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ABSTRACT 

This work deals with the mathematical modeling of morphological processes in rivers with non-uniform 
grain-size materials. In particular, the onedimensional morphodynamic model here presented is intended 
to be used at relatively large space scale, and for both short and long-term morphological calculations. 
The model is particulary appropriate for numerical simulations of sudden overaggradation and eventual 
inundation of mountain rivers when large amounts of sediments are fed into the river by landslides and 
debris flow. Water flow equations are solved together with the sediment equations in a quasi-coupled 
way by means of a predictor-corrector scheme. The predictor step was carried out with FTBS (Forward 
Time Backward Space) scheme while the corrector step was performed with a Four Points scheme. The 
model was successfully applied to reconstruct the exceptional flood event of 1987 in the Mallero river 
(Central Alps, Northern Italy) and the influence of morphological changes on flood wave propagation 
characteristics for this particular case was also investigated. 

INTRODUCTION 

Flooding in mountain rivers, during exceptional rainfall events, are often related to 
extremely large inputs of sediments from landslides and debris flow, followed by 
sudden deposition along the hydrographic network and consequent bank overflowing. 

In order to simulate correctly the overaggradation phenomena during such 
catastrophic events appropriate mathematical models are needed which, as for any 
morphological model, the governing equations should adequately describe both the 
water flow and the sediment dynamics, with due considerations for peculiarities of 
mountain streams.  

In contrast to the large lowland rivers, mountain streams are generally part of a 
dense hydrographic network, with extremely variable, both in time and space, 
hydrological, morphological and sedimentological characteristics. Moreover, the 
sediments present in the bed and in the input material are both strongly non-uniform. 
On the other hand, even excluding the farthest and steepest branches of the network, 
mountain streams always have relatively large slopes: as a consequence, the flow in a 
given reach is basically controlled only by the characteristics of the reach itself (no 
backwater effects). In addition, although the flow pattern at small space scale is highly 
non-uniform, i.e., the flow locally alternates into subcritical and supercritical states, in a 
relatively long reach, let say of the order of magnitude of the bottom width , the average 
flow condition is quite well represented by a quasi uniform flow. This generally allows, 
from one side, to represent each reach by its averaged geometric characteristics and 
global roughness parameters, and on the other hand, to apply a simplified description of 
the fluid motion assuming uniform flow for each reach. 

The present work describes a morphodynamic mathematical model for non-
uniform grain-size sediments which is intended to be used for computations at relatively 
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large space scale and for both short and long-term calculations. The mathematical 
model here presented is based on the two layers model described by Di Silvio and 
Peviani (1991), in which water discharge as a function of space and time was 
considered to be known, for the entire simulation period, before starting with the 
morphological calculations. In the present model the water flow equations are solved 
together with the sediment equations in a quasi-coupled way by means of a predictor-
corrector scheme. The model is applied to simulate the exceptional flood event of 1987 
in the Mallero river (Central Alps, Northern Italy) and the influence of morphological 
changes in flood wave propagation characteristics is also investigated. 

MATHEMATICAL MODEL 

Many mathematical models have been proposed for the simulation of onedimensional 
evolution of rivers with non-uniform grain-size sediments (Ribberink, 1987; Armanini 
& Di Silvio, 1989; Basile, 1994), all these models are based on the momentum and 
mass continuity for water and sediment continuity of each granulometric class. The set 
of equations of the present two-phase mathematical model is: 

i) Liquid phase: Kinematic Wave Model (KWM) 

Neglecting inertia and pressure differential terms in the dynamic equation for unsteady 
gradually varied flow in open channels and then combining it with the continuity 
equation we obtain: 
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in which Q is the water discharge (m3/s), ql is the input lateral water discharge per unit 
lenght (m2/s) and cw is the kinematic wave celerity (m/s) which is equal to (Cunge et al., 
1980; Miller,1984): 

 c
Q
Aw

x





 (2) 

where water discharge Q is expressed by the Manning-Strickler equation: 

 Q K AR Ss f 2 3 1 2  (3) 

in which A is the wetted area (m2), R is the hydraulic radius (m), Sf is the friction slope 
and Ks is the Strickler's coefficient related to grain roughness (m1/3/s), which is 
calculated by means of the following expression: 

 K
ds 
26

90
1 6  (4) 

where d90 is the diameter present in the bed for which 90 % of the material is finer (m). 
It is important to stress that Ks is allowed to vary through time and space as bed 
material composition adjust during simulated morphology evolution of the river. The 
KWM is appropriated to simulate flood propagation in mountain rivers (Bellos et al., 
1995). 

