
 

 

NUMERICAL SOLUTION OF ODEs OR STATE EQUATION SYSTEMS. 

EULER’S METHOD. 

For simplicity, let’s consider the scalar case (only one state variable) of the initial value problem: 
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A numerical approach to the problem of finding a solution to the previous problem demands the 

discrete representation of time through a sequence of points n,....,,k,tk 21= . Even if it not 

necessary and sometimes it could be inconvenient, let’s assume to the effect of this introduction, 

that the points are equally spaced in time:  hktk ⋅=  

Let’s now use the following notation for the exact solution of the problem: 

kkthkt φφφ ==⋅= )()( , where kφ stands for the value of the solution )(tφ  at instant kt . A set 

of pairs ),( kk tφ  will constitute the exact discrete-time representation of the solution. 

 

Numerical representation of the exact solution. 

 

A numerical method will be next presented yielding a sequence of values xk constituting a good 

approximation of the exact values kφ . A set of pairs )t,x( kk  will constitute the approximate 

discrete-time representation of the solution. 

 

Euler’s Method 

There are a lot of methods allowing for the obtention of the numerical approximate solution of our 

problem. Numerical methods for solving differential equations are known as integration methods. 

The most simple and well known is Euler’s Method.  

 



 

Euler’s Method proceeds approximating the time derivative of x(t) through the incremental 

quotient as follows: 

 

hfXXt)t),t(X(f)t(X)tt(X kkkkkkk ⋅+=⇒∆⋅+=∆+ +1       (2) 

 

where ∆t = h is called the integration step. See the following graphical interpretation of Euler’s 

formula: 

 

Graphical interpretation of Euler’s formula. 

 

Given the initial value problem (1) and Euler’s formula (2) the approximate values ,..., 21 XX  can 

be computed in a sequential way (first compute X1 using the known value X0, then use X1 to 

calculate X2, and so on). 

 

Errors: the error due to the numerical approximation is called the truncation error. Even if using 

an ideal computer this error will be present. The error due to the finite precision representation of 

numbers in real computers is called the round-off error. It represents an additional source of errors. 

Example: 

Consider the following first order system: 
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Euler’s method yields: 

htxxx kkkk ⋅+−+=+ )3( 3
1 ,    

whose succesive application produces 

hhxxxhhxxxhx ⋅+−+=⋅+−+=−= )23()3(31 3
223

3
1121 ,  and so on. 



 

EXERCISES 

 

1 – Find the explicit expression for x2 above and use it to calculate the explicit expression for the 

next value x3. 

 

2 – Determine the numerical approximation (i.e., the particular expression for formula (2) above) of 

the second order State Equation System of the mass-spring-damper example via Euler’s method. 

Apply the rule (2) to each of both state equations. 

 

3 – The nonlinear second order SES constitutes a posible version of the famous Lotka-Volterra’s 

model. The variables x1 and x2 represent respectively the population of Preys and Predators in a 

common habitat. This is a simple nonlinear case where the general solution cannot be analytically 

obtained. So, the numerical approach is a must ! 

  

Apply the rule (2) of Euler’s method to each of both state equations. Then particularize the result 

for the following set of parameter: 

 

 

Find numerically the three equilibrium points. If you like, write a program to implement the 

recursive algorithm given by Euler’s method and draw the solutions in the x1-x2 plane for some set 

of initial value pairs (x10 , x20). 

Recall the restriction of the solutions to the first quadrant.  

 
 

MORE ON NUMERICAL METHODS (Euler Method) 
 
Forward or Explicit Euler  

The technique previously described is known as forward or explicit Euler. As already seen, it is 

based on the following approximation of the time derivative of x(t), which corresponds to the so-

called forward incremental quotient (see Fig. “Graphical interpretation of Euler’s Formula”): 
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As a result, when applied to the dynamical model  



 

( )t,)t(u,)t(xf
td
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it yields the approximation 

( )kkkkkk t,u,xf.hxx +≈+1  

 

which is handled as the identity 

( )kkkkkk t,u,xf.hxx +=+1  

in order to compute the numerical approximation to the solution of the differential equation. 

The latter formula explicitely calculates the actualization of the state vector as a function of known 

values. 

 

Backward or Implicit Euler  

In this case, the so-called backward incremental quotient is used in order to approximate the time 

derivative of x(t): 
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As a result, when applied to the dynamical model  

( )t,)t(u,)t(xf
td

)t(xd
=  

 

it yields the approximation 

( )kkkkkk t,u,xf.hxx 11 −− +≈  

which, incrementing the time index in one unit is shown to be equivalent to 

( )1111 ++++ +≈ kkkkkk t,u,xf.hxx  

which is handled as the identity 

( )1111 ++++ += kkkkkk t,u,xf.hxx  

 

The latter formula implicitely defines the actualization of the state vector, because the right-hand 

side contains the unknown value xk+1 of the state vector and not –as in the previous case– only 

known variable values (uk+1 , tk+1). Thus, the unknown xk+1 cannot in general be calculated through 

a direct evaluation of the right-hand side, but it should be determined with the help of some implicit 

method. 



