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DYNAMICAL SYSTEMS: Basic Concepts and Mathematical Models 

 

SYSTEM 
 

The concept of system can be defined in many different ways. At first it can be said that 

a system is an object or collection of objects whose 

properties we want to study. 

Examples: A greenhouse, an electrical machine, a production process 

(e.g., paper production, petrochemical industry, champagne production, 

pharmaceutical industry, etc.), the solar system, a power plant, the 

european interconnected electrical power system, the european 

(macro)economic market, the (micro)economy of an enterprise, a computing 

center, a town’s or country’s public transportation system, internet, an 

enterprise intranet, etc. 

 
Some useful definitions 

♦♦  SYSTEM  (After DIN 66201, Deutsches Institut für Normung):   

A System (ΣΣ ) is a bounded array of interacting entities. 
      (1) (3)  (2) 

 
Un Système (ΣΣ ) c’est une disposition delimitée d’entitées qui interagissent. 

          (3)   (1)   (2) 
 

We distinguish three terms in this definition: 

(1) Delimitation (spatial, conceptual) regarding the rest of the Universe. The elements 

of the rest of the Universe having relevant influence on the System are replaced by fictitious elements of 

equivalent action and incorporated to the System. 

 

 

 

 

 

 

   Σ 
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(2) Interacting Entities, or System Components: Elements, processes, 

(sub)systems. 

♦♦  Process (DIN 66201: Transformation and/or transport of matter, energy, 

information, and/or any kind of (generalized) “goods”. 

(3) Relative arrangement (of the components): It defines the System 

Structure. Even having identical components two systems are different if their 

components are arranged according to different structures. 

 

Taking for granted the delimitation from the rest of the Universe, an equivalent definition of system 

would be as follows: 

 

A System ΣΣ is an entity built-up by a set of components 

and a structure: 

 

ΣΣ = {Components, Structure} 

 

This definition can be specialized to different domains of Science, Technology, etc. , 

through the characterisation of the components involved in the system. For instance, a 

physical system could be defined as follows: 

 

PHYSICAL SYSTEM (ΦΦ ΣΣ): Is any system where the interaction involves exchange 

of matter and/or energy and/or information. 

 

DYNAMICAL PHYSICAL SYSTEM (∆∆ ΦΦ ΣΣ): Is a ΦΦ ΣΣ  where the storage of 

matter and/or energy and/or information is taken into account (by the person defining the 

system). 
 

This distinction is not always desirable or possible, then it is well known that very often 

systems are to be described using mixed domains of knowledge. For instance, describing 

physiological problems in living systems usually involves phenomenological laws of 

biology and some physical/chemical laws (heat/matter exchange, kinetics of reaction 

processes, mechanics, and so on). 
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DYNAMICAL SYSTEM: Even if originated in Physics, the concept of Dynamical 

System has been generalized to any kind of systems where storage 

phenomena are taken into account. 

 

METHODOLOGY FOR SYSTEM ANALYSIS 

 
EXPERIMENTAL ANALYSIS 
 
Science has developed methods useful to research open questions asked by humans 

about systems and their properties. Scientific methods rely on experimentation, 

which consists in performing trials∗∗  on the system and observing its 

reactions in order to obtain laws explaining the system behavior. As far as we are 

concerned here, these laws have mostly the form of mathematical expressions, in a wide 

sense. 

The experimental method is not always feasible, for instance because of one or many of the 

following reasons: 

§§  Economical Cost: For an industrial process some experiments could imply bringing the 

production to standstill during some time, which could be economically unacceptable in certain 

cases. 

§§  Risks: The consequences of the experiment could be undesirable or intolerable. (Examples: 

Certain experiments in nuclear plants like trying to test "¿what would be the effect of a leak into 

the atmosfere of some amount of radioactive steam? "; or trying to answer "how would it impact 

on an ecosystem the extinction of a species?").  