The solution Q(x,t) of eq. (1) in the domain xo<x<xL requires one initial value Q(x,0) 
at each point of the domain and one boundary condition Q(xo,t). 
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ii) Solid phase: Two Layers Model 

Mass balance for each granulometric class taking into account two layers: the transport 
layer, containing particles transported in suspension and as bed load and the mixing 
layer containing particles instantaneously at rest but susceptible to vertical movements 
to and from the transport layer. The equations for the i-th granulometric class are: 

 Sediment continuity in the transport layer (including porosity): 

 BD
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 (5) 

in which B is the bottom width (m), Di is the deposition rate of the i-th class (m/s), Ti is 
the total sediment transport for the i-th class (m3/s) and gi is the input lateral sediment 
discharge per unit length for the i-th class (m2/s). 

 Vertical sediment balance in the mixing layer: 
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where  is the mixing layer thickness (m), i is the fraction of the i-th class in the 
mixing layer, zb is the bottom level (m) and i

* is: 
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where ui is the fraction of the i-th class in the undisturbed material located below the 
mixing layer. 

It is interesting to note that summing up all the grain-size classes in eq. (6) we 
obtain the temporal bed elevation changes which is equal to the net deposition rate: 
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in the absence of bedforms, the mixing layer thickness  may be taken equal to twice 
the size of the largest particles, say: 
   2 90d  (9) 

 Sediment transport equation: 

The sediment transport of each class is computed as a function of the local 
hydrodynamic and sedimentological parameters by means of the following equation: 

 T
Q I
B di
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eq. (10) is the formula of Di Silvio (1983); adapted to the computation of sediment 
transport of non-uniform grain-size materials. It is done by introducing the 
corresponding fraction of the i-th class present in the streambed i, and a "hiding and 
exposure" coefficient that accounts for the smaller (higher) mobility of finer (coarser) 
particles in a mixture, compared to the mobility of the same particles in a uniform grain-
size material (Parker et al., 1982). This coefficient can be expressed as follows: 

  i
i

m

s
d
d










  (11) 



IV Workshop on Flooding Risk in Mountain Areas (FRIMAR), 14-18 May 1996, Seriate (BG) - Italy 
 

4 

in which dm is the arithmetic mean diameter: 
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In addition, the simplified eqns. of L.Van Rijn (1984) and the formula of 
Engelund & Hansen (1967), were also included in the sediment transport module of the 
model. These formulas were also adapted to the computation of sediment transport of 
heterogeneous sediments by modifing the solid transport of each class in the same way 
as described for the equation of Di Silvio (1983). 

NUMERICAL MODEL 

The set of equations of the two-phase mathematical model was solved numerically 
using a finite difference approximation. A predictor-corrector method was used. The 
predictor step was performed with a FTBS (Forward Time Backward Space) scheme, 
while the corrector step was carried out with a Four-Points scheme. 

 Predictor step: 
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In the predictor step the time and space derivatives of the water discharge are 
approximated in the following way: 
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while the sediment continuity equation in the transport layer is solved by means of the 
following difference equation: 
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the difference eqn. for the temporal bed level is given by: 
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and the vertical sediment balance in the mixing layer is discretized in the following 
manner: 
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it is noted that in the predictor step the mixing layer thickness in equation (17) is 
considered constant. 
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 Corrector step: 
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In the corrector step the time and space derivatives of the water discharge are 
approximated in the following way: 
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celerity cw, weighted in space and time, is expressed as follows: 
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while the sediment continuity equation in the transport layer is solved with the 
following difference equation: 
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the difference equation for the temporal bed level changes is written as follows: 
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and the difference equation for the vertical sediment balance in the mixing layer is 
given by: 
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STABILITY CONDITION AND TIME STEP SIZE ADJUSTMENT 

In the morphodynamic model the choice of the time step size t is subject to Courant-
Friedrichs-Lewy (CFL) stability constraint: 

