
3 Riverside Drive
Andover, MA 01810
U.S.A.

67$7(0$7(

0$*180

Modeling Reactive Systems with
Statecharts:

The Statemate Approach

by David Harel and Michal Politi

Copyright Notice and Proprietary Information

Copyright © 1999 by I-Logix Inc. — Printed in the United States of America.
3 Riverside Drive, Andover, MA 01810 U.S.A.
All rights reserved.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license. Statemate software contains proprietary information, as well
as trade secrets of I-Logix Inc., and is protected under international copyright law. Reproduction,
adaptation, or translation, in whole or in part, by any means — graphic, electronic or mechanical, including
photocopying, recording, taping, or storage in an information retrieval system — of any part of this work
covered by copyright is prohibited without prior written permission of the copyright owner, except as
allowed under the copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international patents
or pending patents.

The information in this manual is subject to change without notice. I-Logix assumes no responsibility or
liability for any errors contained herein or direct, indirect, special, incidental or consequential damages in
conjunction with the furnishing, performance, or use of this material.

Restricted Rights Legend:. Use, duplication, or disclosure by the government is subject to restrictions
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 (October 1988) and FAR 52.227-19 (June 1987).

Trademarks

Statemate is a registered trademark of I-Logix Inc. I-Logix and the I-Logix logo are trademarks of I-Logix
Inc.

Microsoft, MS, and MS-DOS are registered trademarks, and Windows and Windows NT are trademarks
of Microsoft Corporation.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

Sun, SunOS, Solaris, OpenWindows, and NFS are trademarks or registered trademarks of Sun
Microsystems, Inc.

Other products mentioned may be trademarks or registered trademarks of their respective companies.

Part No. 2005
Printed in the United States of America

Preface

his book provides a detailed description of a
comprehensive set of languages for modeling reactive
systems. The approach is dominated by the language of
Statecharts, used to describe behavior, combined with a

hierarchical language — Activitycharts — for describing the
system's activities (i.e., its functional building blocks —
capabilities or objects) and the data that flows between them.
These two languages are used to develop a conceptual model of
the system, which can be combined with the system's physical,
or structural model, described in our third language —
Modulecharts. The three languages are highly diagrammatic in
nature, constituting full-fledged visual formalisms, complete
with rigorous semantics. They are accompanied by a Data
Dictionary for specifying additional parts of the model that are
textual in nature.

The approach described here lies at the heart of the
STATEMATE system, which the authors have helped design
and build at I-Logix Inc. since 1984. STATEMATE is most
beneficial in requirements analysis, specification, and high-
level design. Besides supporting the modeling effort using the
aforementioned language set, STATEMATE provides powerful
tools for inspecting and analyzing the resulting models, via
model execution, dynamic testing and code-synthesis.

This book discusses the modeling languages in detail, with an
emphasis on the language of Statecharts, since it is the most
important and intricate language in the set, and also the most
novel one. Statecharts are used to specify the behavior of
activities, whether these represent functions in a functional

T

Statemate MAGNUM iii

decomposition or objects in an object decomposition. We
describe the syntax in a precise and complete manner, and
discuss the semantics in a way that is intended to render the
model’s behavior clear and intuitive. Our presentation is
illustrated extensively with examples, most of them coming
from a single sample model of an early warning system (EWS).
Appendix B provides a summarized description of this model.

Whenever possible, we have tried to explain our motivation in
including the various features of the languages. We also
provide hints and guidelines on such methodological issues as
decomposition criteria and the order in which charts are to be
developed.

While we do provide a brief description of the STATEMATE
system beginning on page 1-20, this book is not intended as a
user manual for STATEMATE, but rather, as a definitive
description of its languages and a guide to their use. For more
on STATEMATE’s capabilities, we refer the reader to the
documentation supplied by I-Logix Inc.

This book should be of interest to a wide variety of systems
developers (both in software and hardware), and to teachers
and students of software and hardware engineering.

David Harel and Michal Politi, authors

Note from I-Logix

Due to product enhancements after the original publication of
this book, additional material has been added by I-Logix.

Ä Appendix C, Subroutines

Ä Appendix D, Truth Tables

Ä Appendix E, Decluttering Activities
iv Statemate MAGNUM

Contents

Preface iii

Note from I-Logix iv

Chapter 1 Introduction

System Development and Methodologies 1-1
Specification in a System Life Cycle 1-1
Development Methodologies and Supporting Tools 1-

2
Modeling Reactive systems 1-4

The Nature of Reactive Systems 1-4
An Example: The Early Warning System 1-5
Characteristics of Models 1-6
Modeling Views of Reactive Systems 1-7
Modeling Heuristics 1-10

The Modeling Languages 1-11
Activity-Charts 1-12
Statecharts 1-13
Module-Charts 1-15
Relationships Between the Languages 1-17
Handling Large Scale Systems 1-19

The STATEMATE Toolset 1-20

Chapter 2 The Functional View: Activity-Charts

Functional Description of a System 2-1
Functional Decomposition 2-2
Function Based Decomposition 2-3
Object Based Decomposition 2-5
Statemate MAGNUM v

System Context 2-6
The Decomposition Process 2-7

Activities and Their Representation 2-8
The Hierarchy of Activities 2-8
The Context of an Activity 2-11

Flow of Information Between Activities 2-12
Flow-lines 2-12
Flowing Elements 2-15
Information-Flows 2-18
Data-Stores 2-20

Describing the Behavioral Functionality of
Activities 2-22
Control Activities 2-22
Activities in the Data Dictionary 2-24

Connectors and Compound Flow-Lines 2-27
Joint Connectors (Fork and Merge Constructs) 2-27
Junction Connectors 2-28
Diagram Connectors 2-30
Compound Flow-Lines 2-32

Chapter 3 Information Elements

Information Elements in the Model 3-1
Events 3-4
Conditions 3-6
Data-Items 3-7

Data-Items of Predefined Types 3-7
Records and Unions 3-9
Data-Item Structure 3-11

User-Defined Types 3-13
vi Statemate MAGNUM

Chapter 4 The Behavioral View: Statecharts

Behavioral Description of a System 4-2
Basic Features of Statecharts 4-5
The Hierarchy of States 4-9
Orthogonality 4-13

And-States and Event Broadcasting 4-13
Conditions and Events Related to States 4-16
Multi-Level State Decomposition 4-18

Connectors and Compound Transitions 4-20
Condition and Switch Connectors 4-20
Junction Connectors 4-21
Diagram Connectors 4-23

More About Transitions 4-24
Transitions to and from And-States 4-24
History Entrances 4-27

Chapter 5 The Textual Expression Language

Event, Condition and Data-Item Expressions 5-2
Event Expressions 5-2
Condition Expressions 5-4
Data-Item Expressions 5-6
Named Expressions 5-8

Actions 5-11
Element Manipulation 5-11
Compound Actions and Context Variables 5-15
Iterative Actions 5-17

Time-Related Expressions 5-20
Timeout Events 5-20
Scheduled Actions 5-21

Static Reactions 5-22
Reactions on Entering and Exiting a State 5-22
General Static Reactions 5-23
Statemate MAGNUM vii

Chapter 6 The Semantics of Statecharts

Execution of the Model 6-2
External Changes and System Reactions 6-2
The Details of Status and Step 6-7

Handling Time 6-10
Sequentiality and Time Issues 6-10
Time Schemes 6-11

Non-Deterministic Situations 6-12
Multiple Enabled Transitions 6-12
Racing 6-13

Chapter 7 Connections Between the Functional and
Behavioral Views

Dynamics in the Functional Decomposition 7-2
Dynamics of Activities 7-5

Statecharts in the Functional View 7-5
Termination Type of an Activity 7-7
Perpetual Activities 7-8

Controlling the Activities 7-10
Starting and Stopping Activities 7-10
Sensing the Status of Activities 7-12
Activities Throughout and Within States 7-13
Suspending and Resuming Activities 7-15

Specifying Behavior of Basic Activities 7-18
Reactive Mini-Specs 7-18
Procedure-Like Mini-Specs 7-20
Combinational Assignments 7-22
viii Statemate MAGNUM

Chapter 8 Communication Between Activities

Communication and Synchronization Issues 8-2
Controlling the Flow of Information 8-4

Elements Related to Flow of Information 8-4
Interface Between “execution” Components 8-6

Examples of Communication Control 8-9
Communication Between Periodic Activities 8-9
Message Passing 8-11

Activities Communicating Through Queues 8-13
Queues and Their Operation 8-13
The Semantics of Queues 8-15
Queues in an Activity-Chart 8-17
Example of Activities Communicating Through

Queues 8-18
An Address of a Queue 8-20

Chapter 9 The Structural View: Module-Charts

Structural Description: High-Level Design 9-2
Internal and External Modules 9-4
Communication Lines Between Modules 9-7

Flow of Information Between Modules 9-7
Physical Links Between Modules 9-8

Connectors and Compound Flow-Lines 9-11

Chapter 10 Connections Between the Functional and
Structural Views

Relating the Functional and Structural Models 10-2
Functional Description of a Module 10-2
Allocating Activities to Modules 10-4
Mapping Activities to a Module's Activities 10-5

Activity-chart Describing a Module 10-7
Statemate MAGNUM ix

Activities Implemented by Modules 10-12
Activities Associated with a Module’s Activities 10-15
Object-Oriented Analysis with Module-Charts 10-17

Chapter 11 Splitting Up Charts

Separating a Chart into Multiple Pages 11-2
Offpage Charts 11-5
Connecting Offpage Charts by Matching Flows 11-8
Connecting Offpage Statecharts Using Connectors 11-

13

Chapter 12 Putting Things Together

Relationships Between the Three Kinds of Charts 12-2
A Chart in a Model 12-6
Hierarchy of Charts 12-7
Entities External to the System Under Description 12-

9
Environment Modules/Activities 12-9
Testbenches 12-11

Chapter 13 Scope and Resolution of Elements

Visibility of Elements and Information Hiding 13-2
Defining, Referencing and Resolving Elements 13-4
The Scope of Charts and Graphical Elements 13-7

Referring to Charts and Box Elements 13-7
Referring to Activities in Statecharts 13-8
Referring to States in Statecharts 13-9
External Activities/Modules 13-10
Referring to Modules and Activities in Activity-

Charts 13-12
The Scope of Textual Elements 13-14
x Statemate MAGNUM

Visibility of Textual Elements 13-14
Naming Textual Elements 13-15
More About Resolution of Textual Elements 13-16

Global Definition Sets (GDS’s) 13-18

Chapter 14 Generic Charts

Reusability of Specification Components 14-2
Definition and Instances of Generic Charts 14-4

Notation and Basic Rules of Generics 14-4
Generic Charts in the Chart Hierarchy 14-7

Parameters of Generic Charts 14-9
Formal Parameters of a Generic Chart 14-9
Actual Bindings of Parameters 14-12

Referring to Elements In Instances 14-17

Appendix A Names and Expressions

Names A-1
Reserved Words A-2
Textual Element Names A-5
Box Element Names A-6
Names of Elements in Generic Instances A-7

Expressions A-8
Event Expressions A-8
Condition Expressions A-11
Data-Item Expressions A-13
Action Expressions A-17
Data-Type Expressions A-21

Predefined Functions A-22
 Arithmetic Functions A-22
 Trigonometric Functions A-22
 Exponential Functions A-23
 Random Functions A-23
Statemate MAGNUM xi

Bit-array Functions A-24
String Functions A-25

Predefined Constants A-26
Reactions and Behavior of Activities A-27

Statechart Labels A-27
State Reactions and Reactive Mini-Specs A-27
Procedure-Like Mini-Spec A-27
Combinational Assignments A-27

Flow of Information A-29
Flow Labels and Information-Flow Components A-29
Actual Bindings of Generic Parameters A-29

Enumerated Types A-30
Defining an Enumerated Type A-30
Structure of Enumerated Types A-30
Specification of Values A-30
Distinct Values A-30
Non-Unique Values A-30
Referencing Non-Unique Values A-31
Naming Rules A-31
Enumerated Values and Textual Items A-32
Usage of Enumerated Types A-32
Enumerated Values Usage A-32
Constant Operators Related to Enumerated Types A-

33

Appendix B Early Warning System Example: Functional De-
composition Approach

Textual Description of the System B-1
The Model B-2

The Hierarchy of Charts B-2
The Charts B-3

The Data Dictionary B-7
xii Statemate MAGNUM

Appendix C Subroutines

Subroutines C-2
Procedural Statecharts C-8
Action Language Subroutines C-10
Associating Subroutines with Activities C-12
Callbacks C-13
Graphical Functions C-15

Appendix D Truth Tables

Introduction D-2
Truth Tables Bound to Activities D-2
Truth Tables Defining Actions D-2
Truth Tables Representing Subroutines D-4

Creating Truth Tables—Overview D-5
Truth Table Format D-6
Special Characters D-7
Input Columns D-8
 Output Columns D-11
 Action Column D-13
Default Row D-13
Row Execution D-14
Truth Table Contents for Activities and Actions D-15
Truth Tables Contents for Subroutines D-15
Micro-Step Execution of Procedure Truth Tables D-16
Execution of Action Truth Tables D-17
“Factorization” of Cells D-18

Factorization of Inputs D-18
Factorization of Outputs and Actions D-20
Statemate MAGNUM xiii

Appendix E Decluttering Activities

Example E-1
Procedure E-2

Appendix F References

References F-1

Index Index-1
xiv Statemate MAGNUM

1Introduction

his chapter describes the role of models in a system
development life cycle, and characterizes reactive
systems, the ones for which the languages of this book
are particularly suited. It then introduces the early

warning system (EWS), a reactive system that we shall use as
our running example throughout the book. It also presents an
overview of the modeling languages and a brief description of
the STATEMATE toolset, which was built around the language
of Statecharts, and which supports the modeling process and
provides means for executing and analyzing the models,
synthesizing code from them, and more.

1.1 System Development and
Methodologies

We first describe the background for our work, and the context
in which our modeling languages fit.

1.1.1 Specification in a System Life Cycle

It is common practice to identify several phases in the
development life cycle of a system, each of which involves certain
processes and tasks that have to be carried out by the
development team. The main phases of the classic waterfall
model [R70] are: requirements analysis and specification, design,
implementation, testing and maintenance. Over the course of the

Chapter
Contents

ÀSystem
Development and
Methodologies ...
pg. 1-1

ÀModeling Reactive
systems ... pg. 1-4

ÀThe Modeling
Languages ...
pg. 1-11

ÀThe STATEMATE
Toolset ... pg. 1-20

T

Statemate MAGNUM 1-1

Introduction
past twenty years, many variations of this model were
proposed, as well as quite different approaches to the life cycle
[DBC88]. Some of these are centered around prototyping,
incremental development, reusable software or automated
synthesis.

Most proposals for system development life cycle patterns
contain a requirements analysis phase. Since correcting
specification errors and misconceptions that are discovered
during later stages of the system’s life cycle is extremely
expensive, it is commonly agreed that thorough comprehension
of the system and its behavior should be carried out as early as
possible in the life cycle. Special languages are therefore used in
the requirements analysis phase to specify a model of the system,
and special techniques are used to analyze it extensively. As
described later, we advocate various kinds of analysis,
including model execution and code synthesis. In this book, we
shall use the terms model and specification interchangeably.

The availability of a good model is important for all participants
in the system’s development. If a clear and executable model is
constructed early on, customers and subcontractors, for
example, can become acquainted with it, and can approve of the
functionality and behavior of the system before investing
heavily in the implementation stages. Precise and detailed
models are also in the best interest of the system’s designers and
testers. And clearly, the specification team itself uses modeling
as the main medium for expressing ideas, and exploits the
resulting models in analyzing the feasibility of the specification.

1.1.2 Development Methodologies and Supporting
Tools

A term commonly used in connection with the development
process is methodology. A methodology provides guidelines on
how to perform the processes that comprise the various phases.
Concentrating on the modeling and analysis phase, we may say
that a methodology consists of the following components:
1-2 Statemate MAGNUM

Development Methodologies and Supporting Tools
• The methodology's underlying approach and the
concepts it uses, i.e., the terms and notions used to
capture the conceptual construct of the system and
to analyze it.

• The notation used, i.e., the modeling languages with
their syntax and semantics. Sometimes these contain
constructs that are sufficiently generic to be relevant
to several different concepts of the underlying
approach.

• The process prescribed by the methodology, i.e.,
which activities have to be carried out to apply the
methodology and in what order, how does the work
progress from one activity to the next, and what are
the intermediate outputs or products of each. The
methodology usually also provides heuristics for
making the process more beneficial.

• The tools that can be used to help in the process.

This book is mainly about notation, in that it describes a set of
modeling languages and illustrates their use. However, it also
describes several concepts and notions that underlie a number
of development methodologies. Thus, while our approach to
modeling and analysis is not necessarily connected with any
particular methodology, it is more compatible with some
methodologies than with others (just as flexible programming
languages can be used with very different program design and
implementation methods, but might be more fitting for some
specific ones). In particular, our approach can be used smoothly
with variants of structured analysis [D79, DOD88], but also
with other methodologies, such as object-oriented analysis.
Moreover, although the book does not get into the details of any
particular methodological process, we do describe the
STATEMATE set of tools (from I-Logix, Inc.) later in the chapter.
STATEMATE can be used in conjunction with several relevant
methodologies to apply our modeling and analysis approach,
and implements all features of the languages described in the
book.
Statemate MAGNUM 1-3

Introduction
1.2 Modeling Reactive systems

As explained above, the heart of the specification stage is the
construction of the system model. In this section we discuss the
overall nature and structure of models, thus preparing for the
subject matter of the book, which involves the modeling
languages themselves. However, we should first say something
about the kinds of systems we are interested in.

1.2.1 The Nature of Reactive Systems

Our modeling approach, particularly the Statecharts language,
is especially effective for reactive systems [HP85, MP91], whose
behavior can be very complex, causing the specification
problem to be notoriously elusive and error-prone. Most real-
time systems, for example, are reactive in nature.

A typical reactive system exhibits the following distinctive
characteristics:

• It continuously interacts with its environment, using
inputs and outputs that are either continuous in
time, or discrete. The inputs and outputs are often
asynchronous, meaning that they may arrive or
change values unpredictably at any point in time1.

• It must be able to respond to interrupts, i.e., high-
priority events, even when it is busy doing
something else.

• Its operation and reaction to inputs often reflects
stringent time requirements.

• It has many possible scenarios of operation,
depending on the current mode of operation and the
current values of its data, as well as its past behavior.

1. This should be contrasted with transformational systems, in which the
timing of the inputs and outputs is much more predictable. A
transformational system repeatedly waits for all its inputs to arrive, carries
out some processing, and outputs the results when the processing is done.
1-4 Statemate MAGNUM

An Example: The Early Warning System
• It is very often based on interacting processes that
operate in parallel.

Examples of reactive systems include on-line interactive
systems, such as automatic teller machines (ATMs) and flight
reservation systems, computer embedded systems, such as
avionics, automotive and telecommunication systems, and
control systems, such as chemical and manufacturing systems.

1.2.2 An Example: The Early Warning System

Many of the characteristics mentioned above are present in the
simple early warning system (EWS) that we use as an example
throughout this book to illustrate the ideas and features of the
languages. The EWS monitors a signal arriving from outside,
checks whether its value is in some predefined range, and if not
it notifies the operator by an alarm and appropriate messages.
This is a general kind of system, the likes of which can be found
in a variety of applications. Here is a brief informal description
of the EWS, that will become useful for understanding the
details later on.