§§  Impossibility of performing the experiment 

§§  System does not exist: Typically, at the early stages of a new system design it is most 

important to know how some parameters could affect the overall system behavior, even 

before constructing some physical prototype. (Ex.: "¿what could be the aerodynamic 

performance of a new plane with a new type of wing profile?"; "¿what is the incidence of a 

new car suspension on the passanger’s comfort?"). 

§§  Human inability to perform the experiment: Even if technology allows the human breed 

to master many natural phenomena, (fortunately in some cases!) many of them remain still 

irreductible. (Ex.: "¿what would be the effect of a displacement of the magnetic axis of 

Earth?"). 

                                                 
∗  Sometimes the trial limits itself to collecting some instrument data, without exerting any action on the 
system. This is the usual way in which Astronomy proceeds. The same procedure is followed for instance 
when monitoring technical systems through measurements during their normal operation. 
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When performing experiments is not possible or just inconvenient the solution is 

modeling.  

 

MODELS  

A model of a system is basically a tool which allows finding answers to question on the 

system without the need of conducting experiments on it. A model is always a simplified 

representation of reality (for an already existent ΦΦ ΣΣ ), or of a conceptual prototype (just a 

project of a new ΦΦ ΣΣ ). 

 

CLASSIFICATIONS OF MODELS 
 
§§  Physical Models 

These are physical reproductions of the original systems at (usually) reduced scale. 

The results obtained through experimenting on the model are transferred to the original 

system thanks to the theory of Dimensional Analysis. (Exs.: wind-tunnels to study 

aerodynamic phenomena in airplanes; scale modeling of a river-bed in order to study 

hydrological phenomena, and so on).  
 

§§  Abstract Models 

§§  Mental Models: (unconscious) image of a process behavior (Ex.: Everybody, even 

people without any knowledge of Physics, can manage its own body; particularlily athletes 

do it with high skills) 

§§  Verbal/Textual Models: describing constitution or behavior. (Ex.: operating instructions 

or functional description of a machine). 

§§  Technical Models: Most commonly given as plans, graphs, etc., they represent with 

specific symbology the constitution of man-made systems (Ex.: the scheme of the air 

conditioning system of a building; the diagram for constructing a printed-circuit board; etc) 

§§  Mathematical Models: hard models (commonly using number-valued or logical 

variables), soft/fuzzy (commonly using linguistic variables). 

 

MATHEMATICAL MODELS: MM 

MM are constituted by mathematical expressions describing 

the relationships among variables characterizing a 

system. 
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Expressions of the following type can be found: 
 

§§  Systems of equations 

§§  Inequalities  

§§  Logic-mathematical expressions 

§§  Linguistic expressions 

 

 These expressions relate variables representing signals in the system. 

 

♦♦  SIGNAL (DIN 66201): Is the representation of an information through the values of a 

physical/system magnitude. 



DynSys&MathMod.doc DSF DS&MM Page 6 de 6 
 

CLASSIFICATION OF MM 

 

Very often the talk is about systems, while in fact models are meant.  

 

Continuous Time vs Discrete Time Systems 

In a continuous time model time as a variable is associated to (a subset of) the real 

numbers. 

In a discrete time model time is associated to (a subset of) the natural numbers. (Ex.: 

sampled systems; numerical representation of a continuous time systems, etc.). 

 

Continuous Systems 

Continuous Systems are Continuous Time Systems where the descriptive variables are 

represented by (piece-wise) continuous functions. 

 

Discrete Event Systems 

Discrete Event Systems are Continuous Time Systems where the descriptive variables 

being themselves piece-wise constant functions have been represented by events. 

 

Static vs Dynamical Systems 

If there are only instantaneous relationships among the descriptive 

variables of a system (a model !), then it is said to be a static model (Ex.: equations with 

only algebraic or trascendental expressions, or functions in general). In the paragraph on 

Causality  this concept will be better explained. 

If the relationships among the variables do require (not only 

their current value, i.e., the value at a given time instant but also) previous values, 

then the model is said to be a dynamical model (Ex.: differential or difference 

equations having time as the fundamental variable –for details please see upcoming 

paragraph on Clasification of Variables). 