 
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 (24) 

where 0   1 and cmax is the maximum celerity at a relevant time step: 

  c c c cw zi bmax max , ,   (25) 

in expression (25) cw is the celerity related to the flow which is given by the following 
equation: 



IV Workshop on Flooding Risk in Mountain Areas (FRIMAR), 14-18 May 1996, Seriate (BG) - Italy 
 

6 

 c uw 
5

3
 (26) 

while ci is the celerity associated to a disturbance in the bed material composition of 
the i-th class which can be expressed as follows: 
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and czb is the celerity related to a disturbance in the bed level which is given by the 
following equation: 
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In order to avoid numerical diffussion and phase error the constant  in eq. (24) is 
generally set to values close to unity. 

LATERAL SEDIMENT INPUTS AND INTERNAL BOUNDARY CONDITIONS 

In the model the lateral sediment inputs from tributaries and the internal boundary 
conditions can be represented in different ways depending upon the kind of processes to 
be simulated. These can be briefly described as follows: 

 Tributary conveying material as ordinary sediment transport:  

In this case the sediment transported by the water flow before the landslide event is 
computed (by the transport equation) with the local hydrodynamic and 
sedimentological characteristics of the final reach of the tributary. 

 Tributary conveying material from a nearby landslide as extraordinary sediment 
transport: 

- In this case, to compute the sediment input as a function of the tributary water 
discharge it is assumed that the bed material composition of the tributary (slope 
less than 10-15 %), immediately after the landslide event, changes to that of the 
landslide material and remain that until the total volume is transported by the 
flow. 

- It is possible however to consider the input of a debris flow (tributary slope 
greater than 15-20 %) by changing the composition of the riverbed to that of the 
debris material and by assuming a constant debris flow velocity entering the 
main stream. 

In both cases the landslide material composition and volume as well as the time of 
occurrence and the locations of the landslide events must be known before starting 
with the morphological calculations. 

 In mountain rivers reaches with fixed rocky bottom are usually encountered along 
the main streams, in this case erosion cannot progress below the rocky bottom and 
the sediment load coming from upstream is transferred to the downstream reaches. 

 

LONG-TERM MATHEMATICAL MODEL 

To run the morphodynamic model described in the previous sections boundary 
and initial conditions are required. While topographical and hydrologic information can 
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be obtained through maps and rainfall records, associated with a rainfall-runoff model, 
it is almost impossible to have the grain size distribution of bed material previous to the 
exceptional event for the entire length of the river. If these data are available in the 
upper part of the river, the ordinary annual transport feeding the main stream and the 
bed material composition along the river can be calculated by using a long-term model. 
In fact, the application of the long-term model will reconstruct the composition of the 
bed material in the main stream under the ordinary flow condition, to be checked 
against the available data. 

The mathematical model for the long-time scale processes is described by the 
same set of equations presented in section 2, except for the sediment transport equation 
which in this case is given by: 
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where Qo and Vo are the annual ordinary maximum discharge (m3/s) and the annual 
ordinary runoff volume (m3/year) respectively, computed from the available hydrologic 
data. Eq. (29) is obtained by integrating Eq. (10) over a period of one year or more, and 
by assuming an exponential duration curve for the water discharge and seasonal-
compensated variations in bed material composition and bed levels during ordinary 
years (Di Silvio, 1983). 

OVERAGGRADATION PHENOMENA AND INUNDATION RISK IN MOUNTAIN 
RIVERS: THE CASE STUDY OF MALLERO RIVER 

General description of the basin and the event of July 1987 

The Mallero river is a tributary of the Adda river which is the main stream of Valtellina, 
in the central Alpine region of Northern Italy (see Fig. 1). The Mallero river is 24 km 
long, starting at the elevation of 1636 m (m.s.l.) from the confluence of the Vazzeda and 
the Ventina torrents, and ending at the elevation of 282 m on its confluence with the 
Adda river. The surface of its basin is approximately 319 km2. 

There are several urban settlements along the river. Sondrio near the confluence 
with the Adda river is the most important. The Valtellina region has always been, as has 
been known since the Middle Age as a place where severe storms accompanied by 
landslides and overaggradation have occurred. 

