conditions
{ W) =9sly) (i=1,...,n-1)
F(a(y), 9(y),y) =0
hold for all y € T close to z°.

(34)

LEMMA 1 (Noncharacteristic boundary conditions). There ezxists a unique
solution q(-) of (33), (34) for all y € T sufficiently close to z°, provided

(35) Fpn(pﬂ?zﬂjmo) ?é D

We say the admissible triple (p°, 2%, z0) is noncharacteristic if (35) holds.
We henceforth assume this condition.

Proof. Our problem is to find ¢"(y) so that

F(q(y), 9(y),y) =0,

where ¢'(y) = gz, (y) fori =1,...,n—1. Since F(p°, 2%, z°) = 0, the Implicit
Function Theorem (§C.7) implies we can indeed locally and uniquely solve
for ¢"(y), provided that the noncharacteristic condition (35) is valid. a
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General noncharacteristic condition. If [ is not flat near z°, the con-
dition that T' be noncharacteristic reads

(36) D,yF(p°,2°%,2°%) - w(z®) # 0,

v(z") denoting the outward unit normal to U at z°. See Problem 7.

3.2.4. Local solution.

Remember that our aim is to use the characteristic ODE to build a
solution u of (1), (2), at least near T'. So as before we select a point z° € T
and, as shown in §3.2.3, may as well assume that near 20 the surface I is flat,
lying in the plane {z,, = 0}. Suppose further that (p?, 2%, %) is an admissible
triple of boundary data, which is noncharacteristic. According to Lemma 1
there is a function q(-) so that p® = q(z°) and the triple (q(y), (), y) is

admissible, for all y sufficiently close to z0.

Given any such point y = (y1,...,yn—1,0), we solve the characteristic
ODE (31), subject to initial conditions (32).

NOTATION. Let us write
p(s) =p(¥: s) =pP(1,- -1 Yn-1,5)
z(s) = 2(y,s) = z(31,- -, Yn-1,5)
x(s) = x(y, 8) = x(y1,-- -, Yn-1,5)

to display the dependence of the solution of (31), (32) on s and y. Also, we
will henceforth when convenient regard z° as lying in R" 1. O

LEMMA 2 (Local invertibility). Assume we have the noncharacteristic
condition F, (p°, 2%, 2% # 0. Then there exist an open interval I C R
containing 0, a neighborhood W of 2° in T' € R™ !, and a neighborhood V
of ¥ in R™, such that for each x € V there exist unique s € I, y € W such
that

z = x(y, s).

The mappings x +— s,y are C2.

Proof. We have x(z°,0) = 2°. Consequently the Inverse Function Theorem
(§C.6) gives the result, provided det Dx(z’,0) # 0. Now

x(y,0) = (y,0) (yeT);
andsoifi=1,...,n—1,

:L'i‘_(.rﬂ}[]) _ {5@6 gjz;,),n— 1)
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Furthermore equation (31)(c) implies

xg(xos 0) = ij (p(]! 301 ‘IG)'

1 0 F, (0 2°% 29

Dx(a%0)=| : ,
1 s

0--0 Fp, (p°, 2% 2°)

X

whence det Dx(z?, 0) # 0 follows from the noncharacteristic condition (35).
a

In view of Lemma 2 for each z € V, we can locally uniquely solve the
equation

(37) { z =x(y,s),

for y=yl(z), s = s(x).
Finally, let us define

- { ) =slytene)

p(z) := p(y(2), s(z))
for z € V and s,y as in (37).

We come finally to our principal assertion, namely, that we can locally
weave together the solutions of the characteristic ODE into a solution of the
PDE.

THEOREM 2 (Local Existence Theorem). The function u defined above
is C? and solves the PDE

F(Du(z),u(z),z) =0 (z€V),
with the boundary condition

u(z) =g(z) (zel'NV).
Proof. 1. First of all, fix y € T close to ¥ and, as above, solve the charac-
teristic ODE (31), (32) for p(s) = p(y, s), z(s) = z(y, 5), and x(s) = x(y, 5).

2. We assert that if y € T is sufficiently close to z°, then

(39) f(y: S) = F(p(y: S), z(y,s),x{y,s)} =0 (3 € 1)
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To see this, note

(40)  f(y,0) = F(p(y,0),2(y,0),x(y,0)) = F(a(y), 9(y),y) = 0,

by the compatibility condition (34). Furthermore

fs(yls) — ZFPJPJ'FFZ‘%'}'ZFJ:JiJ

j=1 =1
s > n a
= Fp(-F, _szj)"'Fz(ZFP:‘p;)
j=1 j=1

+ i F;,(Fp;) according to (31)
= 0. ~
This calculation and (40) prove (39).
3. In view of Lemma 2 and (37)-(39), we have
F(p(z),u(z),z) =0 (ze€ V).
To conclude, we must therefore show

(41) p(z) = Du(z) (zeV).

In order to prove (41), let us first demonstrate for s € I, y € W that

(42) z5(y,8) = D P (y,8)zi(y, )
j=1
and
(43) zyi(y,s)=2pj(y,s)r;i(y,s) (i=1,...,n—1).
j=1

These formulas are obviously consistent with the equality (41) and will later
help us prove it. The identity (42) results at once from the characteristic
ODE (31)(b),(c). To establish (43), fix y €', i € {1,...,n — 1}, and set

(44) ri(s) = 2y (y,s) - Zp)(y: 3)3:‘;,(34’:5)'

j=1
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We first note 7(0) = g,(y) — ¢'(y) = 0 according to the compatibility
condition (34). In addition, we can compute

13
(45) #(s) = zus— 3 plad, + Pal,.
j=1

To simplify this expression, let us first differentiate the identity (42) with
respect to y;:

n
(46) 2oy = D Phh+ Py,
i=1
Substituting (46) into (45), we discover
n m
(1) #(s) = plal - plal, = 3 Pl By, — (~Fy, — Fupl)al,,
j=1

7=1
according to (31)(a). Now differentiate (39) with respect to y;:

T T
Z ijp%‘. + Fzz@’i + Z Fzs'xifi =0.
j=1 j=1

We employ this identity in (47), thereby obtaining
(48) #(s) = Fu(D_plal, — z,) = —Fur'(s).
j=1

Hence 7(-) solves the linear ODE (48), with the initial condition r*(0) = 0.
Consequently r*(s) =0 (s € I, i = 1,...,n — 1), and so identity (43) is
verified.

4. We finally employ (42), (43) in proving (41). Indeed, if j = 1,...,n,

n—1

U, = Zs8z; + Z zy‘.y;j by (38)

=1

n n—1 n
= pFals., +) ) pfakyl. by (42), (43)
k=1 i=1 k=1

=1

n =
= Zpk (3:‘.:51‘3 =+ Z m;iy;:j-)
k=1 i=1

n mn
=Y bk =) phin =0
k=1

This assertion at last establishes (41) and so finishes up the proof. O
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3.2.5. Applications.

‘We turn now to various special cases, to see how the local existence
theory simplifies in these circumstances.

a. F linear. Recall that a linear, homogeneous, first-order PDE has the
form

(49) F(Du,u,z) = b(z) - Du(z) + c(z)u(z) =0 (z€U).
Our noncharacteristic assumption (36) at a point z° € T' as above becomes
(50) b(z°) - v(z%) # 0

and thus does not involve z° or p® at all. Furthermore if we specify the
boundary condition

(51) u=g onl,

we can uniquely solve equation (34) for q(y) if y € I is near 2°. Thus we can
apply the Local Existence Theorem 2 to construct a unique solution of (49),
(51) in some neighborhood V' containing z°. Note carefully that although we
have utilized the full characteristic equations (31) in the proof of Theorem
2, once we know the solution exists, we can use the reduced equations (17)
(which do not involve p(-)) to compute the solution. Observe also that the
projected characteristics x(-) emanating from distinct points on I' cannot
cross, owing to uniqueness of solutions of the initial-value problem for the
ODE (17)(a).

Example 4. Suppose the trajectories of the ODE
(52) x(s) = b(x(s))

are as drawn for Case 1. We are thus assuming the vector field b vanishes
within U only at one point, which we will take to be the origin 0, and b-v < 0
on T :=aU.

Case 1: flow to an attracting point
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Can we solve the linear boundary-value problem

(53) {b-Du=0 inU

u=g onl?

Invoking Theorem 2, we see that there exists a unique solution u defined
near T' and indeed that u(x(s)) = u(x(0)) = g(z°) for each solution of the
ODE (52), with the initial condition x(0) = z° € I'. However, this solution
cannot be smoothly continued to all of U (unless g is constant): any smooth
solution of (53) is constant on trajectories of (52) and thus takes on different
values near z = 0.

Case 2: flow across a domain

But now suppose the trajectories of the ODE (52) look like the illustra-
tion for Case 2. We are assuming that each trajectory of the ODE (except
those through the characteristic points A, B) enters U precisely once, some-
where through the set

[':={z € dU | b(z) - v(z) < 0},

and exits U precisely once. In this circumstance we can find a smooth
solution of (53) by setting u to be constant along each flow line.

Assume finally the flow looks like Case 3. We can now define u to be
constant along trajectories, but then u will be discontinuous (unless g(B) =
g(D)). Note that the point D is characteristic and that the local existence
theory fails near D. |
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E
Case 3: flow with characteristic points

b. F quasilinear. Should F' be quasilinear, the PDE (1) is

(54) F(Du,u,z) = b(z,u) - Du+ c(z,u) = 0.

The noncharacteristic assumption (36) at a point z° € T reads b(z?, 2?) -
v(z°) # 0, where 20 = g(z"). As in the preceding example, if we specify the
boundary condition

(55) wu=g onl

we can uniquely solve the equations (34) for q(y) if ¥ € I" near z°. Thus
Theorem 2 yields the existence of a unique solution of (54), (55) in some
neighborhood V of 2°. We can compute this solution in V using the reduced
characteristic equations (21), which do not explicitly involve p(-).

In contrast to the linear case, however, it is possible that the projected
characteristics emanating from distinct points in I' may intersect outside V',
such an occurrence usually signals the failure of our local solution to exist
within all of U.

Example 5 (Characteristics for conservation laws). As an instance of a
quasilinear first-order PDE, we turn now to the scalar conservation law

G(Du, us, u, z,t) = uy + divF(u)

(59) =u+F'(u) - Du=0

in U = R™ x (0, o), subject to the initial condition

(57) u=g onl=R"x{t=0}
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Here F : R — R™, F = (F',...,F™), and, as usual, we have set t =
Tn+1. Also, “div” denotes the divergence with respect to the spatial variables
(21,...,%5), and Du = Dyu = (ug,, ..., Uz, ).

Since the direction t = z,+; plays a special role, we appropriately modify
our notation. Writing now ¢ = (p, pn+1) and y = (z,t), we have

G(q,2y) = pny1 + F'(2) - p,
and consequently
D3 = Fle) 1), DGE=0, D.6=F"z)-5

Clearly the noncharacteristic condition (35) is satisfied at each point 3 =
(z%,0) € T. Furthermore equation (21)(a) becomes

(58) { t(s) = F*'(2(s)) (i=1,...,n)

" ti(s) = 1.

Hence z"t1(s) = s, in agreement with our having written z,,; = t above.
In other words, we can identify the parameter s with the time ¢.

Equation (21)(b) reads 3(s) = 0. Consequently
(59) 2(s) = 2° = 9(2°);
and (58) implies
(60) x(s) = F'(g(z))s + .

Thus the projected characteristic y(s) = (x(s),s) = (F/(g(2°))s + 2%, )
(s > 0) is a straight line, along which u is constant.