The EWS receives a signal from an external sensor. When
the sensor is connected, the EWS processes the signal and
checks if the resulting value is within a specified range. If
the value of the processed signal is out of range, the system
issues a warning message on the operator display and
posts an alarm. If the operator does not respond to this
warning within a given time interval, the system prints a
fault message on a printing facility and stops monitoring
the signal. The range limits are set by the operator. The
system becomes ready to start monitoring the signal only
after the range limits are set. The limits can be re-defined
after an out-of-range situation has been detected, or after
the operator has deliberately stopped the monitoring.

See Figure 1.1 for the schematic structure of the EWS.
Statemate MAGNUM 1-5

Introduction
1.2.3 Characteristics of Models

A system model constitutes a tangible representation of the
system’s conceptual and physical properties, and serves as a
vehicle for the specifier and designer to capture their thoughts.
In some ways, it is like the set of plans drawn by an architect to
describe a house. It is used mainly for communication, but
should also facilitate inspection and analysis. The modeling
process involves conceiving of the elements relevant to the
system and the relationships between them, and representing
them using specific well-defined languages. When the model
reflects some pre-existing descriptions, e.g., requirements
written in natural language, it is useful to keep track of how the
components of the developing model are derived from the
earlier descriptions.

To achieve their goal in enabling the systems developers to
model a system, our modeling languages have been designed
with several important properties in mind: to be intuitive and
clear, to be precise, to be comprehensive, and to be fully

Figure 1.1. The early warning system
1-6 Statemate MAGNUM

Modeling Views of Reactive Systems
executable. To achieve clarity, elements of the model are
represented graphically wherever possible; for example, nested
box shapes are used to depict hierarchies of elements, and
arrows are used for flow of data and control. For precision, all
features in the languages have rigorous mathematical
semantics, which is a prerequisite for carrying out meaningful
analysis. Comprehension comes from the fact that the
languages have the full expressive power needed to model all
relevant issues, including the what, the when, and the how. As
to executabilty, the behavioral semantics is detailed and
rigorous enough to enable the model to be both executed
directly, like a computer program, and to be translated into
running code for prototyping and even for implementation
purposes.

1.2.4 Modeling Views of Reactive Systems

Building a model can be considered as a transition from ideas
and informal descriptions to concrete descriptions that use
concepts and predefined terminology. In our approach, the
descriptions used to capture the system specification are
organized into three views, or projections, of the system: the
functional, the behavioral and the structural.

The functional view captures the “what”. It describes the
system's functions, processes or objects, also called activities,
thus pinning down its capabilities. This view also includes the
inputs and outputs of the activities, i.e., the flow of information
to and from the external environment of the system, as well as
the information flowing among the internal activities. For
example, the activities of the EWS include sampling the input
signal, comparing the read signal value with the predefined
limits, and generating an alarm. The information flows in the
EWS include the signal that flows from the external sensor, the
operator commands that are input from the operator console,
and the message and alarm notification that are output to the
operator.
Statemate MAGNUM 1-7

Introduction
The behavioral view captures the “when”. It describes the
system's behavior over time, including the dynamics of
activities, their control and timing behavior, the states and
modes of the system, and the conditions and events that cause
modes to change and other occurrences to take place. It thus
also provides answers to questions about causality,
concurrency and synchronization. In the EWS example, the
behavioral view might identify those states in which the system
is waiting for commands, processing the signal, generating an
alarm, or setting up new limit values. The behavioral view
would also identify the events that cause transitions between
these states, e.g., it would specify what causes the system to
generate an alarm, or when the processing stops and the set-up
procedure starts. Hence, it specifies precisely when the
activities described in the functional view are active, and when
the information actually flows between them.

There is a tight connection between the functional and
behavioral views. On the one hand, activities and data-flow
need dynamic control in order to come to life, and, on the other
hand, the behavioral aspects are all but worthless if they have
nothing to control. Technically, each activity in the functional
view can be provided with a behavioral description given in the
behavioral view, whose role it is to control the activity's internal
parts, i.e., its subactivities and their flow of information.

The structural view captures the “how”. It describes the
subsystems, modules or objects constituting the real system,
and the communication between them. The EWS could be
specified in the structural view to consist of an operator
monitor, a control and computation unit, a signal processor, an
alarm generator, and so on.

While the two former views provide the conceptual model of the
system, the structural view is considered to be its physical model,
since it concerns itself with the various aspects of the system's
implementation. As a consequence, the conceptual model
usually involves terms and notions borrowed from the problem
1-8 Statemate MAGNUM

Modeling Views of Reactive Systems
domain, whereas the physical model draws more upon the
solution domain.

The main connection between the conceptual and physical
models is captured by specifying the modules of the structural
view that are responsible for implementing the activities in the
functional view. For example, the EWS activity that compares
the input signal with the predefined limit values is
implemented in the control and computation unit.

Figure 1.2. The three specification views
Statemate MAGNUM 1-9

Introduction
1.2.5 Modeling Heuristics

Modeling heuristics are guidelines as to how the notation
should be used to model the system. This involves several
issues, such as:

• The mapping between the methodology's concepts
and the elements allowed in the notation. If the
notation is flexible and its constructs can be used to
depict several different concepts, this mapping has
to be defined carefully.

• The type of decomposition to be used. Some
possibilities are decompositions that are function
based, object based, mode based, module based, and
scenario based. Which one is chosen depends, in
general, on the conceptual base of the methodology,
although within a given methodology there is often
some flexibility, according to the nature of the
system and the role the model will play in the overall
development effort. In the context of our notation,
this issue is mainly relevant to the functional view
and will be discussed further in Chapter 2.

• The step-by-step order of the modeling process.
Which view are we to start with? Should we be
working in a bottom up or top down fashion? Again,
this is an issue that mostly depends on the
methodology, but it also depends on what is already
known about the system.

In addition, modeling guidelines are often concerned with more
marginal details, such as naming conventions and the number
of allowed offspring in each decomposition level, as well as
layout rules for improving the model's aesthetics and clarity.

In this book we do not mean to address or recommend any
specific global methodology. Although most parts of our
running example will use one particular method, we will
mention other possibilities too.
1-10 Statemate MAGNUM

The Modeling Languages
1.3 The Modeling Languages

The three views of a system model are described in our
approach using three graphical languages: Activity-charts for
the functional view, Statecharts for the behavioral view, and
Module-charts for the structural view. Additional nongraphical
information related to the views themselves and their inter-
connections is provided in a Data Dictionary. See Figure 1.3.

Some of the basic ideas that make up our languages have been
adapted from other modeling languages, such as data-flow
diagrams, state-transition diagrams, data dictionaries and mini-
specs. However, they include many extensions that increase
their expressive power and simplify and clarify the model. In
addition, all the languages have precise semantics, so much so,
that models can be fully executed, or translated into other
executable formalisms, such as software code. We now briefly

Figure 1.3. The modeling languages
Statemate MAGNUM 1-11

Introduction
describe the modeling languages and their main connections.
As we shall see, the general visual style, as well as many of the
conventions and syntax rules, are common to all three.

1.3.1 Activity-Charts

Activity-charts can be viewed as multi-level data-flow
diagrams. They capture functions, or activities, as well as data-
stores, all organized into hierarchies and connected via the
information that flows between them. We adopt extensions that
distinguish between data and control information in the arrow
types, and also provide several kinds of graphical connectors, as
well as a semantics for information that flows to and from non-
basic activities.

Figure 1.4 illustrates some of these notions using the EWS
example. We see internal activities, such as GET_INPUT,

Figure 1.4. An activity-chart
1-12 Statemate MAGNUM

Statecharts
SET_UP and COMPARE, external activities, such as OPERATOR
and SENSOR, a data-store LEGAL_RANGE, data flows, such as
RANGE_LIMITS and SAMPLE, control flows, such as COMMANDS
and OUT_OF_RANGE, and the control activity EWS_CONTROL,
whose internal description is to be given in the language of
statecharts for the behavioral view. Notice how the hierarchy of
activities is depicted graphically by encapsulation, so that a
single chart can represent multiple levels of activities.

In addition to the graphical information, each element in the
description has an entry in the Data Dictionary, which may
contain nongraphical information about the element. For
example, the activity entry contains fields called mini-spec and
long description, in which it is possible to provide formal and
informal textual descriptions of the activity’s workings. See
Figure 1.5.

Activity-charts are described in detail in Chapter 2.

1.3.2 Statecharts

Statecharts [H84] constitute an extensive generalization of state-
transition diagrams. They allow for multi-level states,

Figure 1.5. An activity entry in the Data Dictionary
Statemate MAGNUM 1-13

Introduction
decomposed in an and/or fashion, and thus support
economical specification of concurrency and encapsulation.
They incorporate a broadcast communication mechanism,
timeout and delay operators for specifying synchronization and
timing information, and a means for specifying transitions that
depend on the history of the system’s behavior.

Figure 1.6 contains a statechart taken from the EWS model. It
consists of a top-level state EWS_CONTROL which is
decomposed into two substates. One of the substates, ON, is
decomposed into two parallel behavioral components,
MONITORING and PROCESSING; each of these is further

Figure 1.6. A statechart
1-14 Statemate MAGNUM

Module-Charts
decomposed into exclusive states. This means that the system
must be simultaneously in two states, each from a different
component. For example, when the statechart starts, the system
is in WAITING_FOR_COMMAND and in DISCONNECTED. The
chart also depicts events that cause transitions, such as
ALARM_TIME_PASSED, which causes the system to go from the
GENERATING_ALARM state to WAITING_FOR_COMMAND, and
RESET, which causes the system to leave both COMPARING and
GENERATING_ALARM and enter WAITING_FOR_COMMAND.
Some transitions are guarded by conditions, like the one from
WAITING_FOR_COMMAND to COMPARING, which is taken when
the event EXECUTE occurs, but only if the condition
in(CONNECTED) is true, namely, the system is in the
CONNECTED state of the SAMPLING component. Some transition
labels contain actions, which are to be carried out when the
transitions are taken. For example, when moving from
COMPARING to GENERATING_ALARM the system sends a HALT
signal to the PROCESSING component.

Here too, each element in the statechart has an entry in the Data
Dictionary, which may contain additional information. For
example, an event entity can be used to define a compound
event by an expression involving other events and conditions.

Statecharts are discussed in Chapters 4, 5 and 6.

1.3.3 Module-Charts

A module-chart can also be regarded as a certain kind of data-
flow diagram or block diagram. Module-charts are used to
describe the modules that constitute the implementation of the
system, its division into hardware and software blocks and their
inner components, and the communication between them
Statemate MAGNUM 1-15

Introduction
Figure 1.7 shows a module-chart for the EWS. It contains
internal modules, such as the control and computation unit
(CCU), the SIGNAL_PROCESSOR, and the OPERATOR_MONITOR.
The latter module contains the submodules KEYBOARD and
SCREEN. (Here too, the hierarchy of modules is depicted by
encapsulation.) The module-chart also contains environment
modules, such as OPERATOR and SENSOR, and it is noteworthy
that these are similar to the external activities depicted in the
functional view. The communication signals between modules
includes KEY_PRESSING from the OPERATOR to the
KEYBOARD, the ALARM_SIGNAL from the CCU to the
ALARM_SYSTEM, and so on.

Elements of the module-charts also have entries in the Data
Dictionary, in which additional information can be specified.

Module-charts are described in Chapter 9.

Figure 1.7. A module-chart
1-16 Statemate MAGNUM

Relationships Between the Languages
1.3.4 Relationships Between the Languages

The relationships between the concepts of the three views are
reflected in corresponding connections between the three
modeling languages. Most of these connections are provided in
the Data Dictionary, and they serve to tie the pieces together,
thus yielding a complete model of the system under
development.

The main relationship between the functional and behavioral
views is captured by the fact that statecharts describe the
behavior and control of activities in an activity-chart. We thus
associate a statechart with each control activity in an activity-
chart. In Figure 1.4, the @ symbol denotes that the statechart
named EWS_CONTROL (which appears in Figure 1.6) is to be
taken as the “contents” of the control activity.

Another relationship between activity-charts and statecharts
involves activities that are specified as being active throughout
states. For example, in the Data Dictionary entry for the state
COMPARING, we can specify that the activity COMPARE is
active throughout (see Figure 1.8). This means that
COMPARE will start when the state COMPARING is entered and
will terminate when it is exited.

There are ways to directly refer to activities from within a
statechart. For example, the event sp(SET_UP), that labels a

Figure 1.8. Specifying an activity throughout a
state
Statemate MAGNUM 1-17

Introduction
transition in Figure 1.6, occurs when the activity SET_UP
terminates (the sp stands for stopped). It causes the transition
from the SETTING_UP state to WAITING_FOR_COMMAND.

Chapters 7 and 8 are devoted to the connections between
activity-charts and statecharts.

The relationships between the conceptual and physical models
of the system are reflected in connections between activity-
charts and module-charts. One such connection involves
specifying which module implements a given activity. This is
done in the activity entry of the Data Dictionary. For example,
in the entry for the COMPARE activity we might say that
COMPARE is implemented in the CCU module.

Another connection involves associating an activity-chart with
a specific module in the module-chart, thus describing the
module’s functionality in detail. This kind of association is
specified in the Data Dictionary entry for the module. For
example, the activity-chart EWS_ACTIVITIES (which was
shown in Figure 1.4) describes the functionality of the EWS
module. See Figure 1.9.

Chapter 10 is devoted to describing these relationships.

Figure 1.9. An activity-chart describing a module
1-18 Statemate MAGNUM

Handling Large Scale Systems
1.3.5 Handling Large Scale Systems

Methodological approaches, and in particular the models that
they recommend constructing, are essential for developing
large systems. Our own approach is thus intended primarily for
such systems. These involve vast quantities of information and
numerous components and levels of detail, as well as portions
that may appear repeatedly in many parts of the model. Such
systems are usually developed by several separate teams. Our
languages support features designed specifically to ease in this
work.

Although a single chart can describe a multi-level hierarchy of
elements, it is not advisable to overuse this capability when the
model grows beyond a certain size. Accordingly, our languages
allow splitting large hierarchical charts into separate ones. See
Figure 1.10, in which a separate chart is used to describe the
contents of activity A.

Chapter 11 is devoted to this subject.

A related issue involves coping with visibility and information

Figure 1.10. Splitting up charts
Statemate MAGNUM 1-19

Introduction
hiding by setting scoping rules of elements in the model. It is
also possible to introduce global shared information in a model
component called a global definition set. This is analogous to the
scoping issue in programming languages.

Scoping is discussed in Chapter 13.

A very important feature of our languages is that of generic
charts, which allow reusing parts of the specification. A generic
chart makes it possible to represent common portions of the
model as a single chart that can be instantiated in many places,
and in this it is similar to a procedure in a conventional
programming language.

Generic charts are described in Chapter 14.

Another feature that contributes to reusability is that of user-
defined types, described in Chapter 3. This feature makes it
possible to define a data type that will be used for many data
elements in the model.

1.4 The STATEMATE Toolset

We now provide a very brief description of the STATEMATE
toolset [HLNPPST88], which supports the languages and
approach presented here. STATEMATE was intended primarily
to help address the goals of the specification stage, though it
supports some of the activities carried out in other stages too.
See Figure 1.11 for a schematic overview of the STATEMATE
toolset

We should note that the modeling approach presented here has
a life of its own, whether or not it is used in conjunction with a
computerized tool. Moreover, there are other tools in existence,
both commercial and of research nature, that support
statecharts and other aspects of the approach. We describe
1-20 Statemate MAGNUM

The STATEMATE Toolset
STATEMATE here both because we have been part of the team
that designed it and because it still seems to be the most
powerful tool of its kind available.

For entering the information contained in the model,
STATEMATE has graphic editors for the three graphical
languages, as well as a Data Dictionary. It carries out syntax
checking and tests for consistency and completeness of the
various parts of the model. While constructing the model the
specifier can link original textual requirements to elements of
the model. These links can be used later in requirement
traceability reports. STATEMATE also provides extensive means
for querying the model’s repository and retrieving information

Figure 1.11. The Statemate toolset

1

Note 1. Effective with Statemate MAGNUM v2.0, Analysis is done using Simulation Testing and Static Testing.
Statemate MAGNUM 1-21

Introduction
from it. A number of fixed-format reports can be requested, and
there are document generation facilities with which users can
tailor their own documents from the information constituting
the model.

Our view of system development emphasizes “good”
modeling, but it also regards as crucial the need to enable a user
to run, debug and analyze the resulting models, and to translate
them into working code for software and/or hardware.
Accordingly, STATEMATE has been constructed to
“understand” the model and its dynamics. The user can then
execute the specification, by emulating the environment of the
system under development and letting the model progress in
response.

Using STATEMATE, the model can be executed in a step-by-step
interactive fashion or by batch execution. In both cases, the
currently active states and activities are highlighted with
special coloring, resulting in an (often quite appealing)
animation of the diagrams. It is also possible to execute the
model under random conditions, and in both typical and less
typical situations. A variety of possible results of the executions
can be accumulated, to be inspected and analyzed later.

We should note that it is possible to execute only part of the
model (in any of the execution modes), as long as the portion
executed is syntactically intact. This implies that there is no
need to wait until the entire model is specified in order to carry
out executions, and even an incomplete model can be executed
and analyzed. Moreover, it is possible to attach external code to
the model, to complete unspecified processing portions, to
produce input stimuli, or to process execution results on line.
This openness enables STATEMATE to be linked to other tools.

STATEMATE also supports several dynamic tests, which are
intended to detect crucial dynamic properties, such as whether
a particular situation can be reached starting in a given state.
These tests are carried out by the tool using a form of exhaustive
execution of scenarios. We shall not get into a discussion of the
1-22 Statemate MAGNUM

The STATEMATE Toolset
feasibility of such exhaustive executions here; the reader is
referred to [H92] for some comments on the matter.

Once a model has been constructed, and has been executed and
analyzed to the satisfaction of the specifiers, STATEMATE can be
instructed to translate it automatically into code in a high-level
programming language. This is analogous to the compilation of
a conventional program into assembly language, whereas
model execution is analogous to its direct interpretation.
Currently, translations into Ada and C are supported. A variant
of STATEMATE enables translation into hardware description
languages VHDL and Verilog. Code supplied by the user for
bottom-level basic activities can be appropriately linked to the
generated code, resulting in a complete running version of the
system. The resulting code is sometimes termed prototype code,
since it is generated automatically and reflects only those design
decisions made in the process of preparing the conceptual
model. It may not always be as efficient as final code, though it
runs much faster than the executions of the model itself, just as
compiled code runs faster than interpreted code. For some
kinds of systems, however, this code is quite satisfactory.

One of the main uses of the synthesized code is in observing the
model performing in circumstances that are close to its final
environment. The code can be ported and executed in the actual
target environment, or – as is more realistic in most cases – in a
simulated version of the target environment. To this end,
STATEMATE makes it possible to construct a “soft” version of
the user interface of the final system, which can then be
activated, driven by the synthesized code. The resulting setup
can be used to debug the model by subcontractors and
customers, for example.

Associated with the code synthesis facility is a debugging
mechanism, with which the user can trace the executing parts of
the code back up to the model using back animation. The
requirements traceability feature makes it possible to trace
problems back up to the (textual) requirements.
Statemate MAGNUM 1-23

Introduction
For more on these topics, we refer the reader to the STATEMATE
documentation supplied by I-Logix Inc.
1-24 Statemate MAGNUM

2The Functional View:
Activity-Charts

his chapter deals with the language of Activity-charts,
which is used to depict the functional view of the system
under development. We describe how the functionality
of a system is specified by a hierarchy of functional

components, called activities, what kinds of information are
exchanged between these activities and manipulated by them,
how this information flows and how it is stored, and so on.

