ESTIMACIÓN DE FUNCIONES HIDRAULICAS DE SUELOS LIMOSOS. VALORES DE REFERENCIA Y REGRESIONES CON PARÁMETROS FÍSICOS

Dr Ing. Erik Zimmermann

CONICET y Centro Universitario Rosario de Investigaciones Hidroambientales. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario. Riobamba 245 bis (2000) Rosario. Santa Fe. Argentina, e-mail: erikz@fceia.unr.edu.ar

palabras claves: suelos limosos, condutividad hidráulica, curvas de retención.

RESUMEN

En este trabajo se presenta el procesamiento de curvas de retención obtenidas de la base UNSODA para las fracciones franco limosa, franco arcillo limosa y arcilla limosa, las cuales son características de los suelos del sur santafecino. Los parámetros fueron θs , $\alpha y n$ del modelo de van Genuchten que se ajustaron a las curvas de campo y laboratorio (totalizando 152 muestras). Se presentan los resultados del ajuste junto a parámetros físicos de las muestras, los que pueden servir de guía comparativa para otras muestras. Se han incluido valores de referencia locales mediante ensayos de laboratorio y resultados de calibración de un modelo matemático aplicado regionalmente. Se observa en general que los promedios obtenidos en este estudio para la humedad de saturación $\theta s y n$ coinciden en gran medida con los presenta mayores diferencias. Respecto al parámetro α , presenta importantes desvíos típicos y diferencias de un orden de magnitud respecto a los promedios obtenidos por los otros autores. Las regresiones lineales múltiples planteadas con otras características físicas de las muestras (densidad húmeda, porosidad, Ph, contenido orgánico) han ofrecido bajos coeficientes de determinación.

ABSTRACT

In this work, processing of retention curves obtained of the UNSODA database, for silty loam, silty clay loam, and silty clay, is presented. This textures are characteristic of the soils of the south of Santa Fe province. The parameters were θs , α and n of the van Genuchten's model that were fitted to the field and laboratory curves (totalling 152 samples). The results of the adjustment next to physical parameters of the samples, are presented. These results can serve as comparative guide for another samples. Local reference values have been included by means of laboratory experiences and results of a mathematical model calibration, which was applied regionally. It is observed in general that the averages obtained in this study for the saturation moisture content θs and n coincide mostly with those presented by Rawls et al (1982) and for Carsel and Parrish (1988), except for silty clay fraction that presents bigger differences. Regarding the parameter α , it presents important standard deviations and differences of an order of magnitude can be observed respect to the averages obtained by the other authors. The multiple lineal regressions proposed with other physical characteristics of the samples (humid density, porosity, Ph, organic content) have had low determination coefficients.

INTRODUCCIÓN

El interés en la zona no saturada (ZNS) ha aumentado en los últimos años debido a la evidencia creciente de la afectación ambiental provocada por actividades agrícolas e industriales. En este ambiente, los modelos numéricos son rutinariamente usados en investigación y gestión para predecir el movimiento de agua y solutos en la ZNS.

Los resultados de las aplicaciones sólo pueden ser confiables si las propiedades del medio poroso son conocidas. Esto representa la principal limitación a la tecnología actual de modelos sofisticados que se encuentra en un estado avanzado con respecto al conocimiento de los parámetros que engloban esos modelos.

En trabajos de calibración de modelos hidrológicos continuos; se ha demostrado la alta sensibilidad que presentan los procesos subterráneos, observables en el sistema mediante los niveles freáticos, y los procesos hidrológicos superficiales, observables a través de volúmenes de escurrimiento, frente a los parámetros hidráulicos que caracterizan la zona no saturada (Zimmermann y Riccardi, 2002, Zimmermann, 2003).

Esto resalta el rol protagónico que ejerce la zona vadosa en la recarga freática y en la infiltración, que constituyen los procesos que interconectan la hidrología superficial y la subterránea. La zona no saturada debe ser analizada con detenimiento ya que en ella se da lugar a importantes procesos de intercambio de flujo.

Para caracterizar el medio no saturado se requiere del conocimiento de las curvas de conductividad $k(\theta)$, y retención $\psi(\theta)$ o bien, difusividad $D(\theta)$, siendo θ , el contenido volumétrico de humedad, $k(\theta)$ la conductividad hidráulica no saturada, $\psi(\theta)$ la succión mátrica del suelo y $D(\theta)$ el coeficiente de difusividad.

Se han diseñado un gran número de ensayos de laboratorio y métodos de campo para medir las funciones hidráulicas del suelo (Klute, 1986), pero la mayoría de los métodos son relativamente costosos y difíciles de llevar a cabo.

Aquí se presentan, en un estado inicial de la investigación realizada y con fines de caracterizar los suelos típicos de la llanura pampeana

santafecina, valores de referencia obtenidos de distintas fuentes de información: parámetros calibrados de modelos matemáticos hidrológicos aplicados en la región, resultados de ensayos compilados de estaciones de INTA y las curvas de retención calibradas con la información de una base de datos pública (recopilada por el departamenteo de agricultura de EEUU, USDA) denominada UNSODA (Leij et al, 1996).

En una segunda parte del trabajo se proponen regresiones entre parámetros hidráulicos y parámetros físicos tales como densidad húmeda, contenido orgánico, porosidad y Ph.

El conjunto de datos conforma en sí mismo una base informativa que pretende servir de referencia para aplicaciones hidrológicas en los suelos de la llanura santafecina.

ALGUNOS MODELOS ANALITICOS PARA LAS FUNCIONES HIDRAULICAS DE LOS SUELOS

Aunque se han propuesto muchas funciones empíricas para la curva de retención son pocas las que tienen una base fenomenológica. Una de las más conocidas y populares es la de Brooks y Corey (1964), según la cual:

$$S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} = \begin{cases} \left(\frac{\psi}{\psi_c}\right)^{-\lambda} & si \to \psi \ge \psi_c \\ 1 & si \to \psi < \psi_c \end{cases}$$

donde θ s es el contenido de humedad para medio saturado, θ r es la humedad correspondiente a saturación irreductible, λ es un parámetro que depende de la distribución de los tamaños de poros, ψ c es la succión crítica (presión de entrada de aire) y Se es la saturación efectiva.

El valor de ψc en cm puede obtenerse a partir del diámetro d_{10} (en cm) y de la porosidad η mediante (Bear, 1972):

$$\psi_c = \frac{0.45}{d_{10}} \frac{(1-\eta)}{\eta}$$

Esta curva de retención es adecuada para suelos (generalmente alterados) con textura gruesa (y grande) y especialmente dentro del rango $\psi >> \psi c$.

Para suelos que no reúnen estas características y para condiciones próximas a la saturación la curva no se ajusta a los datos experimentales. En escala doblemente logarítmica esta curva se representa como dos líneas rectas con un cambio de pendiente en $\psi = \psi c$.

Esta discontinuidad también contrasta con la regularidad que suelen presentar las curvas de retención experimentales. Para soslayar las limitaciones de la curva de Brooks y Corey se han propuesto toda una serie de curvas, todas ellas con forma sigmoidal. Entre ellas se destaca la de van Genuchten (1980), cuya expresión es la siguiente:

$$S_e = \left[1 + (\alpha \psi)^n\right]^{-m} \tag{1}$$

donde α , *m* y *n* son parámetros empíricos. Este modelo de curva de retención tiene más flexibilidad para adaptarse a las curvas reales ya que depende de cinco parámetros independientes (α , *m*, *n*, θ s, θ r).