An exceptional event produced enormous disasters in Valtellina in July 1987. 
Particularly, in the Mallero river basin several landslides occurred with a total volume 
of several millions cubic meters. This material reaching the stream and transported by 
the water flow was deposited in many places producing bottom overaggradation of 
several meters with consequent increase of water levels and flooding due to bank 
overflowing. A detailed study of the area was performed after the event, including the 
location of the landslides and an evaluation of volumes and granulometric composition 
of the slided material. A general survey of the Mallero river after the event, with an 
estimate of volumes of deposed and eroded material was also carried out. 

Application of the mathematical model 

The event of July 1987 has been simulated by applying the mathematical model 
described previously. A schematization of the model set-up is shown in Fig. 2. 
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 Reconstruction of bed material composition: long-term model  

The long-term model is used to determine bed material composition along the river 
under ordinary flow conditions. This result was used as the initial condition for the 
subsequent simulation of the exceptional flood event. 

The input of water from each tributary is given by the annual ordinary maximum 
discharge (Qo), computed for each sub-basin following the relation of the square root of 
the areas, and by the annual ordinary runoff volume (Vo), also calculated for each sub-
basin following the relation of the areas. The estimated values at Sondrio are Qo=162 
m3/s and Vo=332 *106 m3. 

The input of sediments from each tributary is computed using the morphological 
characteristics (slope and width) and the ordinary bed material composition in its 
terminal reach, i.e before their confluence with the main stream; these quantities should 
be known. For the Mallero river morphological data are also introduced. As initial 
granulometric distribution of the bed material an arbitrary value is used. The long-term 
model is run until the equilibrium grain-size distribution is reached. 

The values of the coefficients used in the sediment transport formula are =0.025, 
m=1.8, n=2.1, p=0.8, q=1.2 and s=0.8. In Figures 3, 4 and 5 the comparison between 
calculated and observed bed material composition at different locations is presented. 
After 5 years of ordinary flow events the river reaches a dynamic equilibrium and an 
acceptable agreement is observed between computed and measured bed material 
composition. 

 Numerical simulation of the exceptional flood event: 

The exceptional event of July 1987 was subsequently simulated by the numerical 
model. Inputs of water and sediment as a function of time during the event are the 
necessary boundary conditions. The hydrographs at the downstream end of each 
tributary were computed by applying a rainfall-runoff model of the rational method type 
(Di Silvio, 1989). The hydrographs corresponding to each tributary are presented in 
Figures 6 and 7. 

The input volumes and the granulometric distribution of the landslide material as 
well as the position and sliding time are presented in Table 1. The full event is 
simulated, from Friday 17th (at 6 p.m) till Sunday 19th (at 8 p.m.). 

The space step size was set equal to x=250 m and the values of  and  were 
equal to 0.6 and 0.5 respectively. The calibration of the model leads to the selection of 
the correct values of the coefficients  and s of the sediment transport formula, these 
were equal to =0.05 and s=0.8. 

Figure 8 shows the calculated time and space evolution of the bottom level 
referred to the initial one, while in Figure 9 the corresponding calculated time and space 
evolution of the bed material composition (class 1, d1=0.316 mm) is presented. 

In Figures 10 and 11 the time evolution of both bed aggradation and water level at 
Sondrio in two different positions are presented. It is observed the sudden 
overaggradation that takes place approximately 1h:15min. after the landslide event of 
the Torreggio torrent. In addition, is clearly observed that the time evolution of water 
levels at Sondrio is basically controlled by the overaggradation process of the river bed 
and not by the water discharge. Notably, there is a lag of 1h:20min. between the transit 
of the peak discharge and the maximum water level immediately downstream of 
Garibaldi Bridge (Sondrio, distance:+22.25 km from upstream boundary). 

In Figures 12, 13, 14 and 15 the space evolution along Sondrio of bed aggradation 
and water level is presented for four different times. In particular, Figure 15 shows the 
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good agreement between calculated and observed bed aggradation in some specific 
points. 

In addition, the influence of morphological changes on flood wave propagation 
characteristics was investigated by comparing the hydrographs calculated without 
including the morphological changes (fixed bed propagation) and those obtained by 
including them (movable bed propagation). 

The calculated hydrographs by means of both approaches are compared in Figures 
16 (Distance + 10 km) and 17 (Distance +19 km). The comparison shows not 
significant differences between them. 