Many of the concepts and notions represented in this view are
quite well known, and are not specific to our approach. They are
used in other notations and methods, perhaps with small
variations. In fact, Activity-charts can be viewed as a variant of
hierarchical data flow diagrams, but they embody many
enhancements and use some special terms and notations.

2.1 Functional Description of a
System

The functional description of a system specifies the system’s
capabilities. It details the functional components, or activities,
that the system is capable of carrying out, and how these
components communicate through the flow of information
among them. It does so in the context of the system’s
environment, i.e., it defines the environment with which the
system interacts and the interface between the two.

The functional view does not address the physical and
implementational aspects of the system. As to the dynamic and
behavioral issues, it attempts to separate them from the

T

Statemate MAGNUM 2-1

The Functional View: Activity-Charts
functional description whenever possible, but, as we shall see,
there are tight relations between functionality and behavior.

For example, the functional view is appropriate for telling
whether a medical diagnosis system can monitor a patient’s
blood pressure, and, if so, where it would get its input data and
which functions would have access to the output data.
However, to deal with such issues as the conditions under
which the monitoring is started and the question of whether it
can be carried out in parallel to temperature monitoring, the
behavioral view must be considered, as well as its connections
with the functional view. These crucial parts of modeling the
system are described in Chapters 4 to 8.

The structural view, which deals with sensors, processors,
monitors, software modules, and so on, is described in
Chapters 9 and 10.

2.1.1 Functional Decomposition

The main method for describing the functionality of a system in
our approach is that of functional decomposition, by which the
system is viewed as a collection of interconnected functional
components (or activities, as they are called in our terminology),
organized into a hierarchy. Thus, each of the activities may be
decomposed into its subactivities, repeatedly, until the system
has been specified in terms of basic activities, which are those
that the specifiers have decided require no further
decomposition. Basic activities are specified using alternative
means, such as textual description, formal or informal, or code
in a programming language. The intended meaning of the
functional decomposition is that the capabilities of the parent
activity are distributed between its subactivities. The order in
which these subactivities are performed and the conditions that
cause their activation or deactivation are not explicitly
represented in the functional view, and are usually specified in
the behavioral view, as discussed in later chapters.
2-2 Statemate MAGNUM

Function Based Decomposition
Note that the term functional decomposition is usually identified
with the Structured Analysis methodology, in which the
functional components of a system are functions in the
mathematical sense of the word. Here we use this term in a
broader meaning, where the main idea is to decompose the
functionality of the entire system into activities, the functional
components, which may very well be reactive in nature, and
which together capture the whole picture.

The activities themselves can represent different concepts used
in conventional modeling techniques. They can be objects,
processes, functions, use cases, software procedures, logical
machines, or any other kind of functionally distinct entity.

Which of these is selected depends on the modeler’s preference,
but it is recommended to try to stick to a common type of
functional component, based on a single conceptual approach
or methodology. To some extent, this selection dictates the
nature of the interface and communication between the
activities, and also some of the behavioral aspects.

In the following subsections we discuss two types of
decomposition: function based decomposition, in which the
activities are system functions and object based decomposition, in
which they are objects. Both styles are illustrated by the EWS
example of Chapter 1.

2.1.2 Function Based Decomposition

In function based decomposition the activities are (possibly
reactive) functions. To illustrate it, we consider the EWS
example. We start from a narrative that describes its
functionality, and reorganize it into the following list of
requirements:

• The EWS receives a signal from an external sensor.

• It samples and processes the signal continuously,
producing some result.
Statemate MAGNUM 2-3

The Functional View: Activity-Charts
• It checks if the value of the result is within a
specified range, that is set by the operator.

• If the value is out of range, the system issues a
warning message on the operator display and posts
an alarm.

• If the operator does not respond within a given time
interval, the system prints a fault message on a
printing facility and stops monitoring the signal.

As the first step of our functional description of the EWS, we
identify the various functions that are called for by these textual
requirements:

SET_UP: receives the range limits from the operator.

PROCESS_SIGNAL: reads the “raw” signal from the sensor and
performs some processing to yield a value that is to be
compared to the range limits.

COMPARE: compares the value of the processed signal with the
range limits.

DISPLAY_FAULT: issues a warning message on the operator
display and posts an alarm.

PRINT_FAULT: prints a fault message on the printing facility.

Notice that the description of the activities also contains
information about the data they handle. An activity may
transform its input information into output information, to be
consumed by other functions that can be either internal or
external to the system. For example, the activity
PROCESS_SIGNAL transforms its input, the raw signal, into a
value that is checked by the COMPARE function. (The signal
processing can be a simple conversion of an analog signal into a
digital representation at a fixed rate. Of course, it could also be
a more complex transformation, such as computing the average
value over some time interval.)
2-4 Statemate MAGNUM

Object Based Decomposition
In the function based decomposition approach the interface of
an activity is described in terms of input and output signals,
both data and control. Also, the model will usually present the
source activity of input information and the target activity of
output information.

2.1.3 Object Based Decomposition

In an object based approach, the decomposition is defined by
the entities on which operations are performed, or,
alternatively, is based on the active agents, or the active
components of the system (these are called logical machines in
the ROOM methodology [SGW94]). In our approach, the
interface between objects consists of the events and messages
that cause the internal operations to take place, and sometimes
also the data that is used in these operations, just as in function
based decomposition. This is somewhat different from object-
oriented design paradigms (OOD), where an object’s interface
consists of its operations.

To illustrate, we decompose the functionality of the EWS
system into the following components, using encapsulation
guidelines that are often presented in object-oriented methods.
When applicable, a component is characterized by its subject
and associated operations:

SIGNAL_PROCESSOR: handles the signal from the sensor; it
reads the signal, processes the read value, and checks the
processed signal against the legal range.

FAULT_HANDLER: consists of all functionality related to fault
situations; it handles a fault occurrence by issuing the alarm,
printing the fault report, and resetting the fault situation.

RANGE: handles the range limits against which the processed
signal is compared; it reads the range limits provided by the
operator, validates the read values, stores the current legal
range, and makes its values and status available to the other
objects.
Statemate MAGNUM 2-5

The Functional View: Activity-Charts
MMI_HANDLER: takes care of all interaction with the operator
(i.e., the man machine interface); it accepts commands and data
from the operator, and displays messages and other
information.

CONTROLLER: controls the behavior of the entire system.

This decomposition is not overly detailed, and some of the
components can be further decomposed into lower level objects
that help them accomplish their goals.

2.1.4 System Context

One of the first decisions that should be taken when developing
a system involves its boundaries, or context. We must determine
the entities that are part of the system's environment – and these
can be other systems, or functions or objects (depending on the
decomposition approach) – and how they communicate with
the system itself.

In both approaches to the EWS description above some of the
inputs can be seen to come from outside the system and some of
the outputs are sent outside. For example, in the function based
decomposition, the raw signal consumed by PROCESS_SIGNAL
comes from the SENSOR, which is not part of the specified
system but belongs to the environment. Similarly, the printed
message produced by PRINT_FAULT is sent to the OPERATOR,
which is also external to the EWS. In the object based
decomposition, the interaction with the environment is handled
by the MMI_HANDLER that interfaces with the OPERATOR, and
by the SIGNAL_PROCESSOR that reads the signal from the
SENSOR.

As a result, we may now decide that the EWS's environment
consists of two external entities, or systems: the (presumably
human) OPERATOR and the SENSOR (see Figure 2.1).
2-6 Statemate MAGNUM

The Decomposition Process
Figure 2.1. The context of the EWS

The system context is sometimes given as part of the
requirements, before the beginning of the specification process.
However, it is often the responsibility of whoever carries out the
functional description to determine the best way to set up the
system boundaries. For example, we could have defined the
specification boundaries of the EWS differently, since they were
not given as part of the textual description, removing the
printing facility from the system itself and turning it into an
external entity.

2.1.5 The Decomposition Process

Some specification methodologies based on functional
decomposition provide guidelines as to how the subfunctions
ought to be defined and the order in which the functional
description should actually be prepared. According to one of
these methodologies, the analyst should start by describing the
system’s context, i.e., the environment entities and the
information flowing between them and the system itself. The
process is then continued in a top-down manner, proceeding
Statemate MAGNUM 2-7

The Functional View: Activity-Charts
from the description of the entire system to the description of its
subfunctions, then to their subfunctions, etc. Alternatively, a
bottom-up approach may be adopted, whereby the basic,
lowest-level functions are to be specified first and are used as
building-blocks to construct higher-level functions. We shall
not address such methodological issues of order and process
here; rather, we concentrate on the way the concepts relevant to
the functional view of specification can be expressed in our
languages.

The functional view is specified in our approach by Activity-
charts, together with a Data Dictionary that may contain
additional information about the elements appearing in the
charts. The following sections describe the details of the
Activity-charts language. Almost all our examples will use
function based decomposition, although the same language
constructs can be used for other approaches, such as the object
based one.

2.2 Activities and Their
Representation

2.2.1 The Hierarchy of Activities

The activities in an activity-chart are depicted as rectangular or
rectilinear solid-line boxes, and the subactivity relationship is
depicted by box encapsulation. An activity’s name appears
2-8 Statemate MAGNUM

The Hierarchy of Activities
inside its box. Figure 2.2 shows one level of the decomposition
of the EWS system.

Figure 2.2. First level decomposition of an activity

The overall activity of the system has been named
EWS_ACTIVITIES. In function based decomposition it is useful
to use verbs for names of activities, with or without a qualifying
noun, as we have done for the subactivities in Figure 2.2. This
helps convey the purpose of the functions the activities
perform. In other decomposition approaches some other
naming policy may be more appropriate. In any case, names
must follow the rules of legal element name, i.e., they start with
an alphabetic character, and consist of alphanumeric characters
and underscores. See Appendix A, page A-1.

We may further decompose subactivities into sub-subactivities
on lower levels, and the new activities may be drawn inside
their parent activities in the same chart. See Figure 2.3, in which
SET_UP is decomposed into three sub-subactivities. We use the
terms descendants and ancestors to denote subactivities and
parent activities, respectively, on any level of nesting. Activities
that have no descendants are termed basic, while those that do
are called non-basic. Two activities with a common parent may
Statemate MAGNUM 2-9

The Functional View: Activity-Charts
not have the same name, but subactivities of different parents
may be named identically.

Figure 2.3. Multi-level decomposition of an activity

All the activities appearing in the examples above are referred
to as internal regular activities, to distinguish them from other
types of activities participating in the functional description,
which are discussed later.

Like many of the elements in our languages, some of the
information related to activities is represented non-graphically.
Each activity has a corresponding item in the Data Dictionary,
which may contain additional information about it, such as
textual descriptions, attributes, and relationships with other
elements. Parts of the activity’s Data Dictionary item are used to
complete the description of its functionality, as discussed in
Describing the Behavioral Functionality of Activities, beginning on
page 2-22.

Note: You can also reduce the number of activities depicted at a
single hierarchical level, while retaining the same
2-10 Statemate MAGNUM

The Context of an Activity
structure, for easier readability. See E, Decluttering
Activities, for details.

2.2.2 The Context of an Activity

The functional description of a system may consist of multiple
activity-charts, linked together. Each such chart focuses on a
portion of the system’s functionality. It may describe the
functionality of the entire system or that of some of its
subsystems, or it may concentrate on some specific capability,
object or process being defined as a functional component in the
higher level decomposition. In each of the cases, it is important
to delineate the borders of the described portion, separating it
from its environment, and to represent the flow of information
between the two.

Each activity-chart contains one top-level box, with solid-line
edges. This box represents the top-level activity of the chart, and
its borderline separates this activity (and its internal
description) from its environment. The components that
constitute the environment are always referred to as external
activities of the considered chart, although they may correspond
to physical modules, humans, or activities or data-stores that
are internal to other activity-charts in the overall model. Of
course, they may also be real environment entities, external to
the entire system under description. This issue will become
clearer in later chapters, where the relations between charts in a
full model are described.

External activities are depicted as boxes with dashed-line edges,
which are located outside the top-level activity. They have the
same names as the modules, the humans, the other activities
(external, internal or control), or the data-stores that they
represent in other parts of the specification.

For example, the environment of the EWS, as presented in
Figure 2.1, consists of two components, the OPERATOR and the
SENSOR. They are drawn as external activities in the activity-
Statemate MAGNUM 2-11

The Functional View: Activity-Charts
chart of Figure 2.5 that describes the overall functionality of the
EWS.

Several external boxes in an activity-chart may bear the same
name, in which case they are considered as representing the
same external activity, and are merely duplicated to help de-
clutter the chart. Thus, for example, a flow-line (see below) that
represents the flow of information between an internal activity
and an external one can be drawn to connect to the closest
occurrence of the latter activity. When the identity of a
particular external component is unknown or is irrelevant, it
may be represented by an unnamed external activity box.

External activities are beyond the scope of the chart and are
therefore not decomposed further into subactivities. Later we
shall see that representing information flow between them is
not allowed either.

2.3 Flow of Information Between
Activities

2.3.1 Flow-lines

To complete the functional view of the system, we complement
the description of the activities themselves with the
identification of inputs and outputs and the flow of information
among subactivities.

We use the word “flow” to capture the communication and the
transfer of information between activities. This flow of
information can serve as a means not only to transfer data but
also to post commands and to synchronize by exchanging
control signals. As in data flow diagrams, we use labeled
arrows for the visual representation of this flow. We refer to
these connections as a-flow-lines (for activity-chart flow-lines),
or just flow-lines for short.
2-12 Statemate MAGNUM

Flow-lines
The label on a flow-line denotes either a single information
element that flows along the line (i.e., a data-item, a condition or
an event), or a group of such elements. We call a grouping of
several information elements an information-flow. The flowing
elements are used to specify communication according to the
general specification approach that is adopted by the modeler.
In particular, in the functional decomposition method they
correspond to data and control flow.

A flow-line originates from its source activity, that is, the activity
that produces the information elements described in the flow-
line’s label, and it leads to its target activity, that is, the one that
consumes those elements. The communicating activities may
belong to different levels in a multi-level activity-chart (see
Figure 2.4), but they cannot be both external.

Referring to Figure 2.4, we say that Y flows from A1 to B1 and U
flows from A1 to A2. We also say that Y is an output of A and an
input of B, since the flow-line labeled with Y exits A and enters
B, crossing their respective borderlines.

Figure 2.4. Flow of information among levels

One of the graphical features present in all of our languages is
that an arrow can be connected to a non-basic box. In general,
this means that the arrow is relevant to all the sub-boxes
contained within the box in question. (See the discussion of this
feature in the general setting of highgraphs in [H88].) In activity-
Statemate MAGNUM 2-13

The Functional View: Activity-Charts
charts, this feature can take the form of a flow-line that leads to
the edge of a non-basic activity A but does not cross it. The
arrow is taken to represent flow of information to all A’s
descendants. For example, the signal Z in Figure 2.4 is accessible
to both A1 and A2. Similarly, an arrow departing from the
borderline of a non-basic activity denotes the possibility that the
corresponding information is produced by any of the
descendant activities. For example, the arrow on the right hand
side of Figure 2.4, emanating from B and labeled by V, can
represent a global variable that is modified by the two activities
B1 and B2, but is used only by B2. Note that this convention
enables us to replace several flow-lines from/to subactivities by
one arrow from/to the parent, thus better representing the
modeled flow. We also use this convention in cases where most
of the subactivities consume or produce the information but we
do not want to specify exactly which.

Two types of flow-lines are allowed in Activity-charts: data flow-
lines, drawn as solid arrows, and control flow-lines, drawn as
dashed arrows. Typically, control flow-lines carry information
or signals that are used in making control decisions, e.g.,
commands or synchronization messages, while data flow-lines
carry information that is used in computations and data-
processing operations. The different line types are intended to
make this distinction visually. There are no clear criteria for
deciding whether the flow of a given information element
should be represented by a control flow-line or a data flow-line,
but very often the source or target of a control flow-line will be
the control activity that makes control decisions, as described in
the next section.

Looking ahead to Figure 2.5 for a moment, we see an illustration
of the interface of the activity EWS_ACTIVITIES with its
environment, and the flow of information between its
subactivities. The figure illustrates both data and control flow-
lines. The SIGNAL flowing along the data flow-line from the
SENSOR to PROCESS_SIGNAL is used in data processing, while
the OPERATOR’s COMMANDS, flowing along the control flow-line,
2-14 Statemate MAGNUM

Flowing Elements
are used to decide control issues, such as which activities will be
activated.

As hinted above, flow-lines in an activity-chart do not, by
themselves, represent any specific method of transferring the
information between the activities they connect, nor do they
enforce or imply any timing specifications. Flow-lines may
represent a variety of means for information transfer, such as
parameter passing to procedures or global variables in software
programs, messages transferred along transmission lines in
distributed systems or through queues between tasks in real-
time software applications, as well as signals flowing along
physical links in hardware systems. They can also be used to
represent the flow of tangible matter or energy.

The flow itself can be continuous or discrete in time, and the
target and source activities are not necessarily active at the time
of writing or reading the transferred data. Only an event
appearing on a flow-line does imply some timing constraints,
since it is an information element with a specific time-related
behavior. A special kind of element which is discussed later on,
called a data-store, can be used to depict the presence of
persistent data for lengthy periods, but a regular flow-line can
serve the same purpose. Nevertheless, we shall emphasize that
the dynamic aspects of the actual data transfer are not described
in the activity-chart but in the statecharts or mini-specs
associated with the relevant activities, as explained in
Chapter 8.

2.3.2 Flowing Elements

We have already said that the information that flows between
activities and is processed by them is an essential component of
the functional view of a system. There are several types of
information elements that may flow between activities: events,
conditions, and data-items. The differences are in their domains of
values and their timing characteristics. Any of them can appear
as the label of a flow-line.
Statemate MAGNUM 2-15

The Functional View: Activity-Charts
Events are instantaneous signals used for synchronization
purposes. They indicate that something has happened. In the
EWS example, the activity COMPARE issues the event
OUT_OF_RANGE to indicate that the tested value has been
determined to be out of the expected range.

Conditions are persistent signals that may be either true or
false. For example, the OPERATOR in the EWS model sets the
condition signal SENSOR_CONNECTED, whose truth value
indicates whether or not the SENSOR is connected to the system
– an essential prerequisite to activating the signal processing.

Data-items may hold values of various types and structures,
like variables in programming languages. They can be of basic
types, such as integer, real, bit, string, etc., or of grouped types
like records or unions. They can also be arrays or queues. In the
EWS, the SIGNAL that comes from the SENSOR to be processed
by the PROCESS_SIGNAL activity is of a numeric type (integer
or real), while the LEGAL_RANGE, to which the processed value
is compared, is a record consisting of two numeric fields:
HIGH_LIMIT and LOW_LIMIT.

Figure 2.5 illustrates how these elements appear in the activity-
chart labeling the flow-lines. The top-level activity,
EWS_ACTIVITIES, is surrounded by external activities, and
the figure represents both the interface with the environment
and the internal flow of information. Among other subactivities
of EWS_ACTIVITIES, the figure shows the activity
EWS_CONTROL, which is a special type of activity – a control
activity – that will be discussed in Control Activities, beginning
on page 2-22.
2-16 Statemate MAGNUM

Flowing Elements
Figure 2.5. EWS_ACTIVITIES, its environment and
flow of information

All three types of information elements, events, conditions and
data-items, can be organized in an array structure. The flow of
information between activities can consist of an entire array,
denoted by its name, with no indexing notation. When an
activity deals with individual components of an array we can
label the flow-line with the component identification. A typical
such case is shown in Figure 2.6, where each of three similar
activities, A1, A2 and A3, takes care of one component of an
array V, and produces a corresponding component of an array
W. Similarly, a flow-line can be labeled by a portion of an array,
such as V(1..8), or by a record or a union component, such as
R.X.
Statemate MAGNUM 2-17

The Functional View: Activity-Charts
Figure 2.6. Array components labelling flow-lines

Information elements do not just appear along flow-lines. Their
main use is in behavioral description. Using the Data
Dictionary, one can define an information element that depends
on the status or values of other elements. For example, we may
define an event whose occurrence depends on the occurrence of
other events, or a data-item whose value is expressed by values
of other data-items. Information elements that have been
defined in such a way cannot be used as labels on flow-lines.

