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2.3 A System of Ordinary Differential Equations

The purpose of this section is to demonstrate the fourth part of applied
mathematics that we listed in Chapter 1: how the desire to solve scientific
problems motivates the development of a mathematical theory, and the
manner in which such theories aid us in the solution of scientific problems.

We shall begin the discussion with a statement of certain theorems related
to the initial value problem for mechanics. The proofs will follow. (As far
as it is feasible, the proofs presented here will be those actually useful for
constructing the solutions.) At the end of the section we shall briefly discuss
the general question of the value of such proofs to the applied mathematician.

THE INITIAL VALUE PROBLEM: STATEMENT OF THEOREMS

For a given (initial) point Py(z, {5, {5, ..., {,) in the (n + 1)- dimensional

space of the points P(t, zy, z,, ..., 2,), the initial value problem for a system
of ordinary differential equations

d

f: (1321, 22, -5 2);  k=1,2,...,n )

is to find functions
Zm = gum(1), m=1,2,...,n 2
such that (1) is satisfied, and
Igut)=¢(, atr=r1, m=1,2,...,n 3)

We now state and subsequently prove certain theorems that are valid
for the initial value problem. In the statement of these theorems and in
subsequent discussions we shall frequently use z and { to denote collectively
the set of variables (2, 23, ..., Z,) and (3, {5, -+ -5 Co)-

Theorem 1 (Existence). Suppose that the functions* f,(¢, z) are continuous
in a rectangular parallelepiped defined by

Rijt—1|<a, |z—-4l<b; k=12,....n e))

This implies that there exists an upper bound M such that
|l <M, k=12,...,n, (5)
for P(t, 2y, 25, - . . 2,) in R. Suppose further that each f satisfies the following

Lipschitz condition in R:
|f(t’ 21’ "-,En) _f(t’zhzZs ---,zn)l SI<[l21 _zll + |2n—zn|]' (6)

* Some mathematicians are always careful to distinguish the function f from f(x), the value
of this function at x. We do not find it profitable to emphasize this distinction.
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(The Lipschitz condition is implied if each of the functions f; has continuous
partial derivatives.) Then there exists a solution of the initial value problem
in an interval |¢ — 7| < a, where
) b
o =min (g, —])- 7
(=) %)
The solution functions [the functions g,, of (2)] have continuous first deriva-
tives.

Theorem 2 (Uniqueness). The solution of the initial value problem is
unique.

The significance of Theorem 2 can be appreciated only when we can pro-
duce an example in which there is more than one set of functions satisfying
the same equation and initial conditions, when (of course) the conditions
in Theorem 1 are not all fulfilled. This will be done below.

Next we generalize the initial value problem to

d
TZtk =flt,z,4), z={(.att=r1. ®
Now the right-hand side of the equation depends on the parameter A.

Theorem 3 (Continuous dependence on parameters). Let the functions
flt,z, ) (k=1,2, ..., n)satisfy the requirements prescribed in Theorem 1.
Further let these functions depend continuously on the parameter A in a
certain neighborhood |4 — A,| < ¢, where 4, and ¢ are constants. Then the
solution functions are also continuous functions of A in some neighborhood
of 4.

Theorem 3 can be used to prove that the solutions are continuous functions
of the initial values (7, {). This continuous dependence can be regarded as
demonstrating the stability of the solution with respect to changes in initial
values, in the sense of the following theorem.

Theorem 3’ (Stability). Let z,, = g,,(¢; {,) denote the mth solution func-
tion (2) with the dependence on the initial condition explicitly noted. Then
given any ¢ > 0 and fixed time T, T >1, there exists a 6 = d(¢, T) such that
1gmt; $m) — guml(t; C)| < & for T <t < T whenever [{,, — (| < 9.