En la práctica resulta conveniente restringir los valores de *m* y *n* de forma que m = 1 - 1/n. Con ello se obtienen expresiones sencillas de la curva de conductividad que se deriva de ella. La curva de van Genuchten incluye la de Brooks y Corey como un caso particular cuando *n* tiende a infinito, siendo el producto *n.m* constante. En este caso λ es igual a *nm* y $\alpha = 1/\psi c$.

Para valores altos de la succión, la pendiente de la curva depende de *m.n.* Los valores de los parámetros de la curva de van Genuchten han sido tabulados para diferentes tipos de suelos (van Genuchten, 1980).

Para la dependencia de la conductividad hidráulica relativa, $K_r = K(\theta) / Ksat$, con el contenido de humedad suelen utilizarse fórmulas empíricas del tipo (Irmay, 1954):

$$K_r = Se^3$$

Este tipo de curva suele conducir a buenos ajustes en suelos de granulometría uniforme. Para rocas consolidadas es mejor un modelo en el que la conductividad relativa es proporcional a Se^4 .

Otros autores como Mualem (1976a, 1976b) proponen expresiones de Kr obtenidas a partir de la curva de retención:

$$K_r = S_e^{\ p} \left[\frac{f(S_e)}{f(1)} \right]^2$$

donde p es aproximadamente igual a 0.5 y f(Se) viene dada por:

$$f(S_e) = \int_0^{Se} \frac{ds}{\psi(s)}$$

Sustituyendo ambas ecuaciones y utilizando la curva de retención de van Genuchten se obtiene una expresión para Kr en la que intervienen funciones beta incompletas. Sin embargo, en el caso particular en el que m = 1 - 1/n, Kr se reduce a:

$$K_r = S_e^{\ p} \left[1 - (1 - S_e^{1/m})^m \right]^2$$
(2)

Esta curva suele proporcionar buenos resultados para medios con textura media y gruesa.

La conductividad hidráulica relativa puede expresarse también en función de la succión. Sin embargo, las curvas $Kr(\psi)$ suelen presentar marcados efectos de histéresis. La forma típica de estas expresiones es (Gardner, 1958):

$$K_r = \frac{a}{b + \psi^m}$$

donde *a*, *b* y *m* son constantes.

Aunque se ajusta peor a los datos experimentales el modelo exponencial $Kr = exp(-\alpha\psi)$ es particularmente útil para la obtención de soluciones analíticas.

PARÁMETROS DEL SUELO PARA LA CURVA DE RETENCIÓN

El Servicio de Conservación de Suelos de los Estados Unidos presentó los valores medios de las propiedades hidráulicas de los suelos de acuerdo a la clasificación de USDA estimadas por Rawls y otros (1982) y Carsel y Parrish (1988). Ver Tablas 1 y 2, adjuntas.

Textura	θ_s	θ_r	K_s	α	n
	(cm3/cm3)	(cm3/cm3)	cm/d	1/cm	(-)
Arcilla	0,385	0,090	1,44	0,027	1,131
Franco arcilloso	0,390	0,075	5,52	0,039	1,194
Suelo Franco	0,434	0,027	16,32	0,090	1,220
Franco arenoso	0,401	0,035	146,60	0,115	1,474
Franco limoso	0,486	0,015	31,68	0,048	1,211
Arcilla limosa	0,423	0,056	2,16	0,029	1,127
Franco arcillo-limoso	0,432	0,040	3,60	0,031	1,151
Arena	0,417	0,020	504,00	0,138	1,592
Arcilla arenosa	0,321	0,109	2,88	0,034	1,168
Franco arcillo- arenoso	0,330	0,068	10,32	0,036	1,250

Tabla 1 -. Valores medios para los parámetros de los suelos, (Rawls y otros, 1982), α y *n* son los parámetros de van Genuchten. Se han resaltado en gris las texturas analizadas en el trabajo.

Та	bla 2.	Valores m	edios y d	lesviacione	s estánd	ares para	los p	parámetros	del si	uelo para	10 tip	os de	texturas
	(Cars	el y Parrish	i, 1988), d	α y <i>n</i> son l	os parán	netros de	van G	Genuchten.	Se hai	n resaltad	lo en gr	is las	texturas
	analiz	adas en el t	trabajo.										

Textura		θs	(9r	Ks		α		п	
	(cm3/cm3)		(cm3/	(cm3/cm3)		(cm/dia)				(-)
	Media	D.E.	Media	D.E.	Media	D.E.	Media	D.E.	Media	D.E.
Arcilla	0,38	0,09	0,068	0,034	4,8	10,1	0,008	0,012	1,09	0,09
Franco arcilloso	0,41	0,09	0,095	0,01	6,2	16,8	0,019	0,015	1,31	0,09
Suelo Franco	0,43	0,10	0,078	0,013	25,0	43,7	0,036	0,021	1,56	0,21
Franco arenoso	0,43	0,09	0,057	0,015	350,2	272,6	0,124	0,043	2,28	0,27
Franco limoso	0,45	0,08	0,067	0,015	10,8	29,5	0,020	0,012	1,41	0,12
Arcilla limosa	0,36	0,07	0,070	0,023	0,5	2,6	0,005	0,005	1,09	0,06
Franco arcillo-limoso	0,43	0,07	0,089	0,009	1,7	4,6	0,010	0,006	1,23	0,06
Arena	0,43	0,06	0,045	0,010	712,8	374,4	0,145	0,029	2,68	0,29
Arcilla arenosa	0,38	0,05	0,106	0,013	2,9	6,7	0,027	0,017	1,23	0,10
Franco arcillo-	0,39	0,07	0,100	0,006	31,4	65,7	0,0S9	0,038	1,48	0,13
arenoso										

Referencias: D.E: desvío estándar.

PARAMETROS DEL SUELO EN LA REGION PAMPEANA

La llanura chaco-pampeana, de clima templado húmedo, está caracterizada por un relieve de moderada pendiente topográfica.

El área meridional de la provincia de Santa Fe (Figura 1) presenta un módulo pluviométrico del orden de los 1000 mm y la temperatura media anual del orden de los 16 °C.

La unidad estratigráfica superior del paquete sedimentario está compuesta por el loess de la Formación Pampeana, integrada por limos y arcillas de colores castaños. El espesor en el sector de análisis varía entre 30 y 150 metros.

En el perfil del suelo, incluyendo el horizonte C, predomina la fracción limosa, que en términos medios ocupa el 70 % con respecto a un 26 % de la arcilla. El resto lo cubre la fracción arenosa.

Los mapas de suelos disponibles en la provincia de Santa Fe, elaborados por el INTA, clasifican, desde un punto de vista textural, a los suelos de la región entre las fracciones <u>franco limosa</u>, <u>franco arcillo limosa y arcilla limosa</u>.

El objetivo del trabajo consistió la búsqueda de información relativa a suelos clasificados en dichas composiciones texturales. Los parámetros correspondientes a dichas fracciones se resaltan en las Tablas 1 y 2.

Para ello se contó con información de la base UNSODA (Unsaturated Soil Hydraulic Database) versión 1.0 seleccionando las muestras de suelos que se corresponden con las texturas presentes en la región: silty loam, silty clay loam y silty-clay (Fig. 2).

UNSODA es una base de datos de propiedades hidráulicas de suelos no saturados (curvas de retención, de conductividad hidráulica y difusividad), de propiedades básicas (distribución de tamaño de partículas, densidad, contenido de materia orgánica, etc.) e información adicional sobre la zona de extracción y los ensayos de laboratorio. El programa se puede utilizar para almacenar y editar datos, búsquedas y consultas clasificadas, imprimir los resultados de las búsquedas, describir y ajustar ecuaciones a las propiedades hidráulicas.