We shall return to the information elements in more detail in
Chapters 3 and 5.

2.3.3 Information-Flows

The number of flow-lines in an activity-chart can be reduced by
grouping information elements into an information-flow, which
is used to label a common flow-line, thus helping a viewer to
better comprehend the specification. The contents of the
information-flow are defined in the Data Dictionary, associated
with the name of the information-flow, as illustrated in Figure
2.7. In the figure, the information-flow COMMANDS, labeling a
flow-line from OPERATOR to the control activity, is a compact
representation of three separate flow-lines, each of which is
labeled by an individual component event. Using the three
2-18 Statemate MAGNUM

Information-Flows
commands, SET_UP, EXECUTE, and RESET, the OPERATOR
controls the operation of the EWS.

Figure 2.7. Information-flow COMMANDS in Data
Dictionary

We should emphasize that since an information-flow is merely
an abbreviation of several flow-lines, the elements it contains do
not necessarily flow together. Also, an information-flow may be
further decomposed into other information-flows, or into
concrete information elements (data-items, conditions, events,
or array or record components).

Another way of utilizing the information-flow feature is to
consider it as the name of a link (or interface) between activities.
This idea may be used as follows: at an initial stage, before
getting into more detail, we can connect activity A1 to activity
A2 by a flow-line labeled with some non-committing
information-flow, such as A1_TO_A2. The contents of this line
may then become increasingly more concrete, by filling in more
of its contents in the corresponding information-flow item in
the Data Dictionary. Clearly, this can be carried out repeatedly
for nested information-flows. In any case, we expect the
contents of all information-flows to be eventually specified in
full.
Statemate MAGNUM 2-19

The Functional View: Activity-Charts
2.3.4 Data-Stores

As mentioned earlier, there are no restrictions on the time that
data resides on a flow-line. Data produced by the source activity
is available to the target activity even when the source activity
is no longer active. In this sense, a flow-line may be viewed as a
kind of storage unit. Nevertheless, it is often more natural to
incorporate an explicit data-store in the chart, which serves to
represent information that is stored for later use. In addition, a
data-store may be used to specify the aggregation of large
volumes of data, continuously accumulating over time. Data-
stores can be used to describe a buffer in computer memory, a
message queue, a file on a disk, a database, or even a single
variable. In object based decomposition, a data-store can be
used to encapsulate the object data.

Information is written into the data-store by one or more
activities and can be read by other (possibly the same) activities.
Thus, the data-store can be viewed as a “passive” activity, i.e.,
one that does not change or produce information.

Data-stores are drawn as rectangular boxes with dashed
vertical edges. The name of a data-store may be any legal name
(see page A-1), but it must be unique among its sibling activities
and data-stores.

Data-stores are always basic; they cannot contain other data-
stores or activities. The internal structure of a data-store may be
defined by associating it with a data-item. To do this, a data-
item is defined in the Data Dictionary with the same name as
the data-store. Any structure then given to this data-item is
inherited by the data-store. For example, to specify that the
data-store Q is a queue containing records of a certain type, say,
MESSAGE, one defines the data-item Q in the Data Dictionary as
a queue of the user-defined type MESSAGE, the structure of
which is described separately.

In the EWS example, we might want to show that the record
LEGAL_RANGE, composed of HIGH_LIMIT and LOW_LIMIT, is
2-20 Statemate MAGNUM

Data-Stores
stored in a data-store by the SET_UP activity and is consumed
by COMPARE. To represent this, the flow-line labeled
LEGAL_RANGE in Figure 2.5, is replaced by a data-store
LEGAL_RANGE that contains the appropriate record, and which
is then connected to the source and target activities. The
appropriate part of the resulting diagram is presented in Figure
2.8. LEGAL_RANGE is defined as a record data-item in the Data
Dictionary, as shown in Records and Unions, beginning on
page 3-9.

Figure 2.8. Data-store containing LEGAL_RANGE data

Notice that the lines flowing to and from the data-store
LEGAL_RANGE are not labeled. This is because we can name the
data-store with the same name as the data-item flowing to or
from it, in which case the labels on the corresponding flow-lines
can be omitted. However, in general, a data-store’s inputs and
outputs can be any information elements, even when there is a
data-item matched (by name) to this data-store. Data-stores can
also store control elements, to be used for control decisions, so
that control flow-lines can flow to and from data-stores too.
Nevertheless, it is meaningless to have an event, which is of
transient nature, stored in, or flowing to or from, a data-store.

Data-stores cannot be drawn as part of the activity-chart’s
environment. The components of the environment are always
Statemate MAGNUM 2-21

The Functional View: Activity-Charts
drawn as external activities even when their functionality is that
of storage.

Textual descriptions of data-stores, and the relationships they
may have with other elements, are entered in the Data
Dictionary.

2.4 Describing the Behavioral
Functionality of Activities

We have seen that the functionality of the system is described
by decomposing activities into subactivities and data-stores,
and identifying the information that flows between them. This
can be done repeatedly, until basic activities are reached, but it
is not enough to present the full picture.

For non-basic activities, which are decomposed into
subactivities, we must provide information about the
behavioral dynamics of the decomposition. In the methodology
of Hatley and Pirbhai [HTP87], this issue is covered by what
they call process activation tables. Other approaches deal with
this differently. In our approach, we use the control activities
for this (and more), as will be seen below. For describing the
behavior of basic activities, there are other means, which are
specified via the Data Dictionary entry associated with the
activity.

Describing the behavior of activities in our approach is a broad
subject, and is discussed in many of the later chapters. The
present section should be viewed as an introduction.

2.4.1 Control Activities

In many systems, the activities at each level of the functional
decomposition perform their functions in a simple fashion.
Some are continuously active, consuming their inputs and
producing their outputs periodically. Others start their active
period when their inputs arrive and stop when they have
2-22 Statemate MAGNUM

Control Activities
produced the outputs corresponding to these inputs.
Sometimes, the behavior of activities follows more intricate
patterns.

The way these aspects are addressed in our approach is by
introducing special control activities, which are drawn as
subactivities of regular internal activities, and whose function is
to control their sibling activities. For example, as we shall see in
Chapter 7, a control activity may explicitly start and stop its
sibling activities. In the EWS model, EWS_CONTROL is
responsible for determining the activation and deactivation of
all the activities on the same level, i.e., SET_UP,
PROCESS_SIGNAL, COMPARE, etc. (See Figure 2.9.)

Figure 2.9. A control activity in an activity-chart

The control activity will typically receive signals from the
siblings it controls or from other sources, make decisions based
on them and, then, in turn, start and stop the activities it
controls and produce signals that are consumed by its
environment. In our example, the control activity
EWS_CONTROL receives and reacts to the commands of the
OPERATOR, and also to the OUT_OF_RANGE event generated by
the COMPARE activity. (See Figure 2.5.)
Statemate MAGNUM 2-23

The Functional View: Activity-Charts
The control activity is depicted as a rectangle with rounded
corners, and it cannot have subactivities. Rather, its
specification is described in the language of Statecharts, the
graphical language for modeling behavior. The control activity
points to the statechart describing its behavior through its
name, as explained in Chapter 7. The Statecharts language is
described in Chapter 4, and the way a statechart controls the
behavior of activities is discussed in Chapter 7.

Each activity may have at most one control activity. When an
activity requires no further decomposition and its behavior can
be conveniently described by a statechart alone, the control
activity is its only subactivity. This situation is common in
certain highly-reactive systems. Like other elements, the control
activity has an associated item in the Data Dictionary.

2.4.2 Activities in the Data Dictionary

As mentioned earlier, almost every element in our models has a
corresponding entry in the Data Dictionary, in which various
kinds of textual information about the element can be specified.
Such additional information can be formal (i.e., possessing
some semantics that is relevant to the model and its behavior)
or informal. Some kinds of textual information are relevant to
all types of elements, such as a one line short description and an
unlimited textual long description. These narrative additions,
especially the long description, can be used to provide
information about the element in an informal language, for the
record. In addition, the general mechanism of an attribute pair,
name and value, can be used to associate special characteristics
with the element, as we shall see later on. The Data Dictionary
can also be used to associate a synonym with the element,
usually a shorter name that is easier to incorporate into a
detailed chart.

In the case of activities, the long description is very often used
to add functional specification in a textual language that is not
an integral part of our approach, such as an unstructured
2-24 Statemate MAGNUM

Activities in the Data Dictionary
natural language. This additional information can be attached
to basic or non-basic activities alike.

On the other hand, for basic activities, our approach supports a
number of formal executable textual descriptions that specify
specific patterns of behavior. These too are associated with the
activity in its Data Dictionary entry. The patterns are:

• A reactive event-driven activity is continuously
“active” in an idle state, and constantly waits for an
event to occur and to cause it to perform some
action. It then returns to being idle until the next
event happens. An example of such an activity is a
simple keyboard driver that accepts key press events
and locally performs a very simple operation and/or
transfers a command to some other activity. A
reactive event-driven activity can be described by a
reactive mini-spec which is a list of reactions, each one
consisting of a trigger event and its implied action;
see Figure 2.10(a). More complex reactive activities
are described by statecharts, as we shall see, but
simple event/action ones require no statechart, and
they can be described by a reactive mini-spec.

• A procedure-like activity, when invoked, performs a
sequence of operational statements and then stops.
An example of such an activity is the
VALIDATE_RANGE subactivity of the range SET_UP
activity of the EWS. It is invoked when the user has
inserted the range limits, and it checks the validity of
the values, returning the check results. A procedure-
like activity can be described by a procedure-like mini-
spec which is simply a list of actions; see Figure
2.10(b).

• A data-driven activity is also continuously “active”,
checking to detect any changes in the values of its
inputs. When any of them changes value, the activity
computes new output values and resumes its
waiting. A logical gate in an integrated circuit is an
example of a simple data-driven activity. In the EWS
Statemate MAGNUM 2-25

The Functional View: Activity-Charts
example, the COMPARE function has a subactivity
COMPUTE_IN_RANGE which is data-driven; it
continuously monitors the processed signal and
compares it to the legal range limits to calculate an
IN_RANGE condition. (When this condition becomes
false the COMPARE function issues the
OUT_OF_RANGE event.) A data-driven activity can be
described by a collection of combinational assignments,
which are ordinary-looking assignment statements
that continuously compute the activity’s outputs
based on its inputs; see Figure 2.10(c).

Figure 2.10. Data Dictionary entries describing
activities
2-26 Statemate MAGNUM

Connectors and Compound Flow-Lines
Mini-specs and combinational assignments are described in
detail in Chapter 7.

2.5 Connectors and Compound Flow-
Lines

Let us return to the technical mechanisms we provide for
representing the flow of information between activities. Flow-
lines in activity-charts can be combined using various types of
connectors. The main motivation for this is to economize in the
number of arrows, to reduce clutter, and to provide a clearer
and more intuitive graphical representation. We refer to the
resulting connected object, consisting of a number of flow-lines
and connectors, as a compound flow-line. We now discuss the
various types of connectors.

2.5.1 Joint Connectors (Fork and Merge Constructs)

A fork construct allows us to represent a single information
element as flowing from one source to several targets. Instead
of drawing separate lines departing from the source, we can
draw a single departing line, which then splits up into separate
arrows at a convenient place in the chart. For example, instead
of drawing two separate lines emanating from COMPARE and
labeled with OUT_OF_RANGE_DATA, as we did in Figure 2.5, we
can abbreviate as shown in Figure 2.11.

Figure 11. A joint
connector (a fork
construct)
Statemate MAGNUM 2-27

The Functional View: Activity-Charts
Similarly, we can represent common information flowing from
several sources to a single target by joining them at some
convenient point before they reach their target. This is called a
merge construct, and it indicates that the target may receive the
information from either of several sources.

In both constructs, fork and merge, we refer to the connection
point as a joint connector. The compound flow-line, consisting
of the connected segments, may have several sources and
several targets but only a single associated flowing element
(which may actually be an information-flow consisting of
several data elements). As to location, the flow element
common to the entire construct can label any of the compound
flow-line’s segments.

2.5.2 Junction Connectors

Another way of reducing the number of lengthy flow-lines in an
activity-chart is to use a junction connector. Several flow-lines
conveying different information elements may be connected
using a junction connector, to form a single flow-line that
emanates from or enters a common box or connector.

Figure 2.12 illustrates several uses of junction connectors.
Figure 2.12(a) contains three actual flows: X flows from A1 to B,
Y flows from A2 to B, and Z flows from A3 to B. Notice that the
line segment from the junction connector to B is unlabeled as it
is used only to connect the different flowing elements to the
common target.

The case of a common source is similar. In Figure 2.12(b), the
flow-line that carries the three flow elements from A to the
junction connector is labeled XYZ. In the Data Dictionary we
define the element XYZ to be an information-flow containing X,
Y and Z as components. Clustering flowing elements in this way
and using the combined information-flow to label the common
arrow is usually done when there is some logical relationship
between the flowing elements; the additional name helps to
clarify this relationship.
2-28 Statemate MAGNUM

Junction Connectors
Figure 2.12(c) illustrates how a number of junction connectors
may be combined. Nine potential routes exist from the activities
on the left to those on the right. However, the labeling used
excludes six. The only three that represent actual flows are: X
from A1 to B1, Y from A2 to B2, and Z from A3 to B3. A
compound line with contradicting flow labels (such as the one
composed of the segments labeled X and Y), is not considered a
viable compound flow-line.

Figure 2.12. Junction connectors

If we want to show more than one element flowing along a
single line, they can be combined using an information-flow. In
Statemate MAGNUM 2-29

The Functional View: Activity-Charts
fact, consider the example in Figure 2.12(d). It represents three
compound flow-lines, each of which carries XYZ and has a
single source and a single target. Notice that the same diagram,
but drawn with a joint connector instead of a junction
connector, represents a single compound flow-line with one
source and three targets. In this particular case the two are
semantically equivalent, and although we used a junction
connector a joint connector might be preferred because it
emphasizes the fact that the same information is available to all
three targets.

The junction connector is sometimes used with a record data-
item and its components. In the EWS example, the COMPARE
activity can be decomposed into two subactivities: one
compares the processed signal SAMPLE with the HIGH_LIMIT
field of LEGAL_RANGE, and the other compares it with the
LOW_LIMIT field, as shown in Figure 2.13. The junction
connector is used here to direct the fields of the record to two
different target activities.

Figure 2.13. A junction connector with record fields

2.5.3 Diagram Connectors

When the source of a flow-line is far from its target, we can
avoid drawing a lengthy arrow by using a diagram connector.
2-30 Statemate MAGNUM

Diagram Connectors
The arrow emanating from the source ends in a named
connector, and its continuation emanates from a second
connector with the same name, which is positioned closer to the
target. The pair of identically named connectors are identified
as the same logical entity, and the result has the same meaning
as a junction connector connecting the two arrows. It is
important to emphasize that the arrow segments are matched
according to the names of the connectors and not according to
the labels along the segments. As a consequence, the label can
be omitted from one of the segments.

Any legal name (see Appendix A, page A-1) may be used to
label the diagram connectors, as can any integer number. Thus,
one can use names that indicate the identity of the target (as in
Figure 2.14), flowing signal names, or simply serial numbers.

Figure 2.14. A diagram connector

To make life even easier, we allow more than two diagram
connectors to have the same name and thus denote the same
logical junction. Several arrows can then emanate from or enter
a common diagram connector, but all arrows connected to the
Statemate MAGNUM 2-31

The Functional View: Activity-Charts
same occurrence of the connector must flow in the same
direction.

2.5.4 Compound Flow-Lines

The various types of connectors presented above can be used to
construct a variety of compound flow-lines. The compound flow-
lines are really the logical flow-lines that depict the actual flow
between activities (or the other box-like entities in our other
languages). When connectors are not used, a simple arrow that
flows directly from one box to another depicts the actual flow,
the logical flow-line consisting of a single segment. In Figure
2.5, for example, no connectors are used, and all logical flow-
lines are actually simple flow-lines (ones consisting of a single
segment).

We have seen that a joint connector yields a single compound
flow-line with multiple sources or multiple targets, while a
junction connector produces multiple compound flow-lines.
Diagram connectors are interpreted as junctions, and as such
they can represent multiple compound flow-lines, although
they can also be used in a way that results in a single flow-line.

The segments constituting a compound flow-line can be data
flow-lines or control flow-lines. When both types appear in a
single compound flow-line, the entire combination will be
considered to be a control flow-line if the final segment that
leads to the target is a control flow-line. The reason for this is the
fact that the type of flow is determined by the way the target
uses the flowing information.
2-32 Statemate MAGNUM

3Information
Elements

his chapter deals with the information elements of our
languages: events, conditions and data-items. The data-
items can be of simple predefined types or compound user-
defined types. All information elements are defined in the

Data Dictionary, and they can be used in both graphical charts
and textual constructs. Each is defined as belonging to a
particular chart or a global definition set, that is, to one of the
specification components that make up the entire model.
Information elements obey certain scoping rules that are
described in Chapter 13.

3.1 Information Elements in the Model

The interface of the entire system, as well as that of each
component, is an essential part of the specification and design
capturing the way it communicates with its environment. In
many methodologies (with the exception of object-oriented
design methods, where things are somewhat different), a major
part of the interface consists of a set of information elements
that flow to and from the system or component. Very often the
system development starts with the interface already given, and
the specifier has to construct the model accordingly.

The interface specification must fit the nature of the system
under description and its environment. For example, if the
system communicates with a hardware environment, the
interface may be specified in terms of bits in a connector
structure; in communication systems, the interface description
may consist of a message structure, sometimes adhering to an
industrial standard or a pre-defined protocol. The information

T

Statemate MAGNUM 3-1

Information Elements
modeling can be on a very concrete level – listing the bits of the
connector or computer word, or on a higher level – involving
abstract events, conditions and data-items. While the modeler
in our approach is encouraged to use abstractions, a bit is
supplied as one of the predefined types.

For example, assume that one of the functional components of
the EWS is the operator panel driver, through which the
OPERATOR inserts the commands and the range limits. The
driver interprets the OPERATOR input and conveys it to the
appropriate activity. The operator panel consists of the
following components:

• Three command buttons:
set-up, for starting the setup procedure;
execute, for starting the execution mode;
reset, for transforming the system into an idle mode.

• Ten digit keys, 0 to 9, for entering the range limits.

• An Enter key for indicating the entry end of a range
limit value.

• A Sensor Connected switch for indicating that the
sensor is connected.

These elements can be represented on various levels of
abstraction. The three commands can be referred to as events,
or, alternatively, they can be three bit data-items; the range
limits can be modeled by a bit-array of ten bits presenting the
ten digits sent one at a time, or by whole numeric values, and so
on. To some extent, the choices depend on whether such
decisions have already been made, i.e., whether the interface is
given or is awaiting the design or implementation phase.

As another example, the fault report of the EWS is basically a
textual report consisting of the following information
components:

• The time when the fault occurred.

• The out of range value, which is the computed value
after the processing.
3-2 Statemate MAGNUM

Information Elements in the Model
• The legal range limits.