Crossing characteristics. But suppose now we apply the same reasoning
to a different initial point 2 € T', where g(z°) # g(2°). The projected char-
acteristics may possibly then intersect at some time t > 0. Since Theorem 1
tells us u = g(«”) on the projected characteristic through 20 and u = g(2°)
on the projected characteristic through 2%, an apparent contradiction arises.
The resolution is that the initial-value problem (56), (57) does not in general
have a smooth solution, eristing for all times ¢ > 0. O

We will discuss in §3.4 the interesting possibility of extending the local
solution (guaranteed to exist for short times by Theorem 2) to all times
t > 0, as a kind of “weak” or “generalized” solution.
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An implicit formula. We can eliminate s from equations (59), (60) to
derive an implicit formula for u. Indeed given = € R™ and t > 0, we see that
since s = {,

u(x(t), t) = z(t) = g(x(t) — tF'(°)) = g(x(t) — tF ' (u(x(2), 1)))-
Hence
(61) u = g(z — tF'(u)).

This implicit formula for « as a function of z and ¢ is a nonlinear analogue of
equation (3) in §2.1. It is easy to check that (61) does indeed give a solution,
provided

1+ tDg(z — tF'(u)) - F"(u) # 0.

In particular if n = 1, we require
1+tg'(x — tF'(w))F"(u) # 0.

Note that if F” > 0, but ¢’ < 0, then this will definitely be false at some
time ¢ > 0. This failure of the implicit formula (61) reflects also the failure
of the characteristic method. O

c. F fully nonlinear. The form of the full characteristic equations can
be quite complicated for fully nonlinear first-order PDE, but sometimes a
remarkable mathematical structure emerges.

Example 6 (Characteristics for the Hamilton-Jacobi equation). We look
now at the general Hamilton-Jacobi PDE

(62) G(Du,ug, u, z,t) = ug + H(Du, z) = 0,
where Du = Dyu = (ug,,...,uz,). Then writing ¢ = (p,pnt1), v = (z,t),
we have

G(Q} Zy y} =Pn+1 + H(p1 ‘T);

and so
DG = (DpH(p,z),1), D,G = (D H(p,z),0), D.G =0.
Thus equation (11)(c) becomes

o) { #(s) = Hp(p(s),x(s)) (i=1,...,n)

#"+1(s) = 1.
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In particular we can identify the parameter s with the time {. Equation
(11)(a) for the case at hand reads

{ p(s) = —He,(P(s),x(s)) (i=1,...,n)
;b“+1(3) _— 0;

the equation (11)(b) is

2(s) = DpH(p(s),x(s)) - p(s) + p"'(s)
= DpH(p(s),x(s)) - p(s) — H(p(s),x(s)).

In summary, the characteristic equations for the Hamilton-Jacobi equation
are

(a) p(s) = —D:H(p(s),x(s))
(64) (b) z(s) = DpH(p(s),x(s)) - p(s) — H(p(s), x(s))
() x(s) = DpH(p(s),x(s))
for p(-) = (P'();- -, #"()), 2(), and x() = (&(); .., a"()).
The first and third of these equalities,

X = DyH(p,x)
(65) { p = _DxH(pv X),

are called Hamilton’s equations. We will discuss these ODE and their rela-
tionship to the Hamilton-Jacobi equation in much more detail, just below
in §3.3. Observe that the equation for z(-) is trivial, once x(-) and p(-) have
been found by solving Hamilton's equations. a

As for conservation laws (Example 5), the initial-value problem for the
Hamilton—Jacobi equation does not in general have a smooth solution u
lasting for all times ¢ > 0.

3.3. INTRODUCTION TO HAMILTON-JACOBI
EQUATIONS

In this section we study in some detail the initial-value problem for the
Hamilton-Jacobi equation:

(1) ug + H(Du) =0 in R™ x (0, 00)
u=g onR"x {t=0}.
Here u : R™ x [0,00) — R is the unknown, u = u(z,t), and Du = Dyu =
Up,y-.. Uz, ). We are given the Hamiltonian H : — R and the initia.
) ). Wi i he Hamil R™ R and the initial
function g : R™ — R.
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Our goal is to find a formula for an appropriate weak or generalized
solution, existing for all times ¢ > 0, even after the method of characteristics
has failed.

3.3.1. Calculus of variations, Hamilton’s ODE.

Remember from §3.2.5 that two of the characteristic equations associated
with the Hamilton-Jacobi PDE

us + H(Du,z) =0

are Hamilton's ODE y
{ x = DpH(p,x)
p= _DIH(p? X),

which arise in the classical calculus of variations and in mechanics. (Note
the z-dependence in H here.) In this section we recall the derivation of
these ODE from a variational principle. We will then discover in §3.3.2 that
this discussion contains a clue as to how to build a weak solution of the
initial-value problem (1).

a. The calculus of variations. Assume that L : R" x R" — R is a given
smooth function, hereafter called the Lagrangian.

NOTATION. We write
L=L(v,3) = L(v1,- .., 0,31, 7n) (0,7 € R")
{ DyL = (Ly, -+~ Ly,)

D;L= (L - Lg,).

Thus in the formula (2) below “v” is the name of the variable for which
we substitute w(s), and “z” is the variable for which we substitute w(s).
g

Now fix two points z,y € R™ and a time t > (. We introduce then the
action functional

@) wO)= [ Lo wonds (=),

defined for functions w(-) = (w'(-),w?(-),...,w™(-)) belonging to the ad-
missible class

A= {w() € C¥([0,t];R") | w(0) = y, w(t) = z}.
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wi.)

x(-)

A problem in the calculus of variations

Thus a C? curve w(:) lies in A if it starts at the point y at time 0 and
reaches the point x at time t.

A basic problem in the calculus of variations is to find a curve x(-) € A
satisfying

(3) I[x()] = wr(l})igAI[W(-)]-

That is, we are asking for a function x(-) which minimizes the functional
I[-] among all admissible candidates w(-) € A.

We assume next that there in fact exists a function x(-) € A satisfying
our calculus of variations problem and will deduce some of its properties.

THEOREM 1 (Euler-Lagrange equations). The function x(-) solves the
system of Euler-Lagrange equations

(4) -di; (DyL(%(s),%(s))) + Dz L(k(s),x(s)) =0 (0< s <)

This is a vector equation, consisting of n coupled second-order equations.

Proof. 1. Choose a smooth functiony : [0,t] = R™, y(-) = (¥*(-),...,¥"(-)),
satisfying

(5) y(0) =y(t) =0,
and define for 7 € R
(6) w() =x(:) + 7y().

Then w(-) € A and so
Ifx(-)] < Iw(-)].
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Thus the real-valued function
i(7) = I[x(") + 1y ()]

has a minimum at 7 = 0, and consequently

d
7 . . o 2
@) ‘0=0 ("=%).

provided #'(0) exists.

2. We explicitly compute this derivative. Observe

t
i(r) = /0 L(k(s) + 79(s), x(s) + 7(s)) ds,

and so
i'(t) = ] ZLU,(X + 7y, 2+ 7Y + Lo (X + 7Y,z + Ty)y ds.

Set 7 = 0 and remember (7):

0=i(0)= j Z Ly, (%, %)i" + Lz, (%,%)y" ds.

We recall (5) and then integrate by parts in the first term inside the integral,
to discover

n ¢ 3 . . .
0= ;/ﬂ [‘& (Lo (%,%)) 4+ Ly, (%,x)| 3 ds.

This identity is valid for all smooth functions y(-) = (y1(-),...,y™(-)) satis-
fying the boundary conditions (5), and so for 0 < s <t

—%(Lu‘.(k:x))-}-l;z‘.(ic,x):ﬂ (i=1,...,n). O

Critical points. We have just demonstrated that any minimizer x(-) € A
of I[] solves the Euler-Lagrange system of ODE. It is of course possible
that a curve x(-) € A may solve the Euler-Lagrange equations without
necessarily being a minimizer: in this case we say x(-) is a critical point of
I[-]. So every minimizer is a critical point, but a critical point need not be
a minimizer.
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Example. If L(v,z) = Im|v|> — ¢(z), where m > 0, the corresponding
Euler-Lagrange equation is

mi(s) = £(x(s))

for f := —D¢. This is Newton’s law for the motion of a particle of mass m
moving in the force field f generated by the potential ¢. (See Feynman-
Leighton-Sands [F-L-S, Chapter 19].) O

b. Hamilton’s equations. We now transform the Euler-Lagrange equa-
tions, a system of n second-order ODE, into Hamilton’s equations, a system
of 2n first-order ODE. We hereafter assume the C? function x(-) is a critical
point of the action functional and thus solves the Euler-Lagrange equations

(4)-
First we set

(@) p(s) := DuL(x(s),x(s)) (0<s<t);

p(-) is called the generalized momentum corresponding to the position x(-)
and velocity (). We next make this important hypothesis:

Suppose for all z,p € R™ that the equation
p= DyL(v,x)
can be uniquely solved for v as a smooth

(9)
function of p and z, v = v(p, z).

We will examine this assumption in more detail later: see §3.3.2.
DEFINITION. The Hamiltonian H associated with the Lagrangian L is
H(p,z) =p-v(p,z) — L(v(p,z),z) (p,z €R"),

where the function v(-) is defined implicitly by (9).
Example (continued). The Hamiltonian corresponding to the Lagrangian
L(v,z) = 3m|v|* — ¢(z) is

H(p,z) = 5 |pl* + $(z).

The Hamiltonian is thus the total energy, the sum of the kinetic and potential
energies (whereas the Lagrangian is the difference between the kinetic and
potential energies). O

Next we rewrite the Euler-Lagrange equations in terms of p(-},x(:):
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THEOREM 2 (Derivation of Hamilton's ODE). The functions x(-) and
p(-) satisfy Hamilton's equations:

i { %) = Dy ()

p(s) = —DzH(p(s),x(s))
for 0 < s <t. Furthermore,

the mapping s — H(p(s),x(s)) is constant.

The equations (10) comprise a coupled system of 2n first-order ODE for
x(-) = (@'(:),...,2"(-)) and p(-) = (P'(),...,#"()) (defined by (8)).
Proof. First note from (8) and (9) that x(s) = v(p(s),x(s)).

Let us hereafter write v(:) = (v}(-),...,v"()). We compute for i =
1,...,n that

Hwa‘(ps T)= Zpk’b‘:,- (p, I) — Ly, (v(p, I)‘:E)Uj;i(p, z) — Ly, (v(p, z),z)

k=1
= —Lz,(g,z) according to (9)
and
Hpi(p: z) = 'Ui(PvT) + Zpkvﬁ‘- (p,x) — Ly, (v(p, x},m)v;(p, )
k=1
=v'(p,z), again by (9).
Thus _ .
Hp,(p(s),x(s)) = v*(p(s), x(s)) = @*(s),

and likewise

H., (p(s),x(s)) = —Lg,(v(p(s), x(s)),x(s)) = — Lz, (x(s),x(s))
_é(Lm (x(s),x(s))) according to (4)

= —p'(s)-
Finally, observe

d ~ i i
EH(p7x) = Z }Iﬂi (p': x)p + Hm (p! X)IE

i=1

= ZHP«A(p! x)("HIg' (p! x)) + HI:‘ (p,x)Hpi(p,x) = 0
i=1

O

See Arnold [Ar1, Chapter 9] for more on Hamilton’s ODE and Hamilton-
Jacobi PDE in classical mechanics. We are employing here different notation
than is customary in mechanics: our notation is better overall for PDE the-
ory.
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3.3.2. Legendre transform, Hopf-Lax formula.

Now let us try to find a connection between the Hamilton—Jacobi PDE
and the calculus of variations problem (2)-(4). To simplify further, we also
drop the z-dependence in the Hamiltonian, so that afterwards H = H(p).
We start by reexamining the definition of the Hamiltonian in §3.3.1.

a. Legendre transform. We hereafter suppose the Lagrangian L : R" —
R satisfies these conditions:

(11) the mapping v — L(v) is convex
and
(12) lim - +00

ol—co ]
The convexity implies L is continuous.

