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Abstract

Specifications should describe the domain explicitly; they
should distinguish domain propertiesthat are independent of
the system from those that the system is required to enforce.
A common semantics based on a simple phenomenology
allows composition of partial specifications expressed in
differentlanguages. Descriptionsshould be based onexplicit
identification of relevant domain phenomena, and so
separate assertion from definition of terminology. Explicit
structures over descriptions are of interest in their own right.
Current formal specification techniques are deficient in
someimportant respects.

1 Introduction

We are working to develop atechnique of multi-paradigm
specification. Our technique relies on composing partial
specifications expressed in different languages, the language
for each partial specification being chosen according to the
demands of the propertiesor constraintsto be expressed. We
believe that thisemphasis on composition will offer, asaby-
product, insights into incremental development and into the
problems of reuse. A general account of our aims and
approachisgivenin[Zave91].

We concentrate our primary attention on the description of
domains (or ‘'real worlds') and requirements (or 'problems)),
because that is where we believe that the need for multi-
paradigm techniques is most pressing and least well served.
This means paying serious attention to the reality that is
being described, rather than focusing chiefly on the syntax
and formal semanticsof thedescriptivelanguage.

From this point of view, we have found that specifications,
bothformal andinformal, areoften hard to understand. Inthe
large, it is often hard to determine whether a particular
description is describing a property of the system or of its
environment. Inthesmall, itisoften hard to determine what
is being said about the reality described. An informal
language may cause difficulty by sheer imprecision of both
syntax and semantics. A forma language may cause
difficulty in spite of well-defined syntax and semantics:
somethings can not be said directly in the language and must
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be obscurely encoded; and a formal semantics may be too
abstract to capture meaning effectively.

A central aim of our specification techniqueis, therefore, to
state explicitly what isbeing described, and it isthisaspect of
our technique that forms the central theme of this paper.
Several examples of multi-paradigm composition may be
foundinacompanion paper [Zave92].

2 Problem Frames

The usual view of a software development problem
recognises two principal parts. the system and the
environment, communicating across a transparent noiseless
interface. Such a view constitutes a problem frame — a
framework for understanding the problem and developing its
solution. Withthisproblemframeitisnatural to supposethat
the content of a specification should be the properties and
behaviour of the system that are observable at its interface
with the environment. The properties and behaviour of the
environment are largely implicit, being essentially those of
the system reflected about the interface. To the extent that
they differ from this reflection of the system they will
demand explicit attention: but this is a secondary concern,
and according to [Wing 90] often neglected in formal
specifications. At the very least there is often doubt about
what isbeing described. For example[Hayes87, pl144] states
that aZ specification gives‘aformal system description', but
also that 'the informal text ... can be consulted to find out
what aspectsof thereal world arebeing described'.

We want to modify the usual practicein several ways. We
consider that a careful and explicit description of the
environment is an essential first stage in a serious
development. Thisdescription should capture the behaviour
and properties of the environment that areindependent of the
presence and operation of the system to be constructed. Ina
library, for example, 'books, ‘copies, and 'volumes stand in
certain relationships that must be understood by the
developers of a system but can not be changed by them;
another independent truth about the library isthat acopy of a
book, once borrowed, can not be borrowed again until it has
beenreturned.

In place of the traditional term 'environment’ we prefer the



term 'domain’. One reason is that an environment is, by
implication, secondary: it is merely what surrounds the
object of real interest. Sincewewant it to become afocus of
serious attention we prefer to use adifferent name. Another
reason is that ‘environment' connotes a tangible, physical
surrounding; wethink thisistoo narrow aconcept. Domainis
a broader concept. The domain is the subject matter of the
system's computations, and provides the context in which
those computations have useful meaning or effect. A domain
may be intangible, such as the texts of Shakespeare's plays
for aconcordance system; it may be tangible but static, such
as the road network for a route planning system; it may be
tangible and dynamic, such asachemical plant for aprocess
control system or the customers of a company for a sales
processing system. It is often convenient to divide the
domain of a development into several domains or
subdomains; we will use the singular term unless we want to
emphasisethissubdivision.