Procesamiento de datos

Para la fracción franco limosa (silty loam) la base cuenta con 142 muestras de suelos, para la fracción franco arcillo limosa (Silty clay loam) se contó con 33 muestras de suelo y para la fracción arcillo limosa se contó con 21 muestras de suelos.

La base permite realizar consultas clasificadas por texturas de suelos, pero las salidas se realizan en archivos de textos (ASCII) y con toda la información disponible para cada muestra de suelo.

A los fines de separar la información de propiedades básicas, de las curvas granulométricas y de los ensayos de laboratorio en situ, se diseñaron programas en PASCAL para el procesamiento de la información y permitir así un tratamiento posterior.

Los programas desarrollados extractan los textos en código ASCII de las salidas de la base UNSODA y los transforman en códigos numéricos. Se diseñaron algoritmos de caracteres para clasificar y archivar

por separado, parámetros básicos para cada código, curvas granulométricas, curvas de retención de humedad $\theta(h)$, curvas de conductividad hidráulica $K(\theta)$ ó K(h) y curvas de difusividad $D(\theta)$ ó D(h). Esto en función de los datos disponibles para cada muestra.

Este procesamiento permitió extractar la siguiente información por muestra de suelo analizada:

- Código asignado en la base
- Profundidad de extracción
- Horizonte edáfico
- Profundidad freática
- Localización
- Precipitación media anual
- Temperatura media mes de enero
- Temperatura media mes de julio
- Densidad húmeda
- Densidad seca
- Porosidad
- Contenido orgánico
- Conductividad hidráulica saturada
- Ph
- Índice RAS
- Curva granulométrica del suelo.
- Curva de retención (laboratorio o in situ)
- Curva de conductividad (laboratorio o in situ)

En segunda instancia, se diseñaron programas en lenguaje FORTRAN para el armado automático de los archivos de entrada para el programa RETC (Van Genuchten et al, 1991), el cual permite estimar los parámetros de funciones analíticas de las curvas hidráulicas del suelo.

RETC (RETention Curve) es un programa de distribución libre que analiza las propiedades hidráulicas de los suelos no saturados.

El código, escrito en lenguaje FORTRAN77, permite ajustar los parámetros de las curvas de retención de humedad y de conductividad hidráulica no saturada. Los datos experimentales o de campo ingresan como entrada en el programa

La curva de retención de humedad puede representarse en el programa mediante la ecuación de Brooks-Corey o van Genuchten, mientras que la conductividad hidráulica no saturada, K(h) ó $K(\theta)$ o la difusividad, $D(\theta)$, son formuladas en términos de la distribución estadística del tamaño de poros mediante los modelos de Mualem y/o Burdine.

Se utiliza en la optimización de los parámetros un método no lineal de ajuste por mínimos cuadrados.

El código RETC es útil para una variedad de aplicaciones incluyendo (1) una evaluación directa de las funciones hidráulicas cuando los parámetros son conocidos, (2) la obtención de parámetros de las funciones hidráulicas mediante un proceso de optimización, partiendo de datos observados de conductividad in situ, ya sea sólo datos de retención de humedad, o simultáneamente de retención y de conductividad hidráulica no saturada.

En este trabajo se han utilizado las expresiones de van Genuchten para la curva de retención (ec. 1), de Mualem para la curva de conductividad (ec. 2) y utilizando la restricción de m = 1 - 1/n.

Al programa original se le adicionó una rutina realizada en lenguaje PASCAL (GRF) para graficar las datos observados y las curvas ajustadas con RETC. Esto permitió visualizar claramente el grado de ajuste de cada muestra de suelo tanto en su curva de retención como de conductividad (ver Figura adjunta).

El esquema adjunto permite visualizar el diagrama de entradas y salidas de cada programa y sintetiza el tratamiento realizado a los datos de la base UNSODA.

Figura 1. Area de estudio: sector meridional de Santa Fe

Figura 2. Triángulo de clasificación textural con las fracciones seleccionadas (gris).

RESULTADOS Y DISCUSIÓN

La aplicación de los códigos mencionados dio por resultados la estimación de los parámetros de van Genuchten para las texturas analizadas.

Cabe mencionar que algunas muestras originales presentes en la base UNSODA 1.0 fueron depuradas al no contar con información granulométrica de interés para un estudio posterior. Esta depuración redujo el número de casos a 114 muestras para la fracción franco limosa (silty loam), 25 muestras de suelos para la fracción franco arcillo limosa (Silty clay loam) y 14 muestras para la fracción arcillo limosa.

Los resultados de la parametrización de las muestras se detallan en las Tablas 1A, 2A y 3A del Anexo. Allí se incluyen el código de la muestra de suelo (que figura en la base UNSODA), la profundidad y localización de la muestra, su densidad húmeda, densidad seca, porosidad, contenido orgánico y PH, junto con los parámetros θs , α y *n* de la expresión de van Genuchten (ec. 1).

Estos parámetros característicos impresos pueden servir de guía comparativa a la hora de seleccionar los parámetros de van Genuchten para otras muestras de suelo. P.ej., seleccionando parámetros hidráulicos de suelos que tengan densidades, contenidos orgánicos, etc. semejantes.

Se ha podido comprobar que durante el proceso de calibración de parámetros con el código RETC, los valores de los mismos están influenciados por el rango de humedades cubiertos por los datos experimentales. Cuanto más estrecho es este rango mayor divergencia puede esperarse en los parámetros ajustados respecto a sus valores medios.

El código RETC permite ajustar parámetros aproximando la curva de retención solamente, o bien ésta y la curva de conductividades simultáneamente. En el primer caso, que fue la opción adoptada mayoritariamente, se encontraron altos coeficientes de determinación. El promedio de los coeficientes de correlación obtenidos fue de 0,9678 con un desvío estándar de 0.0713 (ver Figura adjunta)

El desarrollo de las rutinas gráficas permitió visualizar la performance de los ajustes, contituyendo una herramienta muy útil a la hora de seleccionar el método de ajuste.

Valores de referencia

La Tabla 3 sintetiza la información recolectada para las fracciones texturales de interés en este estudio. Allí figuran los valores de referencia de Rawls y otros (1982), de Carsel y Parrish (1988), los promedios y desvíos estándares de los parámetros ajustados en este trabajo y otros valores de referencia locales que se detallan a continuación.

Se contó, como información adicional de valores locales, con resultados de ensayos en laboratorio para un grupo de seis muestras de suelo extraídas por INTA Oliveros (pcia. de Santa Fe). Las muestras representan horizontes A y B bajo usos de suelo diferentes: pasturas y agrícola.

Las muestras se clasificaron en arcilla-limosa para las del horizonte B y franco-limoso para las del horizonte A. Se ajustaron los parámetros de van Genuchten aplicando el código RETC (Figura 3). Los valores extremos de los parámetros se incluyen en la Tabla 3.

Como tercer elemento de juicio, se contó con valores de parámetros calibrados con el modelo SHALL3 (Zimmermann y Riccardi 2000). El modelo, apto para representar áreas de llanura, se ha utilizado para realizar predicciones de cambios en procesos hidrológicos provocados por acciones antrópicas a escala de cuenca y en el largo plazo.