 

Deterministic vs Stochastic Models 

A model is said to be deterministic if it expresses without mathematical uncertainty 

the relationships among the variables. The information processed by the model is mapped to 

precisely determined values and/or functions. 
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A model is said to be stochastic if it expresses mathematical uncertainty in the 

relationships among the variables through probabilistic concepts using random variables.  

 

Distributed vs Lumped Parameter Systems 

System magnitudes take values in time and space. 

If a MM uses time-space functions to represent the system descriptive variables, then it is 

said to be a distributed parameter model, because usually they use physical 

coefficients or parameters which are distributed on space (Ex.: the density of a fluid in gas 

pipeline; resistivity, inductivity and capacity per unit length in an electrical transmission line). The 

associated dynamic models typically are systems of partial derivative equations. 

A lumped parameter model is obtained when replacing the space dependency of 

the variables using their average value in the space domain of their definition. Space 

disappears of the model, it is no longer present as one of the fundamental 

variables, only time is left as such. System parameters are now 

extensive model quantities, they are lumped or concentrated on the space domain. The 

associated dynamic models typically involve systems of ordinary differential equations. 

 

Parametric and Nonparametric Systems 

Parametric MM are fully specified or defined with a finite set of parameters (Ex.: a 

transfer function; an ordinary differential equation). 
Nonparametric MM cannot be fully specified with a finite set of parameters (Ex.: the 

step response of a linear time-invariant system; the frequency response of an amplifier or of a 

magnetic tape). 

 

Linear vs Nonlinear Systems 

In Linear MM the superposition principle is valid, i.e., to a linear combination of causes 

(inputs and/or initial conditions for instance) the model reacts with the same linear 

combination of the original effects. 

In  Nonlinear MM the superposition principle is not valid. 

 

Time Invariant vs Time Variant Systems 

A MM is time invariant if to time-shifted inputs time-shifted outputs do correspond. 
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USING MM 

 

MM are built to study system properties and to predict its behavior under different 

operating conditions. Conceptually, two main groups of techniques devised to achieve 

these objectives can be distinguished:  

 

♦♦  Theoretical Analysis of MM : Mathematical methods of qualitative 

(stability and other system properties, etc.) and quantitative (equation solving, etc.) 

analysis. 

 

♦♦  Experimental Analysis of MM: Studying quantitative and qualitative 

properties of the system through experimenting with the model on computers. This is 

called Simulation or Experimental Mathematics. 

 

 SIMULATION:  Digital / Analog / Hybrid 

 

SIMULATION (general): Investigation of the system behavior conducting 

experiments on another system replacing and representing the first one. 

 

DIGITAL SIMULATION involves: 

• Discrete Representation of Continuous Variables 

• Function Approximation  

• Numerical Methods 

• Numerical (finite-length arithmetic calculation errors) errors. 

 

 

MODELING OR CONSTRUCTING MM 

 

There are two conceptually different techniques, which commonly are complementary 

used in practical applications: 

  

• ANALYTICAL OR “PHYSICAL” MODELING 

• “EXPERIMENTAL” MODELING OR SYSTEM IDENTIFICATION 
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ANALYTICAL OR “PHYSICAL” MODELING is based on the knowledge of first 

principles (physical/systemic laws governing phenomena in the system) and of system 

constitution. Constitutive Relationships are associated to system 

components; Structural Relationships are associated to system 

structure. Building the system model consists in organizing all these separate 

mathematical expressions in a consistent mathematical system. 
 

 

“EXPERIMENTAL” MODELING OR SYSTEM IDENTIFICATION deals with 

the obtention of mathematical models and their parameterization using measurement data 

resulting from experiments conducted on the system (you can find useful information on 

System Identification at http://www.eie.fceia.unr.edu.ar/~lsd/ ) 

 

For a concise and practical introduction to the methods of analytical modeling and 

identification see for instance the book by Lennart and Glad∗ . 