Again, different levels of abstraction can be used here,
depending on where the borders of the specification are placed.
The fault report can be modeled as a string of limited length, as
an array of strings – one for each line in the report, or as a record
of the numeric values that specify the report contents without
being too precise about the implementation details.

Information elements are used not only in specifying interfaces,
but also in the detailed behavioral and functional specification.
It is very natural to use them to describe the logic and control of
algorithms and to specify computations, just like the way
variables are used in programming languages.

It is only natural to translate the requirement: “the system
checks if the value of the result of the processing is within the
specified range” to a construct that contains a condition
expression such as:

(SAMPLE > LEGAL_RANGE.LOW_LIMIT) and

(SAMPLE < LEGAL_RANGE.HIGH_LIMIT)

Here, SAMPLE denotes the processed value, and the allowed
limits of the range are captured by the two fields of the record
LEGAL_RANGE. All these elements are conventional real values,
and can be compared by the standard kinds of relation symbols
such as “<” and “>”.

In our notation, information elements can appear along the
flow-lines of activity-charts and module-charts, and in the
textual constructs used in behavioral and detailed functional
descriptions. They appear in reactions, triggers and actions, and
in other expressions in statecharts, mini-specs and
combinational assignments, as well as in the parameters of
generic charts. We will see examples of these in the coming
chapters.
Statemate MAGNUM 3-3

Information Elements
Information elements and user-defined types are defined in the
Data Dictionary, where their type and structure are specified.
The names follow the naming rules of Appendix A, page A-1.
As for all kinds of elements appearing in the Data Dictionary,
we may attach additional information to these elements, such as
synonyms, textual descriptions and user-defined attributes,
using the standard mechanisms of the Data Dictionary. Some
examples are given in the more detailed sections that follow.
We can also use information elements whose values depend on
other elements. Actually, these are named expressions, like
macros and aliases in conventional programming, and are also
defined using the Data Dictionary.

The following sections describe the particular types of
information elements and the user-defined types. The way
these elements are used in behavioral descriptions will be
discussed in Chapters 4 to 8, particularly Chapter 5.

3.2 Events

Events are communication signals that indicate that something
has happened. Very often they are used for synchronization
purposes. When they flow they do not convey any content or
value, only the very fact that they have occurred. They are thus
instantaneous, and if not immediately sensed they are lost.

In the EWS example, the activity COMPARE sends the event
OUT_OF_RANGE to the control activity (through a control flow-
line) to indicate that the tested value is not in the expected
range. This event is an indication to the control activity that it
should start its response to a fault occurrence, i.e., posting an
alarm and issuing a fault message.

Events are used extensively in the modeling of real-time
systems, to indicate interrupts, clock ticks, timing and
synchronization signals, and to model cause/effect connections
between different parts of the system. In communication
protocol modeling they mark message sending and
acknowledge arrival. Events are also used in the modeling and
3-4 Statemate MAGNUM

Events
implementation of interactive systems. Graphical user interface
systems (GUI’s) are based on user-generated occurrences, and
their subsequent responses and attached callbacks, all of which
can be mapped naturally into events and corresponding
reactions in our languages. This can be done in a low level
fashion, referring to mouse button clicks and motions, and
keyboard manipulations, or on a higher level, by abstracting
them into menu selection and command activation.

In the EWS example, the OPERATOR’s commands, EXECUTE,
SET_UP and RESET, are defined as events that control the
system’s operation. Here we chose the names to be imperative
verbs, but it is also useful to use short phrases in the past tense
for event names, such as OPERATION_COMPLETED or
BUTTON_PRESSED.

In object based decomposition, where the functional
components consist of entities (or actors) and their associated
operations, events can implement the request for individual
operations. For example, we may model the request from the
FAULT_HANDLER to DISPLAY_FAULT (i.e., post an alarm and
issue a fault message) by an event bearing the same name;
similarly, the event PRINT_FAULT will invoke the
PRINT_FAULT operation.

A set of similar events can be organized in an array structure.
For example, the EWS operator keyboard contains ten keys for
digits, which are used to enter the range limits. The events of
pressing these keys can be grouped in an array
DIGIT_PRESSED consisting of ten event components. The
individual component is accessed by its index in the array, just
like in conventional programming languages,
DIGIT_PRESSED(1) through DIGIT_PRESSED(10), where
10 stands for the digit 0. Chapter 5 shows how to detect that one
of these ten events has occurred, without referring to each one
explicitly. Figure 3.1 shows the Data Dictionary entry defining
the event array. It shows that besides the array size designation
we can also incorporate a short description and a long
description, as in other Data Dictionary entries.
Statemate MAGNUM 3-5

Information Elements
Other aspects of events, namely, event expressions and named
event expressions, are discussed in Chapter 5, where our
expression language is described in full.

3.3 Conditions

As with events, conditions are also used for control purposes.
These are persistent signals, i.e., ones that hold for continuous
time spans. They can be either true or false.

An example of a condition in the EWS is the signal
SENSOR_CONNECTED, which is generated by the OPERATOR
and is sensed by the control activity. This condition is self-
explanatory, and it indicates whether or not the SENSOR is
connected to the system – an essential prerequisite to activating
the signal processing. Here it is beneficial to use short phrases
in the present tense as names of conditions, in order to describe
a situation that holds currently and for some continuous period
of time.

Figure 3.1. An event array in the Data Dictionary
3-6 Statemate MAGNUM

Data-Items
Conditions are often used to describe the status of two-state
entities, as in the example above. For example, a switch can be
modeled by a condition SWITCH_ON, that is either true or false.
Conditions are also used to “remember” that some event has
occurred, until the required response is taken.

Conditions, like events, can be organized in arrays in order to
model the status of several similar elements. The information on
the array index range is specified in the Data Dictionary.

Conditions, like other information elements, participate in
detailed behavioral and functional descriptions. In subsequent
chapters we shall see how they are manipulated, how they
change values, and how they can influence the flow of control.

3.4 Data-Items

A data-item is a unit of information that may assume values of
various types and structures. Data-items are very similar to the
data elements in conventional programming languages:
variables, constants, etc. They maintain their values until they
are explicitly changed and assigned new values.

Data-items are defined via the Data Dictionary, where their
type and structure are specified, and other descriptive
information can be added (e.g., attributes such as units,
resolution, or distribution). Data-items can be of predefined
types (integer, real, string, etc.), or records and unions
composed of fields of various types; they can also be structured
in arrays or queues. Besides these, the modeler can construct
user-defined types, based on predefined types and structures.
All these concepts are described in the following sections.

3.4.1 Data-Items of Predefined Types

The basic types of data-items are similar to those existing in
programming languages. A data-item can be numeric, either
integer or real. For example, in the EWS, the data-item SAMPLE,
Statemate MAGNUM 3-7

Information Elements
which is the result of the processing performed by the
PROCESS_SIGNAL activity, has a numeric value, and can be
specified as real or integer. The value of an integer data-item is
usually limited by 231. It is also possible to limit the values of an
individual integer data-item by restricting its range, or by
shortening its actual length (in bits). For example, if the EWS is
extended to deal with 5 sensors, the identification number of a
sensor will be an integer whose value will be restricted to the
range 1 to 5. There is no limitation on real values.

When dealing with hardware systems, e.g., integrated circuits,
it is natural to talk in terms of bits and bit-arrays. For this
purpose, it is possible to define a bit data-item that can take on
the values 0 and 1, or a bit-array data-item that consists of a
sequence of bits. The definition of a bit-array data-item specifies
its index range (which determines the number of bits) and
direction, to or downto, which determines the most significant
bit in its value. The index range limits are non-negative integers.

In the EWS example, the sensor is a hardware component
whose output, the SIGNAL, is described as a bit-array data-item.
See Figure 3.2.

The signal consists of 24 bits, with bit 23 being the most
significant. The syntax for such data-type expressions is
described in Appendix A, page A-8.

Figure 3.2. A bit- array data-item in the Data
Dictionary
3-8 Statemate MAGNUM

Records and Unions
Both bit and bit-array data-items are considered numeric, in the
sense that they can participate in numeric expressions with no
need of any explicit conversion, as discussed in Chapter 5.
Values of bit-arrays are usually displayed in binary (e.g.,
0B00101111), octal (0O057) or hexadecimal (0X2F), with the
most significant bit being the leftmost one. A particular bit in
the bit-array can be referred explicitly; for example,
SIGNAL(23) is the most significant bit of the sensor’s output.
Similarly, one can refer to a bit-array slice; for example,
SIGNAL(2..0), which are the three bits of least significance.
Note that if a bit-array is defined in the to (respectively, the
downto) direction, the index range of its slices must be in
ascending (respectively, descending) order.

A data-item can also be of type string, denoting a string of
characters. String data-items are used when alphanumeric
characters are involved, like in the EWS’s FAULT_REPORT.

A string data-item can be used to introduce enumerated values.
For example, we may define a string data-item COMMAND with
one of three possible values, ‘execute‘, ‘set-up‘ or
‘reset‘, that can be issued by the operator. Notice that the
string value is written between single quotation marks. If
needed, it is possible to specify the string length. For example, a
data-item denoting an identifier name limited to 32 characters
will be specified in the Data Dictionary with “Data-type:
string length=32”.

3.4.2 Records and Unions

In addition to the above basic types, a data-item can be a
composition of named components, referred to as fields, each of
which may be a data-item of any type or a condition. We
support two kinds of compositions: records and unions. In a
record all components are present at any time, while a union
contains, in any given time, exactly one of the components.
Thus, a record can be viewed as an and-cluster of data, and a
union as an or-cluster. The entire construct, record or union, is
referenced by its name (e.g., on a flow-line), while a particular
Statemate MAGNUM 3-9

Information Elements
field is referenced using the dot notation
record/union reference.field reference.

We mentioned that the LEGAL_RANGE data-item in the EWS is
a record composed of two real fields: LOW_LIMIT and
HIGH_LIMIT. The definition of this data-item in the Data
Dictionary is shown in Figure 3.3. The fields of LEGAL_RANGE
are referenced by LEGAL_RANGE.LOW_LIMIT and
LEGAL_RANGE.HIGH_LIMIT. The array notations and dot
notation can be combined, so that if, for example, one of the
fields of a record R is the bit-array BA, we may refer to the
particular bit R.BA(2) or to the slice R.BA(1..3).

A union construct is used when different types of values are
relevant to different situations. For example, a union is useful
when specifying a communication protocol that involves
several kinds of messages, each carrying a different type of data.

Assume that the operator’s input in the EWS example arrives
via a single communication line that transfer two types of
messages, commands and data (e.g., the range limits). Assume
also that there is a channel along which the system is told the
type of the arriving message. The data-item MESSAGE_DATA
that carries the data can be defined to be a union of two possible
fields: COMMAND of type string (see Data-Items of Predefined
Types, page 3-7) and LIMIT_VALUE of type real. The system

Figure 3.3. A record in the Data Dictionary
3-10 Statemate MAGNUM

Data-Item Structure
will refer to MESSAGE_DATA.COMMAND when it expects a string
denoting the command, and to
MESSAGE_DATA.LIMIT_VALUE when it expects the numeric
range limit value. As explained above, at any given moment
only one field of the union “exists”, and it is illegal to refer to
any other.

The field type attached to every field of the record or the union
in the Data Dictionary can be of the following data-types: basic
predefined types (e.g., integer, real, etc.; see the previous
section), condition, array or queue (see the following section), or
a user-defined type. The field cannot be defined to be another
record or union; this kind of construction must done with an
intermediate definition of a user-defined type. See Appendix A,
page A-8 for the syntax of data-type expressions.

3.4.3 Data-Item Structure

Data-items can be organized in structures, arrays or queues, with
each component of the structure having one of the data-types
described above, or a user-defined type, as discussed below.

An array is a sequence consisting of a fixed predefined number
of components. Assume, for example, that the EWS is enhanced
to deal with 5 sensors. It is then natural to talk about an array of
Statemate MAGNUM 3-11

Information Elements
sensor’s signals: SIGNALS, defined as an array of 5 components,
each is a bit-array, 23 downto 0. See Figure 3.4.

Each array component can be of any of the basic predefined
types, a record/union construct or a user-defined type. Each
component is accessed by its index, e.g., SIGNALS(2), and
double indexing is used to refer to components of components,
e.g., SIGNALS(1)(23). If the array component is a record, the
dot notation can be combined with indexing. For example, if AR
is an array of records that have two fields, X and Y, then we may
use AR(2).X to access the X field of AR(2).

The index range of the array is defined from left index to right
index. There is no limitation on the array size. The index range
limits are non-negative integers, and the left index is to be
smaller or equal to the right index. (It might be more
appropriate to call them “lower index” and “upper index” but
the names came from the range limits in bit-arrays.) It is very
common to define an array going from 1 to some named integer
constant (these are described in Chapter 5). Assume that we
have a constant definition NUMBER_OF_SENSORS = 5. Then
SIGNALS can be defined as array 1 to
NUMBER_OF_SENSORS, to emphasize the fact that the size of the
array depends on some other value.

Figure 3.4. An array data-item in the Data Dictionary
3-12 Statemate MAGNUM

User-Defined Types
Sometimes the size of one array depends on the size or index
range of another. For example, we might want to set things up
so that if the system allocates memory for an array, then any
copy of it must be of the same size. In this case it is possible to
use three predefined operators that apply to an array V:
length_of(V), lindex(V), and rindex(V), that are
evaluated to constant integer values.

A queue, as opposed to the fixed size arrays, is a dynamic list of
components. Queues will be described in detail in Chapter 8,
where communication mechanisms are discussed. As in the
case of arrays, the components of a queue can be of one of the
predefined data types described above or a user-defined type.
The components cannot be directly defined as records or
unions; a queue of such components can be defined with an
intermediate user-defined type. Queues are defined in the Data
Dictionary just like the other data-items.

3.5 User-Defined Types

It is often the case that several data-items in the model have the
same characteristics, such as their data-type. It can be useful to
define a named data-type, called a user-defined type, that will be
used to define them all. Besides clarity, this reusability has the
advantage of being efficient, since the full data-type definition
appears only in a single location in the Data Dictionary.

In the EWS example, the range construct, with the low and high
limits, appears at least twice: in the current LEGAL_RANGE and
in the FAULT_REPORT that contains the values against which
the faulty processed signal was compared. We can have the
Data Dictionary contain the definition of a user-defined type
Statemate MAGNUM 3-13

Information Elements
RANGE, which will be used later in the definition of these two
data-items. This is shown in Figure 3.5.

User-defined types are specified in terms of predefined types,
record/union constructs or data structures (arrays and queues).
It is also possible to define them as other user-defined types, or
as conditions or arrays of conditions.

The user-defined type mechanism can also be used to define
complex types, with multiple-level structure. The data-item
FAULT_REPORT presented in Figure 3.5 is a record, two of
whose fields, FAULT_TIME and FAULT_RANGE, are themselves
records. To achieve this multi-level structure we must use the
intermediate data-types, TIME and RANGE. We do not allow the
definition of a record with an explicit record field.

Figure 3.5. User-defined type RANGE in the Data
Dictionary
3-14 Statemate MAGNUM

User-Defined Types
There are no limitations on the multi-level usage of user-
defined types. We can define multi-dimensional arrays, arrays
of records, records with array fields, queues of records, etc.,
with any number of nesting levels.

For example, in order to specify a display screen whose size is
200x300 pixels, each of 8 bits, we use the data-item SCREEN and
the user-defined types ROW and PIXEL, as shown in Figure 3.6.
A particular bit can be accessed by indexing; e.g.,
SCREEN(7)(2)(0), is bit 0 in position (7,2) on the screen, that
is, pixel number 2 in row number 7.

In Chapter 13 we discuss the scope of elements, e.g., how their
visibility depends on the chart in which they are defined. User-
defined types are often required to be visible throughout the
entire model, so that they are usually defined in a global
definition set, as discussed beginning on page 13-18.

Figure 3.6. A definition of multi-dimensional array
Statemate MAGNUM 3-15

Information Elements
3-16 Statemate MAGNUM

4The Behavioral View:

Statecharts

his chapter describes the language of Statecharts [H87]1,
which is used to describe the control activities in
activity-charts. As explained in Chapter 2, these
activities constitute the behavioral view of a model.

In the present chapter, and the following two, we concentrate
on the pure features of statecharts and their semantics, leaving
those parts that pertain to the connection with activity-charts to
Chapter 7. Thus, we do not concern ourselves here with the way
activities are controlled by statecharts, or with the way
statecharts are affected by activities, but only with the internal
features of the statecharts themselves.

This chapter describes how states are organized into an and/or
hierarchy, and how they may represent levels of behavior and
concurrency. We also show how transitions are used (with the
various connectors) to describe changes in the states. In Chapter
5 we describe the textual expression language used in
statecharts to specify triggers and actions, and how it supports
timing considerations. Chapter 6 describes the dynamic
semantics of statecharts. Throughout, the reader will observe
that statecharts constitute a powerful extension of conventional
state-transition diagrams.

1. Parts of our description here follow [H87], though our version reflects
some modifications and enhancements that were incorporated to make it
better fit the STATEMATE modeling approach.

T

Statemate MAGNUM 4-1

The Behavioral View: Statecharts
4.1 Behavioral Description of a
System

A behavioral description of a system specifies dynamic aspects
of the entire system or of a particular function, including control
and timing. It specifies the states and modes that the system
might reside in, and the transitions between them. It also
describes what causes activities to start and stop, and the way
the system reacts to various events. The functional and
behavioral views complete each other, as explained in later
chapters.

A natural technique for describing the dynamic behavior of a
system is to use a finite-state machine. The described system or
function is always in one of a finite set of states. When an event
occurs, the system reacts by performing actions, such as
generating a signal, changing a variable value and/or taking a
transition to another state. The events causing the reaction are
called triggers.

For example, a simple mechanism that controls a light bulb may
be in one of two states, OFF and ON. The event
BUTTON_PRESSED might trigger the transitions from one of
these states to the other. On moving from OFF to ON, the
mechanism sends a signal TURN_ON to the light bulb, and
similarly, the bulb is turned off on the other transition.

Figure 4.1. A finite-state machine controlling a light
bulb
4-2 Statemate MAGNUM

Behavioral Description of a System
Let us analyze the behavior of the EWS in terms of states or
modes. From the informal description of the EWS presented in
Chapter 1 we can identify several main states of the system:

WAITING_FOR_COMMAND: The system is idle, waiting for an
operator command in order to start executing or to set-up the
range values.

SETTING_UP: The range values are being set by the operator.

COMPARING: The signal processing is being performed and the
processed signal is being checked.

GENERATING_ALARM: The system is generating the alarm to
indicate that the value of the processed signal is out of range,
and is awaiting the operator’s reset.

The above states are exclusive, i.e., when the system is accepting
new range limits it is not performing signal processing or value
comparisons. Similarly, the comparisons are not carried out
when the alarm is generated. Regarding the transitions between
states, when in WAITING_FOR_COMMAND, the EXECUTE
command from the operator causes the system to move to the
COMPARING state, and the SET_UP command causes a
transition to SETTING_UP. This description implies that the
system moves to the GENERATING_ALARM state in the event
that the tested signal is out of range. More details about the
transitions between these states are given in the following
sections.

In some of the states, certain functions from the functional
description are performed (on the assumption that we are
carrying out a function based decomposition). For example, the
SET_UP activity is performed in the SETTING_UP mode. In
general, the functional and behavioral views are combined to
yield the entire conceptual description of the system under
description. This subject is discussed in Chapter 7.
Statemate MAGNUM 4-3

The Behavioral View: Statecharts
Finite-state machines have an appealing visual representation
in the form of state-transition diagrams. These are directed
graphs, with nodes denoting states and arrows denoting
transitions. The transitions are labeled with the triggering
events and caused actions, using the following general syntax
for a reaction: trigger/action.