El modelo contempla las interacciones entre los procesos de superficie, en la zona no saturada (ZNS) y en la zona saturada (Zimmermann y Riccardi 2002). En cada celda ó unidad de discretización espacial puede cuantificar

dinámicamente variables de estado, tales como almacenamientos por intercepción, superficial, en el perfil del suelo y subterráneo, así como flujos de humedad y vapor, tales como los envueltos en los procesos de evapotranspiración, ascenso capilar, escurrimiento superficial, mantiforme y encauzado, a superficie libre y a través de constricciones, infiltración, percolación profunda y escurrimiento subterráneo. Cada una de estas variables puede conocerse con una adecuada resolución espacial y temporal.

El modelo fue puesto en operación en el sistema hidrológico del arroyo Ludueña (Santa Fe, Argentina), y posteriormente fue calibrado utilizando información freatimétrica, pluviográfica y limnigráfica (período 1994-96). Para la curva de retención del suelo se utilizaron las expresiones de Brooks y Corey, por lo que la transformación a los parámetros de van Genuchten se realizó aplicando las ecuaciones $\lambda = nm$, m = 1 - 1/n y $\alpha = 1/\psi c$. Los parámetros calibrados (Zimmermann 2003) se incluyen en la Tabla 3. Dado que los mismos fueron ajustados en forma global para la cuenca, sólo constituyen valores de referencia generales.

Puede observarse en la Tabla 3 que la humedad de saturación de los suelos locales concuerda aproximadamente con los valores promedios señalados por Rawls y otros. No obstante teniendo en cuenta los desvíos estándares obtenidos para las otras muestras, las predicciones utilizando tanto los datos de este estudio como los de Carsel y Parrish, podrían ser aceptables. Los desvíos estándares, en comparación con los promedios, son pequeños para esta variable.

El párametro α presenta desvíos estándares del orden de los promedios, lo que da cuenta de la gran variabilidad que presenta el mismo. Incluso, los promedios publicados por los distintos autores para cada muestra son muy diferentes entre sí. Da la sensación de constituir el parámetro mas difícil de pronosticar. Los valores encontrados para suelos locales son bajos respecto a los presentados por Rawls y otros y Carsel y Parrish, incluso los promediados para este estudio. Los datos de Rawls y otros son significativamente mayores que los restantes.

El parámetro *n* presenta menores desvíos y aparenta ser menos variable que el α . Un rango observado para los distintos autores y texturas consideradas entre 1,09 y 1,56, da esa pauta. Los valores

obtenidos promediando las muestras de la base UNSODA se acercan en gran medida a los obtenidos para las muestras locales.

Se observa que los desvíos son mayores para las fracciones que tienen menos cantidad de datos, como ocurre con la arcilla-limosa y los suelos franco arcillo-limosos.

Regresiones con otras variables

Se han planteado regresiones con parámetros característicos del suelo con el fin de pronosticar el comportamiento hidráulico partiendo de dicha información.

Se propusieron regresiones lineales considerando la densidad húmeda, porosidad, Ph y contenido orgánico de las muestras como variables independientes y θs , α y *n* como variables dependientes. Solamente se cosideraron en las regresiones aquellas variables estadísticamente significativas con un intervalo de confianza del 90%.

Los resultados obtenidos para cada fracción analizada se muestran en las Tablas 4, 5 y 6 y las Figuras 4, 5 y 6.

En términos generales puede afirmarse que los coeficientes de determinación han sido bajos para los parámetros α y *n* y medios para la humedad de saturación θ s.

Se observa que la <u>humedad de saturación θ s</u> tiene una relación inversa con la densidad húmeda, esto pudo apreciarse en las fracciones arcillo-limosa y franco limosa. Es un resultado lógico ya que una mayor compactación de la muestra implicará una mayor densidad húmeda y una menor porosidad y/o humedad de saturación. Llama la atención el vínculo del parámetro con el contenido orgánico de las muestras para la fracción franco arcillo limosa, cosa que no ocurre con las otras fracciones.

En todos los casos hubo una dependencia directa con la porosidad. Tomando como única variable independiente la porosidad, los valores promedios de la relación θ s - porosidad se detallan en la tabla adjunta:

$\theta s = C * porosidad$										
Arcillo limosa	Franco arcillo- limosa	Franco limosa								
C = 0.959	C = 0.864	C = 0.903								

El valor de C fue verificado por otros autores encontrándose en este entorno de valores.

Los coeficientes de determinación obtenidos para θ s varían de altos para la arcilla-limosa a bajos para la franco limosa, muy asociados al tamaño de la muestra como puede apreciarse en las Figuras 4, 5 y 6.

Respecto al <u>parámetro α </u> se observa que, al igual que la humedad de saturación θ s, tiene una relación inversa con la densidad húmeda, esto pudo apreciarse para todas las fracciones analizadas.

Respecto a la participación de la porosidad en las regresiones, es nula en la fracción arcillo-limosa, con relación inversa en la textura franco arcillo-limosa y directa en la franco limosa. Aunque en casi todos los casos los coeficientes de determinación han sido muy bajos, lo cual pone en cuestionamiento la relevancia de las variables involucradas.

Las regresiones planteadas para el <u>parámetro n</u> tienen diferentes variables relevantes según la fracción textural analizada. P.ej. para la arcillo – limosa interviene el contenido orgánico, para la franco arcillo-limosa interviene la porosidad y para la franco limosa el PH. Los coeficientes de determinación han resultado muy bajos por lo que las regresiones no permiten hacer un buen pronóstico de n partiendo de éstas propiedades físicas del suelo, al menos para las muestras analizadas.

CONCLUSIONES

Se procesaron las curvas de retención obtenidas de la base UNSODA para las fracciones franco limosa, franco arcillo limosa y arcilla limosa, las cuales son características de los suelos del sur santafecino. Se ajustaron parámetros θ_s , α y n del modelo de van Genuchten a los datos obtenidos de las muestras en campo y en laboratorio (totalizando 152 muestras),

obteniéndose elevados coeficientes de determinación.

Se presentan los resultados de la parametrización incluyendo otros parámetros físicos de las muestras, los que pueden servir de guía comparativa seleccionando parámetros hidráulicos de suelos que tengan densidades, contenidos orgánicos, etc. semejantes. Se han incluido valores de referencia locales a partir de ensayos de laboratorio de muestras de suelo y de resultados de calibración de un modelo matemático aplicado regionalmente.

Se observa que para la humedad de saturación θ s los promedios obtenidos coinciden con los presentados por Rawls y otros (1982) y no difieren en gran medida con los publicados por Carsel y Parrish (1988), salvo para la fracción arcilla limosa que presenta mayores diferencias. Respecto al parámetro α , se ha encontrado una gran dispersión respecto a los valores medios obtenidos en este trabajo y diferencias de un orden de magnitud respecto a los promedios obtenidos por los otros autores. Esto da la pauta que es un parámetro difícil de pronosticar debido a su variabilidad. El parámetro *n* presentó una menor dispersión que el anterior, y los promedios obtenidos en este trabajo se acercan en gran medida a los publicados por otros autores.

Las regresiones lineales múltiples planteadas entre los parámetros v otras características físicas de las muestras (densidad húmeda, porosidad, Ph, bajos contenido orgánico) han ofrecido coeficientes de determinación. Se ha encontrado una relación directa entre la porosidad y θ s lo cual refleja resultados obtenidos por otros autores y una relación inversa con la densidad húmeda. El parámetro α parece estar vinculado en forma inversa con la densidad húmeda aunque el grado de dispersión encontrado en las correlaciones indicaría que está controlado por otras variables que no contempladas. El parámetro n se vincula a diferentes variables dependiendo de la fracción analizada aunque con bajas correlaciones.