                                                 
∗  Ljung, Lennart & Torkel Glad, "Modeling of Dynamic Systems", Prentice Hall, 1994, Englewood Cliffs, USA. 
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CLASSIFICATION OF VARIABLES 

 

FUNDAMENTAL VARIABLES: Space, Time  

Systems do exist in space-time, so space-time is a kind o scene where systems “live”, 

processes happen, and variables evolve. 
 

DESCRIPTIVE VARIABLES: are all the variables representing the magnitudes 

associated to the system. 
 

• PARAMETERS: Constants (could be also Variables having predetermined trajectory 

independent of the evolution of phenomena in the system) (Ex.: Universal Constants, System 

Constants, Design Parameters). 
 

• INPUTS / INDEPENDENT VARIABLES / CAUSES: Descriptive Variables 

having signals which completely unrelated to or independent of other signals in the 

system, and which are not predetermined. They represent external actions (generated in 

the environment) on the system. 
 

• MANIPULATED INPUTS 

• DISTURBANCES 
 

• DEPENDENT VARIABLES / EFFECTS: Descriptive Variables having 

associated signals depending of other signals in the system. 
 

• OUTPUTS: Any descriptive variable of interest can be considered as an 

output. 

 

CAUSALITY 

 

CAUSAL RELATIONSHIP:  A signal y(•) depends causally of other signal u(•) if: 

  i)  y(•) depends of u(•) 

  ii) y(•) does not depend of future values of u(•) 
 

STATIC CAUSAL RELATIONSHIP: Causal relationship where for any generic time 

instant t, the value of the effect y(t) depends exclusively on the value of the cause u(t), i.e., 

there is no dependency on previous values of u(•). 
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y(t) = g [ u(t) ]  , g [•]: is a function 

 

DYNAMICAL CAUSAL RELATIONSHIP: Is a causal relationship where the value of 

the effect y(t) at any generic time instant t depends of at least one previous value of the 

cause u(•). 

 

Memory is associated to this phenomenon: 
 

y(t) = g [ u(−∞, t] ] , g [•]: is a functional 

 

DYNAMICAL SYSTEM: A system where there is at least one dependent variable y(•) 

being related through a dynamical causal relationship to at least one input variable u(•). 

 

THE CONCEPT OF STATE 
 

Regarding the following definitions it should be considered that the input signals are known to any 

time instant t. 

 

VECTOR OF STATE VARIABLES: Is any set of dependent variables such that its 

value at a generic time instant t statically determines (i.e., through a function) all other 

dependent variables (this definition is oriented to what happens in the system). 
 

VECTOR OF STATE VARIABLES: Is any set of dependent variables such that its 

value at a generic time instant t is sufficient to statically (i.e., through a function) compute 

the value of any other dependent variable (this definition is oriented to the point of view of 

the modeler). Computation is done using constitutive and structural relationships. 
 

MINIMAL STATE VECTOR: Is any State Vector whose value is sufficient and 

necessary to statically determine any other dependent variable of the system. 

 

t t1 

u(-∞,t1] 

t t1 

y(t1) = g(u(-∞,t1] 

t t1 

u(t1) 

t t1 

y(t1) = g(u(t1)) 
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MODEL ORDER: Is equal to the minimal number of dependent variables whose values 

fully determine the values of all other dependent variables in the system.  
 

MODEL ORDER: Equivalently, it is the maximal number of dependent variables whose 

value can be arbitrarily specified consistently with the restrictions in the model (static 

constitutive relationships and structural relationships). 
 

MODEL ORDER: it is the cardinal number associated to any Minimal State Vector.  
 

¡¡THE MODEL ORDER IS UNIQUE!! 

 

EXTERNAl VARIABLES := { Inputs, Outputs } 

 

INTERNAL VARIABLES ≡≡ DEPENDENT VARIABLES 

Note !! ⇒ with this definition, some internal variables could simultaneously be 

considered as external variables; this is the case of the output variables. 

 

STATE VARIABLES − (restricted definition, as usually found in books mainly dealing 

with differential equation models). 

Set of internal variables x(•• ) whose value x(t0) (initial condition) at a generic time instant t0 

(initial time) suffices to calculate any other internal variable at any time t ≥ t0  (it assumes 

the knowledge of the input trajectory u[t0, t] ). 