We regard a domain, then, as atopic for description in its
own right, independently of any description we may
eventually make of the system to be constructed.
Requirements, in our view, are al so domain descriptions, but
of a special kind. Grammatically, an ordinary domain
description isin the indicative mood: it asserts certain truths
about the domain. A requirement, on the other hand, while
also describing the domain, is in the optative mood. It
describes the desired state of affairs that the machine is
required to bring about: for example, that no library user has
more than 6 books on loan at any one time, and that no
reference book is ever borrowed. Clearly, the purpose of a
system is to bring about observable effects in the domain:
only to this extent does a requirement description describe
the system that isto be constructed. Ingeneral, itisdesirable
to separate domain descriptions from requirement
descriptions, rather than to mix the optative and indicative
moodsin one description.

Weregard the system itself as consisting of two parts: the
machine and the connection. The machine is described by
program texts, and realised by a computer — possibly
distributed — that accepts those texts and behaves as they
describe. But there must also be a connection between the
domain and the machine: enough information about the
domain must somehow be transferred to and from the
machine to allow its computations to have their required
effect and meaning. Sometimes this connection will be
amost transparent and noiseless. But often it will be
complex, forcing a sharp distinction between what happens
at the machine end of the connection and what happensat the
domain end. The customer for a process control system is

interested in material flows and in the operation of valvesin
the domain; the programmer isinterested in the machine end
of theRS-232 or |EEE-488 interfaces.

Itisimportant also to recognise that use of asingle problem
frame, partitioning the substance of the problem into these
constituent principal parts, suffices only for simple
problems: it is analogous to regarding every program as one
sequential processwheninreality many programsdemand to
be understood as sets of communicating processes. For
example, the connection may pose a complete devel opment
problem in itsown right, with its own problem frame; or the
behaviour of the machine in one problem frame may furnish
the domain for another problem. A tentative attempt to
recogniseand consider thiskind of complexity ispresentedin
[Jackson 90].

In this paper we will draw our examples from the
requirements specification phase, not from design or
implementation (although we believe that what we have to
say is applicable to those phases also). Within the
requirements phase all descriptions are descriptions of the
domain, differing only in grammatical mood: hence thetitle
of thispaper.

3 Phenomenology

To compose descriptions written in different languages we
need acommon semantic framework within which to ascribe
meaning to those descriptions. We do not regard this
common semanticsasapurely formal matter. Specifications
and programs are, indeed, formal mathematical objects. But
they aremuch morethanthat: they are descriptionsof various
domains, and it is these domains that are the developer's
primary concern. We therefore base our common semantics
on a common general account of what is of interest in
domains: in short, on a phenomenology. Our common
semanticsisthen aformalisation of thisphenomenol ogy.

Each particular specification language and paradigm
favours, or even imposes, aparticular phenomenology. CSP
[Hoare 85], for example, recognises events as the primary
domain phenomena, and participation in shared eventsasthe
only meansof communication. VDM [Jones90], by contrast,
emphasises the phenomena that constitute a domain state:
events appear only as operationsthat cause state changes. In
Z [Spivey 88], simple entities may appear as domain
phenomena, but must be classified in static and mutually
exclusivebasetypes.

For multi-paradigm composition we adopt a
phenomenology that is minimalist but sufficient. It is
minimalist in the sense that it contains nothing incompatible
with the phenomenologies of the particular paradigms we

1 Some approaches to software development [Arango 89, Iscoe 89, Jackson 83] already pay explicit attention to
describing the domain separately from any description of the system.



have considered; and sufficient in the sense that it allows us
to describe everything that we have so far found to be of
importance in domains. The only base phenomena we
recognise are individuals, which can be named, and facts
about thoseindividuals. Nothing elseisbuilt in: individuals
areknown only by thefactsinwhichthey play arole; thereis
no built-in notion of existence, of distinction between entities
and values, of typing, or of the formation of aggregates from
parts.

This minimalist phenomenology is directly formalised in
first-order untyped predicate logic with equality and
recursion’. Thelogicisfirst-order because we do not regard
facts, or classes of fact, asindividuals. Itisuntyped because
we regard types as nothing more than ordinary predicates.
Equality is essential to the notion of an individual (an
individual isequal toitself and to no other individual). And
recursion is necessary for many descriptive purposes. Each
predicate is either true or false for all instantiations of its
arguments by individuals: atruth valueis never undefined or
unknown.

Our treatment of time is entirely within this minimalist
phenomenology and accordingly is formalised in predicate
logic. Eventsand intervals (periods of time during which no
event occurs) are individuals of which predicates event(e)
andinterval(v) arerespectively true. Eventsandintervalsare
disjoint:

forAll e« not (event(e) and interval(e))

Time ordering isformalised as a predicateearlier(x,y) that
gives atotal ordering of events and intervals (no two events
can occur simultaneously). Events and intervals alternate;
thefirst elementintheorderingisaninterval, andif thereisa
last element it, too, isaninterval.