Los resultados alcanzados al presente motivan un estudio a posteriori más profundo, incorporando nuevas variables tales como características granulométricas, etc.

REFERENCIAS BIBLIOGRÁFICAS

- Bear J. (1972) *Dynamics of fluids in porous media*. Elsevier.New York. 764 pp.
- Brooks RH, Corey AT. (1964) Hydraulics properties of porous media. Colorado State Univ. Hydrology Papers No. 3. Fort Collins. 27 pp.
- Carsel, R. F., and R. S. Parrish. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24:755-769.
- Klute, A. (Ed.) 1986. Methods of soil analysis, part 1, Physical and mineralogical methods, Agronomy 9(1), 2nd Ed., American Society of Agronomy, Madison, Wis.
- Gardner W. (1958) Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85 (4) 228-232.
- Irmay S. (1954) On the hydraulic conductivity of unsaturated soils. Trans. Am. Geophys. Un. 35. 463-468.
- Leij, F. J., W. J. Alves, M. Th. van Genuchten, and J. R. Williams. 1996. Unsaturated Soil Hydraulic Database, UNSODA 1.0 User's Manual. Report EPA/600/R-96/095, U.S. Environmental Protection Agency, Ada, Oklahoma. 103 pp.
- Mualem, Y. 1976a. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522.
- Mualem, Y. 1976b. A catalogue of the hydraulic properties of unsaturated soils. Research Project Report No. 442, Technion, Israel Institute of Technology, Haifa.
- Rawls, W. J., D. L. Brakensiek, and K. E. Saxton. 1982. Estimating soil water properties. Transactions, ASAE, 25(5):1316-1320 and 1328.
- Richards, L. A. 1931. Capillary conduction of liquids through porous mediums. Physics 1:318-333.
- van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
- van Genuchten, M. Th., F. J. Leij, and L. J. Lund (eds.). 1991. Proc. Int. Workshop, Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. Univ. California, Riverside.
- Zimmermann E y Riccardi G. 2000. Modelo de Simulación Hidrológica Superficial y

Subterránea para Areas de Llanura. XIX Congreso Latinoamericano de Hidráulica. Asociación Internacional de Investigaciones Hidráulicas División Latinoamericana, IAHR. Vol II. 169-178. Córdoba. Argentina. ISBN 950-33-0267-6

- Zimmermann E y Riccardi G. 2002. Modelo Hidrológico Superficial y Subterráneo desarrollado para la Simulación de Sistemas de Llanura. 1. Aplicación en el Sistema Ludueña (Santa Fe, Argentina)". XXXII IAH Congress. International Association of Hydrogeologists. Mar del Plata. Argentina. Res p94 y CD-ROM Groundwater and Human Deveopment (Eds. Bocanegra E, Martinez D y Massone H). ISBN 987-544-063-9. p739-749.
- Zimmermann E. 2003. Modelo Hidrológico Superficial y Subterráneo desarrollado para la Simulación de Sistemas de Llanura. 2. Estrategias para la Calibración". Journal of Earth Sciences. Boletin Geológico y Minero de España. ISSN 0366-0176. Vol 114. No 2: 159-169. Madrid. España.