Theorem 3 is an expression of our intuitive feeling that when the functions
fi(t, z, A) are changed slightly (through the parameter 1), the solutions should
also be changed slightly. Our corresponding expectation for the initial
conditions is expressed in Theorem 3’. Let us now look more carefully at
the nature of the dependence on a parameter.
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We shall take the initial conditions to be fixed and consider the dependence
of the solutions z, = g,(f, ) on A. One might expect the nature of this
dependence to be the same as that of the functions fi(¢, z, 1) in (8). Thus, if
the f; are analytic in A in the neighborhood of 4 = A, (i.e., if they have a
convergent Taylor series when 0 < |1 — 44| < r for some r), then the solution
functions g,, should have the same property. For linear differential equations,
this is generally true. That is, the solution of the equation*

% = A(t, )z + b(t, A) 9
is analytic in 4, provided that A(z, 1) and b(¢, A) are analytic in 4, even though
they may merely be continuous in ¢. (Note that the Lipschitz condition is
automatically satisfied for linear equations when the coefficients are con-
tinuous.) In the nonlinear case, the situation is a little more complicated,
as we can see from our experience with the development of a perturbation
solution for (2.1),

(2.2.1)
=) pes Y e 3.

In present terms, the formalf calculations there depended on the fact that
the functions fi(f, z, A) were analytic in z as well as in A. To keep the dis-
cussion relatively simple, we shall therefore restrict our attention to the
first derivative with respect to A.

If formal differentiation is justified, we would expect the functions

s )= 2 201, ) (10)

to satisfy the differential equation obtainable formally from the differentiation
with respect to A of the original equation (8), remembering that f, and z,
both depend on 1.§ Carrying out this differentiation, we obtain

dug _ oy + %

ar %5z, "o (1D

We note that (11) is a linear system in {u,} whose coefficient functions are
known functions of ¢, since the set {z,,(t, 1)} is known. If the initial values {,,
are independent of the parameter A, then the initial conditions on the {u} are

u, = 0. (12)

* This may be regarded as a single equation or a system of linear equations. In the latter case,
A is a matrix, and z and b are vectors.

t A formal calculation is one that is presumably valid under suitable but unspecified conditions.

§ Successive parametric differentiation of an equation forms the basis of an excellent way to

perform perturbation calculations. See Section 7.2.


Default
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In view of the above discussions, we expect to have

Theorem 4. If the n(n + 1) functions
% % kkm=12,.

0z, 0A°
are continuous in the variables ¢ and {z,,} and in the parameter 4, then the
solution functions z,(t, 1) of Theorem 3 are differentiable with respect to A,
and the partial derivatives (10) satisfy the differential equations (11) and the
initial conditions (12).

LN

Since generalization is almost immediate, the proofs of all the theorems
stated above will now be presented in the case of a single dependent variable.
PROOF OF THE UNIQUENESS THEOREM ELSGOL TZ 4F

The uniqueness theorem is usually the easiest to prove. In the present
case, the ideas used will also be found to be useful for the proof of the
existence theorem.

We consider the equation

dy _
e fx, ) (13)

and seek a solution satisfying the initial condition y = y, when x = x,. Let
g(x) be one such solution. Then

g'(x) = fx, g(x)), ' (14)

and hence
o) =30+ [ fltg@Nd as)
If there were another solution G(x) satisfying the same initial conditions,
then
an=%+£fmamw. (16)

If we now subtract (15) from (16), we obtain
G -9 = /0, 6) - fe, g an

The magnitude of the integral on the right-hand side can be appraised with
the help of the Lipschitz condition:

| £t G) — f(t, 9)| < K|G(t) —g(D)]. (18)
Thus

166 — 90| <K [ 1G(®) = g0)] di. (19
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In the interval [x,, x], |G(x) — g(x)| has a maximum value that we shall
denote by ||G(x) — g(x)||. It then follows from (19) that
|G(x) — g(x)| <IG(x) — gx)ll - K|x — xo, (20)
and hence
1G(x) — g(x)|| < IG(x) — g()|| - K|x = Xol, 2D
or
[1 — K(x — x0)] - G(x) —g(x)| <0.

If we now take the length |x — x,| sufficiently small, equal to (2K)™! for
example, we can make the first factor positive. Hence (21) requires that

1G(x) — gl =0,
from which the desired result follows at once. []
PROOF OF THE EXISTENCE THEOREM &LSGoc T & 43

We have seen that the solution of the initial value problem for the differential
equation (13) satisfies the integral equation (15). Conversely, if we have a
solution of the integral equation (15), we have a solution for the differential
equation, with the initial conditions implied. This can be verified by direct
calculation (Exercise 1). Thus it is sufficient to prove the existence theorem
for the integral equation.