An event is associated with the two intervals on either side
of it by the predicates begins(e,v) and ends(e,v). This
associationis, asusual, the basisfor specifying preconditions
and postconditions of events. Regarding time as a total
ordering of events and intervals, we can always add to our
specification  descriptions of  further  (previously
undescribed) events intervening between events that were
previously consecutive. Butwecanstill, whenwewish, refer
within a description to the locally next event — local in the
sensethat it isdrawn from the particular subset of eventsthat
isthetopic of thedescription.

Facts are changed only by events: their truth values are
constant within intervals. A fact that varies over time is
formalised as a predicate with at least one argument to be
instantiated by aninterval individual. So customer(c,v) may
mean that individual ¢ is a customer in interval v, while

customer(c) would mean that ¢ is a customer in every
interval. The type constraint on the second argument of the
first predicatewould be stated explicitly:

forAll c,v « customer(c,v) => interval(v)

Events’ andintervalsarefirst classindividuals. They canbe
named, and play rolesin factsjust like other individuals. For
example, startRaining(e) may mean that event e is an event
inwhich it starts to rain, and raining(v) may mean that it is
raining in interval v; again, the type constraints would be
explicitly stated. These two predicates might be associated
by theformula:

forAll e,v « (startRaining(e) and begins(e,v)

=>raining(v))

A moreelaborate example of apredicateinvolving an event
individua issell(e,s,g,b,p), which may mean that in event e
anindividual s sellssome goodsg toabuyer b at pricep.

Structures are induced by facts that associate two or more
individuals. If aplayer'shand in acard game consists of the
Jacks, Queens, and Kings of Hearts and Spades, it may be
regarded asaset of cards:

cardSet(MyHand) and memberOf(MyHand, HeartJack)
and memberOf(MyHand, HeartQueen) ...
asthreepairs:

threePairs(MyHand) and pairin(MyHand,P1) and

pairln(MyHand,P2) and pairln(myHand,P3) and
arePair(P1,HeartJack,SpadeJack) and ...
or astworuns:
twoRuns(MyHand) and
runin(MyHand,R1) and runin(MyHand,R2)
and areRun(R1,HeartJack,HeartQueen, HeartKing) ...
The predicates cardSet(x), threePairs(x), and twoRuns(x)
may be regarded as types; but there is no built-in type
structure and, as the example shows, the types need not be
digjoint.

Temporal structuresover eventsandintervalsareinducedin
exactly the same way, by the predicates begins(e,v),
ends(e,v), earlier(x,y), and any other relevant predicates. For
example, an 'On-Off Pair' might be defined as an episode (a
structure over events) inwhichthefirst eventisan on, thelast
eventisanoff, andthereisnointervening on or off event:

forAll ef,p  onOffPair(p,e,f) <=>

(firstinEpisode(p,e) and lastInEpisode(p,f) and event(e)
and event(f) and earlier(e,f) and on(e) and off(f)

and (not forSome g * (earlier(e,g) and earlier(g,f)

and event(g) and (on(g) or off(g)))))

Anindividual instantiating the argument p in this predicate
isatemporal structure— an onOffPair —in exactly thesame
way as MyHand is a structure — a cardSet — over playing

2 The work reported in [Niskier 89] is an earlier attempt to accomplish similar goals.
3 Peter Ladkin has pointed out to us that our view of eventsis very similar to the view of the philosopher Donald

Davidson (see [Davidson 91]).



cards. Generally, our treatment of timeis on all fours with
our treatment of any other structure over a totally ordered
collection of elements. The companion paper [Zave 92]
presentstime as an instance of a'marked sequence': that is, a
totally ordered bipartite set in which items and inter-item
markers alternate. Other possible treatments (for example,
permitting simultaneous event occurrences or allowing
events to overlap or to be composed of other events) can be
similarly accommodated within the phenomenology and its
expressionin predicatelogic.

