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Abstract - The design and operation of large scale Solid
Substrate Cultivation (SSC) bioreactors is difficult,
therefore, it is not possible to operate well this kind of
bioreactors without automatic control. In addition,
conventional control systems (decoupling PID, split range,
etc.) do not perform properly, since the controllers must be
retuned during the cultivation process, the control strategy
must be adapted according to the process response, and is
not always possible to deal well with input constraints. Here
we present simulation results regarding the application of
Linear Model Predictive Control (LMPC) for the operation
of large scale SSC bioreactors. A phenomenological
nonlinear dynamic model was calibrated using real time
data coming from pilot scale SSC bioreactor cultivations.
The bioreactor model was coded in Simulink and the MPC
Graphical User Interface for the MPC toolbox of Matlab
was used to run the control simulations.

I. PROCESS MODEL

Process Description

Simulations in this paper were performed with a model
of'a 200 kg capacity aseptic pilot SSC bioreactor (Fig. 1).

The bioreactor was used for cultivations of the fungus
Gibberella  fujikuroi on wheat bran to produce
Gibberellic acid. For optimum growth and production,
bed water content should be raised from 50% and
stabilized at 70% after the growth phase. In addition, bed
temperature should be held constant at 28°C. As is
common practice in large scale SSC bioreactors,
evaporative cooling is applied for temperature control;
here, inlet air flowrate, temperature, and relative
humidity are manipulated simultaneously. This control
technique implies large moisture losses and should
therefore be combined with periodic addition of fresh
water in combination with agitation as described in detail
in [Fernandez et al., 1997] and [Pefia y Lillo et al., 2001].
Agitation was turned on either when fresh water was
added. or when the temperature gradient in the bed
exceeded 10°C. The main measured variables were: inlet
air flow rate, G, inlet and outlet air temperatures, 7,; and
Tgo» inlet air relative humidity, H,,. outlet air CO, and O,
concentration, and the bed-temperature at six different

T

Fig. 1. Instrumentation of the SSC bioreactor. A: six thermocouples (bed temperature); B: thermocouple (inlet air temperature); C: thermocouple
(outlet air temperature); D: Relative humidity transmitter (inlet air relative humidity); E: DP transmitter (drop pressure); F: CO, IR detector (CO,
concentration); G: O, paramagnetic detector (O, concentration); H: anemometer.
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Fig. 2. Average bed temperature control system. The system comprises three inner loops: (1) Inlet air (G-1) is controlled by the fan speed (VE-1) with
a PID; (2) Inlet air temperature (T-2) is controlled by a chiller (HE-1) and a heater (HE-2) using relays R-1 and R-2 respectively; (3) Inlet air relative
humidity (H-1) is controlled by vapor addition (HUM-1) using relay R-3. The external loop controls the average bed temperature (T-1) by
simultaneous manipulation of the inlet air flowrate, relative humidity and temperature. A programmable logic controller (PLC-1) supervises the basic
control actions (PID and On/Off) and a personal computer (PC-1) is used by the operator and process engineer for manual control, process
supervision, data storage and management, set point changes, plant start up and shut down, definition of control loops and coding of advanced
controllers. Refer to [Fernandez, 2001] for further details.

locations. These variables were measured on-line at a
sampling rate of 20 s. The bed-water content, Xy, was
measured from samples taken manually approximately
every 4 h. Water seepage from the bottom of the
reactor, Wp, was estimated from infrequent manual
measurements. Dry mass was also measured manually
at the beginning and at the end of the fermentation. Fig.
2 shows the control structure used to regulate the
average bed temperature.

A simple lumped parameter model that reproduces the
main features of the dynamic response of this reactor is
presented next. Due to space limitations, only the main
equations of the model are given here. The interested
reader can find the complete model in [Pefia y Lillo et
al., 2001], [Lekanda and Pérez-Correa, 2004] and
[Fainé, 2004].

Kinetics

The experimentally measured biomass corresponds to
the total amount of biomass, X,,, considering active
and inactive fungi and is expressed on dry mass basis

(kg 4p) by:

dXIoI = ;IX

di [ng/thdb] (1)

where yu represents the specific growth rate. Assuming a
first order death rate, the active biomass, X, (which is

the total biomass minus the inactive biomass) is
described by:

o

ad _ ! 2)
di [kg,\/hagdb] (

where ¢ represents the specific death rate.