To prove that (15) has a solution, we adopt the method of successive
approximations. We start with a crude approximation y = y,, which at least
satisfies the initial condition.* We then calculate the sequence of functions

#@=yo+ [ Ftyodt

y@=yo+ [ fltpuio)d,

(22)

3y =30+ [ Tt yams @

We shall prove that this sequence converges uniformly to a continuous
function in a suitably restricted interval |x — xo| <«, which may be
specified as in Theorem 1; i.e., « = min (a, b/M). [Here M is the upper bound
on | f| that was introduced in (5).] The restriction to the range b/M is needed

* It is certainly not necessary to make this particular initial approximation. For example,
the same final result will obviously be obtained if y,(x), defined in (22), is used as the initial
approximation.
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only because we wish to keep the successive approximations (22) within the
bound |y — yo| < b, wherein the continuity of f is assured. Otherwise,
there is no further restriction on the range of x.

To prove that the sequence of functions defined by (22) uniformly
approaches a limit in the interval |x — x,| < o, let us consider the differences
between successive functions. For y,(x) — y, we have

@ = yol < [ 17, o)l de < M|x = xol, @3)

where M is the upper bound on f first mentioned in (5).
In general, we have

908 = 20| < [ 116301 =Sl 3uma@l dr. Q9)

We need to relate the difference in the right-hand side to the difference
Yn-1(t) = Yo-2(¢). This relation is supplied by the Lipschitz condition:

| STt ues(O) = £, Yu—2(D]] < K|Yn-1(t) = Ya-2(D)]. (25)
We are thus able to establish the recurrence relation

Iyn(x) - yn-—l(x)l < KJ.: Iyn—l(t) - y,,-z(t)l dt' (26)

By combining (23) and (26), we obtain [Exercise 3(c)]

MKn-—l - n
19,69 = es(9] s HE 122, @

But the right-hand side of (27) is M/K times the nth term in the series for
exp (K|x — x,|). Thus let us adopt the device of introducing a series expression
for the limit as n — 00 of y,(x), namely,

Yo+ 3 1) = 3-s L 28)

This series is absolutely and uniformly convergent, since its terms are bounded
by the corresponding terms of another series with that property. We thus
have lim,_, , ¥,(x) = y(x) for some function y. Further, y(x) can be shown to
satisfy the integral equation (15) by examining the limiting form of the
sequence of equations (22). Here it is only necessary to justify the inversion
of the processes of integration and taking the limit; but since the integral
is over a finite range, this follows from well-known theorems. []

The key process in the proof is the conversion of the differential equation
into an integral equation and then the application of the method of successive
approximations. The integral formulation has two advantages: (i) the initial
values are automatically incorporated; and (ii) the integration process makes
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the functions smoother, and questions about the existence of a derivative
are avoided.

The proof required many technical steps. Since similar steps often occur
in other problems, it is convenient to summarize them in some form so that
they need not be continually repeated. This is one reason for developing
the theory of function spaces, in which an important concept is the norm
suitably defined (in various ways) to replace the concept of distance in ordinary
Euclidean space. Another reason is that ordinary geometric ideas can be
used to give intuitions about abstract distance properties.

In the present case, one possible norm is the quantity [g(x) — G(x)|
first used in (20). Another possible measure of “distance” is the quantity
D defined by

2 1 b 2
D*=— [ 166 - g1 dx. (29)

In words, D is the root-mean-squared difference between G and g. This
norm does not occur naturally here, but it will be used in Chapters 4 and 5.

Appendix 12.1 of II provides certain details concerning function spaces
and related concepts. [In particular, Equation (59) of that Appendix gives
an abstract characterization of distance that is exemplified by both of the
norms just defined.] Material in Chapter 12 of II on variational methods
furnishes examples of the unity and clarity that can be achieved with such
concepts.