DEFINITION. The Legendre transform of L is

(13) L*(p) == fe'ifl{p ‘v—L(v)} (peR").

This is also referred to as the Fenchel transform.

Motivation for Legendre transform. Why do we make this definition?
For some insight let us note in view of (12) that the “sup” in (13) is really
a “max”; that is, there exists some v* € R™ for which

L*(p)=p-v" = L(v")

and the mapping v — p- v — L(v) has a maximum at v = v*. But then p =
DL(v*), provided L is differentiable at v*. Hence the equation p = DL(v)
is solvable (although perhaps not uniquely) for v in terms of p, v* = v(p).
Therefore

L*(p) = p-v(p) — L(v(p)).

However, this is almost exactly the definition of the Hamiltonian H asso-
ciated with L in §3.3.1 (where, recall, we are now assuming the variable z
does not appear). We consequently henceforth write

(14) H=1L"

Thus (13) tells us how to obtain the Hamiltonian H from the Lagrangian L.

Now we ask the converse question: given H, how do we compute L7
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THEOREM 3 (Convex duality of Hamiltonian and Lagrangian). Assume
L satisfies (11), (12) and define H by (13), (14).

(i) Then
the mapping p — H(p) is conver
and i
lpl—o0  [p
(ii) Purthermore
(15) E=i

Thus H is the Legendre transform of L, and vice versa:
L=H", H=1L".

We say H and L are dual convex functions. The identity (15) implies that
the three statements

p-v=L(v)+ H(p)
(16) p = DL(v)
v=DH(p)

are equivalent provided H is differentiable at p and L is differentiable at v:
see Problem 11.

Proof. 1. For each fixed v, the function p — p-v — L(v) is linear; and
consequently the mapping

p— H(p)=L"(p) = S {p-v—L(v)}
is convex. Indeed, if 0 <7 < 1, p,p € R", we have
H(rp+(1-7)p) =sup{(rp+ (1 - 7)p)-v— L(v)}
< Tt;up{p v — L{v)}
v (1 —7)sup{p-v— L(v)}
— TH@)+ (1 - DH).
2. Fixany A >0, p #0. Then
H(p) = vseuugl{p-v = L(v)}
29l = LO) =200

)]

> AMp| — g?g,ic) L.
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Thus lim inf 0 & > X for all A > 0.

3. In view of (14)
H(p)+ L(v) 2 p-v

for all p,v € R"™, and consequently

L(v) > sup {p-v—H(p)} = H*(v).
peR™

On the other hand
H*(v) = sup{p-v— sup{p-r—L(r)}}
peRn reRn
= sup inf {p-(v—r)+ L(r)}.
pER“ I"ER"
Now since v — L(v) is convex, according to §B.1 there exists s € R™ such

that
L(iry>Lv)+s-(r—v) (reR").

(If L is differentiable at g, take s = DL(v).) Putting p = s above, we
compute
H*(v) > ian {s-(v—r)+L(r)} = L(v). O
reR"

b. Hopf-Lax formula. Let us now return to the initial-value problem (1)
for the Hamilton—Jacobi equation and conclude from (64) in §3.2.5 that the
corresponding characteristic equations are

p=20
2= DH(p)-p— H(p)
x = DH(p).

The first and third of these are Hamilton’s ODE, which we in §3.3.1 derived
from a minimization problem for associated Lagrangian L = H*. Remem-
bering (16), we can therefore understand the second of the characteristic
equations as asserting

= DH(p)-p— H(p) = L(x).

But at least for such short times that (1) has a smooth solution u, we have
z(t) = u(x(t),t) and consequently

t
u(x,t):/o L{k(s)) s+ gle(0)):
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Our intention is to modify this expression, to make sense even for large
times ¢ > 0 when (1) does not have a smooth solution. The variational
principle for the action discussed in §3.3.1 provides the clue. Given z € R"
and t > 0, we therefore propose to minimize among curves w(-) satisfying
w(t) = x the expression

t
/9 L(w(s)) ds + g(w(0)),

which is the action augmented with the value of the initial data. We ac-
cordingly now define

1
(17) u(z,t) ;= inf {/ L(w(s))ds + g(w(0)) | w(t) = m} ;
0
the infimum taken over all C' functions w(-). (Better justification for this
guess will be provided much later, in Chapter 10.)

We must investigate the sense in which the function w given by (17)
actually solves the initial-value problem for the Hamilton-Jacobi PDE:

(18) uy+ H(Du) =0 inR" x (0,00)
u=g onR"x {t=0}
Recall we are assuming H is smooth,
H is convex and
(19)

We henceforth suppose also
(20) g:R"™ - R is Lipschitz continuous;

this means Lip(g) := supg, yER" { lg(z)—g(y) } £ .00,

Jz—ul

First we note that formula (17) can be simplified:

THEOREM 4 (Hopf-Lax formula). Ifz € R™ and t > 0, then the solution
u=u(z,t) of the minimization problem (17) is

(21) u(z,t) = min {tL ( ; y) + g(y}}.

DEFINITION. We call the expression on the right-hand side of (21) the
Hopf-Lax formula.
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Proof. 1. Fix any y € R" and define w(s) ==y + j(z —y) (0 < s < t).
Then the definition (17) of u implies

t =
wwt) < [ Lw(e s +at) =2 (25 +ato)

u(z,t) < yienﬂ{" {tL (?) + g(y)} :

2. On the other hand, if w(-) is any C? function satisfying w(t) = z, we

have
' L (% /{]t w(s) ds) < %/: L(w(s))ds

by Jensen’s inequality (§B.1). Thus if we write y = w(0), we find

and so

tL (“ﬁc;—y) +g(y) < /; L(w(s))ds + g(y);

and consequently

inf {tL (“%) 5 g(y)} < u(z,t).

3. We have so far shown

u(z,t) = inf {tL (%) + g(y)},

and leave it as an exercise to prove that the infimum above is really a
minimum. O

We now commence a study of various properties of the function u defined
by the Hopf-Lax formula (21). Our ultimate goal is showing this formula
provides a reasonable weak solution of the initial-value problem (18) for the
Hamilton-Jacobi equation.

First, we record some preliminary observations.

LEMMA 1 (A functional identity). For each x € R™ and 0 < 5 < {, we
have

(22) u(z,t) = min {(t —s)L (%) +uly, s)}.

yeR

In other words, to compute u(-,t), we can calculate u at time s and then
use u(-, s) as the initial condition on the remaining time interval [s, ].



3.3. INTRODUCTION TO HAMILTON-JACOBI EQUATIONS 125

Proof. 1. Fix y € R™, 0 < 5 < t and choose z € R" so that

(23) ) = s (152 +400)

Now since L is convex and 272 = (1 — 2) =¥ + $¥=% we have
T—z s T—y s (y—=z
< 1——)L 7 .
L( t )_( i (t—s)+t ( 8 )
Thus

wet) <L (552) +9) < (- 9L (F22) oL (15F) + 002

= (t-3)L (‘;—:—g) +u(y,s),

by (23). This inequality is true for each y € R™. Therefore, since y — u(y, s)
is continuous (according to the first part of the proof Lemma 2 below), we
have

(24) u(z,t) < min {(t — )L ( f) +u(y, s)}.
2. Now choose w such that
(25) wer) =1L (22) +atw)

and set y := jz + (1 - f) w. Then =2 = 2% = ¥=F. Consequently

y (25). Hence

(26) min {(s — )L (%) + u(y, s)} < u(z,t).

yeRn
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LEMMA 2 (Lipschitz continuity). The function u is Lipschitz continuous
in R" x [0,00), and
u=g onR"x {t=0}
Proof. 1. Fixt > 0, z,Z € R™. Choose y € R" such that
(27) tL (?) + 9(y) = u(z, t).

Then

u(,t) - u(z,t) = min {tL ( ) +g(z)} —tL (x;y) —9ly)

<g(Z—z+y)—g(y) <Lip(g)lz —=|.

Hence
U(i‘, t) = u(xvt) < Llp(g”‘% = $|;

and, interchanging the roles of Z and z, we find
(28) fu(z, t) - u(,t)| < Lip(g)le — &I

2. Now select z € R™, ¢ > 0. Choosing y = z in (21), we discover
(29) u(z,t) <tL(0) + g(x).

Furthermore,

u(e,t) = min {tL ( ) + y(y)}

> g(z) + ;1&1&{‘1‘{ Lip(g)lz — y| +tL ( )}

=9(x)-tma§{Lip(9)Izl L(z)} (z=72

- = T
g9(z) t e SR zeﬁzg{w z—L(z)}

=g(zx)—t max H.
g( ) B(0,Lip(g))

This inequality and (29) imply
[u(a, 1) — g(a)| < Ct
for

(30) C = max(|L(0)), , max _ |H]).
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3. Finally select z € R", 0 < £ < t. Then Lip(u(-,t)) < Lip(g) by (28)
above. Consequently Lemma 1 and calculations like those employed in step
2 above imply

lu(z, t) — u(z, )| < CJt — 1

for the constant C defined by (30). O

Now Rademacher’s Theorem (which we will prove later, in §5.8.3) asserts
that a Lipschitz function is differentiable almost everywhere. Consequently
in view of Lemma 2 our function u defined by the Hopf-Lax formula (21)
is differentiable for a.e. (z,t) € R™ x (0,00). The next theorem asserts u in
fact solves the Hamilton—Jacobi PDE wherever u is differentiable.

THEOREM 5 (Solving the Hamilton-Jacobi equation). Suppose z € R",
t > 0, and u defined by the Hopf-Laz formula (21) is differentiable at a point
(z,t) € R" x (0,00). Then

ue(z, t) + H(Du(z,t)) = 0.

Proof. 1. Fix v € R*, h > 0. Owing to Lemma 1,

. z+ hv —vy
w(z+hv,t +h) = ;g&ar'll {hL (4-}1 ) o+ u(yat)}
< hL(v) 4 u(z,t).

Hence
u(z + hv,t + h) — u(z, t)

3 < L(v).

Let h — 07, to compute
v - Du(z,t) + us(x,t) < L(v).
This inequality is valid for all v € R", and so

(31)  w(z,t) + H(Du(x,t)) = uelzx, t) + 11}1%%)5{1} - Du(z,t) — L(v)} < 0.

The first equality holds since H = L*.

2. Now choose z such that u(z,t) = tL (%32) + g(z). Fix h > 0 and set

s=t—h,y=3%z+ (1— %)z Then 2 = ¥ and thus

)=l ) 2 00 (555 ote) - sz (12F) + g(z)]

:(t—s)L(“’;z).
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That is,

u(z,t) —u((1-2)z+ 22, —h) T —2
h 25(%5E).

Let h — 07, to see that

Tr—2

- Du(z,t) + u(z,t) > L (x - ”) .

Consequently
ur(z,t) + H(Du(, t)) = u(z,t) + max{v - Du(z, t) — L(v)}

> u(z,t) + ? - Du(z,t) - L (a::z)
> 0.

This inequality and (31) complete the proof. O

We summarize:

THEOREM 6 (Hopf-Lax formula as solution). The function u defined by
the Hopf-Lax formula (21) is Lipschitz continuous, is differentiable a.e. in
R" x (0,00), and solves the initial-value problem

(32) u+ H(Du) =0 a.e. in R™ x (0, 00)
u=g onR"x{t=0}.

3.3.3. Weak solutions, uniqueness.

a. Semiconcavity. In view of Theorem 6 above it may seem reasonable
to define a weak solution of the initial-value problem (18) to be a Lipschitz
function which agrees with g on R™ x {t = 0} and solves the PDE a.e. on
R™ x (0, 00). However this turns out to be an inadequate definition, as such
weak solutions would not in general be unique.