Gibberella fujikuroi accumulates part of the primary
nitrogen source and uses this nutrient for biomass
growth when the external source has been depleted.
Considering that wheat bran degradation follows zero
order kinetics, the consumption rate of the primary
nitrogen source is given by:

d7N =—k [ng/h IIgau;.] S
dt

where k is the conversion factor between wheat bran
nitrogen and available nitrogen for the microorganism
(VD).

The change in available nitrogen is expressed by:

dN, =gk -u X [kgx/h IIgdb.] 4)
dt o,



where @is the nitrogen percentage in wheat bran that is
assimilated by the microorganism and Yy, is the mass
yield between biomass growth and available nitrogen.

The evolution of respiratory gases can be described by
two terms. The first is associated with the growth of the
microorganism and the second with its maintenance, as
described in [Gelmi et al., 2002]. Then, the CO,
production and O, consumption rates on a dry mass
basis is given by:

@=/[BL+’"CO~ )¢ I_kg(‘gj/h&gdbj (5)
dt Yyeo, )
do, =,UBL+1"0: X I.kgO: /h kg, , J (6)

dt Yy,

Dry mass consumption is expressed by a linear
relationship between a degradation coefficient obtained
empirically, &, and the CO, production rate, CPR:

% = —k, [CPRMs [ke, . /7] (7)

The specific growth rate, x, considers the effect of the
limiting nutrient (intermediary nitrogen) on biomass
growth, using a Monod’s rate expression:

u= Hy N, [J/h] (3
(N, +ky)

where p, is the maximum specific growth rate and ky is
the substrate inhibition constant.

Energy and water balances

The model assumes that the outlet gas is saturated, that
there is no accumulation in the gas phase and that the
atmospheric pressure, P,,,, remains constant and equal
to 760 mmHg.

The evaporation rate, E. calculated on a dry mass basis,
is given by:

iy, -1,

go

9
Ms [kg“ /hl]gdb] )

E=

where Yy, and Y,; are the humidities of the outlet and
inlet air respectively.
The average water content of the bed, Xj, is given by,

kg, /nOg,, |

(10)

TR, —E+

ax By =Wp _ X, dMs
dt Ms Ms dt

This equation includes metabolic water production, Ry,
addition of fresh water, Fy, evaporation losses, £, and
seepage through the lower part of the reactor, #p. The
last term in the balance equation represents substrate
degradation since Xy is expressed on a dry mass basis.

The metabolic water generation is expressed on a dry
mass basis by a correlation between the CO, production
rate and a conversion factor, ky:

(k, LCPR)

db (11)
n kg, /hkg,, ]

R, =
The change in the bed-temperature can be obtained

from the balance equation and is given by:

ar, _ 1
di  Cslk,,

F 0, Co, g wall °
[@ W AHr Q ) Q : Q Q )[ / ]

The terms included here are metabolic heat generation,
AHr, heat removed by the gas, O,, heat losses through
the reactor wall, Q.. and the enthalpy contribution of
added water, Qp,.

The metabolic heat production can be related to the
evolution of respiratory gases by:

AHr ==Y, [CPR [J/h] (13)

The heat removed by the gas, O,, is calculated choosing
0°C as the reference temperature. The transfer
phenomena mechanisms considered are evaporation
losses, Qevap, forced convection between the bed and the
airflow, Q... and sensible heats associated with
respiratory gases (Qp, and Oco3)-

Evaporation losses are given by:

chap =G [Aw [(Y -7, ) [J/h] (14)

8o &l

The forced air convection can be estimated from:

0. = Eﬁcz’.u IjTgu - Tgf)"' C,, EQYgo Ugu - Yg[ D;A) [J/h]
o=, mdy, - y,)
(15)

where the outlet gas temperature is defined by the heat
transfer between the solid and the gas.

Qg =4 |]13 mT;) _Tga) (16)

Heat transfer through the reactor walls is by natural
convection and radiation:
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The values of the model parameters used in the
simulations are giving in the appendix.