This definition is inspired in the fact that under certain assumptions the solution of a set of 

differential equations is uniquely determined by the initial conditions and the input 

trajectory. 

 

STATE EQUATIONS: CONCENTRATE THE DYNAMICS OF THE SYSTEM. 

OUTPUT EQUATIONS  : STATIC EQUATIONS. 

 

STATE SPACE MODELS (continuous systems) 
 

STATE EQUATION STANDARD FORM  

(Vector) State Equation:  )),(),(()( ttutxftx =&  

(Vector) Output Equation:  )),(),(()( ttutxgty =  
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x(t): State Vector, n-dimensional 

u(t): Input Vector, m-dimensional  

y(t):Output Vector, p-dimensional 

 

Componentwise written: 

State Equations  

)),(),...,(),(),...,(()(

)),(),...,(),(),...,(()(

)),(),...,(),(),...,(()(

11

1122

1111

ttututxtxftx

ttututxtxftx

ttututxtxftx

mnnn

mn

mn

=

=
=

&
M
&
&

 

 

Output Equations  

)),(),...,(),(),...,(()(

)),(),...,(),(),...,(()(

)),(),...,(),(),...,(()(

11

1122

1111

ttututxtxgty

ttututxtxgty

ttututxtxgty

mnpp

mn

mn

=

=
=

M  

 

This is a general notation able to model nonlinear systems (in this case f y g will be 

nonlinear functions of x and/or u ) as well as time-variant systems (in this case the direct 

dependency of functions f y g upon time t allows for the presence of variable parameters). 

 

The particular case of time-invariant nonlinear systems would be specified by: 

))(),(()( tutxftx =&  

))(),(()( tutxgty =  

 

If functions f  y g are linear in x and u, then the model is linear and is written as follows: 

 

Linear time-variant case (LTV-System) 

)()()()()(

)()()()()(

tutDtxtCty

tutBtxtAtx

⋅+⋅=
⋅+⋅=&

   

where A(t),B(t),C(t),D(t) are real matrices whose entries are predefined time-functions: 

ℜ∈
×
×
×
×

t

matrixontransmissistaticthe,mp:)t(D

matrixoutputthe,np:)t(C

matrixinputthe,mn:)t(B

matrixsystemorevolutionthe,nn:)t(A
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Linear time-invariant case (LTI-System) (the entries of the matrices are constant) 

)t(uD)t(xC)t(y

)t(uB)t(xA)t(x

⋅+⋅=
⋅+⋅=&

 

ℜ∈×××× t,mp:D,np:C,mn:B,nn:A  

 

DIFFERENTIAL-ALGEBRAIC EQUATIONS OR DAE-SYSTEMS 

Frequently, the system equations cannot be put into the neat state equation 

standard form just presented. Sometimes the interrelation among certain (group of) 

variables cannot be explicited, then equations of the following type are obtained: 
 

 

Differential Equation:  )t),t(u),t(z),t(x(f)t(x =&  

“Algebraic” Equation:  0)t),t(u),t(z),t(xÖ( =  

z(t) is a set of internal variables depending on the state and input variables as specified by 

function Φ. Φ is a static equation, but as most commonly it consists of algebraic (nonlinear) 

expressions, this implicit equation is usually called algebraic equation. If an explicit 

expression can be obtained solving Φ for z(t), then the original standard form can be 

recovered through substitution of the solution, say )t),t(u),t(x()t(z ϕ= , into the 

differential equation and redefinition of function f. 

 

IMPLICIT STATE EQUATION FORM  

Sometimes not all state derivatives can be explicited, then the modeler is obliged to use a 

more general expression for the dynamics of the system, the so called 
 

Implicit State Equation Form:   0)t),t(u),t(x),t(x(F =&  

 

Implicit and DAE forms are much harder to treat, they deserve special methods for 

analysis as well as for simulation ! 
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DIFFERENT REPRESENTATION TYPES. 

EXAMPLE. Model of a simple Physical System: Mass-Spring-Damper System. 