Example. Consider the initial-value problem

{u¢+|ux|2:0 in R x (0, c0)

(58) u=0 onRx{t=0}

One obvious solution is
uy(z,t) = 0.
However the function

0 if |z >¢
ug(z,t) = z—t if 0<z<t
—pg—t f —t<z<0
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is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact,
except on the lines z = 0,+t). It is easy to see that actually there are
infinitely many Lipschitz functions satisfying (33). O

This example shows we must presumably require more of a weak solution
than merely that it satisfy the PDE a.e. We will look to the Hopf-Lax
formula (21) for a further clue as to what is needed to ensure uniqueness.
The following lemma demonstrates that w inherits a kind of “one-sided”
second-derivative estimate from the initial function g.

LEMMA 3 (Semiconcavity). Suppose there ezists a constant C such that
(34) 9(z + 2) = 29(z) + g(z — 2) < Clz?
for all z,z € R™. Define u by the Hopf-Lax formula (21). Then
u(z + z,t) — 2u(z,t) + u(z — z,t) < C|z|?
forallz,ze R, t > 0.

We say g is semiconcave provided (34) holds. It is easy to check that
(34) is valid if g is C? and supg. |D?g| < co. Note that g is semiconcave if
and only if the mapping z +— g(z) — %|:1:|2 is concave for some constant C.

Proof. Choose y € R™ so that u(z,t) = tL () + g(y). Then, putting
y+ z and y — z in the Hopf-Lax formulas for u(z + z,t) and u(z — z,t), we
find

u(z + z,t) — 2u(z, t) + u(z — 2,t)

< [LL (?) +g(y+ z)] -2 [tL (E;—y) e y(y)}
+ [tL (x—;—y) +9(y - Z)]

=g(y+2) — 29(y) + g(y — 2)
< Clz[%, by (34).

O

As a semiconcavity condition for u will turn out to be important, we
pause to identify some other circumstances under which it is valid. We will
no longer assume g to be semiconcave but will suppose the Hamiltonian H
to be uniformly convex.
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DEFINITION. A C? convex function H : R® — R is called uniformly
convex (with constant 8 > 0) if

n

(35) > Hpp,(0)&&; > 011 for all p,€ € R™.

i,3=1

We now prove that even if g is not semiconcave, the uniform convexity
of H forces u to become semiconcave for times ¢ > 0: this is a kind of mild
regularizing effect for the Hopf-Lax solution of the initial-value problem
(18).

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convez
(with constant @) and u is defined by the Hopf-Laz formula (21). Then

u(z + z,t) — 2u(z, t) + ulz — z,t) < §15|z|2
or all T,z € ,t>0.
forall z,z € R" 0

Proof. 1. We note first using Taylor’s formula that (35) implies

+ 1 1 7
) (PR < L)+ )~ gl - el
Next we claim that for the Lagrangian L we have the estimate
1 1 v + ve 1 5
ZLiv — < S il
1) 5L + 5200 < L (252) + gyl —va

for all vy, v € R™. Verification is left as an exercise.

2. Now choose y so that u(z,t) = tL(*¥) + g(y). Then using the
same value of y in the Hopf-Lax formulas for u(z + z,1) and u(z — 2,t), we
calculate

u(z + z,t) — 2u(z, t) +u(z — z,t)

<[oe (2572) o] -2 i (72 a0
+ [“5 (@) % g(y)]
e () e () ().

2

1 |2z 1
<2%—|=| < |73
<%g || <@l
the next-to-last inequality following from (37). O
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b. Weak solutions, uniqueness. In this section we show that semi-
concavity conditions of the sorts discovered for the Hopf-Lax solution « in
Lemmas 3 and 4 can be utilized as uniqueness criteria.

DEFINITION. We say that a Lipschitz continuous function u : R™ x
[0,00) — R is a weak solution of the initial-value problem:

(38)

u+ H(Du) =0 inR™ x (0, 00)
u=g onR"x {t=0}

provided

(a) u(z,0) =g(z) (z€R"),

(b) wi(z,t) + H(Du(z,t)) =0 for a.e. (z,t) € R" x (0,00),
and

(c) ulz+z,t) —2u(z,t) +u(z — 2,t) < C (1 + 1) |z[?

for some constant C > 0 and all z,z € R™, t > 0.

Next we prove that a weak solution of (38) is unique, the key point being
that this uniqueness assertion follows from the inequality condition (c).

THEOREM 7 (Uniqueness of weak solutions). Assume H is C? and sat-
isfies (19) and g satisfies (20). Then there exists at most one weak solution
of the initial-value problem (38).
Proof*. 1. Suppose that u and @ are two weak solutions of (38) and write
W= U — U.

Observe now that at any point (y,s) where both u and @ are differen-
tiable and solve our PDE, we have

wi(y, ) = wely, s) — we(y, s)
—H(Du(y, s)) + H(Du(y, s))

1
= —fo %H(rDu(y, s) + (1 —r)Du(y,s)) dr

- [ DHEDuw,9) + (1 - 1Dty ) - (Duly5) - Dy, o)
=: —b(y,s) - Dw(y,s).

Consequently

(39) we+b-Diw=0 se.

*Omit on first reading.
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2. Write v := ¢(w) > 0, where ¢ : R — [0,00) is a smooth function to
be selected later. We multiply (39) by ¢'(w) to discover

(40) vu+b-Dv=0 ae.

3. Now choose £ > 0 and define u® := 7. *u, 4 := 7. * 4, where 7, is the
standard mollifier in the = and ¢ variables. Then according to §C.4

(41) |Dw| < Lip(w), |D#| < Lip(@),
and
(42) Duf — Du, D& — D&t a.e., as e — 0.

Furthermore inequality (¢) in the definition of weak solution implies
(43) D*uf, DYif < C (1 + 1) I
s

for an appropriate constant C and all £ > 0, y € R™, s > 2e. Verification is
left as an exercise.

4. Write
(44)  bu(ys) = /D ' DH(rDue(y,5) + (1 — r)DE(y, 5)) dr-
Then (40) becomes
v +b.-Dv=(b.—b) -Dv ae;
hence
(45) ve + div(vb,) = (divbe)v + (bs — b) - Dv  ace.

5. Now

1 n
Bl /0 S Hypp (rDue + (1 — 1) D) (rs g, + (1 = )ik 0, dr
k=1

(46) = 5 (1 + %)

for some constant C, in view of (41), (43). Here we note that H convex
implies D*H > 0.
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6. Fix xp € R™, {p > 0, and set
(47) R :=max{|DH(p)| | |p| < max(Lip(u), Lip(@))}.
Define also the cone
C:={(z,t) |0 <t <tp, |z — x| < Rt —t)}-

Next write

e(t) = f v(z,t)dzx
B(&U'R(tu—t))

and compute for a.e. t > 0:
é(t):/ vpdr — R vdS
B(zo,R{to—t)) 8B(zo,R(to—t))
=/ < drelobi ) fivhadn s by =5« Dos
B(zo,R(to—t))

- R vdS by (45)
9B (xo,R(to—t))

:-/ u(b, - v+ R)dS
@B (zg,R(to—t))

+ / (divb.)v + (b, — b) - Dvdz
B(zo,R(to—t))

< / (divb.)u + (b: — b) - Dudz by (41), (44)
B(zo,R(ta—t))

gc(1+3)e(t)+/ M= B Dl
t B(zo,Rl(to—t))

by (46). The last term on the right-hand side goes to zero as £ — 0, for a.e.

t > 0, according to (41), (42) and the Dominated Convergence Theorem.

Thus
(48) 4t) < C (1 + %) ef) forae 0<t<ip.
7. Fix 0 < & < r < tp and choose the function ¢(z) to equal zero if
|2| < e[Lip(u) + Lip(@)]
and to be positive otherwise. Since u = @ on R™ x {t = 0},

v=¢(w)=¢u—u) =0 at{t=c}

134 3. NONLINEAR FIRST-ORDER PDE

Thus e(g) = 0. Consequently Gronwall’s inequality (§B.2) and (48) imply
e(r) < e(s)ef: C(1+3)ds — g

Hence
lu — @] < e[Lip(u) + Lip(@)]  on B(zo, R(to — r)).

This inequality is valid for all € > 0, and so v = @ in B(xg, R(ty — 7)).
Therefore, in particular, u(zg, tp) = @(zo, to). O

In light of Lemmas 3, 4 and Theorem 7, we have

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose H is C?
and satisfies (19) and g satisfies (20). If either g is semiconcave or H is
uniformly convez, then

ulz,t) = min {tL (%) +g(y)}

yeR™

is the unique weak solution of the initial-value problem (38) for the Hamilton—
Jacobi equation.

Examples. (i) Consider the initial-value problem:

1 2 _ * n
(49) {uz-l- 3/Dul* =0 in R™ x (0, 00)

u=|z| onR"™x {t=0}.
Here H(p) = 3|p|* and so L(v) = 3|v|?>. The Hopf-Lax formula for the

unique, weak solution of (49) is

o flz—yl?
(50) u(z,t) = ;ﬁg{ I}

Assume |z| > ¢. Then

|z —yf? Y-z y _

and this expression equals zero if = y + £t, y = (|z| — t)3; # 0. Thus
u(z,t) = |z| — £ if |z] > t. If |z| < ¢, the minimum in (50) is attained at
y = 0. Consequently

lz| —t/2 if|z| >t

u(z,t) = { i

5 If |z| <t
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Observe that the solution becomes semiconcave at times ¢ > 0, even though
the initial function g(z) = |z| is not semiconcave. This accords with Lemma
4.

(ii) We next examine the problem with reversed initial conditions:

(51) ug + %IDu|2 =0 in R™ x (0, 00)
u=—|z| onR"x {t=0}.
Then
u(z,t) = min M — |yl
2 yeRn 2t ’
Now

lz—y?  N_3¥-z ¥y

and this equals zero if z = y — ¢, y = (|z] + ) ;3. Thus

t
u(z, t) = —|z| — 5 (z e R", t >0).
The initial function g(z) = —|z| is semiconcave, and the solution remains so
for times ¢ > 0. ]

In Chapter 10 we will again study Hamilton-Jacobi PDE and discover
another and better notion of weak solution, applicable even if H is not
convex.
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3.5. PROBLEMS

In the following exercises, all given functions are assumed smooth, unless
otherwise stated.

1. Prove
u(z,t,a,b)=a-z—tH(a)+b (aeR"bER)

is a complete integral of the Hamilton—Jacobi equation

us + H(Du) = 0.

2 Compute the envelopes of the family of lines
1+ a%z—2a=0 (acR)
in R? and of the family of planes

20121 + 2apz0 —z3 + a2 + a2 =0 (ay,a3 €R)


Maria
Rectangle

Maria
Rectangle
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in R®. Draw pictures illustrating the geometric meaning of the en-
velopes.

Suppose that the formula G(z, z,a) = 0 implicitly defines the function
z = u(z,a), where z,a € R". Assume further that we can eliminate
the variables a from the identities

{ G(z,u,a) =0
Gy, (z,u,a) + Go(z,u,a)ug, =0 (i=1,...,n),

to solve for u = u(x).

(a) Find a PDE that u solves if G = 31| a;2? + 2°.

(b) What is the PDE characterizing all spheres in R™*! with unit
radius and center in R" x {z = 0}7

(a) Write down the characteristic equations for the PDE
(%) u+b-Du=f inR" x(0,00),

where b € R", f = f(z,1).