II. MODEL CALIBRATION

This model was coded in Simulink/Matlab™ and fitted
with data coming from a fermentation run performed in
the SSC pilot bioreactor described above. Kinetic
parameters were taken from [Lekanda and Pérez-
Correa, 2004] and the energy and water balance
parameters were taken from [Pefia y Lillo et al., 2001].
It was found by [Fainé, 2004] that the model is mostly
sensitive to kg, Yycoz, k, and Yyu. Here, these
parameters were heuristically fitted to the data.
Calibration results are shown in figures 3 to 7 and
model parameters are given in the appendix.
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Fig. 3. Evolution of the bed water content.

The model fitting shown in Fig. 3 looks reasonable,
considering that water content measurements were
prone to large errors due to sampling a highly
heterogeneous medium.

The temperature shown in Fig. 4 is the average of the
six measurements inside the bed. Hence, the dynamics
it shows is partly due to the heterogeneity of the bed,
particularly during the first 30 hours, where the heat
generation rate is high. The simplified lumped
parameter model reproduces the trend of the observed
bed temperature, but it can’t reproduce the effect of
bed heterogeneity.

The simulated outlet temperature (Fig. 5) also presents
high oscillations during the first 20 hours, mainly due
to channeling, hot and cold spots inside the bed. These
effects are impossible to reproduce by lumped
parameter models. Despite this, the model reproduces
well the trend of the observed values.
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Fig. 4. Evolution of the average bed temperature.

Outlet temperature [°C]

10 20 30 40 50 60 70 80
Time [h]
Fig. 5. Evolution of the outlet air temperature.

The CO, production rate shown in Fig. 6 is reproduced
in average by the model. However, the model cannot
reproduce the high peaks and oscillations caused by
heterogeneity, agitation, gas occlusion and by the
uneven colonization of the solid bed by the

microorganism.
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Fig. 6. Evolution of the CO, production rate.

The total CO, produced is not much sensitive to bed
heterogeneity, therefore the model and data curves
shown in Fig. 7 are closer than the curves shown in the
previous figures.
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Of course an improved overall fitting can be obtained
with more tuning, or even better, with an optimization
routine. However, for automatic control studies this
fitting is good enough. We have data from 9
fermentation runs and we plan to use all of them to get
an optimal fitting.

The model described above is highly nonlinear, open
loop unstable, multivariable, with more manipulated
variables than controlled variables and subjected to
strong disturbances (heat generation). Therefore, the
model captures many of the difficulties encountered in
controlling real SSC bioreactors.

ITT. LINEAR PREDICTIVE CONTROL

This technique is useful to control multivariable plants
with bounded inputs and subjected to unmeasured
disturbances. The algorithm computes optimal control
moves using a linear process model and taking into
account the input constraints [Ogunnaike and Ray,
1994].

The control computation is performed in two stages: a)
future controlled variables are estimated from past
measurements and control moves, and b) an optimum
trajectory is computed over a prediction horizon of P
steps and applying C control moves (control horizon).
At each sampling time, the whole procedure is repeated
an only the first control move is applied to the plant, in
a receding horizon form. P and C are tuning
parameters. An additional useful feature of LMPC
algorithms is that each input and output variable in the
control structure can be weighted differently in the cost
function, therefore, operational criteria can be directly
incorporated into the control design.

The minimization problem in most LMPC algorithms
can be formulated in the following form:

.,
min Xew I de,., ) +

Dy ..., Dy i=1

C
ZAukﬂ-_l WDA” [ﬂAukﬂ'—l )T
i=1

s.t.
U, Sup,<u,; Oi=1L....C

V.SV Syy Oi=L..,P
Du,,, =0; Oi=C,...,P

Here, )A/k is the vector of predicted plant outputs at
time interval k, e, is the vector of output deviations
from the set points and Au, is the vector of control

e Au . . .
moves. W, and W" are diagonal matrices with

weights that penalize the output deviations from the set
points and the control movements respectively. Hence,
by adequately tuning the weights, the process engineer
can make some manipulated variables move more than
others and get smaller deviations in some specified
plant outputs. In addition, the prediction horizon, P,
defines the period over which the cost function will be
minimized; a large P assures a smooth and stable
performance of the controller and should cover over
80% of the settling time. In turn, the control horizon,
C, establishes the length of the sequence of future
control moves; heuristics suggests that C << P. The
minimization problem also includes constraints on
inputs and outputs, therefore, in the expression above
u;, and y; represent the lower bounds, and u; and y;
represent the upper bounds. This optimization problem
do not have an analytical solution, save when a linear
predictive model is used and no constraints are
included, thus in the general case, the problem should
be solved numerically.

