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Estuarine wetlands are among the most productive ecosystems on Earth providing habitat for Predicting estuarine wetlandsEstuarine wetlands are among the most productive ecosystems on Earth, providing habitat for Predicting estuarine wetlands Estuarine wetlands are among the most productive ecosystems on Earth, providing habitat for 
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th tl d d i b tid l h d d i d t i k f di t d il coevolving dynamics of waterthese wetlands are driven by tidal hydrodynamics and are net sinks for sediment and soil coevolving dynamics of water these wetlands are driven by tidal hydrodynamics and are net sinks for sediment and soil 

f
g y

flow soil and vegetation Thiscarbon Their distribution in the tidal frame depends on a delicate balance between flow, soil and vegetation. This carbon.  Their distribution in the tidal frame depends on a delicate balance between o , so a d ege a o s
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Th l i t ti b t h d d i l d il th t thi results of our recentlyThe complex interactions between hydrodynamics, ecology and soil processes that govern this results of our recently The complex interactions between hydrodynamics, ecology and soil processes that govern this y
de eloped n merical model forbalance produce positive feedbacks and system self-organization As complex systems these developed numerical model forbalance produce positive feedbacks and system self-organization. As complex systems, these developed numerical model for 
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The model simulates Plant biomassThe model simulates Plant biomass
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festuarine wetlands in Australia Many wetlands Fig

types on flow resistanceestuarine wetlands in Australia. Many wetlands Fig
types on flow resistance.y

i A t li i d b th C l ti ff t t ti tin Australia are comprised by mangrove on the Coevolution effects appear as vegetation typesin Australia are comprised by mangrove on the Coevolution effects appear as vegetation typessea side and saltmarsh on the land side Sea- prevailing hydrodynamic conditions The modesea side and saltmarsh on the land side. Sea- prevailing hydrodynamic conditions. The modelevel rise has promoted mangrove landward p g y y
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H d d i M d l
p

t i tl d f S th t A t li (Fi Hydrodynamic Moduleestuarine wetland of South eastern Australia (Fig Hydrodynamic Moduleestuarine wetland of South eastern Australia (Fig 
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We use a 2D flood model VMMHH 1.0 (RiccardFigure 1 Location of the Hunter estuary
) g g g

up rates are incorporated into continuous We use a 2D flood model VMMHH 1.0 (RiccardFigure 1 - Location of the Hunter estuary,  up rates are incorporated into continuous 
which is based on the inter-connected cells schNSW Australia (32ο51’52”S 151ο 42’15”E)
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includes both river (1 D) and floodplain cells Mand the study area for this research
hydrodynamic simulations of an estuarine 

includes both river (1-D) and floodplain cells. Mand the study area for this research wetland under different sea level rise scenarios ( ) p
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wetland under different sea level rise scenarios.
tion is solved implicitly (Fig 5) and the mometion is solved implicitly  (Fig. 5) and  the mome
is replaced by discharge laws that depend of this replaced by discharge laws that depend of th
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2 Site Characterization2.   Site Characterization

V t ti M d lVegetation ModuleS b t t f th t d G M A i i i t tid l l Vegetation ModuleSubstrates of the study area are Grey Mangrove Avicennia marina permanent tidal poolsSubstrates of the study area are Grey Mangrove Avicennia marina, permanent tidal pools, 
Vegetation is defined based on observed prefeintertidal saltmarsh pannes Sporobolus virginicus saltmarsh and Sarcocornia quinqueflora Vegetation is defined based on observed prefeintertidal saltmarsh pannes, Sporobolus virginicus saltmarsh and Sarcocornia quinqueflora g p
Hydroperiod (H) and Tidal Range (R ) based osaltmarsh (Fig 2) Saltmarsh pannes and tidal pools may be unvegetated or covered by Hydroperiod (H) and  Tidal Range (RT) based osaltmarsh (Fig. 2). Saltmarsh pannes and tidal pools may be unvegetated or covered by yd ope od ( ) a d da a ge ( T) based o
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d t d f b thi l l tti fil t l ti l Table 1)dense stands of benthic algal matting or filamentous algae respectively Table 1) dense stands of benthic algal matting or filamentous algae, respectively. 

T blShorebird habitat is closely linked to vegetation distribution Wader birds preference for Tidal Pools / TableShorebird habitat is closely linked to vegetation distribution. Wader birds preference for Tidal Pools /

roosting includes saltmarsh mudflat and saltmarsh panes and excludes mangrove Past Mudflatroosting includes saltmarsh, mudflat and saltmarsh panes, and excludes mangrove. Past Mudflatg , p , g
h t lt h h lt d i d li f bi d f th t d itmangrove encroachment on saltmarsh has resulted in decline of birds use of the study site Saltmarsh /mangrove encroachment on saltmarsh has resulted in decline of birds use of the study site 
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HHFigure 6 – Classification of vegetation sitesFigure 6 – Classification of vegetation sites 
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S il E l ti M d lSoil Evolution ModuleSoil Evolution Module

Change in soil surface elevation is defined basChange in soil surface elevation is defined basg
d t 2000 2010 i d (H t l 2009)Waste data over 2000-2010 period (Howe et al. 2009)aste