(b) Use the characteristic ODE to solve () subject to the initial
condition
u=g onR"x{t=0}
Make sure your answer agrees with formula (5) in §2.1.2.
Solve using characteristics:
(a) ziuz, + oUs, = 2u, u(zy,1) = g(z1).
(b)  z1Ug, + 220Uy, + Usy = 3u, u(my,22,0) = g(z1, T2).
(€)  wuz, +ug, =1, u(zy,21) =1
Given a smooth vector field b on R™, let x(s) = x(s,z,t) solve the

opg { x=b(x) (seR)
x(t) =z

(a) Define the Jacobian
J(s,z,1) = det Dyx(s, z,t)
and derive Fuler’s formula:
J, = divb(x)J.
(b) Demonstrate that

u(x, t) := g(x(0, z,t))J(0,z,t)
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10.

solves
ug + div(ub) =0 in R™ x (0, 00)
w=g¢ onR"x {t=0}
(Hint: Show %(u(x, s)J) =0.)
Verify assertion (36) in §3.2.3, that when T is not flat near z°, the
noncharacteristic condition is

DPF(pD, zﬂ?xﬂ) : v(xo) ?1‘_ 0.

Confirm that the formula v = g(x — tF'(u)) from §3.2.5 provides an
implicit solution for the conservation law

uy + Fu)g = 0.

Consider the problem of minimizing the action f;L(W(S),W(S))dS
over the new admissible class

A= {w() € CX([0, 8 R™) | w(t) = o},

where we do not require that w(0) = y.

(a) Show that a minimizer x(-) € A solves the Euler-Lagrange equa-
tions
L (DyL(k(s), x(5))) + DeL(k(s), x(s)) =0 (0< 5 <)
(b) Prove that
Dy L(%(0), x(0)) = 0.

(c) Suppose now that x(-) € A minimizes the modified action

]0 L(%(s), w(s)) ds + g(w(0)).

Show that x(-) solves the usual Euler-Lagrange equations and
determine the boundary condition at s = 0.

If H:R"™ — R is convex, we write L = H*.
(a) Let H(p) = L|p|", for 1 <r < oo. Show

L(v) = l!’U|3, where 1 + L =1.
3 T8

(b) Let H(‘p) = % ?,j:l aiipip; + Z?:l b;p;, where A = ((G.,J)) is a
symmetric, positive definite matrix, b € R". Compute L(v).
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11.

12.

13.

14.

15.
16.

Let H : R" — R be convex. We say v belongs to the subdifferential of
H at p, written
v € dH(p),

if
H(r)> H(p)+v-(r—p) forallreR"

Prove v € JH(p) if and only if p € L(v) if and only if p-v =
H(p) + L(v), where L = H*.

Assume L, Ly : R® — R are convex, smooth and superlinear. Show
that

min (L1 (v) + L2(v)) = prg%eg(—Ha (p) — H2(-p)),
where Hy = L}, Hy = Lj.
Prove that the Hopf-Lax formula reads

u(z,t) = &1&& {tL (m—;y) +9(y)}
- it 1 (577) +50)

for R = supgs |DH(Dg)|, H = L*. (This proves finite propagation
speed for a Hamilton-Jacobi PDE with convex Hamiltonian and Lip-
schitz continuous initial function g.)

Let E be a closed subset of R". Show that if the Hopf-Lax formula
could be applied to the initial-value problem

{ w4+ |Du? =0 in R™ x (0, 00)

_ 0 z€E n _
u—{+00 FEE on R™ x {t =0},

it would give the solution
u(z,t) = 1 dist(z, E)?
st|=g T ,

Provide all details for the proof of Lemma 4 in §3.3.3.

Assume u!, u? are two solutions of the initial-value problems

ui + H(Du*) =0 in R™ x (0,00)
w=g" onR"x{t=0}(i=1,2),

given by the Hopf-Lax formula. Prove the L®-contraction inequality

sup lul(-,t) —u(-,t)| < sup lg' — g%l (t>0).
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17.

18.

19.

20.

Show that

-2(t+ \/3:.,-»+t2) if 4z +12 > 0
u(z,t) i={ 3
0 ifde+1t2<0

is an (unbounded) entropy solution of u; + ("‘72)ar = 0.
Assume u(z + z) —u(z) < Ez for all z > 0. Let u® = 7, * u, and show

u; < E.

Assume F'(0) =0, u is a continuous integral solution of the conserva-

tion law
u+ Fu); =0 in R x (0, 00)
u=g onRx{t=0},

and u has compact support in R x [0, T] for each time T' > 0. Prove
o0 o0
f u(-,t)dz = f gdz
—00 —00
for all t > 0.

Compute explicitly the unique entropy solution of

ut+(“—;)I=0 in R x (0,00)
u=g¢g onRx{t=0}

for )
if z<-1

if —1<z<0
if 0<z<l1
if z>1.

by O =

g9(z) =

o

Draw a picture documenting your answer, being sure to illustrate what
happens for all times £ > 0.

3.6. REFERENCES

Section 3.1 A nice source for this material is Courant-Hilbert [C-H,

Chapter 2].

Section 3.2  This derivation of the characteristic differential equations is

found in Carathéodory [C]. The proof of Theorem 2 fol-
lows Garabedian [G, Chapter 2|, John [J2, Chapter 1], etc.
Chester [Ch] and Sneddon [Sn] are also good texts for more
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8.1. INTRODUCTION
8.1.1. Basic ideas.

We introduce some new ideas by supposing that we wish to solve a
particular partial differential equation, which for simplicity we write in the
abstract form

(1) Alu] = 0.

In this formula A[-] denotes a given, possibly nonlinear partial differential
operator and u is the unknown. There is, of course, no general theory for
solving all such PDE.

The calculus of variations identifies an important class of such nonlinear
problems that can be solved using relatively simple techniques from non-
linear functional analysis. This is the class of variational problems, that is,
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PDE of the form (1), where the nonlinear operator A[-] is the “derivative”
of an appropriate “energy” functional I[-]. Symbolically we write

(2) Al-1=T11"].
Then problem (1) reads
(3) I'u] = 0.

The advantage of this new formulation is that we now can recognize solutions
of (1) as being critical points of I[-]. These in certain circumstances may be
relatively easy to find: if, for instance, the functional I[-] has a minimum
at u, then presumably (3) is valid and thus u is a solution of the original
PDE (1). The point is that whereas it is usually extremely difficult to solve
(1) directly, it may be much easier to discover minimum (or mazimum or
other critical) points of the functional I]-].

In addition of course, many of the laws of physics and other scientific
disciplines arise directly as variational principles.

8.1.2. First variation, Euler—Lagrange equation.

Suppose now U C R™ is a bounded, open set with smooth boundary oU
and we are given a smooth function

L:R"xRxU—R.
We call L the Lagrangian.
NOTATION. We will write

L= L(p:z:m) = L(Pl:--- 1 Prny 2, L1, ... ,.'L'n}

forpe R™, z € R,and z € U. Thus “p” is the name of the variable for which
we substitute Dw(z) below, and “z” is the variable for which we substitute

w(z). We also set
DyL = (Lpys- -5 Lyp,)

DyLi=L;
ByB—= Bppmong g )
This notation will clarify the theory to follow.

We make the vague ideas in §8.1.1 more precise by now assuming I ]
to have the explicit form

@) T 1= fU EiDwle), wiz),2) de,
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for smooth functions w : U — R satisfying, say, the boundary condition
(5) w=g ondU.

Let us now additionally suppose some particular smooth function u,
satisfying the requisite boundary condition u = g on dU, happens to be a
minimizer of I[-] among all functions w satisfying (5). We will demon-

strate that u is then automatically a solution of a certain nonlinear partial
differential equation.

To confirm this, first choose any smooth function v € C2°(U) and con-
sider the real-valued function

(6) i(r) ==TIu+7v] (r€R).

Since u is a minimizer of I[-] and v+ 7v = u = g on 9U, we observe that
i(-) has a minimum at 7 = 0. Therefore

(7) i(0) = 0.

We explicitly compute this derivative (called the first variation) by writ-
ing out

(8) i(t) = / L(Du+ 1Dv,u + v, ) dz.
U
Thus
mn
i'(1) = / z Ly, (Du+ 17Dv,u+ 70, 2)vz, + L.(Du+ TDv,u + Tv,x)v dz.
Uiz
Let 7 = 0, to deduce from (7) that
n
0=17(0) = f Z Ly, (Du,u, x)vg, + L.(Du, u, z)v dz.
Ui=1
Finally, since v has compact support, we can integrate by parts and obtain

o:/U [—Z(Lp‘.(Du,u,x))xi L E i, )| s

1=1

As this equality holds for all test functions v, we conclude u solves the
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nonlinear PDE

(9) =) _ (Lp(Dyu,z)), + Lo(Du,u,z) =0 inU.

i=1

This is the Euler—Lagrange equation associated with the energy functional
I[-] defined by (4). Observe that (9) is a quasilinear, second-order PDE in
divergence form.

In summary, any smooth minimizer of /[-] is a solution of the Euler-
Lagrange partial differential equation (9), and thus—conversely—we can try
to find a solution of (9) by searching for minimizers of (4).

Example 1 (Dirichlet’s principle). Take
L(p, z,z) = }|p|*.

Then Ly, = p; (i =1,...,n), L, = 0; and so the Euler-Lagrange equation
associated with the functional

Iw] := %,/U |Dw|? dz

Au=0 inU.
This fact is Dirichlet’s principle, previously introduced in §2.2.5. a

Example 2 (Generalized Dirichlet’s principle). Write

L(p,z,z) =} Z a¥ (z)pip; — 2f(z),
ij=1

where a¥ = @/* (i,j = 1,...,n). Then Ly, = Y7 a¥(z)p; (i = 1,...,n),
L, = —f(z). Hence the Euler-Lagrange equation associated with the func-
tional

n

3 1

Iw] := f 3 awpwy, —wf dr
u !:,j—_-],

is the divergence structure linear equation

- (aYu,), =f nU.

i,j=1
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We will see later (in §8.1.3 and §8.2) that the uniform ellipticity condi-
tion on the a¥ (i,j = 1,...,n) is a natural further assumption, required to
prove the existence of a minimizer. Consequently from the nonlinear view-
point of the calculus of variations, the divergence structure form of a linear
second-order elliptic PDE is completely natural. This observation provides
some much belated motivation for the bilinear form techniques utilized in
Chapter 6. O

Example 3 (Nonlinear Poisson equation). Assume we are given a smooth
function f : R — R, and define its antiderivative F'(z) = [; f(y)dy. Then
the Euler-Lagrange equation associated with the functional

nm;iL%wa—Fmgm

is the nonlinear Poisson equation

—Au = f(u) inU.

Example 4 (Minimal surfaces). Let
L(p,z,3) = (1 + |p*)*?,

so that
qm=fu+mmwﬂm
U

is the area of the graph of the function w : U — R. The associated Euler-
Lagrange equation is

(10) Z(W)R=O in U.

i=1

This partial differential equation is the minimal surface equation. The
expression div(m[%f}_lﬁ) on the left side of (10) is n times the mean cur-

vature of the graph of u. Thus a minimal surface has zero mean curvature.
O
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Surface area of graph = I[u]

-ed

A minimal surface
8.1.3. Second variation.

We continue in the spirit of the calculations from §8.1.2 by computing
now the second variation of I-] at the function u. This we find by observing
that since u gives a minimum for I[- ], we must have

i"(0) > 0,

i(-) defined as above by (6). In view of (8) we can calculate

n
(1) = /U Z Lpp; (Du + 7Dv, u + T, )z, Vg,

1,7=1

n
+ ZZL z(Du + 7Dv,u + 70, )V, v
i=1

+ L..(Du+ 7Dv,u + v, z)v? dz.