There are few applications of LMPC to SSC processes
reported in the literature. In [Pajan et al.. 1997], an
unconstrained LMPC algorithm was assessed and
compared with PID control in a simulated SSC
bioreactor using a simple lumped parameter model.
The predictive controller achieved much better
performance, showing smaller overshoots, shorter
settling times and a more robust behavior. However,
the model used was theoretical without direct link with
real data. Therefore, it was not possible to relate the
simulation results with practical experience. Recently,
[von Meien et al., 2004] applied LMPC and PID to
control a simulated SSC bioreactor using a distributed
parameter model. Here, LMPC allowed a significant
improvement in the bioreactor productivity compared
with PID control. Due to the explicit inclusion of
heterogeneity and the deleterious effect of agitation,
the model was able to reproduce a similar complex
dynamics as observed in real SSC bioreactors.



[Fernandez, 2001] applied unconstrained LMPC to
control the SSC bioreactor described here. He obtained
encouraging preliminary results, although it was not
possible to achieve reproducible fermentation runs to
validate the procedure. The experiments were
expensive, fermentation runs lasted almost a week and
the bioreactor was prone to contamination. In addition,
the linear model obtained in a given run was not useful
to control other runs, since each batch behaved
differently. Therefore, preliminary simulation studies
with a reliable model can be extremely useful to
develop effective control strategies for SSC
bioreactors.

IV.RESULTS

We report here simulation for the bed temperature
control of the SSC bioreactor described above. Inlet air
temperature, Tgi, relative humidity, Hgi, and flowrate,
Ggi, were used as manipulated variables and
constrained as in the real plant: Tgi (19-30°C); Hgi
(55-100%), and Ggi (50-200 kg/h).

The performance of the Linear Model Predictive
Control (LMPC) was assessed using the MPC Matlab
Toolbox and the MPC Graphical User Interface of
[Ricker et al., 1998]. Since the LMPC algorithm uses a
linearized model of the plant, here we consider a
nominal constant trajectory defined by Tgi = 25°C, Hgi
= 85% and Ggi = 100 kg/h. The estimated equilibrium
point was obtained with the TRIM function of Matlab,
defining the time derivative of Tb as zero.

Open Loop Response

Fig. 8 compares the response of the nonlinear plant
with the linearized plant in open loop operation,
keeping the input variables constant in the values
defined above. It can be seen that during the first 40
hours the responses of both models are extremely
different; later the responses are very much alike.
Therefore, the nonlinearity of the plant is more
influential during the first half of the fermentation. In
addition, it can be seen that without control the solid
bed suffers an undesirable overheating.
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Fig. 8. Bed temperature (open loop simulation).

Closed Loop Response

The plant was first controlled with one manipulated
variable at a time. In all these cases, the sample time
was 5 min, the prediction horizon, P, was 12 sample
times (60 min) and the control horizon, C, was 3
sample times (15 min). The input and output weights
used in the simulations, are indicated in the captions of
the respective figures.

Fig. 9 shows the results obtained by manipulating the
inlet air temperature only. As seen in the figure, a good
control cannot be attained here, since between hours 35
and 70 the input variable gets saturated (Fig. 9.a) and
the bed temperature overpasses the set point (Fig. 9.b).
We have observed this behavior in real SSC
fermentations, although the low bound for the inlet
temperature was lower. The model does not reproduce
accurately the dynamic response of the real plant;
hence we have to increase the lower bound in the
simulations in order to achieve the same behavior. The
observed peaks are associated with the fresh water
added to control bed humidity. This water is added by
pulses (not shown here).
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Fig. 9. Control using inlet air temperature only. (a) Manipulated
variable with w’® = 0.1; (b) Controlled variable with w'® = 1.