 

 
Under certain assumptions, the dynamics of the position y(t) of the mass point m can be 

described via the following equivalent models: 

 

Representation Type: Ordinary Differential Equation (ODE): 

)t(F)t(yk)t(yb)t(ym =++ &&&  

 

Representation Type: State Equations System (SES) 

Considering the ODE as the system, the variables x1 and x2 next defined satisfy the 

definition of state variables. 

)t(y)t(x

)t(y)t(x

&=
=

2

1
 

 
 

This is a linear time-invariant system, which can be represented by the matrix form: 

 
with the following definition of the matrices A, B, C and D: 
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Representation Type: Block Diagram (BD). 

 
 

 

NUMERICAL SOLUTION OF ODEs OR STATE EQUATION SYSTEMS 

 

BASICS of EULER’S METHOD. 

For simplicity, let’s consider the scalar case (only one state variable) of the initial value problem: 

[ ]

00 )(

),(
)(

xtx

ttxf
dt

tdx

=

=
 (1) 

A numerical approach to the problem of finding a solution to the previous problem demands the discrete 

representation of time through a sequence of points n,....,,k,tk 21= . Even if it not necessary and 

sometimes it could be inconvenient, let’s assume to the effect of this introduction, that the points are equally 

spaced in time:  hktk ⋅=  

Let’s now use the following notation for the exact solution of the problem: kkthkt φφφ ==⋅= )()( , 

where kφ stands for the value of the solution )(tφ  at instant kt . A set of pairs ),( kk tφ  will constitute the 

exact discrete-time representation of the solution. 

 
Numerical representation of the exact solution. 

 

A numerical method will be next presented yielding a sequence of values xk constituting a good 

approximation of the exact values kφ . A set of pairs )t,x( kk  will constitute the approximate discrete-time 

representation of the solution. 
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Euler’s Method 

There are a lot of methods allowing for the obtention of the numerical approximate solution of our problem. 

Numerical methods for solving differential equations are known as integration methods. The most simple and 

well known is Euler’s Method.  

Euler’s Method proceeds approximating the time derivative of x(t) through the incremental quotient as 

follows: 

hfXXt)t),t(X(f)t(X)tt(X kkkkkkk ⋅+=⇒∆⋅+=∆+ +1       (2) 

where ∆t = h is called the integration step. See the following graphical interpretation of Euler’s formula: 

 

 

Graphical interpretation of Euler’s formula. 

 

Given the initial value problem (1) and Euler’s formula (2) the approximate values ,..., 21 XX  can be 

computed in a sequential way (first compute X1 using the known value X0, then use X1 to calculate X2, and 

so on). 

 

Errors: 

• The error due to the numerical approximation is called the truncation error. Even if using an ideal 

computer this error will be present. 

• The error due to the finite precision representation of numbers in real computers is called the round-

off error. It represents an additional source of errors. 

 

Example: 

Consider the following first order system: 

1)0(

3 3

=
+−=

x

txx&
 

Euler’s method yields: 

htxxx kkkk ⋅+−+=+ )3( 3
1 ,    

whose succesive application produces 

hhxxxhhxxxhx ⋅+−+=⋅+−+=−= )23()3(31 3
223

3
1121 ,  and so on. 
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EXERCISES 

1 – Find the explicit expression for x2 above and use it to calculate the explicit expression for the next value 

x3. 

2 – Determine the numerical approximation (i.e., the particular expression for formula (2) above) of the 

second order State Equation System of the mass-spring-damper example via Euler’s method. Apply the rule 

(2) to each of both state equations. 

3 – The nonlinear second order SES constitutes a posible version of the famous Lotka-Volterra’s model. The 

variables x1 and x2 represent respectively the population of Preys and Predators in a common habitat. This is 

a simple nonlinear case where the numerical approach is a must ! 

  
Apply the rule (2) of Euler’s method to each of both state equations. Then particularize the result for the 

following set of parameter: 

 
Find numerically the three equilibrium points. If you like, write a program to implement the recursive 

algorithm given by Euler’s method and draw the solutions in the x1-x2 plane for some set of initial value pairs 

(x10 , x20). 