CONTINUOUS DEPENDENCE ON A PARAMETER OR INITIAL
CONDITIONS

Before we proceed to prove Theorems 3 and 3', let us note that if the solution
of the differential equation

dy
(EC - f(x9 b j')’ (30)

under the initial condition y = y, for x = x,, depends continuously on 2,
then it depends continuously on (x,, ¥,). For we can introduce the new
variables (£, 7) = (x — xo, ¥ — ¥o) and solve the equation

dn

e
under the initial condition # = 0 for & = 0. The function on the right-hand
side of (31) is continuous in {xg, y,)-

SE+x0,n+y0,4) @3n

Return niow to (30). Let us treat the equation in the integral formulation

vt 1) = yo + [ flx,y0x, 1), A d. (32)
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Consider two solutions y(x, 1) and y(x, ;) and their difference. We have

y(x9 '1) - y(x’ ;”0) = fx {f[x’ y(x’ j')a }']_ f[x9 y(x’ '10)’ }']} dx

+ U y06, 20), 21 = £ ¥, 20), Aol dv. (33)

The first integral on the right-hand side can be appraised with the help of
the Lipschitz condition and the second integral by simple continuity in A.
Thus, by using an argument similar to that used in the proof of the unique-
ness theorem, we have [Exercise 3(a)]

yGe, 2) — p(x, Ao}l < K|x — xo| - ly(x, &) — y(x, Aol + 8]x — xo],

(34)
where
| f(x, y(x, Ao), A) — f(x, y(x, Ao), Ao)| < . (35)
For |x — x| < (2K)™!, one can show [Exercise 3(b)] that (34) implies that
[ (e, 2) — y(x, Ao)| < 20|x — xo]. (36)

The quantity 6 can be made as small as desired by decreasing |4 — 4,].

The restriction on |x — x,| is not crucial, since one can cover any finite
interval |x — x4| <o by a finite number of intervals of the above type.
Upon passing from one interval to another, one would have to allow for a .
difference in the initial condition y,, but this difference is of the order of .
Since we have only a finite number of such intervals, the cumulative difference
is still of the order of 6 and does not influence the essentials of our arguments.

a
DIFFERENTIABILITY
We consider the pair of differential equations
dy
paPACR A A (37
x
and
du
‘Tx = f;:(x’ Y, l)u +f).(x’ V> )“)’ (38)

where f(x, y, 4), f,(x, y, A), and fi(x, y, A) are continuous functions. Note
that (38) is obtained by formally differentiating (37) with respect to A and
writing u for dy/oA.

We consider a solution y(x, 1) of (37). We also consider, for y = y(x, 1), a
solution of (38) satisfying the initial condition u(x,, 4) = 0. The existence of
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these solutions is assured by the continuity of the functions involved.* We
wish to prove that

oy(x, )
. 3

oA (39)
The difficult part of the proof is to establish the existence of the partial
derivative dy/dA. This will be done by direct evaluation of the limit of
Ay/AL as AL - 0.

Let

Ay = y(x’ }’) - y(x9 AO)’ Af=f[x, .}’(x’ A’O)’ l] - f[x’ y(xa 10)9 }'0]'

From (33)

u(x, ) =

j %, 3, /1) > dx + f 7 0% (40)
where j is a value intermediate between y(x, 4,) and y(x, 4). We have used

the continuity of the partial derivative f,(x, y, 4) so that the mean value
theorem can be applied. We also have

(. 20) = [ e, G Ao), AoluCx, Ao) dx + | filx, (x, 4o), Aol dx. (4D)

By combining (40) and (41), we obtain for the difference

A) —y(x, A
w = u(x, Ag) — y(x, &) — yCx, Ao) 42)
)- - lo
the integral equation
W= f £(x, 3, Hwdx + D, 43)

where

D= [ U5 365, o), D= £ 3 Al + [ [fl(x y0%, 20), o) — qu

Because of the continuity of the functions f, and f,, the quantity D can be
made as small as we wish by reducing A4. Since | f,(x, , 4)| is bounded by
K, one can prove, from (43), that
limw=0 (44)
AA-0
by the same sort of reasoning as that previously used. The reader should
complete the proof (Exercise 4).