Setting 7 = 0, we derive the inequality

n
0< 1‘H(U) = / z LP&P;‘ (Duv U, x)'”zz'vfj
v 1,j=
(11) =
+2 Z Ly.-(Du,u, 2)vz,v + L., (Du,u, z)v? dz,

i=1

holding for all test functions v € C2°(U).

We can extract useful information from inequality (11), as follows. First,
note after a routine approximation argument that estimate (11) is valid for
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any Lipschitz continuous function v vanishing on 8U. We then fix £ € R™
and define

(12) o) =22 (@) @e),
where ( € C2°(U) and p: R — R is the periodic “zig-zag” function defined
by
2 i0sess 1 R
w={7_, feac: AEtD=0e) EER)
Thus
(13) IFl=1 ae.

Observe further that v, (z) = p’(r—f) &C + Ofe) as ¢ — 0, and so our
substituting (12) into (11) yields

0< / Z Ly, (Duy, 7) (0)2165¢% dz + O(e).

i,7=1

We recall (13) and send € — 0, thereby obtaining the inequality

0 <f Z Lpp;(Du,u, 5'3)‘51'53C dz.

131

Since this estimate holds for all ¢ € C°(U), we deduce

(14) D Low; (Du,u,2)6é; 20 (E€R™, z€U).

i,7=1

We will see later in §8.2 that this necessary condition contains a clue as
to the basic convexity assumption on the Lagrangian L required for the
existence theory.

8.1.4. Systems.

a. Euler-Lagrange equations. The foregoing considerations generalize
quite easily to the case of systems, the only new complications being largely
notational. Recall from §A.1 that M™*™ denotes the space of real m x n
matrices, and assume the smooth Lagrangian function

L:M™"xR"xU - R

is given.
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NOTATION. We will write
L=FL(P,2%) = L{p} ooy PR 2ty s % By )

for P e M™*", z ¢ R™, and z € U, where

R
P= *
T g TS

(We are now employing superscripts to denote rows, since this notational
convention simplifies the following formulas.)

As in §8.1.2 we associate with L the functional

(15) F] o= / L(Dw(z), w(z), z) dz,
u
defined for smooth functions w : U — R™, w = (w',...,w™), satisfying the
boundary condition w = g on 9U, g : U — R™ being given. Here
T
Dw(z) =
wxml w::r:l mXT

is the gradient matrix of w at z.

Let us now show that any smooth minimizer u = (u',...,u™) of I[-],
taken among functions equal to g on 38U, must solve a certain system of
nonlinear partial differential equations. We therefore fix v = (!,...,2™) €

22(U; R™) and write
7) = I[u+ 7v].
As before,
i'(0) = 0.
From this we readily deduce as above the equality

fZZLk Du,u, z)vk +Z[,k(Duuw)v dz .

i=1 k=1
As this identity is valid for all choices of v!,...,v™, we conclude after inte-
grating by parts that
mn
(16) -5 (Lp;_‘ (Du, u, .7:)) +Lx(Duu,z) =0 inU (k=1,...,m).
=1 = m"
This coupled, quasilinear system of PDE comprises the Euler-Lagrange equa-
tions for the functional I[-] defined by (15).
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b. Null Lagrangians. Surprisingly, it turns out to be interesting to study
certain systems of nonlinear partial differential equations for which every
smooth function is a solution.

DEFINITION. The function L is called a null Lagrangian if the system
of Euler-Lagrange equations
mn
a7 — zl: (Lpr(Du,u,z))% +Lx(Duu,z) =0 inU (k=1,...,m)
=
is automatically solved by all smooth functions u: U — R™.

The importance of null Lagrangians is that the corresponding energy
Ifw] = f e ol
U

depends only on the boundary conditions:

THEOREM 1 (Null Lagrangians and boundary cond_it’.ions). Let L be a
null Lagrangian. Assume u, 1 are two functions in C?(U,R™) such that

(18) u=u ondl.
Then
(19) I[u] = I[q].

Proof. Define
i(r):=1I[ru+(1-7a] (0<7<1).

Then

i'(1) = /{;

+ Z L(tDu+ (1 —7)Da,mu+ (1 — 7)d,z)(u* - @*) dz

a

in (rDu+ (1 —7)Da,7u+ (1 — 7)1, :z:)(u — ik

$s?
i=1 k=1

=1
:i][ Lk('rDu+(1—'r)Du,’ru+(1—'rux))

k=1"U
+ Lx(rDu+ (1 - 7)Da,7u+ (1 - ), z) | (u* — @) dz
=0,
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the last equality holding since the Euler-Lagrange system of PDE is satisfied
by 7u+ (1 — 7)1i1. The identity (19) follows. O

In the scalar case that m = 1 the only null Lagrangians are the boring
examples where L is linear in the variable p. For the case of systems (m > 1),
however, there are certain nontrivial examples, which will turn out to be
important for us later.

NOTATION. If A is an n x n matrix, we denote by
cof A
the cofactor matrix, whose (k, i)' entry is (cof A)¥ = (—1)i**d(A)¥, where

d(A)¥ is the determinant of the (n—1) x (n—1) matrix obtained by deleting
the &' row and i*" column from A.

LEMMA (Divergence-free rows). Let u: R® — R"™ be a smooth function.
Then

(20) Zn:(cofDu)%’-“xi =0 (k=1 0N
i=1

Proof. 1. From linear algebra we recall the identity

(21) (det P)I = PT(cof P) (P e M™ "),
that is,
n
(22) (det P)d;; = Y pf(cof P)¥ (3,5 =1,...,n).
k=1

Thus in particular

ddet P

(23) R

= (cof P)k km=1,...,n).
( )m 3 bl )

2. Now set P = Du in (22), differentiate with respect to z;, and sum
j=1,...,n, to find

n
Z 8;5(cof Du)k u meJ Z uﬁlrj (cof Du)f + uf (cof Du)ff‘xj
Jikm=1 k,j=1
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for : = 1,...,n. This identity simplifies to read

(24) Zugl Z(cofDu)f‘xj =0 (5= Lyuym):

n n
k:

1 j=1

3. Now if det Du(xq) # 0, we deduce from (24) that
> (cof Du)f, =0 (k=1,...,n)
j=1

at zg. If instead det Du(zp) = 0, we choose a number € > 0 so small that
det(Du(zq) +€l) # 0, apply steps 1-2 to @1 := u+e&x, and send € — 0. O

THEOREM 2 (Determinants as null Lagrangians). The determinant func-
tion
L(P)=detP (P e M™™™)

is a null Lagrangian.

Proof. We must show that for any smooth function u: U — R",

i (Lpi:‘(Du))I_ =0 (E=1..0)
=i ;

According to (23) we have L = (cof P)f (i,k = 1,...,n). But then em-
ploying the notation and conclusion of the lemma, we see

mn

zn: (Lpi;(Du)) =Y (cof DU}, =0 (k=1,...,n). O

i=1 2 =]

Some other interesting null Lagrangians are introduced in the exercises.

c. Application. A nice application is a quick analytic proof of a topological
fixed point theorem.

THEOREM 3 (Brouwer’s Fixed Point Theorem). Assume
u: B(0,1) — B(0,1)

is continuous, where B(0,1) denotes the closed unit ball in R™. Then u has
a fized point; that is, there exists a point z € B(0,1) with

u(z) = z.
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Proof. 1. Write B = B(0,1). We first of all claim that there does not exist
a smooth function

(25) w:B— 0B
such that
(26) w(z) =z forallz e dB.

2. Suppose to the contrary that such a function w exists. Let us tem-
porarily write w for the identity function, so that w(x) = z for all z € B.
In view of (26), w = W on JB. Since the determinant is a null Lagrangian,
Theorem 1 implies

(27) / det Dw dz = / det Dw dz = |B| # 0.
B B

On the other hand, (25) implies |w|? = 1; and so differentiating, we find
(28) (Dw)Tw = 0.

Since |w| = 1, (28) says 0 is an eigenvalue of Dw” for each z € B.
Therefore det Dw = 0 in B. This contradicts (27) and thereby proves no
smooth function w satisfying (25), (26) can exist.

3. Next we show there does not exist any continuous function w verifying
(25), (26). Indeed if w were such a function, we continuously extend w by
setting w(z) =z if z € R" — B. Observe that w(z) # 0 (z € R™). Fixe > 0
so small that w; := 5 *w satisfies wi(z) # 0 (z € R™). Note also that since
7. is radial, we have wi(z) = z if z € R™ — B(0,2), for ¢ > 0 sufficiently
small. Then

QW]
W 1= ——
|
would be a smooth mapping satisfying (25), (26) (with the ball B(0,2)
replacing B = B(0,1)), in contradiction to step 1.

4. Finally suppose u : B — B is continuous but has no fixed point.
Define now the mapping w : B — 9B by setting w(z) to be the point
on @B hit by the ray emanating from u(z) and passing through z. This
mapping is well defined since u(z) # z for all z € B. In addition w is
continuous and satisfies (25), (26).

But this in turn is a contradiction to step 2. O

We will employ Brouwer’s Fixed Point Theorem several times in Chapter
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2.
3.
4.
B
8.7. PROBLEMS
In the exercises U always denotes a bounded, open subset of R™, with smooth 6

boundary. All given functions are assumed smooth, unless otherwise stated.

i This problem illustrates that a weakly convergent sequence can be
rather badly behaved.

(a) Prove ui(z) = sin(kz) — 0 as k — oo in L?(0,1).
(b) Fixa,beR,0<A<1. Define

a if j/lk<z<(j+AN)/k

b if J+AN/k<z<(j+1)/k (G=0,...,k-1).

ug(z) = {

Prove ur — Aa+ (1 — A)b in L?(0,1).
Find L = L(p,z,z) so that the PDE

—Au+D¢-Du=f in U

is the Euler-Lagrange equation corresponding to the functional I[w] :=
fU L(Dw,w,z)dz.

(Hint: Look for a Lagrangian with an exponential term.)

The elliptic reqularization of the heat equation is the PDE

(*) Ut — Au — EUy = 0 in UT,

where € > 0 and Upr = U x (0,7]. Show that (x) is the Euler-

Lagrange equation corresponding to an energy functional I.[w] :=

f‘[UT L.(Dw, w;,w, z, t) dzdt.

(Hint: Look for a Lagrangian with an exponential term involving ¢.)

Assume 17: R* —» R is C1.

(a) Show L(P,z,z) = n(z)detP (P € M™" z € R") is a null
Lagrangian.

(b) Deduce that if u: R* — R" is C2, then

/ n(u) det Dudz
U

depends only on u|sy.

(Continuation) Fix z¢ € u(8U), and choose a function 7 as above so
that fRﬂ ndz =1, sptnn € B(xp,r), r taken so small that B(zg,r) N
u(8U) = @. Define

deg(u, zg) =jn(u) det Dudz,
U

the degree of u relative to zg. Prove the degree is an integer.

Let © C R? denote the graph of the smooth function u : U — R,
U C R2. Then

(+) f(1 + |Dul?)~% det D%u dx
U

represents the integral of the Gauss curvature over ¥. Prove that
this expression depends only upon Du restricted to 8U. (The Gauss-
Bonnet Theorem in differential geometry computes (*) in terms of the
geodesic curvature of §%.)
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7

8.

10.

11.

Let m = n. Prove
L(P) = tr(Pz) = ‘r.r(P)2 (P e M™™)

is a null Lagrangian.

Explain why the methods in §8.2 will not work to prove the existence
of a minimizer of the functional

Iw] = f (1+ |Dw®) 2 do
U

over A:={w € WYW(U) | w = g on U}, for any 1 < g < o0.
(Second variation for systems) Assume u : U — R™ is a smooth
minimizer of the functional

I[w] :=/UL(Dw,w,m)d:n.