 Figure 4.2 shows a simple three-state diagram describing a system.

If, for example, the system is in state S and event F occurs, the
system is transformed into state U. If, in the same state, G occurs,
the system performs the action A and ends up in state T.

In our approach we use the Statecharts language to describe the
behavioral view. This language is similar to state-transition
diagrams, but includes many enhancements, such as hierarchy,
orthogonality, expressions, and connectors. As in the case of
Activity-charts, the elements appearing in the charts have
associated entities in the Data Dictionary. In the following
sections, and in the two subsequent chapters, we describe the
details of the Statecharts language.

The way in which statecharts relate to activity-charts is dealt
with in Chapters 7 and 8.

Figure 4.2. A simple state-transition diagram
4-4 Statemate MAGNUM

Basic Features of Statecharts
4.2 Basic Features of Statecharts

As in conventional state-transition diagrams, statecharts are
constructed basically from states and transitions. The states in a
statechart are depicted as rectilinear boxes with rounded
corners. The names of the states appear inside their boxes, and
obey the name syntax appearing in Appendix A, page A-1. The
transitions are drawn as splined arrows, with the triggers
serving as labels.

The main states of the EWS, and the transitions and their
triggers are shown in Figure 4.3.

The triggers of the transitions in the figure are all events, which
are regarded as instantaneous occurrences; they are of two
kinds:

• External events coming from external sources (such
as commands coming from the operator via the
control panel: SET_UP, EXECUTE, and RESET).

• Internal events coming from internal sources (such
as OUT_OF_RANGE, which is output from the
COMPARE activity, ALARM_TIME_PASSED, which is

Figure 4.3. States, transitions and event triggers
Statemate MAGNUM 4-5

The Behavioral View: Statecharts
the output of some invisible clock, and
SET_UP_COMPLETED, which signifies that the
SET_UP activity has terminated).

We shall see later that the event ALARM_TIME_PASSED can be
defined to be more specific about the alarm duration, using the
timing facilities provided by our languages. Note that we do not
show the source of the triggering events in the statechart itself.
We shall return to this issue in Chapter 8.

The trigger of a transition may be an expression that combines
some events. It may include a condition too, enclosed in square
brackets, and it can also consist of the condition only. Thus, if a
transition is labeled E[C], the condition C is tested at the instant
the event E occurs, guarding the transition from being taken if
it is not true at that time. If the transition is labeled [C], the
condition C is tested at each instant of time when the system is
in the transition’s source state, and the transition is taken if it is
true.

In the EWS example, we may want to prevent the transition
between WAITING_FOR_COMMAND and COMPARING from being
taken unless the sensor is connected to the system and there is a
signal coming from the sensor. We could do this as in Figure 4.4,
by enriching the statechart of Figure 4.3, with an appropriate
condition.

In fact, a similar effect could be achieved differently, by using a
condition to trigger a transition, rather than as a guard on a
triggering event. In Figure 4.5, we take the transition to
COMPARING when the EXECUTE command is issued, but, once
in COMPARING, we continuously monitor the condition

Figure 4.4. A trigger with a condition
4-6 Statemate MAGNUM

Basic Features of Statecharts
NO_SIGNAL, returning to WAITING_FOR_COMMAND the instant
we detect that it is true. In this way, if the sensor is not
connected and there is no signal coming from the sensor when
we enter COMPARING, we will immediately return to
WAITING_FOR_COMMAND. However, if there is a signal, we will
stay in COMPARING until the sensor is disconnected and the
signal ceases.

A transition can be labeled not only with the trigger that causes
it to be taken, but also, optionally, with an action, separated
from the trigger by a slash as follows: trigger/action. If and
when the transition is taken, the specified action is carried out
instantaneously. Some actions simply generate an event, but
they may also cause other effects. We shall see that actions can
modify values of conditions and data-items; they can start and
stop activities, and more. Several actions can be performed
when a transition is taken. The actions are written after the slash
in a sequence, separated by “;”, e.g., E/A;B;C.

A simple action incorporated into the EWS example is shown in
Figure 4.6.

Figure 4.5. A condition as a trigger

Figure 4.6. A simple action
Statemate MAGNUM 4-7

The Behavioral View: Statecharts
Here, we have decided that when the ALARM_TIME_PASSED
event occurs in the GENERATING_ALARM state, two things
happen simultaneously:

• the system returns to the WAITING_FOR_COMMAND
state

• the event PRINT_OUT_OF_RANGE is generated,
which is really an internal command to print a fault
report on a printing device.

Another way of using conditions to guard transitions is to
employ the condition connector. An arrow enters the connector,
labeled with the triggering event, and the connector may have
several exit arrows, each labeled with a condition enclosed in
square brackets and optionally also with an action. In general,
any number of exit arrows from a condition connector is
allowed.

Figure 4.7 shows how the EXECUTE event causes a transition
from WAITING_FOR_COMMAND, with the two mutually
exclusive conditions NO_SIGNAL and SIGNAL_EXISTS, that
determine whether the system enters COMPARING or returns to
WAITING_FOR_COMMAND. In the latter case, we have also
specified that the event ISSUE_DISCONNECTED_MSG will be
generated, causing an error message to appear.

Although the mechanisms of states and transitions labeled by
triggers and actions allow rich and complex behavioral
descriptions, they are not always enough. Later we discuss the
ability to specify reactions that do not involve transitions
between states, and to associate them with a specific state. These

Figure 4.7. A condition connector
4-8 Statemate MAGNUM

The Hierarchy of States
reactions, as well as the information about the activities that are
active in a state, are attached to the state through the Data
Dictionary. Just like the other elements appearing in statecharts,
such as triggers and actions, each state also has an associated
entry in the Data Dictionary. Transitions, though, do not have
Data Dictionary entries, mainly because they are not
identifiable by name.

4.3 The Hierarchy of States

As it turns out, highly complex behavior cannot be easily
described by simple, “flat” state-transition diagrams. The
reason is rooted in the unmanageable multitude of states, which
may result in an unstructured and chaotic state-transition
diagram. To be useful, the state machine approach must be
modular, hierarchical, and well structured. In this section we
show how states can be beneficially clustered into a hierarchy.

Recall Figure 4.2. Since event F takes the system to state U from
either state S or state T, we may cluster the latter into a new
state, call it V, and replace the two F-transitions by one, as in
Figure 4.8.

The semantics of the new state V is as follows: to be in V is to be,
exclusively, in either one of its substates S or T. This is the
classical “exclusive-or” applied to states. V is called an or-state,

Figure 4.8. Clustering of states
Statemate MAGNUM 4-9

The Behavioral View: Statecharts
and is the parent of the two sibling states S and T. The F
transition now emanates from on V, meaning that whenever F
occurs in V the system makes a transition to U. But since being
in V is just being in S or T, the new F arrow precisely abbreviates
the two old ones.

Applying this feature to our example, we may cluster the states
COMPARING and GENERATING_ALARM into a new state (which
does not need to have a name), simply because of the common
exit transition triggered by the operator command RESET. See
Figure 4.9.

 We can also reach the likes of the above figures not by
clustering, which is a bottom-up operation, but by refinement,
which is a top-down one (as in the functional decomposition
presented in a previous chapter). For example, we could have
started the EWS behavioral description with the two-state
decomposition of Figure 4.10, in which there is one top-level
state, EWS_STATES, decomposed into two substates, OFF and
ON. These are connected by two transitions, labeled POWER_ON
and POWER_OFF.

Figure 4.9. Clustering of EWS states

Figure 4.10. Top-level decomposition of EWS
4-10 Statemate MAGNUM

The Hierarchy of States
We specify that the initial state of the system is OFF by using a
default transition, specified by a small arrow emanating from a
small solid circle. We can then “zoom-in” to the ON state, and
show the next level state decomposition of the EWS. This results
in the multi-level statechart of Figure 4.11. The EWS states from
Figure 4.3 appear here as substates of the state ON. The default
transition to WAITING_FOR_COMMAND indicates that this state
is the default entrance of the ON state. This means that when
there is a transition that leads to the borderline of the parent
state, without indicating which of the substates is to be entered,
like the one triggered by POWER_ON, the system enters the
default substate.

The main advantage of using default transitions is in cases
where there is more than one entrance to the parent state. Note
that the top level of each parent state can have at most one
default entrance. A default transition usually leads to a substate
in the first level of the state decomposition, but it can be made
to directly enter a state on a lower level, as shown in Figure 4.12.

Some terms and conventions that we use for the hierarchy of
statecharts are similar to those used for activity-charts. A state
that has no substates, such as WAITING_FOR_COMMAND, is
referred to as a basic state. The state EWS_STATES is an ancestor
of its descendants, which consist of all other states in Figure 4.11.

Figure 4.11. A multi-level statechart
Statemate MAGNUM 4-11

The Behavioral View: Statecharts
As in activity-charts, we say that a transition exits from its source
state and enters its target state.

Figure 4.12. Default entrance to a lower level state
4-12 Statemate MAGNUM

Orthogonality
4.4 Orthogonality

4.4.1 And-States and Event Broadcasting

:One of the main problems with descriptions of behavior is
rooted in the acute growth in the number of states as the system
is extended. Consider a statechart with 1000 states, describing
certain control aspects of a flight-control system. Suppose that
the behavior is now enriched, by making its details depend, to
a large extent, on whether the aircraft is in auto-pilot mode or
not. With the features we have so far we might have to double
the number of states, obtaining two versions of each of the old
states – one with auto-pilot and one without – altogether 2000
states. As more such additions are made, the number of states
grows exponentially.

An additional problem arises when we want to describe
independent, or almost independent, parts of the behavior (for
example, the behavior of several different subsystems) in a
single statechart.

Statecharts handle these cases by allowing the and-decomposition
of a state. This means that a state S is described as consisting of
two or more orthogonal components, and to be in state S entails
being in all of those components simultaneously. S is then
called an and-state. The notation used is a dashed-line that
partitions the state into its components. The name of the and-
state is attached to the state frame. The orthogonal components
are named like regular states.

Figure 4.13(a) shows a state S consisting of the two components
R and T, and being in S is being in both. However, since each
component is an or-state, the first consisting of U and V and the
second consisting of W, X and Y, it follows that to be in S is to be
in one of U or V as well as one of W, X or Y. Such a tuple of states,
each from a different orthogonal component is called a state
configuration. We say that S is the parent of its components R and
T, or that R and T are the substates of S, as in the case of or-
decomposition. The components R and T are no different from
Statemate MAGNUM 4-13

The Behavioral View: Statecharts
any other states; they may have their own substates, default
entrances, internal transitions, etc.

Entering S from the outside is actually tantamount to entering
the configuration (U,X) by the default arrows. If E occurs in (U,X)
the system transfers simultaneously to (V,Y), a transition that is
really a form of synchronized concurrence – a single event
triggering two simultaneous happenings. If K now occurs, the
new configuration is (V,X), yielding a form of independence – a
transition is taken in the T component, independently of what
might be happening in the R component. Notice the in(Y)
condition appearing in R; it signifies that the F transition from V
to U is taken only if the system is in (V,Y). Thus, one component
is allowed to sense which state the other is in.

Figure 4.13(b) is the conventional “and-free” equivalent of
Figure 4.13(a), and while not much larger than Figure 4.13(a), it
does illustrate the blow-up in the number of states: if Figure
4.13(a) had 100 states in each component, giving a total of 200
bottom-level (basic) states, Figure 4.13(b) would have had to
contain all 10,000 combinations explicitly!

Returning once again to our EWS example, consider Figure 4.14.
Here we have added an orthogonal component to the ON state,
named PROCESSING. Its role is to describe the processing
aspects of the raw signal read from the external sensor.

The conditions SENSOR_CONNECTED and
SENSOR_DISCONNECTED in the PROCESSING component
indicate the status of the connection with the sensor. They are
set by the operator and are thus external. The OPERATE and
HALT events, on the other hand, are internal, being generated by
the MONITORING component. They are generated by actions
when the system enters and exits the COMPARING state,
respectively, and serve to indicate to the processing unit
whether the system has completed the comparing of the
processed signal.
4-14 Statemate MAGNUM

And-States and Event Broadcasting
Notice how these events are sensed immediately by the
orthogonal component. Moreover, events generated by actions
in one component are sensed by all other orthogonal
components. For example, if there were more than one sensor,
each with a corresponding signal processing unit, we could
have modeled each of them by its own component, and the
OPERATE and HALT events would have then been broadcast
automatically to each one of them.

Figure 4.13. Orthogonality using and-decomposition
Statemate MAGNUM 4-15

The Behavioral View: Statecharts
4.4.2 Conditions and Events Related to States

It is interesting to note that some of the events and conditions
that label transitions in the EWS example now depend on, and
refer to, states in the orthogonal component. Thus, we may
replace the conditions NO_SIGNAL and SIGNAL_EXISTS in
Figure 4.14 by in(CONNECTED) and in(DISCONNECTED),
respectively. In fact, we may refer not only to the status of being
or not being in a state as a condition, but also to the moment of
entrance or exit as an event. The syntax is entered(S) and
exited(S), with en and ex abbreviating the verbs. We may
thus replace the OPERATE and HALT events in the CONNECTED
state by en(COMPARING) and ex(COMPARING), respectively,
and the two events need no longer be explicitly generated by
actions along transitions. The resulting statechart is shown in
Figure 4.15.

Figure 4.14. An and-state in the EWS
4-16 Statemate MAGNUM

Conditions and Events Related to States
Note that the meaning of the and/or decomposition of states
implies the following:

• If the system is in a state S, then not only is in(S)
true, but in(T) holds for each ancestor T of S.

• Entering a state S will trigger the event en(S), as
well as en(T) for every ancestor T of S in which the
system did not reside when S was entered.

• Exiting a state S will trigger the event ex(S), as well
as ex(T) for each ancestor T of S in which the
system does not reside after the transition.

Even in cases where states are exited and entered by looping
transitions, such as the transition from/to
WAITING_FOR_COMMAND shown in Figure 4.7, the

Figure 4.15. Conditions and events related to states
Statemate MAGNUM 4-17

The Behavioral View: Statecharts
corresponding events ex(S) and en(S) occur. See page 5-22
for further explanation about when these events occur.

The condition in(S) and the events en(S) and ex(S) may
not be applied to an and-component, such as PROCESSING.
Instead, they should be applied to the parent and-state (in this
case, the state ON).

4.4.3 Multi-Level State Decomposition

Orthogonal breakup into components is not restricted to a
single level. For example, we might have further refined the
OPERATING state of the EWS, within CONNECTED, into two
components: one deals with the clock rate of the signal
sampling and the other with the computation mode. This is
shown in Figure 4.16.

Note that “high-level” transitions continue to apply, regardless
of whether a state has orthogonal components or not. Thus, the
HALT event, for example, takes the system out of whatever state
configuration within OPERATING it is in, and causes entry into
IDLE.

Figure 4.16. And-decomposition on any level
4-18 Statemate MAGNUM

Multi-Level State Decomposition
An important point is that there are no scoping restrictions
within a single statechart. Hence, any state can be referred to
anywhere in the statechart, even if the state referred to appears
some levels lower down.

Like with activities, two states may have the same name if they
have different parent states, in which case their names are
distinguished by using path names, i.e., attaching their ancestors’
names separated by periods. Thus, had we chosen to rename
CONNECTED and DISCONNECTED simply by ON and OFF, we
would have to write PROCESSING.ON and PROCESSING.OFF
whenever they had to be distinguished from the ON and OFF
that reside within the top-level state. This convention is not
limited to a single level only; a sequence of several state names
can be given, separated by periods, such as S1.S2.S3. Notice
that no particular relationship is implied between states that
have the same name.
Statemate MAGNUM 4-19

The Behavioral View: Statecharts
4.5 Connectors and Compound
Transitions

As in activity-charts, we allow several kinds of connectors in
statecharts. They are used to help economize in arrows in order
to clarify the specification.

4.5.1 Condition and Switch Connectors

As mentioned earlier, statecharts may employ condition
connectors, also called C-connectors. Figure 4.7 showed an
example. In general, the conditions along the branches
emanating from the C-connector must be exclusive, but there
can be more than two such branches. When the conditions are
not exclusive a situation of non-determinism ensues, which is
discussed in more detail beginning on page 6-12.

Figure 4.17 shows a simple case of using the C-connector, and
the equivalent logical transitions. Each of these logical transitions
is represented by a compound transition consisting of two simple
transitions. The transition labeled E is part of both.

Another connector, similar to the C-connector, is the switch
connector, also called the S-connector, which is usually used with
events rather than conditions. In our EWS example, we may
define a named event, COMMAND_ENTERED, as the disjunction

Figure 4.17. A condition connector and compound
transitions
4-20 Statemate MAGNUM

Junction Connectors
of three command events: EXECUTE or SET_UP or RESET.
(Named events are discussed in Chapter 5.) We may then deal
with the command-driven transitions of Figure 4.3 as in Figure
4.18.

4.5.2 Junction Connectors

Transition arrows can be joined using junction connectors, and
the labels along them can be split as desired. This makes it
possible to economize both in the number of lengthy arrows
present in the chart and in the number of identical portions of
labels. For example, Figure 4.19(a) shows how to use a junction
connector if the same event (RESET, in this case) causes exit
from two states, but we do not want to cluster the two states into
one.

Figure 4.19(b) shows a more subtle case, in which two events
lead out of a state into two separate states, but there is a
common action that is to be carried out along both. As this last
example shows, the order in which events and actions appear
along the parts of the compound transitions formed by using
junction connectors is unimportant. However, all the triggers
appearing along the parts of a compound transition must occur

Figure 4.18. A switch connector
Statemate MAGNUM 4-21

The Behavioral View: Statecharts
at the very same time in order for the transition to be taken. If
and when that happens, all the actions appearing along the
transition are carried out. As an example, the two parts of
Figure 4.20 are actually equivalent.

Multiple entrances and exits may be attached to a junction, and
the semantics prescribes creation of logical compound
transitions from all possible combinations of paths. The same is
true of C-connectors and S-connectors.

The different connectors are meant to visually emphasize the
distinction between different kinds of behavior: a C-connector
indicates branching by conditions, an S-connector branches by

Figure 4.19. Junction connectors
4-22 Statemate MAGNUM

Diagram Connectors
events, and junction connectors are used for the remaining
cases.

4.5.3 Diagram Connectors

Just like in activity-charts, statecharts also allow diagram
connectors. These are simply a means for eliminating lengthy
arrows from the chart in favor of marking two points in the
chart and indicating that the arrow flows from one point to the
other; see Figure 4.21.

Figure 4.20. Two equivalent transition constructs

Figure 4.21. Diagram connectors
Statemate MAGNUM 4-23

The Behavioral View: Statecharts
Any legal name may be used to label the diagram connectors
(see Appendix A, page A-1), as can any integer. Each occurrence
must have only entering arrows or only exiting ones. Triggers
and actions are concatenated along all possible combinations of
paths that constitute compound transitions, as with other
connectors.

4.6 More About Transitions

4.6.1 Transitions to and from And-States

Recall that being in an and-state is being in a configuration of
states – one from each component. As a consequence, the
Statecharts language allows splitting and merging arrows to
denote entries to and exits from state configurations.

Figure 4.22 shows an alternative way of describing the
transition from OFF to ON in our EWS example. Instead of
having a default entrance in each component (as in Figure 4.14),
we have a fork construct that depicts the entrance to the default
configuration directly. We may view a fork as another kind of
compound transition, with the splitting point of the two
branches as a special joint connector.