 

BLOCK DIAGRAM (BD) REPRESENTATION OF BOTH FORMULAE, FORWARD AND 

BACKWARD EULER. 

 

Forward Euler 

( )t,)t(u,)t(xf
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continuous-time BD 

( )kkkkkk t,u,xf.hxx +=+1  

Forward Euler 

 

Fig. FE-BD: Forward-Euler discrete-time BD 

 

As shown in the figures above, the method Forward Euler assigns the subsystem containing the 

discrete-time delay as the numerical approximation to the continuous-time integrator. 

 

 

Backward Euler 
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continuous-time BD 

( )1111 ++++ += kkkkkk t,u,xf.hxx  

Backward Euler 

 

Fig. BE-BD: Backward-Euler discrete-time BD 



 

As shown in the new set of figures, when using the method Backward Euler, a different discrete-

time BD corresponds to the continuous-time integrator. Observe the algebraic loop    in the BD, 

which is the graphical expression of an implicit equation. An algebraic loop is a signal path without 

dynamical components building a closed loop in a BD, i.e., it has no integrators (or continuous-time 

delays) in the case of a continuous-time BD, and no discrete-time delays in a discrete-time BD. 

 

N.B. 1: In this case, the algebraic loop (implicit equation) is a consequence of the numerical 

approximation method used (implicit Euler). It does not exist in the original state-equation system. 

 

N.B. 2: Recall that there exist continuous state-equation systems with implicit equations. This is the 

case for instance of Differential-Algebraic Systems, which when put into the continuous BD form 

will contain algebraic loops due to the algebraic equations. 

 

 

EXERCISES  

 

First Exercise. Given the continuous-time model 

 

)t(ub)t(xa)t(x +=&  (scalar variables and coefficients !) 

a. Obtain both explicit and implicit discrete-time approximation after forward- and 

backward-Euler, respectively. 

b. The original continuous-problem being linear, it is possible to solve the implicit 

equation for xk+1 , and in this way, to convert the implicit problem into an explicit 

one. Obtain the explicit solution for xk+1 , and analize on it the stability inherent to 

the backward-Euler method for the free system, i.e., for u(t) = 0. (Stability means 

that if the solution converges for t à ∞ –as it is the case for a < 0– , then, the 

approximate solution converges for k à ∞. In general, the stability of a numerical 

method will depend on the choice of h). 

c. Draw the block diagram version of the three previous results. 

 

Second Exercise. Given the continuous-time (CT) model 

 

)t(ub)t(ya)t(ya)t(y =++ 21 &&&   (scalar variables and coefficients !) 

 



 

a. Obtain both explicit and implicit discrete-time (DT) approximation after forward- 

and backward-Euler, respectively. 

Help: a possible technique to solve this problem consists in converting the second order 

differential equation into a system of two state equations, which are to be discretized later (for 

instance, with the definitions x1 = y , x2 = y-dot). 

b. Draw the block diagram version of the two previous results. 

 

 

CT-BD àà DT-BD àà DT-EQUATIONS 

Discretizing directly on the block diagrams, then obtaining the DT-equations: 

 Example: PMDCM (Permanent Magnet DC Motor) 

i) CT Block diagram 

 

 

ii) Forward Euler DT-BD is obtained after the BD in Fig. FE-BD above: 

 

Forward Euler DT-BD 

 

 

The DT Explicit State Equations can be directly read from the previous BD as follows: 
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or, in matrix form: 
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It can be seen that the DT Explicit State Equations are of the general form: 

kkkkk UBXAX +=+1  

 

iii) Backward Euler DT-BD is obtained after the BD in Fig. BE-BD above: 

 

Backward Euler DT-BD 

 

 

The DT Implicit State Equations can be directly read from the previous BD as follows: 
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or, in matrix Implicit form: 
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111 +++ ++= kkkkkk UBXAXX  

 

As the model is linear, an explicit expression can be recovered, as follows: 
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Third Exercise. Consider the previously handled Lotka-Volterra (non-linear) model. Obtain 

the DT State Equations following the method in the preceding example, id est: 

a. Construct the corresponding CT-BD. 

b. Construct both, the explicit and the implicit DT-BD´s. 

c. Write-down the DT State Equations through reading of the BD´s. 

 

Fourth Exercise. The following is the (non-linear) CT-BD of a Series Connected DC-Motor 

with full excitation(*). Do the same exercise as in both previous cases. Consider g and  gΣ as 

known non-linear functions, and gΣ
-1 as the inverse of the latter. 

Meaning of the symbols in the BD : 



 

This block is an integrator: and this one is a gain, the value of its gain being Km: 

 
 

 

 

 
(*) Just for information, find below the equivalent circuit of the DC-Motor (if you are not 

interested, ignore it). g is a non-linear function representing the dependence of the magnetic 

excitation flux ψe on the excitation current Ie : )I(gØ ee = . In a full series connection of both 

the armature and the field coils, the armature and the excitation currents are the same: Ia = Ie. 

This situation is modeled as having a unique coil having aea ØØ)I(g +=Σ = 

aaae IL)II(g +=  as its magnetics characteristic. 

 

 