Recall the restriction of the solutions to the first quadrant.  

 
SOME ADVANCED ISSUES ON EULER’S METHOD. 
Forward or Explicit Euler  
The technique previously described is known as forward or explicit Euler. As already seen, it is based on the 

following approximation of the time derivative of x(t), which corresponds to the so-called forward incremental 

quotient (see Fig. “Graphical interpretation of Euler’s Formula”): 

 

k

kk

k

kk

k

kkk
tttt

h

xx

h

)t(x)t(x

h

)t(x)ht(x

t

)t(x

dt

)t(dx
kk

−=−=−+=
∆

∆≈ ++
==

11
 

As a result, when applied to the dynamical model  

( )t,)t(u,)t(xf
td

)t(xd =  

it yields the approximation 

( )kkkkkk t,u,xf.hxx +≈+1  

which is handled as the identity 

( )kkkkkk t,u,xf.hxx +=+1  

in order to compute the numerical approximation to the solution of the differential equation. 

The latter formula explicitely calculates the actualization of the state vector as a function of known values. 
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Backward or Implicit Euler  

In this case, the so-called backward incremental quotient is used in order to approximate the time derivative 

of x(t): 

1

1

1

1

1

1

−

−

−

−

−

−
==

−=−=−−=
∆

∆≈
k

kk

k

kk

k

kkk
tttt

h

xx

h

)t(x)t(x

h

)ht(x)t(x

t
)t(x

dt
)t(dx

kk  

As a result, when applied to the dynamical model  

( )t,)t(u,)t(xf
td

)t(xd =  

it yields the approximation 

( )kkkkkk t,u,xf.hxx 11 −− +≈  

which, incrementing the time index in one unit is shown to be equivalent to 

( )1111 ++++ +≈ kkkkkk t,u,xf.hxx  

which is handled as the identity 

( )1111 ++++ += kkkkkk t,u,xf.hxx  

 

The latter formula implicitely defines the actualization of the state vector, because the right-hand side 

contains the unknown value xk+1 of the state vector and not –as in the previous case– only known variable 

values (uk+1 , tk+1). Thus, the unknown xk+1 cannot in general be calculated through a direct evaluation of the 

right-hand side, but it should be determined with the help of some implicit method. 

 

BLOCK DIAGRAM (BD) REPRESENTATION OF BOTH FORMULAE, FORWARD AND BACKWARD 

EULER. 

Forward Euler 

( )t,)t(u,)t(xf
td

)t(xd
=  

 
continuous-time BD 

( )kkkkkk t,u,xf.hxx +=+1  

Forward Euler 

 
Fig. FE-BD: Forward-Euler discrete-time BD 
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As shown in the figures above, the method Forward Euler assigns the subsystem containing the discrete-

time delay as the numerical approximation to the continuous-time integrator. 

Backward Euler 

( )t,)t(u,)t(xf
td

)t(xd
=  

 
continuous-time BD 

( )1111 ++++ += kkkkkk t,u,xf.hxx  

Backward Euler 

 
Fig. BE-BD: Backward-Euler discrete-time BD 

 

As shown in the new set of figures, when using the method Backward Euler, a different discrete-time BD 

corresponds to the continuous-time integrator. Observe the algebraic loop    in the BD, which is the 

graphical expression of an implicit equation. An algebraic loop is a signal path without dynamical 

components building a closed loop in a BD, i.e., it has no integrators (or continuous-time delays) in the case 

of a continuous-time BD, and no discrete-time delays in a discrete-time BD. 

 

N.B. 1: In this case, the algebraic loop (implicit equation) is a consequence of the numerical approximation 

method used (implicit Euler). It does not exist in the original state-equation system. 

 

N.B. 2: Recall that there exist continuous state-equation systems with implicit equations. This is the case for 

instance of Differential-Algebraic Systems, which when put into the continuous BD form will contain algebraic 

loops due to the algebraic equations. 