4 Identifications and Description Scope

Our basic tool for ensuring that we know what our
descriptions are about isan identification. Anidentification
consistsof anumber of rules. EachrulehasalL eft Hand Side,
which is a definition of a domain phenomenon, and a Right
Hand Side, which is a predicate or the proper name of an
individual, by which a description may refer to the domain
phenomenon. Hereisanidentification® withfiverules:

(X is a human being <=>HUMAN(X);

Wis a literary work <=>WORK (w);

pwrote the workw <=>authorOf (p,w);

the play "Hamlet, Prince of Denmark" <=>hamlet;

the William Shakespeare who lived in Stratford <=>Ws)

An identification is somewhat like an interpretation in
logic. Butitsmotivationisinthecontrary direction: itsaimis
not to give meaning to an existing description, but to make
unambiguousdescription possible.

The LHSs of the rules are informal because the domain is
informal. A LHS must allow the defined phenomenon to be
unambiguously recognised in the domain, within the
tolerances that flow inevitably from the informality. If
'Stratford’ might reasonably (but wrongly) betakentorefer to
Stratford in Ontario instead of to Stratford-on-Avon, thefifth
rule must be amended accordingly; but we can not expect to
define the predicates HUMAN(x), WORK(w), and
authorOf{p,w) precisely enough to eliminate doubt in every
case. Thisinformality should not be taken as an excuse for
vagueness in identification rule LHSs. In particular, care
must betakeninidentifying theindividualsinvolvedinfacts.
Therule:

W is a word in the play Hamlet <=>hamletWord(w)
is unacceptably vague, leaving usin doubt whether "To be or
not to be' contains four or six individuals w of which
hamletWord(w) istrue.

Wemay usetheidentificationwith adescription:

[HUMAN, WORK]

authorOf : HUMAN <— WORK
ws: HUMAN
hamlet : WORK

‘ ws authorOf hamlet

Thecommon semanti csascribed to thedescription
language (in this case Z) associates language elements with
the RHSs of the identification rules, and permits translation
of the description into predicate logic. The meaning in the
domain isthat 'p wrote the work w' can betrue only if pisa
human being and w isaliterary work; that the play "Hamlet,
Prince of Denmark™” is a literary work; that the William
Shakespearewho livedin Stratford isahuman being; and that
the William Shakespeare who lived in Stratford wrote the
work "Hamlet, Princeof Denmark™.

The phenomena named in the RHSs of an identification
constitute the scope of adescription using that identification.
A description may use more than one identification, and its
scopeisthentheunion of thephenomenathey name. Domain
phenomena not in scope can not be referred to, and nothing
can be asserted about them. The identification above allows
assertions that Shakespeare wrote other works, that no-one
elsewrote Hamlet, that other people wrote works, and so on;
but it does not allow anything to be asserted about
performances of Hamlet, or about its text. Since we are
aways concerned with partial specifications we are always
dealing, not surprisingly, with partial identifications.

Assertionsin descriptionsarefalsifiable. If the description
is a domain description, the assertion is falsifiable from
knowledge or examination of the domain; if it is a
reguirement description, theassertionisfalsifiable by appeal
tothe customer, who may deny therequirement.

The whole weight of assertion is borne by the description.
An identification rule defining a predicate asserts only that
the truth of facts denoted by the predicate is recognisablein
the domain. A rule defining a proper name of an individual
asserts nothing beyond the recognisability of the individual.
Inparticular, arulenever assertstypeinformation, regardless
of the wording chosen for the LHS. If the penultimate rule
had been:

the literary work "Hamlet, Prince of Denmark"

<=> hamlet
it would still have been necessary for the description to assert
explicitly that 'hamlet'isaliterary work.

Conversely, the description bears none of the weight of

4 The use of upper and lower case lettersin the examplesis arbitrary; it is intended to match a common usagein Z,

where the name of a base type is written in upper case.



identification: the domain phenomena must be recognisable
from the definitions given in the identification rule LHSs.
Thisplacesasalutary obligation on the specifier to chooseto
identify the most directly recognisable phenomena as the
basisfor the specification. Recognition of these phenomena
then allows the user of the specification to orient it correctly
with respect to the real domain, just as the user of a map
orients it with respect to the territory by finding a few
unambiguously identifiablefeatures.

5 Assertion and Definition

A description, translated into the common semantics of
predicatelogic, uses names of predicatesand individuals. In
general, only some of these will be names of domain
phenomenain scope: understanding theintended usage of the
other, new, names is a central concern in understanding the
description.