The results obtained by manipulating inlet air humidity
only, are shown in Fig. 10. The control performance is
worse in this case. The manipulated variable (Fig. 10.a)



remains saturated for longer periods and the bed
temperature (Fig 10.b) reaches higher temperatures. In
addition, during the initial stage, the bed takes longer
to get to the reference temperature.

Controlling with inlet air flowrate is not good enough
either. During most of the fermentation the input
variable remains saturated (Fig. 11.a) and the bed
temperature (Fig. 11.b) is almost never close to the set
point.

Using two manipulated variables simultaneously is a
much better approach. For example, Fig 12 shows the
result obtained with the simultaneous manipulation of
inlet air temperature and relative humidity.
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Here, the bed temperature overshoot (Fig. 12.b) is less
than 0.8°C, although both manipulated variables (Fig.
12.a) remain saturated for more than 10 hours, as we
have experienced in real SSC fermentations. This
illustrates how difficult is to control the bed
temperature.
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Fig. 11: Contro_l using inlet air flow rate. (a) Manipulated variable
with w% = 0.1; (b) Controlled variable with w’> = 1.
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Fig. 12: Control using inlet air temperature and relative humidity. (a)
Manipulated variables with w'® = 0.1 and w"® = 0.01; (b) Controlled
variable with w™ = 1.



Figure 13 shows the control achieved with the
simultaneous manipulation of inlet air temperature and
flowrate. A better performance is observed here, with
no input saturation (Fig. 13.a) and no temperature bed
overshoot (Fig. 13.b). Real SSC fermentations in our
pilot bioreactor did not show such a good control with
inlet air flowrate manipulation. Hence, the sensitivity
of the model to inlet air flowrate should be revised.

As expected, controlling with relative humidity and
flowrate simultaneously presented larger bed
temperature overshoots and longer saturation periods
(not shown).

Finally, figure 14 shows the result obtained by
manipulating the three input variables at the same time.
This is by far the best case, with practically no
saturation in temperature and humidity (Fig. 14.a) and
a very good regulation (Fig. 14.b).
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Fig. 13. Control using inlet air temperature and flow rate. (a)

Manipulated variables with w™® = 0. and w' = 0.1; (b) Controlled
variable with w'® = 1.

V. CONCLUSIONS

It was verified that the developed model is able to
qualitatively reproduce many of the control difficulties
observed in real SSC fermentations. In addition, the
control difficulties included in the model were
overcome with LMPC. In particular, using two or three
manipulated variables, a very good regulation can be
achieved and input saturation is minimized.

The real plant presented other limitations not
reproduced by the model, like heterogeneity (which
produced strong temperature gradients) noisy
measurements and strong unmeasured disturbances.
Therefore, it is not clear if LMPC would be a good
option under these conditions.

Future work includes optimal model fitting using least
squares and data from 9 fermentation runs, developing
and implementation of a noise model and application
of several on line filtering procedures. The final aim is
to develop a robust control system that could be
applied with confidence in real SSC bioreactors.
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wY%=(.1; (b) Controlled variable with w™ = 1.
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APPENDIX

Table Al: Model parameter values

Parameter Value Units
A 11.78 [m’]
Cha 1004.9215 [J/kg'K]
Cyy 1867.3 [J/kg'K]
Twall 28 [OC]
Y 02 7023305.08 [J/h]
Yowi 30 [kgx/kgN]
k 0.00192969 [1/h]
kexn L1 [']
kg 0.38 | [kgb.s’kgCO,]
ky 0.00129421 | [1/kgN-kgb.s.]
k,, 1 [kgw/kgCO,]
mco; 0.12120027 | [kgCO,/kgx-h]
mo3 0.0554 [kgO,/kgx-h]
Aw 2432000 [J/kgw]
o 0.0214 [1/h]
@ 0.04349194 [-]
o 5.67E-08 [J/h-m*K*]
L 0.20694318 [1/h]
& 0.22 [-]