CONCLUSIONS 

The main goal of the present work was to improve and calibrate a morphodynamic 
mathematical model for non-uniform grain-size sediments. The model presented is 
appropriate for numerical simulations of sudden overaggradation and eventual 
inundation of mountain rivers when large amounts of sediments are fed into the river by 
landslides and debris flow. 

The model was successfully applied to reconstruct the exceptional flood event of 
1987 in the Mallero river. In particular, was clearly observed that the temporal 
evolution of water level at Sondrio city was basically controlled by the overaggradation 
process of the riverbed and not by the water discharge. 

In addition, the influence of morphological changes on flood wave propagation 
characteristics was investigated by comparing the hydrographs calculated without 
including the morphological changes (fixed bed propagation) and those obtained by 
including them (movable bed propagation). The calculated hydrographs by means of 
both approaches (fixed and movable bed flow calculations) are almost identical. This 
shows that in this particular case the flood wave propagation characteristics are not 
significantly influenced by the induced morphological changes. 
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Table 1: Characteristics of the input landslide material to the Mallero river in the model simulation. 

Section i (%)(*) Volume Sliding time 
(grid point number) 1 2 3 4 (m3) (s) 

0 37 21 26 16 1000000 57600 

39 39 27 24 10 270000 82800 

58 22 17 37 24 600000 90000 

59 26 24 41 9 230000 82800 

77 16 21 27 36 210000 82800 

78 18 23 31 28 50000 82800 

(*) di=0.316 mm, 3.16 mm, 31.6 mm, 316 mm (i=1, 2, 3, 4) 
 
 
 

Table 2: Comparison between calculated and measured volumes of sediment deposition (Vsd). 
Reach Nomination Vsd (m3) 
(km) Calculated Measured 

0.00  to  1.25 Lupo 160000 (*) 

3.00  to  3.90 Alpe Senevedo 61000 47000 

4.25  to  5.00 Sabbionaccio 120000 180000 

10.00 to 10.70 Cosi Battani 110000 (*) 

14.50 to 16.80 Torre/Spriana 500000 550000 

19.50 to 20.25 Arquino 140000 (*) 

21.50 to 24.00 Ponchiera/Sondrio 360000 350000 
(*) not measured 
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Figure 1: Location of the torrent Mallero in Valtellina (Central Alps) in Northen Italy. 

 
 

 
Figure 2: Basin of the torrent Mallero and model schematization. 
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Figure 3: Comparison between calculated and measured granulometric distributions of bed material at distance14.75 
km from the upstream boundary. 
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Figure 4: Comparison between calculated and measured granulometric distributions of bed material at distance 17.25 
km from the upstream boundary. 
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Figure 5: Comparison between calculated and measured granulometric distributions of bed material at distance 20 
km from the upstream boundary. 
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Figure 6: Hydrographs corresponding to the tributaries of the torrent Mallero from torrents Chiareggio to 
Antognasco. 
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Figure 7: Hydrographs corresponding to the tributaries of the torrent Mallero from torrents Nevasco to Valdone. 
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Figure 8: Time and space evolution of bottom level referred to the initial one. 
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Figure 9: Time and space evolution of bed material composition (class 1, d1=0.316 mm). 
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Figure 10: Time evolution of calculated bed aggradation and water level at Sondrio (walking-pass, distance 21.75 
km). 
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Figure 11: Time evolution of calculated bed aggradation and water level at Sondrio (downstream of Garibaldi bridge, 
distance 22.25 km). 
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Figure 12: Space evolution of calculated bottom aggradation and water level at time 26:15' in Sondrio city. 
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Figure 13: Space evolution of calculated bottom aggradation and water level at time 28:45' in Sondrio city. 
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Figure 14: Space evolution of calculated bottom aggradation and water level at time 36:15' in Sondrio city. 
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Figure 15: Space evolution of calculated bottom aggradation and water level at time 50:00' (Sondrio, Sunday 19th of 
July 1987, 8 p.m). 
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Figure 16: Comparison between calculated hydrographs by means of fixed bed propagation and movable bed 
propagation at distance 10 km from the upstream boundary. 
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Figure 17: Comparison between calculated hydrographs by means of fixed bed propagation and movable bed 
propagation at distance 15 km from the upstream boundary. 

 
 