 

EXERCISES  

 

First Exercise. Given the continuous-time model 

 

)t(ub)t(xa)t(x +=&  (scalar variables and coefficients !) 

a. Obtain both explicit and implicit discrete-time approximations after forward- and backward-

Euler formulae, respectively. 

b. The original continuous-problem being linear, it is possible to solve the implicit equation for 

xk+1 , and in this way, to convert the implicit problem into an explicit one. Obtain the explicit 
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solution for xk+1 , and analize on it the stability inherent to the backward-Euler method for the 

free system, i.e., for u(t) = 0. (Stability means that if the true solution converges for t à ∞ –

as it is the case for a < 0 – , then, the approximate solution converges for k à ∞. In general, 

the stability of a numerical method will depend on the choice of h ). 

c. Draw the block diagram version of the three previous results. 

 

Second Exercise. Given the continuous-time (CT) model 

 

)t(ub)t(ya)t(ya)t(y =++ 21 &&&   (scalar variables and coefficients !) 

a. Obtain both explicit and implicit discrete-time (DT) approximation after forward- and 

backward-Euler, respectively. 

Help: a possible technique to solve this problem consists in converting the second order differential 

equation into a system of two state equations, which are to be discretized later (for instance, with the 

definitions x1 = y , x2 = y-dot). 

b. Draw the block diagram version of the two previous results. 

 

CT-BD àà  DT-BD àà  DT-EQUATIONS 

 

Remark: This section is just for you to gain more confidence on manipulation of block-diagrams and other 

representation formalisms, and on the problems associated to discretization of continuous systems. In the 

praxis you wouldn’t proceed in this way, then you would simply specify your CT-problem under the form of an 

ODE, or a set of CT–State Equations, or as a CT–BD. Programs embedded in the software would choose 

and implement a numerical approximation to solve the simulation problem. 

 

DISCRETIZING DIRECTLY ON THE BLOCK DIAGRAMS, THEN OBTAINING THE DT-

EQUATIONS: 

  

Example: PMDCM (Permanent Magnet DC Motor) 

 

i) CT Block diagram 
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ii) Forward Euler DT-BD is obtained after the BD in Fig. FE-BD above: 

 

Forward Euler DT-BD 

 

 

The DT Explicit State Equations can be directly read from the previous BD as follows: 
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It can be seen that the DT Explicit State Equations are of the general form: 

kkkkk UBXAX +=+1  
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iii) Backward Euler DT-BD is obtained after the BD in Fig. BE-BD above: 

 

Backward Euler DT-BD 

 

 

The DT Implicit State Equations can be directly read from the previous BD as follows: 
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or, in matrix Implicit form: 


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111 +++ ++= kkkkkk UBXAXX  

 

As the model is linear, an explicit expression can be recovered, as follows: 
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( ) ( )1

1

1 +
−

+ +−= kkkkk UBXAIX  

 

Third Exercise.  Consider the previously handled Lotka-Volterra (non-linear) model. Obtain the DT 

State Equations following the method in the preceding example, id est: 

a. Construct the corresponding CT-BD. 

b. Construct both, the explicit and the implicit DT-BD´s. 

c. Write-down the DT State Equations through reading of the BD´s. 

 

Fourth Exercise. The following is the (non-linear) CT-BD of a Series Connected DC-Motor with full 

excitation(*). Do the same exercise as in both previous cases. Consider g and  gΣ as known non-

linear functions, and gΣ
-1 as the inverse of the latter. 

Meaning of the symbols in the BD : 

This block is an integrator: and this one is a gain, the value of its gain being Km: 

 
 

 
 

(*) Just for information, find below the equivalent circuit of the DC-Motor (if you are not interested, ignore 

it). g is a non-linear function representing the dependence of the magnetic excitation flux ψe on the 

excitation current Ie : )I(gØ ee = . In a full series connection of both the armature and the field coils, the 

armature and the excitation currents are the same: Ia = Ie. This situation is modeled as having a unique 

coil with aea ØØ)I(g +=Σ = aaae IL)II(g +=  as its magnetic characteristic. 

 