A description may define the meaning of a new name that
can then be used in other descriptions. Some languages
provide special syntax for definition, but many do not;
distinguishing definition from assertion may depend on
examining the description scope. Consider, for example, the
following DFSA description of a button in a lift (the
description appliesto every button, describing ageneral case
referredtoasbutton ):

States: NoRequest, Request;

Transitions: (Press. NoReguest—>Request),

(Press: Request—>Reguest),
(Service: Request—>NoRequest);

Thebuttonisinitialy in the NoRequest state; a Press event
takes it to the Request state, in which further Press events
cause no state change; a Service event in the Request state
causesareturnto the NoRequest state.

If the event predicates Press(e,b) and Service(e,b) arein
scope, but state predicates NoRequest(b,v) and Request(b,v)
are not, then the description makes assertions about the
events, and uses the events to define the meanings of the
states. Itsonly falsifiable assertion isthen that in the totally
ordered set of all Pressand Service eventseach Service event
isimmediately preceded by at least one Press. Request(b,v)
is defined to be true of every interval v in which the most
recent event of the set was a Press, and NoRequest(b,v) is
definedto betrueof every otherinterval.

If, by contrast, the state predicatesare al so in scope, then the
description makes three additional, falsifiable, assertions:
that NoRequest(b,VI) is true of the initial interval VI, that
exactly one of Request(b,v) and NoRequest(b,v) is true of
every interval v; and that Request(b,v) istrue of aninterval v
if and only if the most recent event was a Press. The
identification rules for Request(b,v) and NoRequest(b,v)
show how to recognise these phenomena (for example, a
light may belitwhen Request(b,v) istrue), and hence how the

assertionsmight befalsified.

Such adistinction between assertion and definition is vital
for composing partial specifications. Each term must be
defined once, and only once (we can think of an
identificationruleasdefiningthetermgiveninitsRHS). But
we must be able to make many assertions about the
phenomena denoted by those terms, and to make them in
many separate descriptions. Thisiswhy typing is not built
into our phenomenology or itsformalisation: having asserted
in one description that MyHand is a cardSet, we must befree
to assert in another description that it isalso threePairsandin
yet another that it is twoRuns. Strong typing is a
programming idea, justifiable in programming because the
constraint on expressive power, though severe, is an
acceptable price to pay for static detection of certain errors.
In domain description strong typing is unacceptable as a
universal discipline: often anindividual must bedescribedin
many different ways, at onetime or at different timesin its
life.

Terminology newly defined in one description can be made
available to other descriptions by a renaming mechanism
similar to an identification. In arenaming the LHS of each
ruleisnot informal: it contains the newly defined predicate
or proper name. The RHS contains the same predicate or
proper name, possibly after renaming and changing the order
or number of arguments. A renam ing of the newly defined
terminology for thelift button might be:

Request(b,v) <=>demanding(v,b);

NoRequest(b,v) <=>quiescent(v,b);

The scope of a description using this renaming will then
include the predicatesdemanding(v,b) and quiescent(v,b),in
additionto any othersthat may bein scope.

The ability to define and use new terminology freely is
particularly useful in dealing with informal or complex
domains. A traditional difficulty ininforma domainsisthe
ambiguity of many commonly used terms: in ten departments
the word 'customer’ is used in twenty different senses. The
solution to this difficulty is to accept that twenty different
termsareneeded, and to build each different definitiononthe
basis of the identification of the most directly recognisable
domain phenomena; these phenomena might, for example,
include events such as paying money, or placing an order, or
receiving goods. The terms so defined can then be used
without restriction in further assertions, exactly as if they
denoted directly recognisable domain phenomena.
Successive definitions made in this way need not interfere
with one another: different terminology can coexist in
different descriptions.

In complex domains an important use of definition is
classification of individuals, especially of events. TheDFSA
description of the lift button can be modified to define
another event predicate:



forAll eb « effectivePress(e,b) <=>
(Press(e,b) and
forSome v ¢ (ends(e,v) and NoRequest(b,v)))

A further description in which effectivePress(e,b) is in
scope can then make assertions about just that subclass of
Press events, uncluttered by the definition and by
consideration of other Pressevents.

Consider alibrary in which books may be borrowed in the
usual way. A predicate borrow(e,m,b) is defined in an
identification rule: it istrue of an evente in which member m
borrows book b. Early partia specifications in the
development sequence may be concerned with the predicate
borrow(e,m,b), describing the temporal ordering of borrow
and return events, and restrictions on the number of books
simultaneously borrowed by amember.