* The Lipschitz condition is satisfied for (38), because the right-hand side is linear in the
dependent variable u.
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EXAMPLE OF NONUNIQUENESS

One can better appreciate the usefulness of the uniqueness theorem under
the Lipschitz condition when one sees some examples of the lack of unique-
ness when the condition is not satisfied. Consider the differential equation

dy
‘—1'.; = f(x’ }’), (45)
where
3
£, 9) = xf’_i’; . when (x,) # (0, 0), (462)
£(0,0) = 0. (46b)

It is easy to verify that f(x, y) is continuous at (x, y) = (0, 0) but does not
satisfy the Lipschitz condition. Equation (45) admits the solution

y=c*—/x*+ ¢ 47)
for all finite real values of ¢. Thus there is an infinity of solutions satisfying
the initial condition (x, y) = (0, 0). All the integral curves have zero slope
at the origin.

The lack of uniqueness can easily be understood from a heuristic point
of view, since (45) does not give 4 unique value for the curvature of the
integral curve at (x, y) = (0, 0). Indeed, the curvature of the solution curve
at this point is undefined. For the derivative of the slope of the solution curve
is given by the limit as (x, y) = (0, 0) of

dy dy
x5V 300 gy axty

x—0 x x+y

An existence theorem can still be proved in this case by the method of
finite differerices, to be outlined in a moment. Since there is lack of uniqueness,
an initial value for d2y/dx? must be prescribed (implicitly or explicitly) for
each solution.

METHOD OF FINITE DIFFERENCES

The method of finite differences is the natural approach to the solution of
differential equations from the point of view of numerical integration. It
yields at the same time a practical way of calculating the solutions, especially
with the aid of modern computihg machines, and a way for proving an
existence theorem. To obtain a glimpse of this method, weé may start again
with the integral formulation

y=rvot [ flE 0O, (48)
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Let us divide the interval (x;, x) into » subintervals (each of length k) and
write

y=vo+ [ fEy@de+-+ [ fIEy@)de. “9)

Xn-1

This is still exact, but we shall now evaluate each of the integrals in (49)
approximately by writing

[ it v de = e . (50)

Here y, is the value of y obtained by using the approx1matlon (50) in (49)
up to the point x, ; i.e., we have

341 =J’0+J. S(xq, o) ¢,

yo=y+ [ S m) &, (51)

YO =Yn=Yar+ [ fCnmss act) .

Xn-1

The solution is then the broken line Cp, in Figure 2.2. This is taken as an
approximation to the true integral curve C. Since there is an error in y at
each approximation, the accumulation of errors would, in general, make the
approximating curve C; deviate farther and farther from the true curve C

y

Yo
| *

11 i | 1 { 1 ] | | | x

Xg

FIGURE 2.2. The simplest finite difference method provides the broken
line Cv as an approximation to the actual solution C of a differential
equation.
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as the calculation process goes on according to (51). One might think at
first sight that this would be intolerable. Actually, since the error in y is of
the order of A2 in each step [local formula error is O(h?)], it can be shown that
the cumulative error is of the order of 4 [cumulative formula error is O(h)].
Indeed, one can prove the convergence of the approximate solution to a
unique true solution when the Lipschitz condition is satisfied. Even when the
Lipschitz condition is not satisfied, a partial sequence can always be chosen
to converge to a solution; but there is no longer any assurance of uniqueness.

An O(h) cumulative formula error can be made as small as desired by taking
h small enough. But then many calculations will be required to find the
solution in a given x interval, and the cumulative roundoff error may be
unacceptably large. To gain better accuracy, one can adopt higher order
approximations when evaluating the integrals in (49). But then, calculations
for a given interval are longer, so that they take more time and possibly
introduce more roundoff error. The reader will find extensive discussions of
such issues in books on numerical methods.

FURTHER REMARKS ON THE RELATION BETWEEN ‘‘PURE”’
AND ‘‘APPLIED’’ MATHEMATICS

In this section we have gone into mathematical theory that generally would
be regarded as being of a “pure” nature. We conclude with some remarks
on the interaction between the pure and the applied aspects of mathematics.
(Also see Chapter 1.)