Emplacement data over 2000 2010 period (Howe et al. 2009)Emplacement 
FacilityFacility
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Aerial Photo: AAM Hatch 2004

Figure 2 – Vegetation distribution within the Figure 3 MigratoryFigure 2 – Vegetation distribution within the Figure 3 – Migratory 
study area showing location of surface elevation
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shorebird habitatstudy area showing location of surface elevation shorebird habitat

tables (SETs)tables (SETs) 
Fi 7 SET ( ft C h t l 2002 )Figure 7 – SET (after Cahoon et al. 2002 )Figure 7 SET (after Cahoon et al. 2002 )
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4 M d l S t d R lt4. Model Setup and Results4.    Model Setup and Results
Hydrodynamics

Setup
Hydrodynamics

SetupFlow depth pFlow depth 
Velocity

The domain included most part of the wetland internal culverts and channels (Fig 8) Input at
Velocity

The domain included most part of the wetland, internal culverts and channels (Fig. 8). Input at p , ( g ) p
th tl d t f th i l d l i t d f h l t l l d t b dthe wetland entrance for the numerical model consisted of hourly water level data based onthe wetland entrance for the numerical model consisted of hourly water level data based on 
observations and modified for different sea level rise scenarios (Fig 9) The hydrodynamicobservations and modified for different sea-level rise scenarios (Fig. 9). The hydrodynamic ( g ) y y
model results successfully simulated tidal attenuation due to internal culverts (Fig 10)model results successfully simulated tidal attenuation due to internal culverts (Fig.10).ode esu ts success u y s u ated t da atte uat o due to te a cu e ts ( g 0)
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Fi 9 Tid l i t t tl d tFigure 9 – Tidal input at wetland entrance.Figure 9 Tidal input at wetland entrance.
4 M d l t d f db kgure 4 – Model components and feedbacksgure 4 Model components and feedbacks

d t d b d th i f ts are updated based on their preference tos are updated based on their preference to 
el also considers that accretion values vary withel also considers that accretion values vary with y

l i f ti ll t d local information collected over several years,ocal information collected over several years, 
t fl i t d t ti frates flow resistance and vegetation preferencerates, flow resistance and vegetation preference 

 
PRECIPITATION INTERCEPTION Figure 10 – Hydrodynamic model resultsFigure 8 – Computational domainPRECIPITATION Figure 10 Hydrodynamic model results.Figure 8 Computational domain.
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Mass conserva Th d l f 20 i d id i t diff t IPCC t f l l i
Q 4,i Mass conserva- The model was run for a 20-year period considering two different IPCC rates of sea-level rise:z i 

t ti
The model was run for a 20 year period considering two different IPCC rates of sea level rise: 

entum equation 8 and 11 mm/y (Fig 11) Evolution of vegetation distribution outputs given by model runsQ Q 1 i zentum equation 8 and 11 mm/y (Fig. 11). Evolution of vegetation distribution outputs given by model runs Q 3,i 1,i  z i n (t  ) 
he type of link

y ( g ) g p g y
confirms the expected response of estuarine wetlands to sea level rise: saltmarsh areasQ 2 ihe type of link confirms the expected response of estuarine wetlands to sea-level rise: saltmarsh areas Q2, i 

annel flow etc
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i t i l d i d t i t i f bl iti i th tid l f b t i t f thannel flow, etc migrate inland in order to maintain a favourable position in the tidal frame but in parts of thedz, migrate inland in order to maintain a favourable position in the tidal frame, but in parts of the 
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is replaced b tidal pool/m dflat Using the t o different sea le el rise rate scenarios of 8Fi 5 C ll d l is replaced by tidal pool/mudflat. Using the two different sea-level rise rate scenarios of 8Figure 5 – Cells model is replaced by tidal pool/mudflat. Using the two different sea level rise rate scenarios of 8 

/ d 11 / d l d f 6 33 % 13 77 % f d
Figure 5 Cells model

mm/y and 11 mm/y vegetated area losses ranged from 6 33 % to 13 77 % for mangrove anderence of mangrove and saltmarsh to mm/y and 11 mm/y vegetated area losses ranged from 6.33 % to 13.77 % for mangrove and erence of mangrove and saltmarsh to  from 47 04 % to 54 45 % for saltmarsh respectively (Fig 12)g
on measurements (Howe et al 2010) (Fig 6 and from 47.04 % to 54.45 % for saltmarsh, respectively (Fig. 12).  on measurements (Howe et al. 2010) (Fig. 6 and , p y ( g )o easu e e ts ( o e et a 0 0) ( g 6 a d
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e 1 – Values of H, RT and elevation from classification Scenario 1 Mangrove area [Ha], T 
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2 02 mm/y Fi 12 V t ti h f t2.02 mm/y Figure 12 – Vegetation changes for two sea-
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l l i iACU Figure 11 – Model predictions of vegetation evolution level rise scenariossource: ACU g p g
sed on observed surface elevation tables (SETs)sed on observed surface elevation tables (SETs) ( )
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Table 2 Values of surface elevation change
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Table 2 – Values of surface elevation change
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