Booksmay also beborrowed against prior reservation; and a
later partial specification, without disturbing the earlier
specification, must describe the treatment of reservations.
This will involve relationships among events including a
subclass  of borrow events: the  predicate
borrowReserve(e,m,b,r) istrueof aneventinwhichabook is
borrowed against areservation:

forAll e,m,b,r * borrowReserve(e,m,b,r) <=>

(borrow(e,m,b) and
forSome v * (reserved(r,m,b,v) and ends(e,v)))

Furthermore, books from other libraries may be borrowed
through an inter-library sharing scheme: the predicate
borrowShare(e,m,b) istrueof aneventinwhichtheborrowed
book belongs to another library from which it is currently
held under the sharing scheme:

forAll e;m,b,s » borrowShare(e,m,b,s) <=>

(borrow(e,m,b) and
forSome s,v *
(belongs(b,s) and heldShare(s,b,v) and ends(e,v)))

Assertions about phenomena in scope introduce no new
phenomena: they merely make falsifiable claims about the
phenomena already recognisable. Defininitions of new
names al so introduce no new phenomena: the meaning of a
new name is expressed in terms of phenomena aready in
scope. Freedom from implementation bias is guaranteed by
careful observation of this restriction: we regard
implementation bias [Jones 90] simply as the introduction
into a domain description of a phenomenon that does not
belongtothedomain.

6 Description Graphs

In discussing devel opment problemswe have often found it
convenient to make the dependencies of descriptions and
domainsexplicitinagraphical form. Description graphsare
directed graphs. [Each node represents a domain or
description; each arc represents an identification or a
renaming or a combination of an identification and a

renaming. Anarc pointsfromthenodewheretheLHSnames
or phenomenaarefound to anodewheretheir RHS namesare
in scope and may be used in assertions and definitions. A
domain node has no incoming arcs; every description node
must have at least one incoming arc; a description node has
outgoingarcsif and only if it definesnew names.

In this section we give some simple graph configurations
corresponding to trivial domains and descriptions. For
brevity, the treatment is highly simplified, and some details
areomitted.

In graph (a) D1 isadomain in which projects have costs,
managers, workers, and start and end dates. The
identification 11 defines predicates start(p,d) and end(p,d).
The description S1 asserts that the start date for a project is
earlier thantheend date.

@ D1 11 ()

In graph (b) D1 and 11 are as in graph (a). S2 defines a
predicate short(p): aprojectisshortif itsend dateisno more
than 5 days after its start date. 13 defines the predicate
manage(p,x). S3 asserts that a short project has only one
manager.

(b) 11 R2

D1 S3

Graph (c) shows conjunction of assertions about one
domain. D1, 11, S1, and |3 are as before; S4 assertsthat each
project has at least one manager. This conjunction istotally
trivial: the scopes of the assertions S1 and S4 do not intersect,
sotheassertionsareorthogonal .

(©) 11 ( )
D1
13

A non-trivial conjunctionisshowningraph (d):
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Identification 13 defines the predicate manage(p,x) as
before; 14 defines cost(p,c); 15 defines work(p,x). S5 asserts
that a project with cost below $500,000 has at most two
managers, S6 assertsthat aproject with cost above $100,000
has at |east three workers. (The constant dollar values have
been omitted fromtheidentifications.)

Relationships between two subdomains are expressed by
descriptionsfor which phenomenaof both subdomainsarein
scope:

e D2 16

S7

D3

Domain D2 is the input stream to a simple program, with
transaction records containing integers. Domain D3 is the
output stream, with a total record containing an integer.
Identification 16 defines the predicate trans(r,i);
identification 17 defines the predicate rotal(r,i). Description
S7 assertsthat theinteger inthe output total record isthe sum
of thoseintheinput transaction records.

Of course, this configuration expresses a relationship
between the subdomains only if the description S7 is truly
one description and not two: that is, if it is not decomposable
into two descriptions S7.1 and S7.2 with disjoint scopes, asin
theconfiguration:

16 ( )
17
=

Here S7 asserts that the integersin the transaction records

® 1 o2

are all non-negative (S7.1), and so is the integer in the total
record (S7.2): it assertsno relationship between D2 and D3.

An important relationship between two domains is the
modelling relationship. We use the term modelling in a
symmetrical sense: two domains are models of one another
if there is some description that, with appropriate
identifications, is true of both:

@ | pa

This modelling relationship is exploited in the JSP method
of program design [Jackson 75]: the description of amessage
stream processed by aprogram is used as adescription of the
dynamic behaviour of theprogram.