Figure 4.22. A joint connector in a fork construct
4-24 Statemate MAGNUM

Transitions to and from And-States
Such a transition is taken if and when all of its triggers occur,
and, when taken, all of its actions are performed. Thus, Figure
4.23, for example (while possibly misleading), shows a case
where the transition is not taken unless all of E, E1 and E2 occur
simultaneously. When it is taken, both actions A1 and A2 are
performed.

A dual kind of arrow can be used to exit a state configuration.
Figure 4.24 shows a case where the system will enter S5 if it was
in the configuration (S2,S4) and E occurred. This is a merge construct.

If one portion of the transition is missing, the meaning is quite
different; Figure 4.25 illustrates this case, in which the and-state

Figure 4.23. Triggers and actions on a fork construct

Figure 4.24. A joint connector in a merge construct
Statemate MAGNUM 4-25

The Behavioral View: Statecharts
is exited and S5 is entered when E occurs and the system is in
S2. The transition is performed independently of which of the
substates in the other component the system is in (S3 or S4).

Figure 4.26 shows a transition from S0 that causes entrance to
the configuration (S1,S3). The entrance to S1 is by the arrow
itself, overriding any default that might exist, and the entrance
to S3 is by the default transition.

Figure 4.25. A transition from an and-state

Figure 4.26. A transition into an and-state
4-26 Statemate MAGNUM

History Entrances
4.6.2 History Entrances

An interesting way to enter a group of states is by the system’s
history in that group. The simplest kind of this “enter-by-
history” feature is to enter the state most recently visited within
the group. This is depicted by the special history connector, also
called an H-connector.

Returning once again to our EWS example, consider Figure 4.27.
Here we have decided that once the sensor is connected when
we are in state DISCONNECTED, we make a transition to state
CONNECTED, and enter the inner state that was visited most
recently, which will be either IDLE or OPERATING. The arrow
leads to an H-connector, thus, the mode the EWS reenters is the
mode it left when the sensor was disconnected. Notice that the
H-connector also has a regular outgoing transition leading to
IDLE. This signifies that IDLE is the state to be entered if there
is no history (e.g., when the CONNECTED state is entered for the
first time).

The history connector specified in Figure 4.27 indicates an
entrance by history on the first level only. If state OPERATING,
for example, had substates SLOW and FAST, the history entrance
would not extend down to these. In other words, it would not

Figure 4.27. A history connector
Statemate MAGNUM 4-27

The Behavioral View: Statecharts
“remember” which of these two substates the system last
resided in, and the entrance would be to the one specified as
default. In order to extend a history entrance down to all levels,
the H-connector can appear with an asterisk attached,
indicating an entrance to the most recently visited state (or
configuration) on the lowest level. This is a deep history
connector, and is illustrated in Figure 4.28. If the system was last
in OPERATING.FAST, that would be the state entered, despite
the fact that SLOW is the internal default.

Once we have history entrances, we must provide the ability to
“forget” the history at will. In our example, we may wish to
specify that when the HALT event is generated the slate will be
cleaned, and the next entrance to OPERATING will be to the
default state SLOW, regardless of past behavior. We have special
actions for this purpose, which can be used along the
appropriate transitions: history_clear(S) and
deep_clear(S), abbreviated hc!(S) and dc!(S),
respectively. The former causes the system to forget the history
information of state S. That is, the next time a history connector
or a deep-history connector drawn in state S is entered, the
system will behave as if S was entered for the first time. The
latter causes the system to forget the history information of all
of the descendants of S, to any depth of nesting.

Figure 4.28. A deep history connector
4-28 Statemate MAGNUM

5The Textual
Expression Language

his chapter describes the textual expression language
that appears in several places in our models. This
language is used to define the triggers of transitions and
the implied actions in statecharts. It is also used to

describe static reactions that can be attached to a state (which
are discussed in this chapter too), as well as the mini-specs of
activities and combinational assignments (which are discussed
in Chapter 7).

The textual language supports data manipulation using
arithmetical and logical operations, it allows sensing the status
of other elements, handling timing issues, and many types of
actions. Its syntax and semantics are somewhat similar to
procedural programming languages, although there are some
important differences that relate mainly to the “stepwise
execution” of a model, as clarified in Chapter 6.

A complete description of the textual expression language is
presented in ÄAppendix A, Names and Expressions.

T

Statemate MAGNUM 5-1

The Textual Expression Language
5.1 Event, Condition and Data-Item
Expressions

In the previous chapters events and conditions were used in
triggers, and data-items in interface definitions. We also saw
some examples that used more complicated expressions, and
not just element names, were used. There were dependencies of
expressions on other elements in the system (for example, in the
condition expression in(S)) and compound expressions that
involved several elements (for example, the event E1 or E2).
We now describe in more detail how to construct such
expressions for events, conditions and data-items.

5.1.1 Event Expressions

Most of the transition triggers shown in the previous chapter
consisted of just an event name. However, a trigger can be any
event expression, as described here. Figure 4.15 showed events
that occur upon entering or exiting a state, en(S) and ex(S).
Other events indicate changes in the status of other elements,
such as changes in the values of conditions and data-items, and
in the status of activities. These will be discussed where the
manipulation of the relevant elements is presented.

Expressions for compound events can be constructed by using the
Boolean operations and, or and not. In the EWS example, the
two transitions from GENERATING_ALARM to
WAITING_FOR_COMMAND in Figure 4.3 may be combined, using
an event disjunction, as in Figure 5.1. The transition labeled
with the event disjunction is taken when at least one of the
events occurs.

The negation of an event using the not operation must be
approached with caution. This negation means that the
specified event did not occur, and it makes sense only when the
negated event is checked at a specific point in time, i.e., when
combined with other events. This is achieved by using an and
operation or a compound transition. Thus, for example, if the
event E has been defined as
5-2 Statemate MAGNUM

Event Expressions
E1 or E2 or E3 or E4 or E5 (using the Data Dictionary,
as explained in the next section), then we may use either Figure
5.2(a) or Figure 5.2(b) instead of Figure 5.2(c). Recall that the
junction connectors used in this figure denote the conjunction of
triggers.

Note also that the combination of an event and a condition,
E[C] (even if the event is absent, as in the trigger [C]), is
considered an event, so that E1[C1] and [C2] or E2, for
example, is an event expression too.

Figure 5.1. Disjunction of events

Figure 5.2. Negating an event
Statemate MAGNUM 5-3

The Textual Expression Language
Event expressions are evaluated according to the conventional
precedence rules of logical operations, and parentheses can be
used in the usual way to override the default orderings. See
Appendix A for detailed information about precedence of
operations.

All the aforementioned event expressions evaluate to yield a
single event (as opposed to an event array). A component of an
event array can be used whenever an event expression is
allowed, and it is identified by its index, e.g.,
DIGIT_PRESSED(1).

Very often we want to detect the fact that some unspecified
component of an event array has occurred. We use the operator
any for this. For example, the event expression
any(DIGIT_PRESSED) refers to the event array defined in
Figure 3.1, and captures the pressing of any one (or more) of the
ten digit keys on the operator keyboard of the EWS. Similarly,
although rarely used, the all operator captures the
simultaneous occurrence of all events in the array.

5.1.2 Condition Expressions

Some of the transition labels presented in the previous chapter
include condition expressions. In the simplest case, the
condition expression is just the condition name, such as
SIGNAL_EXISTS in Figure 4.4, but we also saw the condition
expression in(CONNECTED) used in Figure 4.15. There are
other condition expressions that are related to the status of other
kinds of elements, and these will be presented as we go along.

We often want a condition to compare data-items in one of
several ways. For this we allow the following comparison
conditions, where # depicts inequality:

exp1 = exp2, exp1 # exp2,

exp1 > exp2, exp1 < exp2,

exp1 <= exp2, exp1 >= exp2
5-4 Statemate MAGNUM

Condition Expressions
Assume that we have chosen to represent the operator
command of the EWS by a string data-item COMMAND, that has
three possible values: ‘execute‘, ‘set-up‘ or ‘reset‘. The
exit from the WAITING_FOR_COMMAND state would be
triggered by the event COMMAND_ENTERED, denoting the
assignment of a value to this data-item, and would be
channeled to the appropriate state, depending on that value.
See Figure 5.3.

The expressions on both sides of the comparisons must be of the
same type, both numeric or both strings. They can also be arrays
or records, and are then compared component-wise. Arrays
must be of the same length and component type, and records
can be compared only if they are of the same user-defined type.
For strings we allow only = and #.

As in the case of events, the Boolean operations and, or and
not can be used to construct compound conditions. Figure 5.4
shows two alternative ways to restrict the transition from
WAITING_FOR_COMMAND to COMPARING by using the
conditions SET_UP_DONE and in(CONNECTED).

Figure 5.3. Comparison conditions
Statemate MAGNUM 5-5

The Textual Expression Language
Since conditions can be organized in arrays or constitute fields
in a record, the condition expression can have the
corresponding syntax. For example, if the EWS monitors an
array of sensors and SENSORS_CONNECTED is the array of
conditions representing their connection status, then
SENSORS_CONNECTED(I) is a legal condition expression
specifying the status of the I’th component. In order to capture
the condition of at least one of the sensors being connected or all
of them, we may use the any and all operators, respectively,
as in any(SENSORS_CONNECTED). These operators can also be
used to refer to a slice of the array, as in
all(SENSORS_CONNECTED(1..3)), which is true when the
three first sensors are connected.

5.1.3 Data-Item Expressions

We mentioned comparison conditions that compare data-item
expressions. Data-item expressions can be used also in other
places in the textual language, such as in assignment actions,
and can be of different types: numeric (integer, real, bit and bit-
array), strings, and structured types.

Numeric expressions consist of constants and numeric data-
items (or numeric components of structured data-items),
combined by conventional arithmetic and bit-wise operations

Figure 5.4. Condition expressions
5-6 Statemate MAGNUM

Data-Item Expressions
with the usual precedence rules. An example is
Y+3*R.X-A(I+J). There is also a set of predefined functions
that can be used within numeric expressions, such as arithmetic
and trigonometric functions (e.g., abs(X), sin(A)), bit-array
operations (e.g., the logical shift-left operation lshl(B)) and
random number generators (e.g., rand_normal(R,S)). See
Appendix A.

In addition, in numeric expressions we allow the use of
functions that are not predefined. These are called user functions,
and may employ data-item and condition parameters that come
from the model. These functions usually denote parts of the
system whose details are not currently essential. They may
remain unspecified, and eventually could be taken from an
existing implementation.

Numeric expressions can involve the various numeric types,
and type conversion is carried out as needed. Integer and bit-
array constants can use different bases besides the decimal base,
i.e., binary (e.g., 0B00101011), octal (e.g., 0O053) and
hexadecimal (e.g., 0X2B). Real constants can be represented in
exponential format (e.g., 2.5e-3).

As mentioned earlier, string constants are enclosed in quotes,
(e.g., ‘abc‘). There are no operations on strings, but the
language offers several functions for string manipulation, such
as concatenation, sub-string search in another string,
conversion between integer and string, and more. See
Appendix A.

Structured data-items, i.e., arrays, records and unions, do not
support operations either. There is a special representation for
array constants, that uses commas between the components. An
asterisk for repetitions is also allowed. For example, {20*0} is
an array constant, consisting of 20 zeros, while
{1,2,3,10*1,0,0} is an array constant, consisting of 15
integer components. However, the language provides no record
or union constants.
Statemate MAGNUM 5-7

The Textual Expression Language
Appendix A describes the full set of operations and functions
that can be applied to data-items, and their relative precedence.

5.1.4 Named Expressions

We mentioned earlier that an element expression can be
abbreviated by a simple element name. This is carried out by
associating a definition with an element in the Data Dictionary,
and here are the most common reasons for doing so:

• To shorten a lengthy expression that appears
perhaps many times on transitions, or in other places
where the textual language is used. A short
definition in the Data Dictionary prevents errors of
inconsistency, enhances clarity, and economizes in
writing. In the EWS example, we can define the
condition READY to be SET_UP_DONE and
in(CONNECTED). This will shorten the trigger on
the transition in Figure 5.4(a), yielding
EXECUTE[READY].

• To abstract away the expression, hiding details that
we might not have decided upon yet or which we
might want to change later on. In the EWS example,
we can define a data-item ALARM_DURATION whose
value will be specified later. In this example, the
reason could be our desire to be able to change the
duration in a flexible way. Also, the exact time is not
really important in an early stage of the
specification.

Such an abbreviating definition can be associated with any
event, condition or data-item. An element with no definition is
called a primitive element or a variable, and can be generated (in
case of an event) or modified (in case of a condition or a data-
item) in the model in the usual way. An element that has an
expression definition is called a compound element (see Figure
5.5(a)). The element is referred to as a compound element even
when the expression is just the name of some other element;
e.g., the event E is defined to occur when event G occurs. An
5-8 Statemate MAGNUM

Named Expressions
element, a data-item or condition, is referred to as a constant
when its definition is a literal constant expression (see Figure
5.5(b)).

Since compound elements or constants depend for their values
on their associated expressions, they cannot be affected directly
by actions. For example, such an element cannot appear on the
left hand side of an assignment action, cannot label a flow-line,
and cannot be a component of an information-flow.

These limitations do not apply to the special case of attaching an
alias to a bit-array slice, which can be useful in applications such
as digital chip design, and communication protocol
specification. In such applications an individual bit or a slice of
a bit-array might carry special meaning, and it helps to be able
to refer to the bit-array portion by a special name. For example,
a message can be composed of a series of bits, divided into
groups that denote the message type, command code, data
fields, etc. Assume that MSG is a message, and is implemented
by a bit-array of 64 bits, indexed from 0 to 63. The first three bits,
MSG(0..2), denote the message type. An integer data-item
MSG_TYPE will be defined to be an alias of MSG(0..2) (see
Figure 5.5.(c)). Now, the message sender can assign a value to
MSG_TYPE, which is just like assigning a value to MSG(0..2),
and the message reader can check the value of MSG_TYPE in the
decoding process. A lower level of the communication protocol
that handles these messages can be made to access the
individual bits, with no extra conversion to another data
structure.

It is possible to define a data-item of type integer, bit or bit-array
to be an alias of an expression for a bit-array slice with a
constant range of indices. As mentioned, an alias is treated like
a variable, and can be used wherever a variable is allowed,
which is in contrast to the case of compound and constant data-
items.

Any occurrence of the element that has an expression definition
can be viewed as if the expression were written out in full.
Statemate MAGNUM 5-9

The Textual Expression Language
Moreover, the expression is re-evaluated whenever there is
need to evaluate the element.

It is also possible to define named actions, as discussed in the
next section.

Figure 5.5. Elements with definitions in the Data
Dictionary
5-10 Statemate MAGNUM

Actions
5.2 Actions

Besides the transitions between states, other things may happen
during execution of the model. They are usually specified by the
actions. We saw some examples of actions written along
transitions. In addition, actions can appear in static reactions, as
described later in this chapter, and in mini-specs of activities, as
described in Chapter 7.

The textual language allows various types of actions, which are
described in the following sections. They can be classified as
follows:

• Basic actions that manipulate elements, causing
changes that can be checked and triggering other
happenings in the system.

• Conditional and iterative actions, similar in structure
to those in conventional programming languages.

5.2.1 Element Manipulation

The most basic actions manipulate three types of elements:
events, conditions and data-items.

Event manipulation is really just sending the event. This is
performed by the action that is simply the name of the event.
We saw examples of actions that send events in Figure 4.14: the
events OPERATE and HALT are sent when the transitions to and
from the COMPARING state are taken, respectively.

Condition manipulation is a little more flexible; special actions
can cause a condition to become true or false. In our EWS
example, we may want to distinguish between success or failure
of the setting-up procedure, in order to ensure that we start
comparing values in the COMPARING state only if the setting-up
succeeded. This may be achieved as follows. In Figure 5.4, we
added the guarding condition SET_UP_DONE to the transition
from WAITING_FOR_COMMAND to COMPARING. Now, in Figure
5.6, we add the two self-explanatory events
Statemate MAGNUM 5-11

The Textual Expression Language
SET_UP_SUCCEEDED and SET_UP_FAILED, that label two
separate exits from the SETTING_UP state. In case of success,
and in that case only, we carry out the action
make_true(SET_UP_DONE) (abbreviated
tr!(SET_UP_DONE)).

In general, the action tr!(C) has the effect of setting the truth
value of condition C to true, and the corresponding action
make_false(C) (abbreviated fs!(C)) sets it to false. The
default entrance to WAITING_FOR_COMMAND, for example, is
labeled with a make_false action that assigns a false value to
SET_UP_DONE. So the system will react to the EXECUTE
command only if the setting-up procedure ended successfully
at least once.

Instead of the actions tr!(C) and fs!(C), we may use the
assignment actions C:=true and C:=false, respectively. In
general, the right hand side of such a condition assignment can
be any condition expression.

In addition to these actions, a condition C has two associated
events, true(C) and false(C), which occur precisely when C

Figure 5.6. Actions on conditions
5-12 Statemate MAGNUM

Element Manipulation
changes from false to true and from true to false, respectively.
We abbreviate them as tr(C) and fs(C). The condition C can
be a condition expression that depends on other conditions or
data-items. Interestingly, this makes it possible to replace
events by conditions. In Figure 4.10, for example, instead of the
two events POWER_ON and POWER_OFF, we could have a single
condition, POWER_IS_ON, and use the two events
true(POWER_IS_ON) and false(POWER_IS_ON).

A subtle point concerns the precise relationship between the
actions tr!(C) and fs!(C) and the events tr(C) and fs(C).
For example, does tr(C) always occur when tr!(C) is
executed? The answer is no. The events occur only when the
truth value of C changes value, but the actions can be executed
without changing the truth value, if it was the desired one to
start with. Thus, for example, if the setting-up procedure
completed successfully twice in succession, then the first
execution of the action tr!(SET_UP_DONE) will trigger the
event tr(SET_UP_DONE), but the second execution will not.

Assignment actions can also be used to manipulate data-items,
and, as in the case of conditions, there are events and conditions
associated with them. In the EWS example, we may be
interested in producing an alarm only after three occurrences of
OUT_OF_RANGE. This may be achieved as in Figure 5.7.

Figure 5.7. Actions and conditions on data-items
Statemate MAGNUM 5-13

The Textual Expression Language
All types of data-items can be involved in assignments. The
right hand side expression of the assignment must be type
consistent with the assigned data-item on the left hand side.
Both sides must be either numeric or string. They can also be
arrays, in which case their lengths must be the same and the
component types must be consistent. Assignments of an entire
structured data-item (record or union) are also allowed, but
both sides must be of exactly the same user defined type.

Whenever an assignment to X takes place, the event
written(X) (abbreviated wr(X)) occurs. Thus, we may
replace the trigger COMMAND_ENTERED in Figure 5.3 with the
event wr(COMMAND). The exit from the
WAITING_FOR_COMMAND state would be triggered by an
(external) assignment to COMMAND, and would be channeled to
the appropriate state, depending on its value. See Figure 5.8.

A similar event is changed(X) (abbreviated ch(X)), which
occurs when and if there was a change in the value of the data-
item expression X. Thus, in our example, we cannot replace the
event wr(COMMAND) by ch(COMMAND) (as a trigger of the
transition from WAITING_FOR_COMMAND), since this would

Figure 5.8. An event related to a data-item
5-14 Statemate MAGNUM

Compound Actions and Context Variables
make it impossible to carry out two successive entries to
SETTING_UP.

We may also use the actions write_data(X) and
read_data(X) (abbreviated respectively, wr!(X) and
rd!(X)). They apply to all types of data-items, including ones
that are structured, and even to conditions. These actions cause
the occurrence of the events written(X) and read(X),
respectively. They will be discussed further in Chapter 8.