11051100 30	indicun los promed	lies y en named los de	sties estundures.		
	Autores	3	θ_s	α	n
				1/0111	(-)
D . 1.	1002	AKU	LLA LIMOSA	0.020	1 1 2
Kawis y o	1982		0,42	0,029	1,13
Carsel y P	arrish, 1988		0,36 ± 0,07	0,005 ± 0,005	1,09 ± 0,06
Valores ei	n este estudio (14 m	uestras)	0,53 ± 0,13	0,025 ± 0,026	1,22 ± 0,22
Horizonte	B Oliveros		0,40	0,004	1,20
		FRANCO	ARCILLO-LIMOSO		
Rawls v o	tros 1982	11011001	0.43	0.031	1.15
Carsel v P	arrish 1988		0.43 + 0.07	0.010 + 0.006	1,12 1,23+0.06
Valores et	n este estudio (25 m	meetrae)	$0,43 \pm 0,07$	$0,010 \pm 0,000$	$1,23 \pm 0,00$ $1,23 \pm 0.10$
v alores er	i este estudio (25 ili	lucstras)	0,43 ± 0,10	0,013 ± 0,019	1,22 ± 0,10
		FRAM	JCO LIMOSO		
Rawls y o	tros, 1982		0,49	0,048	1,21
Carsel y P	arrish, 1988		0,45 ± 0,08	0,020 ± 0,012	1,41 ± 0,12
Valores en	n este estudio (114 i	muestras)	0.43 ± 0.06	0,014 ± 0,018	1.34 ± 0.17
Horizonte	A Oliveros	,	0.49	0.004	1.33
				-))
Parámetro	s calibrados en la C	Cuenca del A ^o	0.49	0,004	1,56
Ludueña (Zimmermann 2003)		,	,
	:= : : : 0: :	:** : :*0 : 1	0.0	:00 ; ;4 ;	:\9 : 10.0
CORVAS	RELENCIÓN OBSE	ERVADA Y MUDELADI	A CORVES RETENC	ION OBSERVHUH	порегнрн
			8.0		8.0
			1 N N		
			5.0		6.0
			IX		
	٥ <u>ر</u>		à		
	· · · · · · · · · · · · · · · · · · ·		4.0		4.0
	- "ha		··· · · · · · · · · · · · · · · · · ·		: :
:	G		20°	٠ <u> </u>	
				, <u>,</u>	
		`•.		``````````````````````````````````````	
		`~	2 9 8		
		```	2.0		2.0
		``®``	2.0	and a second sec	2.0
	Starra ta	``````````````````````````````````````	2:0	je j	2.0
		<b>`</b>	2.0		2.0

**Tabla 3.** Valores comparativos de parámetros de van Genuchten obtenidos para las texturas analizadas, en negrita se indican los promedios y en itálica los desvíos estándares.

**Figura 3.** Curvas de retención de suelos de Oliveros (Santa Fe). Horizonte A, uso agrícola (izquierda), horizonte B, uso pasturas (derecha). En absisas humedades volumétricas (cm³/cm³)y en ordenadas a escala logarítmica succiones (cm)

1 1			
		Arcilla-limosa	
	Parámetro $\theta_s$	Parámetro $\alpha$	Parámetro n
Constante	0,8757	0,0957	1,1120
Densidad húmeda	-0,3188	-0,0583	-
Porosidad	0,0874	-	-
Ph	-	-	-
Contenido orgánico	-	-	0,0264
Coef. de determinación, $r^2$	0,9353	0,5413	0,3467

**Tabla 4.** Coeficientes de regresiones lineales múltiples realizadas entre características físicas del suelo y parámetros hidráulicos para la textura Arcilla-limosa.



**Figura 4.** Regresiones lineales múltiples entre características de suelos arcillo-limosos y parámetros de las curvas de retención ajustadas con la ecuación de van Genuchten.

**Tabla 5.** Coeficientes de regresiones lineales múltiples realizadas entre características físicas del suelo y parámetros hidráulicos para la textura Franco arcilla-limosa.

		Franco arcillo-limoso	
	Parámetro $\theta_s$	Parámetro $\alpha$	Parámetro n
Constante	0,1448	0,1313	0,7971
Densidad húmeda	-	-0,0373	-
Porosidad	0,4837	-0,1476	0,9498
Ph	-	-	-
Contenido orgánico	0,0162	-	-
Coef. de determinación, $r^2$	0,6062	0,4461	0,2480



**Figura 5.** Regresiones lineales múltiples entre características de suelos franco arcillo-limosos y parámetros de las curvas de retención ajustadas con la ecuación de van Genuchten.

		Franco limosa	
	Parámetro $\theta_s$	Parámetro $\alpha$	Parámetro n
Constante	0,6107	0,0443	1,4232
Densidad húmeda	-0,1859	-0,0249	-
Porosidad	0,1622	0,0044	-
Ph	-	-	-0,0205
Contenido orgánico	-	-	-
Coef. de determinación, $r^2$	0,4607	0,2201	0,0480

**Tabla 6.** Coeficientes de regresiones lienales múltiples realizadas entre características físicas del suelo y parámetros hidráulicos para la textura Franco limosa.



Figura 6. Regresiones lineales múltiples entre características de suelos franco limosos y parámetros de las curvas de retención ajustadas con la ecuación de van Genuchten.

## ANEXO

Tabla 1A. Caracterización de las muestras	consideradas	para la	a fracción	arcilla	limosa	junto	a los
parámetros de van Genuchten.							

CODIGO	prf	LOCALIZACION	d.hum	d.seca	poros	c.org	PH	θs	α	n
	cm		g/cm3	g/cm3	cm3/cm3	%				
1320	15 - 60 c	Ziegelei Hoelle, Gottingen, Germany	1,46			1,40	6,6	0,3230	0,0002	1,1610
1360	0 - 20 cm	Reinhausen (Goettingen), Germany	1,50	2,70	0,444	3,97	7,3	0,4466	0,0034	1,1126
1361	0 - 20 cm	Reinhausen (Goettingen), Germany	1,49	2,65	0,438	4,38	7,0	0,4330	0,0043	1,2630
1383	60 - 100	Muenchehagen (Loccum), Germany	1,64	2,70	0,393	0,14	4,1	0,3152	0,0021	1,1045
2180	20 - 30 c	Hokota, Ibaraki, Japan	0,54	2,57	0,790	4,50				
2350	35 - 45 c	Memleben, Germany	1,18		0,55	14,48	7,5	0,5549	0,0436	1,7851
2460	1 - 6 cm	Goettingen, Germany	0,77		0,71	10,32	5,7	0,6995	0,0203	1,1533
2461	8 - 13 cm	Goettingen, Germany	0,91		0,65	6,36	5,7	0,6408	0,0256	1,1230
2462	15 - 20 c	Goettingen, Germany	0,93		0,65	5,68	6,3	0,6205	0,0651	1,1081
2470	1 - 6 cm	Goettingen, Germany	0,70		0,73			0,6878	0,0691	1,1143
2471	6 - 11 cm	Goettingen, Germany	0,87		0,67					
2472	12 - 17 c	Goettingen, Germany	0,90		0,66					
3030	0 - 22 cm	Orenburg region, Russia	1,32	2,66	0,50			0,5620	0,0421	1,0394
3120	0 - 15 cm	Canning Town, W. Bengal India	1,40	2,80	0,50	0,80	6,5	0,5081	0,0016	1,4696
		Promedio	1,11	2,68	0,59	5,20	6,31	0,53	0,025	1,221
		Desvío estándar	0.35	0.08	0.13	4.42	1.03	0.13	0.026	0.219

Tabla 2A.	. Caracterización de	e las muestras	consideradas	para la	a fracción	franco	arcillo	limosa	junto a	a los
parámetro	s de van Genuchten	l.								

CODIGO	prf	LOCALIZACION	d.hum	d.seca	poros	c.org	PH	θs	α	n
	cm		g/cm3	g/cm3		%		cm3/cm3	1/cm	
1362	10 - 25 c	Reinhausen (Goettingen), Germany	1,00	2,65	0,54	3,38	4,40	0,4273	0,0011	1,3741
1371	14 - 35 c	Muenchehagen (Loccum), Germany	1,54	2,69	0,43	0,95	6,92	0,4265	0,0045	1,1391