An illuminating example of modelling arisesin describing
thedialling of telephone numbers’.

h RN
(h) ™ IN

RE
DE L@

TN isthe telephone number domain. The identification
IN defines predicates str(n) (n is atelephone number),
item(i,n) (i is acharacter instance in the telephone number
n), precedes(i,j) (i precedes j in atelephone number), and
charval(i,c) (Character instance i has the character value
¢). DE isthe domain of dialling activity at a telephone.
The identification |E defines the same terminology as IN,
but based on phenomena of the domain DE: str(p) (p isa
dialling episode at one telephone), item(e,p) (e isa'dial’
event in the dialling episode p), precedes(e,f) (event e
precedes f'in temporal order), and charval(e,c) (the dial

event e is associated with the character valuec).

The description SQ asserts that any individual » satisfying
str(n), having items i satisfying item(i,n), also satisfies the
constraints of a sequence: precedes(i,j) is a total ordering
over theitems, and charval(i,c) isatotal function fromitems
to individual values. All such n satisfy a newly defined

5 Dialling is often specified by a highly operational technique, using a string-valued variable that isinitialised at the
appropriate point and explicitly extended by concatenating each digit asit isdialled. For an example of this treatment,

see [Woodcock 88].



predicatesq(n) (n isasequence).

RN and RE rename the predicate sq(n), alowing the two
sequence individuals to be distinguished. The description
EQV-SQ defines equivalence between the individuals,
allowing other descriptions to make use of some predicate
such ashasDialled(p,n), wherep isadialling episodeandn is
a telephone number. The description EQV-SQ may be no
more than string comparison; but it may need to define the
correspondences between numeric dialled sequences and
alphanumeric numbers(286-1841isCUNningham-1841).

Adopting thisdescription graphing approach, weview reuse
as the reuse of description subgraphs. A subgraph is reused
essentially by supplying new LHSs for incoming arcs of the
subgraph and new RHSs for outgoing arcs; the reused
descriptionsof the subgraph, of course, arenot changed.

7 Understanding Specifications

Emphasising domain meaning as we do, we have found
many formal specifications very hard to understand. Partly
this is for reasons already mentioned: the confusion of the
machinewith the domain and theindicative with the optative
mood, and the absence of explicit indications of description
scope. Use of asingle formal specification language is not
notably less constraining than use of a single programming
language: meaning must be forced into the Procrustean bed,
and any limbs of inconvenient length are lopped or stretched
tofit. Writersof formal specifications are easily trapped by
strong typing and by a desire for terse expression into
surprising statements such as "A telephone subscriber is a
sequence of digits’. Like Assembler Language program
texts, formal specification texts reveal little of their intent.
An implementor who ignores the informal commentary on a
formal specification is in no better position to proceed
unaided than onewho ignorestheformal textsthemselves.

From acertain point of view, thisisnot acriticism. Formal
methods focus on exact expression of certain system
propertiesthat without their help might have been left vague;
their users are content to leave other properties implicit or
vaguely expressed, judging them to be lessimportant or less
in need of clarification. Our view isthat as specifierswe can
and should do better, especialy if we have aspirations to
achieve more effective reuse or to provide mechanised
support for software devel opment.

This vague relationship of a formal specification to its
domain impedes detection of implementation bias.
Essentially, implementation bias can not be usefully
discussed without explicit description scope. Lamport, for
example, defends his transition axiom method [Lamport 89]
against the charge that it introduces internal system states
when it should be concerned only with externally observable
system behaviour. Our view isthat if arequirement mentions
either states or events they must be states or events of the

domain. If, then, the states are not in scope, they must be
defined on the basis of domain phenomenathat are in scope;
if, onthe other hand, they arein scope, then their appearances
in descriptions make assertions about the domain, and these
assertionsarefalsifiable.

Questions of implementation bias often arise in data
structurerepresentation. A specification that declares

course : seq of SUBJECT

invites the charge of bias: should course not be a set rather
than asequence? Again, theissueiseasily settled. Explicit
identification requires the specifier to say what is the
ordering predicate of the sequence, and that predicate must
be defined in terms of phenomena of the domain. The
ordering of SUBJECTSs within a course might be a time-
ordering (the subjects are taught consecutively), an ordering
by content (a certain SUBJECT must be mastered before
some other can be studied), or any other ordering that might
befoundinthedomain. Butif no such ordering can befound,
the sequence structureismerely agratuitousinvention of the
specifier.