That most pure mathematicians would benefit from studying works in
applied mathematics seems fairly clear, for in their quest for scientific
knowledge, applied mathematicians (and other theoretical scientists) leave
unanswered many questions of a mathematical character. An applied mathe-
matician may, for example, construct a formal perturbation method which
provides a solution to a problem that agrees very closely with experiment.
The pure mathematician will often find it worthwhile to determine conditions
under which these calculations are guaranteed to be valid. Such justifications
may require proofs that certain general theorems apply in a particular case.
Or they may best be accomplished by expanding and recasting a whole seg-
ment of mathematics. An example of such a recasting is Laurent Schwarz’s
relatively recent generalization of the concept of function to that of distribu-
tion, so that Dirac’s virtuoso child, the delta function, could at last be
legitimatized.* Of course, much of pure mathematics is internally motivated
—but it seems unwise to neglect a rich source of meaningful problems.

What help is pure mathematics to an applied mathematician ? Certainly,
it is a contribution to science to have a body of theory incontrovertibly

* A good reference is M. J. Lighthill's Fourier Analysis and Generalized Functions (New
York: Cambridge U.P., 1962). The dedication of this work is a capsule history: ‘“ To Paul Dirac
who saw that it must be true, Laurent Schwartz who proved it, and George Temple who showed
how simple it could be made.”
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established. The magnitude of the contribution is an increasing function of
existing doubt in the theory. Indeed, if the doubt is serious, the applied
mathematician himself will try to resolve the controversy by fashioning
appropriate proofs.

At the educational level, the future applied mathematician should be
exposed to a considerable body of mathematical theory and proof (although
care must be taken not to overemphasize this aspect). He should learn typical
conditions under which the operations he may have to perform are valid.
Moreover, he should become aware of additional mathematical concepts
that may someday form a suitable framework for his theories or calculations.
For example, some applied mathematicians find use for the unifying geometric
character of the function space concepts, developed in recent decades. To
give a more classical example, the Gibbs phenomenon, which can arise in
practical calculations, cannot be appreciated without a knowledge of the
distinction between pointwise and uniform convergence. (See Section 4.3.)
And, to cite another possibility, it could be that a student will first become
aware of the calculational usefulness of an integral equation formulation, or
of a successive approximations approach, by virtue of having studied certain
constructive existence theorems.

Examples of the relation between pure and applied mathematics are
provided by our discussion of theorems for differential equations. Thus it
is a beautiful theoretical result that under suitable conditions solutions
depend continuously on parameters. But this result misses a very important
scientific issue, for it merely shows that the solution is changed by an arbitrarily
small amount over a fixed time interval by a sufficiently small change in the
parameter. Left untouched is the question of the ultimate effect of a given
small change in a parameter, a question that could well be missed entirely
by one who accepts an impressive theorem as the last word. Poincaré began
the study of long term and ““ultimate” effects. Much more has since been
accomplished, both formally and rigorously, but the issues are by no means
resolved. [See Moser (1973).]

Another example of the relation between pure and applied mathematics
stems from the fact that standard existence and analyticity theorems for
systems of ordinary differential equations are valid only for a sufficiently
short interval of time. But if these equations describe the trajectories of
interacting particles, it seems likely that the theorems should usually hold
for arbitrarily long time intervals. For a discussion of classical results on
such matters see Chapter 16 of E. T. Whittaker’s Analytical Dynamics
(New York: Cambridge U.P., 1927).

To achieve a degree of balance, we presented a few formal proofs in this
chapter. But such proofs can be found in many fine books. Hence proofs are
mainly omitted in the remainder of the present work, since we concentrate
on the relatively unexplored interaction between science and mathematics
that is the core of an applied mathematician’s profession.
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EXERCISES

Show that a solution of (15) satisfies (13) and the initial condition
y(xo) = yo. Carefully justify all your steps.

Prove that y(x), the sum of the series (28), satisfies the integral equation
(15).

(a) Verify (34).

(b) Verify (36).

(c) Verify (27).

Complete the proof of (39).

(a) Verify the statement under (46b).

(b) Verify (47). '

(¢) Feigning ignorance of (47), see if you can derive it.