(a) Show
= L
¥ ¥ Gt (Pt W)t 2 0

forallz e U, £ e R", n e R™,
(b) Provide an example of a nonconvex function L : M™*" — R

satisfying
T m
Z Z a g ﬁkﬂe&&; e
1,7=1kl=1

for all P € M™*" ¢ € R™, ne R™.

Use the methods of §8.4.1 to show the existence of a nontrivial weak
solution u € H}(U), u # 0, of

—Au = |[ul 'y inU
u=0 on U

forl<g< 2 n>2
Assume J: R — R is smooth, with

0<a<fB(z)<b (z€R)

for constants a,b. Let f € L?(U). Formulate what it means for
u € H'(U) to be a weak solution of the nonlinear boundary-value
problem
—Au=f inU
%+,ﬁ’(u) =0 ondl.
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12.

13.

14.

15.

Prove there exists a unique weak solution.
Assume u is a smooth minimizer of the area integral

Tl = fuu +|Dwf?)V2 da,

subject to given boundary conditions w = g on U and the constraint

Jw] = Lwdm= L.

Prove the graph of u is a surface of constant mean curvature.
(Hint: Recall Example 4 in §8.1.2.)
Assume f € L2(U). Prove the dual variational principle that

1
oin / L pwf? - fwde = / €% da.
weHL(U) Ju 2 ee:.zwnﬂ]

(Multivalued PDE) Show that the variational inequality (26) for the
obstacle problem in §8.4.2 can be rewritten as

—~Au+fBu—h)a f

for the multivalued function

0 ifz>0
B(z) ;=< (—o0,0] ifz=0
0 if z < 0.

(See also Problem 3 in Chapter 9.)
(Pointwise gradient constraint)

(a) Show there exists a unique minimizer u € A of
I[w) ::] 11Dw|? - fwdsz,
U
where f € L?(U) and
A:={we€ Hy(U) | |[Dw| €1 a.e.}.

(b) Prove
f Du--D(w—u)dxzf flw—u)dz
U U
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for all w € A.

16. Assume n > 3 and U is a bounded open set containing 0. Show that
u := 7 belongs to H'(U;R™) and is a harmonic mapping into the
sphere S"~1. That is, show u is a weak solution of

—Au = |Dulu
in U.
[u] =1
17.  Let u,@ € Hj(U) both be positive minimizers of the Dirichlet energy
I[w)] :=] | Dwl?.
U
Suppose also that u, % > 0 within U. Follow the hints to give a new
proof that
u=u in U.
- 5 u?4-q? 12 u? u? 442
(Hint: Define w := (—2—) )8 1= ey and 7 := *3*; and show
that ”
|Dw|? =7y 31—)-1—‘ +(1 - s)%
u i
Deduce
2 <12
Di 1 1
D 2 < _U. =D 2 2\ D 2
1w _n(s +-0) |22} = 2ipui + 1104
and therefore 2% = 8% almost everywhere.)
(Belloni—-Kawohl, Manuscripta Math. 109 (2002), 229-231)
18.  Assume that a),as are smooth, positive functions on U such that

a1 < ag. Let ug, us be smooth solutions of
div(a;Du;) =0, div(aaDuy) =0 inU
with Dug # 0 a.e. Suppose finally that

by ?-12, ay =ay ondU.

Uy = U2, — =
Qv Bv

Prove that
a) = ag, w3 = ug within U.

(Hint: Observe that [, a1|Dui|*dz = [}, as|Dus|? dz.)
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19.

20.

(Momentum conservation) Given a solution u of the nonlinear wave
equation Ou+ f(u) = 0, apply Noether’s Theorem to the transforma-
tions x(z,t,7) = (z + Tex, t), w(z,t,7) = ulz + 7ex, t) to calculate
the momentum density py and the momentum flux ji satisfying the
conservation laws

(pk)t_di\f(jk):o (kzlu'“?n)'

Let u be harmonic in some region U C R™ and assume B(0,R) C U,
1(0) = 0, u # 0. Define for 0 < r < R the functions

1 1
a(r) = — / u?dS, b(r) := n_2/ |Dul? dz.
r 8B(0,r) i B(o,r)
We derived in §8.6.2 the monotonicity formula
2

b= f u? ds.
2 Japos)
(a) Prove that
5 2 2
@=—7 / uu, dS = —b.
T aB(0,r) T
(b) Show
b < gab.
(¢) Define the frequency function
b
==

and derive Almgren’s monotonicity formula: f > 0.
(d) Demonstrate next that & < ;6: and consequently

a(r) >y (0<r<R)

for 3 := ::’(J% and v = %‘ This is an estimate from below
on how fast a nonconstant harmonic function must grow near a
point where it vanishes.

8.8. REFERENCES
Section 8.1  See Giaquinta [Gi] and Giaquinta—Hildebrandt [G-H] for

more about the calculus of variations. Struwe [Str] and Zei-
dler [Zd, Vol. 3] are good references for variational methods.
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HAMILTON-JACOBI
EQUATIONS
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10.4 Problems

10.5 References

10.1. INTRODUCTION, VISCOSITY SOLUTIONS

This chapter investigates the existence, uniqueness and other properties of
appropriately defined weak solutions of the initial-value problem for the
Hamilton-Jacobi equation:

1) up + H(Du,z) =0 in R"™ x (0,00)

( u=g onR"x {t=0}.

Here the Hamiltonian H : R™ x R® — R is given, as is the initial function
g : B* — R. The unknown is u : R® x [0,00) — R, u = u(z,t), and
Du = Dyu = (ugy, ..., Uz, ). We will write H = H(p,z), so that “p” is the
name of the variable for which we substitute the gradient Du in the PDE.

We recall from our study of characteristics in §3.2 that in general there
can be no smooth solution of (1) lasting for all times ¢ > 0. We recall
further that if H depends only on p and is convex, then the Hopf-Lax
formula (expression (21) in §3.3.2) provides us with a type of generalized
solution.

In this chapter we consider the general case that H depends also on x
and, more importantly, is no longer necessarily convex in the variable p. We
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will discover in these new circumstances a different way to define a weak
solution of (1).

An approximation. Qur approach is to consider first this problem:

@ {u§ + H(Duf,z) — eAuf =0 in R x (0, 00)

u*=g onR" x {t =0},

for € > 0. The idea is that whereas (1) involves a fully nonlinear first-order
PDE, (2) is an initial-value problem for a quasilinear parabolic PDE, which
turns out to have a smooth solution. The term eA in (2) in effect regularizes
the Hamilton-Jacobi equation. Then of course we hope that as ¢ — 0 the
solutions u¢ of (2) will converge to some sort of weak solution of (1). This
technique is the method of vanishing viscosity.

However, as ¢ — 0 we can expect to lose control over the various esti-
mates of the function u® and its derivatives: these estimates depend strongly
on the regularizing effect of eA and blow up as ¢ — 0. However, it turns
out that we can often in practice at least be sure that the family {u‘},.,
is bounded and equicontinuous on compact subsets of R™ x [0, c0). Conse-
quently the Arzela—Ascoli compactness criterion, §C.7, ensures that

(3) u¥ — u locally uniformly in R™ x [0, c0),
for some subsequence {u%}72, and some limit function
(4) w € C(R™ x [0,00)).

Now we can surely expect that u is some kind of solution of our initial-
value problem (1), but as we only know that u is continuous and have
absolutely no information as to whether Du and w; exist in any sense, such
an interpretation is difficult.

Similar problems have arisen before in Chapters 8 and 9, where we had to
deal with the weak convergence of various would-be approximate solutions to
other nonlinear partial differential equations. Remember in particular that
in §9.1 we solved a divergence structure quasilinear elliptic PDE by passing
to limits using the method of Browder and Minty. Roughly speaking, we
there integrated by parts to throw “hard-to—control” derivatives onto a fixed
test function and only then tried to go to limits to discover a solution. We
will for the Hamilton-Jacobi equation (1) attempt something similar. We
will fix a smooth test function v and will pass from (2) to (1) as ¢ — 0 by
first “putting the derivatives onto v".

But since (1) is fully nonlinear and in particular is not of divergence
structure, we cannot just integrate by parts to switch to differentiations
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on v, as we did in §9.1. Instead we will exploit the maximum principle to
accomplish this transition, at least at certain points.

We will call the solution we build a wiscosity solution, in honor of the
vanishing viscosity technique. Our main goal will then be to discover an
intrinsic characterization of such generalized solutions of (1).

10.1.1. Definitions.

Motivation for definition of viscosity solution. We henceforth assume
that H, g are continuous and will as necessary later add further hypotheses.

The technique alluded to above works as follows. Fix any smooth test
function v € C*(R™ x (0, c0)) and suppose

(5)

u — v has a strict local maximum at some point
(zg,to) € R™ x (0, 00).
This means
('{‘.l, - U)(Io,tu) > (u - 'U)(x, t)
for all points (z,t) sufficiently close to (zg, to), with (z,t) # (xo, o).

Now recall (3). We claim for each sufficiently small ¢; > 0, there exists
a point (z;,te,) such that

(6) u® — v has a local maximum at (z;,t;)
and
(7) (e, te;) = (zo,t0) s j — oo.

To confirm this, note that for each sufficiently small » > 0,(5) implies
maxgp(u — v) < (u—v)(zo,t0), B denoting the closed ball in R™"! with
center (zg,tp) and radius r. In view of (3), u% — w uniformly on B, and so
maxgp(u9 —v) < (u¥ —v)(z9, o) provided ¢; is small enough. Consequently
u% — v attains a local maximum at some point in the interior of B. We can
next replace r by a sequence of radii tending to zero to obtain (6), (7).

Now owing to (6), we see that the equations

(8) Du (ze;yte;) = Du(ze; te, ),

(9) u?(mf‘f}tfj) = Uf-(x\‘-j!tﬁj)
and the inequality

(10) —Au (T, Le;) 2 —Av(e;y te;)
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hold. We consequently can calculate

vi(Ze;, te;) + H(Dv(zg;, e, ), Te,)
= ug (Te;, be;) + H(Du (2, te, ), ;) by (8),(9)
= €jAu% (z¢;,te;) by (2)
< €jAu(ze; te;) by (10).

(11)

Now let ¢; — 0 and remember (7). Since v is smooth and H is continuous,
we deduce

(12) ve(zo, to) + H(Dv(zo, to), z0) < 0.

We have established this inequality assuming (5). Suppose now instead
that

(13) u — v has a local maximum at (zg, )

but that this maximum is not necessarily strict. Then u—7 has a strict local
maximum at (zg,tg), for #(z,t) := v(z,t)+6(|z—z0|+ (t—1t9)?) (6 > 0). We
thus conclude as above that @;(xg,t0) + H(Do(zo,to),z0) < 0, whereupon
(12) again follows.

Consequently (13) implies inequality (12). Similarly, we deduce the re-
verse inequality

(14) ve(zo, to) + H(Dv(zo, t0), z0) 2 0,
provided
(15) u — v has a local minimum at (zg,g)-

The proof is exactly like that above, except that the inequalities in (10),
and thus in (11), are reversed.

In summary, we have discovered for any smooth function v that inequal-
ity (12) follows from (13), and (14) from (15). We have in effect put the
derivatives onto v, at the expense of certain inequalities holding. m|

Our intention now is to define a weak solution of (1) in terms of (12),
(13) and (14), (15).

DEFINITION. Assume that u is bounded and uniformly continuous on
R™ % [0,T], for each T > 0. We say that u is a viscosity solution of the
initial-value problem (1) for the Hamilton-Jacobi equation provided

(i) u=g on R® x {t = 0},
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and

(ii) for each v € C=(R"™ x (0,00)),

if u— v has a local mazimum at a point (zg,ty) € R™ x (0, 00),
(16) then
ve(zo, to) + H(Dv(zo, o), x0) <0,

and

if u — v has a local minimum at a point (zg,tg) € R™ x (0, c0),
(17) then
1}:(3‘:0, tg) + H(Dv(&“o,to),zo) = 0.