Confusion often surrounds the recognition of individuals.
Partly, this arises from the common practice of using the
same data structure types for domain individuals and for
notational convenience in situations where no individual is
intended. Consider, for example, thedeclaration

busy : set of PHONE

The name busy may denote a predicate in scope, an
individual in scope, or neither. If it denotes a predicate in
scope — busy(x) — we may understand the declaration to be
anassertion:

forAll x «. busy(x) => PHONE(x)

If it denotes an individual in scope — busy — we may
understand the declaration as an assertion about a
membership predicate that relates this individual to certain
others:

forAll x « isMemberOf(x,busy) => PHONE(X)

The predicate isMemberOf{x,busy) must also be in scope.
The assertion that all members of the setbusy are PHONESiS
then, as it should be, falsifiable by examination of the
domain.

If the name busy denotes no phenomenon in scope, thenitis
anew predicate name, and must be defined in the containing
description on the basis of phenomenathat arein scope. The
declaration of busy is then an undertaking by the specifier
that the predi cate busy(x) will be so defined that:

forAll x «. busy(x) => PHONE(x)
By contrast, thedeclaration
hamlet : set of WORD



would be assumed by an informed reader to denote an
individual, namely the play of that name. A predicate must
also be in scope — isMemberOf(x,hamlet), and, again, the
assertion that all members of the set hamlet are WORDs is
then, as it should be, falsifiable by examination of the
domain.

Itishardly satisfactory that to understand specifications of
telephony and of Shakespeare's plays we must rely on our
prior knowledgeof exactly those subjects.

Sometimes confusion about individualsgoesalittle deeper.
Explaining a temporal logic specification of a bounded
buffer, [Wing 90] says

"For each message m currently placed on the input

channel and for each previously placed messagem' ..., m

and m’arenot equal. Thisproperty is... an assumption of

the environment. Without it, a buffer that outputs
duplicate copies of its input would be considered
correct.”

Itisnot clear what thisenvironment assumption meansor by
what behaviour it would beinvalidated. The buffer does not
require that the character string of each message be unique;
nor does it require the writer to supply a unique message-id.
So it should surely treat a message currently placed and a
message previously placed as ipso facto not equal. The
assumption, if there is one, is a technical assumption
intended to repair a specification defect; the appropriate
inference is that the buffer should have been specified
differently.

Event individuals present anumber of difficulties. Some of
these are simply examples of the failure to distinguish
domain from machine and indicative domain descriptions
from optative regquirement descriptions. For example, when
Z [Spivey 90] or VDM [Jones 90] is used to specify an
operation, nothing indicates whether the operation is to be
performed ontheinitiative of an agentinthedomain or onthe
initiative of the machine. (In contrast, the Transition Axiom
Method deal s with this point quite explicitly [Lamport 89].)
If the operation is to be performed on the initiative of the
domain, nothing in the Z or VDM formal text indicates
whether the precondition is in the indicative mood (the
domainwill not causethisoperationto occur except whenthe
precondition is true) or in the optative (the machine must
inhibit thisoperation unlessthe preconditionistrue).

Other difficulties center on theindividuality of events and
their classification. For example, if aZ specification defines
two event typesE1 and E2, and al so uses schemacomposition
togiveaschema

E32 E1>>E2

or schemapipingto giveaschema
N

itisnot clear in each case whether an occurrence of the state
change denoted by the more elaborate schema is to be
regarded as one event or astwo, nor whether the specifier, by
defining E3, has thereby extinguished the possibility of an
event described by E1 or by E2 occurringinisolation.

8 Conclusion

This paper hasintroduced some ideas about the meaning of
descriptions, aimed at clarifying the relationship between a
formal specification and the domain of the system to be
specified. Understanding of specifications must rest on
explicit statements of what they are about and what they
assert. We believe that current formal specification
techniques are inadequate in this respect, and therefore can
not offer a satisfactory foundation for automated support of
software devel opment.

The companion paper [Zave 92] showsthat these sameideas
provide a basis for the composition of partial specifications.
They enable usto translate specificationsin awide variety of
languages into First Order Logic: conjunction serves as the
fundamental composition operator, without introducing
spuriousinconsistency or spuriousindependence.

Wealso believethat our approach offersapossible basisfor
effective reuse of descriptions generally and of partial
specificationsin particular.
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