1372	35 - 70 c	Muenchehagen (Loccum), Germany	1,58	2,73	0,42	3,69	7,76	0,4507	0,0029	1,1160
1420	0 - 30 cm	Iowa State Univ., IA, USA	1,20	2,58	0,52	6,64		0,5345	0,0137	1,2017
2020	19 - 27 c	Manoa Valley, Island of Oahu, HI, USA	0,72	2,64	0,68	5,60	5,00	0,6226	0,0036	1,3471
2021	42 - 80 c	Manoa Valley, Island of Oahu, HI, USA	0,89	2,64	0,67	5,60	6,00	0,6482	0,0481	1,0482
2022	103 - 111	Manoa Valley, Island of Oahu, HI, USA	0,75	2,64	0,67	5,60	6,00	0,6706	0,0067	1,3251
2463	30 - 60 c	Goettingen, Germany	1,30	2,64	0,28			0,2374	0,0554	1,0931
2593	120 - 160	Marthalen, Switzerland	1,66	2,76	0,40	0,40	8,20	0,3902	0,0233	1,0669
3100	0 - 11 cm	Moldova, Dnestr region, Russia	1,14	2,54	0,55	4,00	7,60	0,4054	0,0239	1,2270
3101	16 - 32 c	Moldova, Dnestr region, Russia	1,33	2,56	0,48	4,30	7,70	0,4700	0,0107	1,7865
3102	40 - 70 c	Moldova, Dnestr region, Russia	1,30	2,64	0,51	2,88	8,10	0,3790	0,0059	1,3212
3103	80 - 100	Moldova, Dnestr region, Russia	1,37	2,64	0,48	1,80	8,30	0,3434	0,0029	1,2110
3110	5 - 15 cm	Moldova, Dnestr region, Russia	1,35	2,54	0,47	4,27	7,70	0,3570	0,0014	1,1259
3111	15 - 30 c	Moldova, Dnestr region, Russia	1,31	2,57	0,49	3,84	7,80	0,4300	0,0027	1,1835
3112	40 - 50 c	Moldova, Dnestr region, Russia	1,30	2,57	0,49	3,08	7,80	0,4200	0,0045	1,3031
3113	85 - 90 c	Moldova, Dnestr region, Russia	1,38	2,69	0,49	2,50	8,00	0,4300	0,0067	1,4292

CUADERNOS del CURIHAM, Vol. 10

Goulburn Valley, Victoria, Australia Mont-Favet, France Marthalen, Switzerland Promedio	1,64 1,32 1,66 <b>1,25</b>	2,64 2,65 2,76 <b>2,64</b>	0,38 0,50 0,40 <b>0,50</b>	1,70 0,40 <b>3,24</b>	8,20 7,25	0,3444 0,3005 0,3902 0,43	0,0008 0,0041 0,0233 0,015	1,2252 1,1698 1,0669 <b>1,216</b>
Goulburn Valley, Victoria, Australia Aont-Favet, France Aarthalen, Switzerland	1,64 1,32 1,66	2,64 2,65 2,76	0,38 0,50 0,40	1,70 0,40	8,20	0,3444 0,3005 0,3902	0,0008 0,0041 0,0233	1,2252 1,1698 1,0669
Goulburn Valley, Victoria, Australia Aont-Favet, France	1,64 1,32	2,64 2,65	0,38 0,50	1,70		0,3444 0,3005	0,0008 0,0041	1,2252 1,1698
Goulburn Valley, Victoria, Australia	1,64	2,64	0,38			0,3444	0,0008	1,2252
anola Co., MS, USA	1,44	2,64	0,46			0,4026	0,0011	1,1783
anola Co., MS, USA	1,39	2,64	0,48			0,4150	0,0205	1,2415
Dickey Co., ND, USA	1,35	2,64	0,62	0,94	7,80	0,3760	0,0017	1,6076
	ickey Co., ND, USA anola Co., MS, USA anola Co., MS, USA	ickey Co., ND, USA 1,35 anola Co., MS, USA 1,39 anola Co. MS, USA 1,44	ickey Co., ND, USA 1,35 2,64 anola Co., MS, USA 1,39 2,64 anola Co. MS, USA 1,44 2,64	ickey Co., ND, USA 1,35 2,64 0,62 anola Co., MS, USA 1,39 2,64 0,48 anola Co. MS, USA 1,44 2,64 0,46	ickey Co., ND, USA 1,35 2,64 0,62 0,94   anola Co., MS, USA 1,39 2,64 0,48   anola Co. MS, USA 1,44 2,64 0,46	ickey Co., ND, USA   1,35   2,64   0,62   0,94   7,80     anola Co., MS, USA   1,39   2,64   0,48     anola Co. MS, USA   1,44   2,64   0,46	ickey Co., ND, USA   1,35   2,64   0,62   0,94   7,80   0,3760     anola Co., MS, USA   1,39   2,64   0,48   0,4150     anola Co. MS, USA   1,44   2,64   0,46   0,4026	ickey Co., ND, USA   1,35   2,64   0,62   0,94   7,80   0,3760   0,0017     anola Co., MS, USA   1,39   2,64   0,48   0,4150   0,0205     anola Co. MS, USA   1,44   2,64   0,46   0,4026   0,0011

**Tabla 3A.** Caracterización de las muestras consideradas para la fracción **franco limosa** junto a los parámetros de van Genuchten.

0.0	11
n3/cm3 1/cm	
0,4098 0,006	0 1,5618
0,3940 0,005	4 1,6894
0,3909 0,013	1,10/0
0,3787 0,015	1,105/
0,3830 0,018	1,2247
0,3770 0,014	8 1,3336
0,4579 0,026	1 1,3191
0,3734 0,009	6 1,3104
0,4111 0,012	1,2222
0,3680 0,004	6 1,2390
0,3994 0,046	1,1788
0,6120 0,009	6 1,0720
0,7510 0,065	9 1,0821
0,4239 0,004	5 1,4789
0,4862 0,079	1,0690
0,4629 0,003	5 1,4412
0,4234 0,006	8 1,3609
0,3947 0,004	8 1,4132
0,3904 0,006	1,2210
0,4162 0,005	5 1,2189
0,5350 0,001	3 1,7238
0,4936 0,001	5 1,2990
0,3700 0,006	6 1,1241
0,4150 0,002	1,3288
0,3722 0,001	4 1,4197
0,4023 0,001	4 1,3147
0,4431 0,001	9 1,4930
0,4637 0,007	6 1,9924
0,5832 0,141	1 1,2515
0.4759 0.021	3 1.2894
0.4000 0.007	7 1.2755
0.3704 0.013	9 1.1556
0.4499 0.006	0 1 3165
0,4680 0.011	6 1.3340
	3/cm3     1/cm       0,4098     0,006       0,3940     0,005       0,3940     0,005       0,3940     0,005       0,3969     0,013       0,3787     0,015       0,3830     0,014       0,4579     0,026       0,3734     0,009       0,4111     0,012       0,3680     0,004       0,3994     0,046       0,6120     0,009       0,7510     0,065       0,4239     0,004       0,4862     0,079       0,4629     0,003       0,4234     0,006       0,4162     0,005       0,3947     0,004       0,3947     0,004       0,3700     0,006       0,4150     0,002       0,3700     0,006       0,4150     0,002       0,3702     0,001       0,4637     0,007       0,5832     0,141       0,4759     0,021       0,4000     0,007

CUADERNOS del CURIHAM, Vol. 10

2722	50 - 100	Langenthal, Switzerland	1,53	2,61	0,41	0,2	4,80	0,4000	0,0055	1,3124
2723	100 - 150	Langenthal, Switzerland	1,56	2,61	0,40	1,21	4,90	0,3896	0,0021	1,3421
2730	0 - 35 cm	Langenthal, Switzerland	0,91	2,61	0,65	4,1	4,10	0,5000	0,0041	1,6172
2731	35 - 65 c	Langenthal, Switzerland	1,38	2,61	0,47	0,7	4,30	0,4100	0,0025	1,3384
2732	65 - 95 c	Langenthal, Switzerland	1,55	2,61	0,41	0,2	4,30	0,3764	0,0040	1,2748
2760	0 - 20 cm	Lyss, Switzerland	1,13	2,58	0,56	3,1	7,10	0,4988	0,0529	1,1063
2761	20 - 40 c	Lyss, Switzerland	1,28	2,65	0,52	1,5	7,20	0,4828	0,0272	1,2549
3090	0 - 20 cm	Ukraine, Odessa region, Russia	1,40	2,58	0,46	3,85	7,50	0,3859	0,0086	1,4865
3091	20 - 44 c	Ukraine, Odessa region, Russia	1,43	2,60	0,45	3,02	8,00	0,3959	0,0190	1,2852