Remark. Note carefully that by definition a viscosity solution satisfies (16),
(17), and so all subsequent deductions must be based on these inequalities.
The previous discussion was purely motivational.

For emphasis, we repeat the same point, which has caused some confu-
sion among students. To verify that a given function u is a viscosity solution
of the Hamilton-Jacobi equation w; + H(Du,z) = 0, we must confirm that
(16), (17) hold for all smooth functions v. Now the argument above shows
that if v is constructed using the vanishing viscosity method, it is indeed a
viscosity solution. But we will also see later in §10.3 that viscosity solutions
can be built in entirely different ways, which have nothing whatsoever to do
with vanishing viscosity.

The point is that the inequalities (16), (17) provide an intrinsic charac-
terization, and indeed the very definition, of our generalized solutions.

We devote the rest of this chapter to demonstrating that viscosity so-
lutions provide an appropriate and useful notion of weak solutions for our
Hamilton-Jacobi PDE.

10.1.2. Consistency.

Let us begin by checking that the notion of viscosity solution is consistent
with that of a classical solution. First of all, note that if u € C1(R™ x [0, 00))
solves (1) and if u is bounded and uniformly continuous, then u is a viscosity
solution. That is, we assert that any classical solution of s+ H(Du,z) =0
is also a wiscosity solution. The proof is easy. If v is smooth and u — v
obtains a local maximum at (zg,%p), then

{ Du(zo, to) = Dv(zo,10)
ug(xo, to) = ve(xo, o).
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Consequently

ve(z0, to) + H(Dv(zo, to), zo)
= ’Ut(-’b“!)\ t[]) + H(D'EL(.’I.‘[],tD),-TO) == U!

since u solves (1). A similar equality holds at any point (zg,tg) where u — v
has a local minimum.

Next we assert that any sufficiently smooth viscosity solution is a clas-
sical solution and, even more, that if a viscosity solution is differentiable at
some point, then it solves the Hamilton-Jacobi PDE there. We will need
the following calculus fact:

LEMMA (Touching by a C! function). Assume u:R"™ — R is continuous
and is also differentiable at the point xo. Then there exists a function v €

CY(R™) such that

(18) u(zo) = v(zo)
and
(19) u — v has a strict local mazimum at zo.

Proof. 1. We may as well assume
(20) zo =0, u(0) = Du(0) =0,

for otherwise we could consider #(z) := u(z + z¢) — u(zg) — Du(zp) -z in
place of u.

2. In view of (20) and our hypothesis, we have

(21) u(z) = laloi(2),
where

(22) p1: R™ = R is continuous, p;(0) = 0.
Set

(23) p2(r) = mé%%éfr){lpl (@)} (r=0).
Then

(24) p2 : [0,00) — [0, 00) is continuous, p2(0) = 0,



10.1. INTRODUCTION, VISCOSITY SOLUTIONS 585

and
(25) p2 is nondecreasing.

3. Now write

2|z|
v(z) = / p2(r)dr +|z|* (z € R™).

||

Since |[v(zx)| < |z|p2(2]2]) + |z|?, we observe

(26) v(0) = Du(0) = 0.
Furthermore if z # 0, we have
2z x
Due) = {ea(elal) ~ o) + 25

and so v € C1(R").
4. Finally note that if z # 0,

2lz|

u(e) - v() = lelo () - f| ()i~ ol

T

IA

T

2|x|
leloa(lal) - /| ) el

1A

—[z* by (25)
< 0 = u(0) — v(0).

Thus u — v has a strict local maximum at 0, as required. a

THEOREM 1 (Consistency of viscosity solutions). Let u be a viscosity
solution of (1), and suppose u is differentiable at some point (xg,tg) € R™ x
(0,00). Then

w(zo, to) + H(Du(zo, to), zg) = 0.

Proof. 1. Applying the lemma above to u, with R**! replacing R™ and

(zo,to) replacing xg, we deduce there exists a C! function v such that

(27) w — v has a strict maximum at (zq, tp).
2. Now set v° := 5, * v, 7. denoting the usual mollifier in the n + 1
variables (z,t). Then
vE — v
(28) Dv® — Dv  uniformly near (zg, tg)

Vi — Uy
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and so (27) implies

(29) % — v has a maximum at some point (z., f),
with
(30) (zeyte) — (zo,to) as e — 0.

Applying then the definition of viscosity solution, we see
U (Te, te) + H(Dv(ze, te), ze) < 0.
Let € — 0 and use (28), (30) to deduce
(31) ve(zo, to) + H(Du(z, 1), zo) < 0.
But in view of (27), we see that since u is differentiable at (zo, tp),
Du(zo, to) = Dv(zo, to), ut(zo,t0) = ve(wo, to)-
Substitute above, to conclude from (31) that
(32) w(zo, to) + H(Du(zo, to), zo) < 0.
3. Now apply the lemma above to —u in R"*!, to find a C! function v

such that u — v has a strict minimum at (zg,fg). Then, arguing as above,
we likewise deduce

uy(o, to) + H(Du(zo, to), zo) = 0.
This inequality and (32) complete the proof. O
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1 Assume u is a viscosity solution of
u+ H(Du,z) =0 in R" x (0, 00).
Show that @ := —u is a viscosity solution of
@+ H(D@,z) =0 in R" x (0, 00),

for H(p,z) := —H(—p, ).

2. Let {u*}2 | be viscosity solutions of the Hamilton-Jacobi equations

uf + H(DuF,z) =0 in R" x (0, 00)
(k =1,...), and suppose u¥ — u uniformly. Assume as well that H

is continuous. Show u is a viscosity solution of
u+ H(Du,z) =0 in R" x (0, oc).

Hence the uniform limits of viscosity solutions are viscosity solutions.
ot Suppose for each € > 0 that u® is a smooth solution of the parabolic
equation
uf + H(Du®,z) — ¢ Z aiju;‘_xj =0
i,7=1
in R™ x (0,00), where the smooth coefficients a* (i, = 1,...,n)

satisfy the uniform ellipticity condition from Chapter 6. Suppose also
that H is continuous and that u® — u uniformly as ¢ — 0.

Prove that u is a viscosity solution of w; + H(Du,z) = 0. (This
exercise shows that viscosity solutions do not depend upon the precise
structure of the parabolic smoothing.)

4.  Let u* (i = 1,2) be viscosity solutions of

ut + H(Du',z) =0 in R™ x (0,00)
u' =g' on R™ x {t =0}.

Assume H satisfies condition (3) in §10.2. Prove the contraction prop-
erty
sup [u'(,) —u*(,t)| < suplg' —g°| (£20).

5. (a) Show that u(z) := 1 — |z| is a viscosity solution of

=1
(%) {u(—l) — (1) =0.
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This means that for each v € C'°°(—1,1), if v — v has a maximum
(minimum) at a point xg € (—1,1), then |[v/(zg)| <1 (= 1).

(b) Show that @(z) := |z| — 1 is not a viscosity solution of (x).
(c) Show that @ is a viscosity solution of

(+) Las

(Hint: What is the meaning of a viscosity solution of (#*)7)

|=—-1 in(=1,1)
) = @(1) =0.

(d) Why do problems (x), () have different viscosity solutions?

Let U C R™ be open, bounded. Set u(z) := dist(z,8U) (z € U).
Prove that w is Lipschitz continuous and that it is a viscosity solution
of the eikonal equation

|Dul=1 inU.

This means that for each v € C*(U), if 4 — v has a maximum (mini-
mum) at a point g € U, then |Duv(zo)| <1 (= 1).

Suppese an open set U C R™ is subdivided by a smooth hypersurface
I" into the subregions V' and V~. Let v denote the unit normal to
T, pointing into V*. Assume that u is a viscosity solution of

H(Du)=0 inU

and that u is smooth in V't and V~. Write u} for the limit of Du - v
along I from within V'*, and write u;, for the limit from within V.

Prove that along I' we have the inequalities
Hw, +(1=XNu)) 20 if u, <uf

and
H(u, +(1-Nuf) <0 if uf <wu,,

foreach 0 < A < 1.

A surface described by the graph of u : R? — R is illuminated by
parallel light rays from the vertical ez direction. We assume the sur-
face has constant albedo and in addition is Lambertian, meaning that
incoming right rays are scattered equally in all directions. Then the
intensity ¢ = i(z) of the reflected light above the point z € R? is given
by the formula ¢ = e3 - v, where v is the upward pointing unit normal
to the surface.
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10.

11.

Show that u solves a PDE of the form
|[Dul =n

for a given function n = n(z), computed in terms of the intensity
i. (Finding the surface by solving this PDE for u is the shape from
shading problem.)

A yacht starts at the point (z1,0) on the positive z;-axis and sails
to the right at speed b; > 0. Another yacht is initially at the point
(0, z2) along the positive zz-axis and starts in pursuit, sailing always
towards the first yacht at speed by > b;.

Find the PDE solved by
u(xy, z2) := time it takes the second yacht to intercept the first.

(Think of this as a dynamic programming problem, but with no con-
trols.)

(Infinite horizon control problem) Assume f and r satisfy the condi-
tions given in §10.3. Given a point x € R™ and a control belonging
to A:= {a:[0,00) = A| «(-) is measurable}, let x(-) be the unique
solution of the ODE

{ x(s) = f(x(s),x(s)) (s>0)
x(0) = z.

Fix A > 0 and define the discounted cost
Cela(l)] == / e 2r(x(s), a(s)) ds.
0

Define the value function

w(z) = a(ilr)lgAC'x{a(-)].

(a) Show that u is bounded and that if A > Lip|[f], then u is Lip-
schitz continuous.

(b) Show that if 0 < A < Lip[f], then u is Holder continuous for
some exponent 0 < o < 1.

(Continuation) Prove that the value function w is a viscosity solution
of the PDE

Au —min {f(z,a) - Du+r(z,a)} =0 inR™
aEA
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(This means that if v is smooth and u — v has a local maximum at a
point zp, then

Au—min {f(z,a) - Dv+r(z,a)} <0
acA

at zg, and that the opposite inequality holds if « — v has a local
minimum at zg.)

The next sequence of exercises develops some of the theory of viscosity

solutions for fully nonlinear elliptic PDE of second order.

12.

13.

14.

Remember from §A.1 that if R,S € S", we write R > Sif R— §
is nonnegative definite. A function F : S" x R" x R" — R, F =
F(R,p,z), is elliptic provided
R > S implies F(R,p,x) < F(S,p,z).
Here S™ denotes the space of real, n x n symmetric matrices.
(a) Show that F(R) = — tr R is elliptic.
(b) More generally, show that if A € S™ and A > 0, then F(R)
—A: R=—tr(ART) is elliptic.
(¢) Show that if for each k = 1,...,m, F} is elliptic, then so are
mfx Fi. and mkin F..

Let F' be continuous and elliptic. We say that a function v € C(U) is
a viscosity solution of the fully nonlinear elliptic PDE
(%) F(D*u,Du,z) =0 inU,

provided for each v € C*°(U), (i) if u — v has a local maximum at a
point g € U, then F(D?%u(zp), Du(zo),zo) < 0 and (ii) if u — v has a
local minimum at a point o € U, then F(D?u(zg), Du(zp), o) > 0.
Show that if u is a C? solution of (%), then u is a viscosity solution.

Assume that wug is a viscosity solution of
F(D*uy, Dug,z) =0 inU

for k =1,.... Suppose ur — u uniformly and show u is a viscosity
solution of
F(D*u,Du,z) =0 inU.
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