3210	0 - 15 cm	Dickey Co., ND, USA	1,66	2,65	0,80	3	7,90	0,4766	0,0058	1,2144
3211	15 - 30 c	Dickey Co., ND, USA	1,48	2,65	0,67	1,5	7,80	0,4315	0,0105	1,2831
3213	61 - 76 c	Dickey Co., ND, USA	1,40	2,65	0,63	0,4	7,90	0,5432	0,0192	1,1767
3220	0 - 15 cm	Dickey Co., ND, USA	1,33	2,65	0,69	5,2	8,00	0,4391	0,0201	1,2093
3223	91 - 106	Dickey Co., ND, USA	1,42	2,65	0,71	0,6	8,10	0,4611	0,0285	1,0930
3224	122 - 137	Dickey Co., ND, USA	1,35	2,65	0,76	0,47	8,20	0,4852	0,0059	1,2100
3225	137 - 152	Dickey Co., ND, USA	1,27	2,65	0,71	0,74	7,90	0,5092	0,0254	1,1462
3240	0 - 8 cm	Panola Co., MS, USA	1,45	2,65	0,45	1,21		0,5029	0,0151	1,2338
3242	59 - 91 c	Panola Co., MS, USA	1,41	2,65	0,47	1,21		0,5441	0,0254	1,2389
3243	91 - 122	Panola Co., MS, USA	1,49	2,65	0,44	1,21		0,6166	0,0288	1,2466
3250	0 - 13 cm	Panola Co., MS, USA	1,47	2,65	0,45	1,21		0,5395	0,0116	1,3126
3252	69 - 104	Panola Co., MS, USA	1,46	2,65	0,45	1,21		0,4649	0,0089	1,1873
3253	104 - 127	Panola Co., MS, USA	1,48	2,65	0,55	1,21		0,4915	0,0094	1,2396
3260	0 - 18 cm	Panola Co., MS, USA	1,35	2,65	0,49	1,21		0,4479	0,0206	1,4258
3261	18 - 33 c	Panola Co., MS, USA	1,43	2,65	0,50	1,21		0,4124	0,0120	1,5722
3262	33 - 63 c	Panola Co., MS, USA	1,36	2,65	0,45	1,21		0,4089	0,0091	1,6729
3263	63 - 81 c	Panola Co., MS, USA	1,37	2,65	0,47	1,21		0,4337	0,0091	1,5176
3264	81 - 124	Panola Co., MS, USA	1,38	2,65	0,50	1,21		0,4973	0,0105	1,4367
3360	10 - 20 c	Goettingen-Weende, Germany	1,40	2,65	0,44	1,08	6,60	0,3532	0,0072	1,3227
3361	20 - 30 c	Goettingen-Weende, Germany	1,40	2,65	0,42	0,81	6,65	0,3557	0,0074	1,3840
3380	0 - 30 cm	Rosdorf, Germany	1,40	2,65	0,47	0,91	6,20	0,3703	0,0043	1,4419
3381	30 - 40 c	Rosdorf, Germany	1,45	2,65	0,45	0,8	6,30	0,4135	0,0180	1,2205
3390	0 - 30 cm	Rosdorf, Germany	1,42	2,65	0,46	1,01	6,90	0,4120	0,0254	1,2493
3391	30 - 40 c	Rosdorf, Germany	1,44	2,65	0,46	0,57	6,50	0,4107	0,0441	1,1394
3392	60 - 80 c	Rosdorf, Germany	1,48	2,65	0,44	0,35		0,3742	0,0057	1,2123
3393	80 - 120	Rosdorf, Germany	1,56	2,65	0,41	0,28		0,3546	0,0048	1,1558
3395	130 - 220	Rosdorf, Germany	1,71	2,65	0,41	0,34		0,3435	0,0012	1,3924
4030	0 - 25 cm	Helecine (Leuven), Belgium	1,49	2,65	0,48	1,46		0,4146	0,0106	1,3680
4031	25 - 50 c	Helecine (Leuven), Belgium	1,48	2,65	0,48	1,42		0,4276	0,0237	1,3357
4032	50 - 93 c	Helecine (Leuven), Belgium	1,50	2,65	0,48	0,44		0,4032	0,0189	1,3934
4033	0 - 93 cm	Helecine (Leuven), Belgium	1,52	2,65	0,48	0,18		0,4057	0,0092	1,1962
4040	0 - 30 cm	Lubbeek (Leuven), Belgium	1,54	2,65	0,48	1,58		0,3880	0,0044	1,4780
4041	30 - 50 c	Lubbeek (Leuven), Belgium	1,54	2,65	0,48	0,73		0,3933	0,0084	1,4595
4042	50 - 70 c	Lubbeek (Leuven), Belgium	1,50	2,65	0,48	0,34		0,3889	0,0025	1,7717
4043		Lubbeek (Leuven), Belgium	1,53	2,65	0,48	0,46		0,3959	0,0029	1,4589
4070	0 - 30 cm	Humbeek (Brussels), Belgium	1,51	2,65	0,48	1,49		0,3994	0,0040	1,6075
4071	40 - 60 c	Humbeek (Brussels), Belgium	1.47	2.65	0.48	0.42		0.4086	0.0042	1.5010
4080	0 - 25 cm	Edingen, Belgium	1,44	2,65	0,48	1.6		0,4010	0,0030	1,4793
4081	40 - 60 c	Edingen, Belgium	1,51	2.65	0.48	0.5		0.3887	0,0048	1,3849
4082	60 - 90 c	Edingen, Belgium	1,49	2,65	0,48	0.2		0,4025	0,0051	1,3925
4090	0 - 40 cm	Edingen, Belgium	1,49	2,65	0,48	0,96		0,4101	0,0035	1,6456
			/	-	· ·	-		· ·	·	

CUADERNOS del CURIHAM, Vol. 10

		Desvío Estándar	0,26	0,06	0,10	1,46	1,55	0,06	0,018	0,169
		Promedio	1,40	2,65	0,48	1,21	6,37	0,43	0,014	1,337
2011	32 - 42 c	Angerstein (Goettingen), Germany	1,55	2,66	0,42	0,69	7,20	0,3683	0,0056	1,1881
2001	32 - 42 c	Angerstein (Goettingen), Germany	1,54	2,64	0,42	0,55	7,10	0,3584	0,0153	1,1883
2012	42 - 52 c	Angerstein (Goettingen), Germany	1,51	2,69	0,44	0,29	7,00	0,3924	0,0159	1,2042
2002	42 - 52 c	Angerstein (Goettingen), Germany	1,50	2,67	0,44	0,24	7,00	0,3668	0,0095	1,1763
1352	42 - 52 c	Angerstein (Goettingen), Germany	1,51	2,63	0,43	0,29	7,50	0,3838	0,0114	1,3308
1342	42 - 52 c	Angerstein (Goettingen), Germany	1,34	2,63	0,49	0,43	7,30	0,3840	0,0201	1,3139
4690	5 - 20 cm		1,32	2,65	0,50	1,21		0,3856	0,0474	1,3856
4950		· · · ·	1,55	2,73	0,44	1,21		0,4271	0,0131	1,3539
4673	115 - 125	Plumhof, Hannover, Germany	1,56	2,67	0,42	0,17	3,40	0,4043	0,0022	1,4662
4672	75 - 85 c	Plumhof, Hannover, Germany	1,61	2,66	0,39	0,17	3,30	0,3906	0,0065	1,1946
4671	40 - 50 c	Northen, Hannover, Germany	1,56	2,65	0,41	0,17	3,50	0,4002	0,0032	1,5442
4570	0 - 15 cm	Russia Moscow region, Russia	1,39	2,57	0,46	4,3	5,70	0,4062	0,0245	1,1839
4564	82 - 120	Steppe zone, near Volgograd,	1,60	2,64	0,39	1,21	7,97	0,3852	0,0382	1,1433
4563	48 - 82 c	Steppe zone, near Volgograd,	1,60	2,64	0,39	1,21	7,87	0,3414	0,0052	1,3661
4561	18 - 38 c	Steppe zone, near Volgograd,	1,40	2,68	0,48	1,55	6,94	0,3399	0,0047	1,1255
4560	0 - 18 cm	Steppe zone, near Volgograd, Russia	1,34	2,78	0,52	2,72	7,15	0,4898	0,0080	1,5459
4530	35 - 55 c	Wageningen, Netherlands	1,49	2,65	0,42	2,09	7,52	0,4071	0,0147	1,1990
4511	30 - 50 c	Groesbeek, Netherlands	1,55	2,65	0,41	0,95	5,12	0,4129	0,0117	1,1667
4510	30 - 50 c	Groesbeek, Netherlands	1,53	2,68	0,63	0,95	5,12	0,4094	0,0054	1,4600
4183	60 - 100	Rotselaar (Leuven), Belgium	1,60	2,65	0,48	0,27		0,3881	0,0178	1,1915
4182	40 - 60 c	Rotselaar (Leuven), Belgium	1,49	2,65	0,48	0,37		0,4067	0,0089	1,4689
4181	28 - 40 c	Rotselaar (Leuven), Belgium	1,45	2,65	0,48	0,47		0,4003	0,0100	1,5273
4180	0 - 28 cm	Rotselaar (Leuven), Belgium	1,53	2,65	0,48	1,86		0,3953	0,0043	1,7021
4092	65 - 85 c	Edingen, Belgium	1,47	2,65	0,48	0,31		0,3917	0,0044	1,4220
4091	45 - 65 c	Edingen, Belgium	1,43	2,65	0,48	0,32		0,3895	0,0105	1,3772

CUADERNOS del CURIHAM, Vol. 10