Note that we do not allow actions to be carried out on named
compound elements. It makes no sense to perform the action
tr!(C) when C is defined as C1 or C2, and similarly to assign
a value directly to X1+X2. (Of course, these changes can be
achieved by operating on the components, i.e., by changing the
values of C1, C2, X1 or X2.)

5.2.2 Compound Actions and Context Variables

We already mentioned that it is possible to perform more than
one action when a transition is taken. This compound
sequential action is written by separating the component
actions by a ; , e.g., A1;A2;A3.

Another kind of compound action is the conditional action, in
which the actual action carried out depends on a condition or an
event. The two cases differ in their format:

if C then A else B end if

when E then A else B end when

where A and B are actions, C is a condition expression and E is
an event expression. The meaning of these is self-explanatory.
In both cases the else B part is optional.

For example, in the EWS, we may define an event
SET_UP_COMPLETED to be the disjunction
SET_UP_SUCCEEDED or SET_UP_FAILED ; Figure 5.9 may
Statemate MAGNUM 5-15

The Textual Expression Language
then be used to specify the transitions from SETTING_UP to
WAITING_FOR_COMMAND in a concise fashion, and it should be
compared with Figure 5.6.

Actions can be lengthy
sequences of
compound actions, and
may involve complex
expressions. It is thus
helpful to attach a name
to an action, using the
Data Dictionary. For
example, the
conditional action in
Figure 5.9 can be
named SET_SUCCESS,
shortening the
transition label to
SET_UP_COMPLETED/SET_SUCCESS.

When a sequence of actions involves assignments, the timing in
which the left hand side variable gets its new value is
significant. As explained in Chapter 6, the model is executed in
steps, and the actual assignment is performed only at the end of
the step, using the values from the end of the previous step.
Therefore, an action like X:=1;Y:=X will result in Y becoming
equal to the value that X had before the action execution, which
may not necessarily be 1. Moreover, if we check the value of a
variable X in a conditional action that follows an assignment to
X, the value used will be the one from the previous step. For
example, in the action sequence X:=Y; if X=Y then A1
else A2 end if, the action A1 is not necessarily carried out,
since X and Y might have had different values before the action.

This method of computation is sometimes inconvenient,
especially when true sequentiality is required. For this purpose
we provide context variables, identified by a prefixed “$”. In
contrast to regular data-items and conditions, context variables
get their values immediately, so that $X:=1; Y:=$X results in

Figure 5-9. A compound action
5-16 Statemate MAGNUM

Iterative Actions
Y being equal to 1, and $X:=Y; if $X=Y then A1 else A2
end if causes A1 to be performed in any case.

Context variables have limited scope. They are recognized only
within the action expression in which they appear, and their
value is not saved between different invocations of the same
action. Thus, context variables used in the definition of a named
action A are not recognized in an action instantiating A, and
vice-versa. Also, actions that appear in labels of different
transition segments connected by a connector, do not share the
context variables, even when they are performed in the same
step. Context variables have no entry in the Data Dictionary;
thus, they inherit their type from the expression first assigned to
them.

5.2.3 Iterative Actions

We have seen how to define arrays of events, conditions and
data-items. To help manipulate these arrays we provide
iterative actions. In particular, the for loop action makes it
possible to access the individual array components in
successive order. The for loop action has the following
syntax:

for $I in N1 to N2 loop

 A

end loop

Here, $I is a context variable, N1 and N2 are integer expressions
and A is an action. For example, assume that there is an array of
sensors monitored by the EWS. For each sensor I there is a
corresponding SAMPLE(I) whose value is checked for being in
the desired range, producing an array of self-explanatory
IN_RANGE conditions. This can be done as follows:

for $I in 1 to NUMBER_OF_SENSORS loop

 IN_RANGE($I):=(SAMPLE($I) => LEGAL_RANGE.LOW_LIMIT)

 and (SAMPLE($I) =< LEGAL_RANGE.HIGH_LIMIT)

end loop
Statemate MAGNUM 5-17

The Textual Expression Language
The iterations can be carried out with the context variable
repeatedly decremented, by using the keyword downto instead
of to in the range designation.

Assume now that instead of producing the IN_RANGE values
for all the sensors, it suffices to identify one sensor for which the
value is out of legal range. When this happens, the
OUT_OF_RANGE event should be produced. This can be done by
the following for loop action:

for $I in 1 to NUMBER_OF_SENSORS loop

 if ((SAMPLE($I) < LEGAL_RANGE.LOW_LIMIT) or

 (SAMPLE($I) > LEGAL_RANGE.HIGH_LIMIT)) then

 OUT_OF_RANGE;

 break

 end if

end loop

The action break, which is performed when an “out of range”
situation is detected, will skip the rest of the loop’s iterations,
and the action that follows the loop construct (if there is such an
action) will be the next one to execute.

Another iterative action, the while loop construct, iterates until
some condition becomes false. The above operation for the
sensors can be implemented with this construct as follows:

$I:=1;

$ALL_IN_RANGE:=true;

while

 (($I =< NUMBER_OF_SENSORS) and $ALL_IN_RANGE) loop

 if ((SAMPLE($I) < LEGAL_RANGE.LOW_LIMIT) or

 (SAMPLE($I) > LEGAL_RANGE.HIGH_LIMIT)) then

 OUT_OF_RANGE;

 $ALL_IN_RANGE:=false

 end if;

 $I := $I+1

end loop
5-18 Statemate MAGNUM

Iterative Actions
The break action can also be used in the while loop to
“jump out” of the loop without completing the iteration.

Notice that the iteration counter in the for loop action and the
iteration condition in the while loop involve context
variables. The reason is that the values of these expressions
must change during the execution of the action, i.e., within the
same step.

Iterative actions can be used wherever any other action can be
written, and, in particular, inside another iterative action. No
limit is set on the level of nesting of iterations.
Statemate MAGNUM 5-19

The Textual Expression Language
5.3 Time-Related Expressions

Many kinds of reactive systems have timing restrictions, and
their behavioral specification must involve reference to time
delays and timed-out events. Our textual language provides
several constructs to deal with timing.

5.3.1 Timeout Events

One way of introducing explicit timing information into a
statechart is by using the timeout event. The general form is
timeout(E,T) (abbreviated as tm(E,T)), where E is an event
and T is an integer expression. This expression defines a new
event, which will occur T time units after the latest occurrence
of the event E. In the EWS example, we may replace the event
ALARM_TIME_PASSED of Figure 4.3 by the more informative
and detailed event:
tm(en(GENERATING_ALARM),ALARM_DURATION). The new
event will occur ALARM_DURATION time units after the state
GENERATING_ALARM is entered. The waiting time,
ALARM_DURATION, is measured in some “abstract” time units.
The way these units refer to concrete time units, such as seconds
or minutes, is not part of the language, and may be specified
informally in the Data Dictionary. In addition, the relationship
can be fixed in related tools, such as simulators, where concrete
units are meaningful. However, in any case, the same abstract
time units are used in all timing expressions throughout the
entire statechart.

A subtle point related to the timeout(E,T) event is that the
clock that “counts” the time from the occurrence of E is reset to
zero each time E occurs. Thus, if less than ALARM_DURATION
time units elapsed since the system entered the
GENERATING_ALARM state, and in the meantime that state was
left and reentered, thus retriggering the event
en(GENERATING_ALARM), the counting of ALARM_DURATION
will restart and the alarm will last until this new duration ends.
5-20 Statemate MAGNUM

Scheduled Actions
5.3.2 Scheduled Actions

A construct that is in a way dual to the timeout event is the
scheduled action. The general format is schedule(G,T)
(abbreviated as sc!(G,T)), where G is an action and T is an
integer expression. It schedules G to be performed T time units
from the present instant. Referring to Figure 4.7 of the EWS
example, we can define the action that should be taken if
NO_SIGNAL is true to be sc!(if NO_SIGNAL then
ISSUE_DISCONNECTED_MSG,3). This will cause the system to
wait for 3 time units and then check whether there is still no
signal before issuing the message.

It is interesting to compare two ways of specifying that G is to
occur T time units from a present occurrence of the event E. If
we do this by using E/sc!(G,T), then indeed nothing can
prevent G from being carried out on time. In contrast, if we use
tm(E,T)/G, then, as mentioned earlier, a second occurrence of
E before T units elapse resets the clock to zero, and G might take
longer to occur or might never get around to doing so.
Statemate MAGNUM 5-21

The Textual Expression Language
5.4 Static Reactions

5.4.1 Reactions on Entering and Exiting a State

We are often interested in associating actions with the event of
entering or exiting a particular state. This may be done by
adding the required actions to all entering or exiting transitions.
A better way, especially when there are many such transitions,
is to associate corresponding reactions with the state in the Data
Dictionary. These reactions are triggered by entering and
exiting events (abbreviated by ns and xs).

To use the EWS as an example, refer to Figure 4.14. The event
OPERATE is generated on all transitions entering the
COMPARING state, and the event HALT is generated on the
exiting transitions thereof. We may instead omit these actions
from the chart and associate two reactions with the COMPARING
state in the Data Dictionary (separated by a double semicolon),
as shown in Figure 5.10.

Exactly when the events of entering and exiting a state occur in
standard cases was explained in And-States and Event
Broadcasting on page 4-13. However, there is a somewhat more
subtle case – that of looping transitions. In Figure 5.11, assume

Figure 5.10. Reactions on entering and exiting a state
5-22 Statemate MAGNUM

General Static Reactions
we are in state S2; in part (a) the only entering and exiting
events that occur when the transition is taken are those related
to S2, but, in contrast, in both part (b) and part (c), the ones
related to S occur too.

5.4.2 General Static Reactions

The reactions attached to a state in the Data Dictionary are
called static reactions. The general static reaction construct
makes it possible to define the reaction of the system to an event
within a particular state, even without associating it with a
transition between states. Associating the reaction trigger/
action with state S in the Data Dictionary means that as long
as the system is in state S, the action is performed whenever the
trigger occurs. As in the case of a label of a transition, the trigger
can be any event expression (not only entering and
exiting, which are special cases), and the action can be any
action expression.

In the EWS example, assume that there is no built-in clock that
allows us to use the event
tm(en(GENERATING_ALARM),ALARM_DURATION) to exit

Figure 5.11. Looping transitions
Statemate MAGNUM 5-23

The Textual Expression Language
from the GENERATING_ALARM state. We may instead employ a
“self-made” clock, which, from the moment
GENERATING_ALARM is entered, generates an event TICK every
time unit. We can then introduce the data-item NO_OF_TICKS,
and associate two static reactions with the
GENERATING_ALARM state, as shown in Figure 5.12.

We may then exit from GENERATING_ALARM when we have
“seen”, say, three ticks. This could be achieved by a transition
exiting from GENERATING_ALARM, and labeled with the
condition [NO_OF_TICKS=3].

It is often tempting to replace a static reaction by a self-looping
transition labeled with the reaction, so as to depict more of the
specification graphically. This should be done with care. For
example, we cannot naively replace the second static reaction
for the GENERATING_ALARM state by the transition in Figure
5.13, since each time we reenter GENERATING_ALARM the first
static reaction will zero the data-item NO_OF_TICKS.

Figure 5.12. General static reactions in a state
5-24 Statemate MAGNUM

General Static Reactions

Finally, let us note that it is useful to mark on the chart those
states that have associated static reactions in the Data
Dictionary. We use the “>” character for this. Thus, for instance,
when we add static reactions to the GENERATING_ALARM state,
the name will be appended with a “>”, to mark the existence of
additional information. See Figure 5.14.

Figure 5.13. Looping transition instead of static
reaction

Figure 5.14. Marking a state having static reactions
Statemate MAGNUM 5-25

The Textual Expression Language
5-26 Statemate MAGNUM

6The Semantics of
Statecharts

n the two previous chapters we described the language of
Statecharts and the associated textual expression
language. The meaning of the various notational
constructs in these languages were discussed on an

intuitive level to help aid the reader in grasping the way they
are used to specify behavior. The present chapter defines the
semantics of Statecharts more rigorously, and addresses some
of the delicate issues that arise in working out such a definition.
A fuller discussion of the semantics can be found in [HN96].

Later chapters of the book introduce additional features of our
languages, and their behavioral meaning is defined in those
places in a way that is consistent with the general principles of
the semantics presented here.

I

Statemate MAGNUM 6-1

The Semantics of Statecharts
6.1 Execution of the Model

A semantic definition of a language for specifying behavior
must be sufficiently detailed to give rise to a rigorous
prescription of how the model is executed; that is, how it reacts
to the inputs arriving from the environment in order to produce
the outputs. Several times we mentioned that a model is
executed in steps, and in this chapter we explain what exactly
this means. We first present an intuitive view, and then get into
a deeper description.

6.1.1 External Changes and System Reactions

The input to a reactive system consists of a sequence of stimuli
– events and changes in the values of data elements – that are
generated by the system's environment. We call them external
changes. The system senses these changes, and may respond by
moving from state to state along a transition, and/or by
performing some actions.

In general, a model can be viewed as a collection of reactions,
which are trigger/action pairs. When external changes
occur, they may cause some of these triggers to be enabled,
which causes the corresponding actions to be performed. We
have seen two kinds of reaction so far:

• a reaction related to a transition; its trigger labels the
transition, and there are three kinds of implied
actions: the transfer from state to state, the actions
connected with the exit from and entrance to the
appropriate states, and the actions that appear on the
transition itself. (Recall that when we talk about
transitions we mean the logical compound
transitions; see .)

• a static reaction associated with being in a state.

At any given moment, only some of the reactions are relevant,
depending on the current states of the system. Later we shall see
also reactions that are associated with activities by mini-specs.
6-2 Statemate MAGNUM

External Changes and System Reactions
These become relevant when their holding activities become
active.

In Figure 6.1, for example, there are two transition reactions that
are relevant in state S1, triggered by E[C1] and by E[not
C1], respectively. The actions that are performed if E occurs
when the system is in state S1 and condition C1 is true, are:
make_false(P1), generate G, and make_true(P2). (Also, of
course, S1 is exited and S2 is entered.) Note that the exiting and
entering reactions are linked with all respective exiting/
entering transitions, as if they were part of their labels. Also,
note that since the reaction E/K is associated with S2, and the
event E “lives” only for an instance, the event K is not generated.
Similarly, F/L is active only in S2, and if the event F occurs
when the system is in S1, it will be lost and will have no effect.

We say that the system executes a step when it performs all
relevant reactions whose triggers are enabled. As a result of a
reaction, the system may change its states, generate events, and
modify values of internal data elements. In addition, these can
cause derived events to occur (e.g., changed(D), if the data-item
D changes value) and conditions to change their value (e.g.,
in(S), if state S is entered). Any of these resulting changes
may, in turn, cause other triggers to be enabled, and,

Figure 6.1. A transition reaction
Statemate MAGNUM 36-

The Semantics of Statecharts
subsequently, other reactions to be executed, in the next step.
This has the effect of a chain-reaction, and some of the generated
events and value changes can become outputs of the system. A
series of steps representing the system’s responses to the
sequence of external stimuli and their subsequent internal
changes is called an execution scenario (or a run).

Figure 6.2
illustrates three
cases of chain-
reactions, each
consists of two
steps. All of them
start with the
system in S1 when
the external event
E occurs. The first
one, 6.2(a), shows
an event G
generated by the
reaction E/G in one
state component
S1, and triggering
another reaction (a
state transition),
immediately
thereafter, in the
orthogonal
component S2. In
the second case,
6.2(b), the
subsequent step in
the chain takes
place, triggered by
the derived event ex(S11), indicating an exit from S11. The
third case, 6.2(c), is a little bit more intricate. The reaction
triggered by E causes the system to move to S2, and as a result
the transition labeled by [C] becomes relevant. Assuming that
the condition C is true during the entire scenario, the following

Figure 6.2. Chain reactions
6-4 Statemate MAGNUM

External Changes and System Reactions
step will take the system to state S3. See also Figures 4.14 and
4.15, that show chain-reactions in the EWS example.

In all three parts of Figure 6.2, the reactions are performed
sequentially, since each somehow entails the other. However,
more than one reaction can occur simultaneously, as in Figure
6.3. Being in S11 and in S21 when E occurs results in taking the
two transitions at the same time.

Since multiple
external
changes can
occur exactly
at the same
time, multiple
reactions may
be enabled and
performed in
parallel
components at
the same time
too, even when they depend on different triggers. Moreover,
static reactions, even in the same state, are not exclusive; that is,
a number of them can be performed at the very same time.
Nevertheless, there are situations when two enabled reactions
are exclusive and cannot both be taken in the same step. One
example involves two transitions exiting from the same state, a
situation that is dealt with in the last section of this chapter.
Another example is an enabled transition exiting a state and an
enabled static reaction associated with the same state. Here, the
transition has priority, and it is taken, whereas the static
reaction is not.

The parallel nature of our models raises a problem regarding
the order in which the actions are performed. Consider Figure
6.4, in which the previous example is enhanced with actions
along the transitions. When E occurs, both actions are to be
performed in the same step. The value of Y after carrying out the
assignment Y:=X in this step depends upon whether or not the

Figure 6.3. Multiple transitions taken simultaneously
Statemate MAGNUM 56-

The Semantics of Statecharts
assignment of 1 to X was performed before. Our semantics
resolves this dilemma by postponing the actual value updates
until the end of the step, at which time they are carried out “at
once”, as we explain shortly. In this way, the evaluation of
expressions that are used in actions is based on the “old” values
of the variables.

It is important
to realize that,
by our
semantics,
different actions
in a step are not
carried out in
any particular
order, even
when they are
specified in a
way that
appears to
prescribe such an order. This includes the three kinds of actions
appearing, for example, in Figure 6.1 – those associated with
exiting a state, those appearing along transitions, and those
associated with entering a state. The exceptional behavior of
context variables, which are the ones that change their value
immediately, during the step (see page 5-15), does not destroy
the true concurrency among different actions performed in the
same step. The scope of a context variable is the compound
action it is in, and, as such, it influences only the sequential
evaluations carried out inside that action.

In summary, all calculations taking place in a step – both those
that evaluate the triggers and determine the reactions that will
be taken, and those that affect the results of the actions – are
based on what we call the status of the system prior to the step
execution. The status includes the states the system is in, the
values of variables at the beginning of the step, the events that
were generated in the previous step and since then, and some
information about the past that we discuss later.

Figure 6.4. Multiple actions performed
simultaneously
6-6 Statemate MAGNUM

The Details of Status and Step
Thus, an execution scenario consists of a sequence of statuses,
starting with the initial (default) one, separated by steps that
transfer the system from one status to another, in response to
external stimuli, and/or to the actions generated in the previous
step. See Figure 6.5.

6.1.2 The Details of Status and Step

In this section, we describe the contents of the system status,
and the algorithm for executing a step. Note that this
description does not cover the behavioral aspects related to
activities, although where the additional information is
straightforward, and does not complicate the description, we
include it. This additional information will be complexed in
Chapters 7 and 8.

The status includes:

• a list of states in which the system currently resides;

• a list of activities that are currently active;

• current values of conditions and data-items;

• a list of regular and derived events that were
generated internally in the previous step;

• a list of timeout events and their time for occurrence;

• a list of scheduled actions and their time for
execution;

• relevant information on the history of states.

Figure 6.5. An execution scenario
Statemate MAGNUM 76-

The Semantics of Statecharts
The input to the algorithm for executing a step consists of:

• the current system status;

• a set of external changes (events and changes in the
values of conditions and data-items) that occurred
since the last step;

• the current time (see the discussion of time
beginning on page 6-10).

The step execution algorithm works in three main phases:

First phase:

• calculate the events derived from the external
changes and add them to the list of events (e.g., if a
false condition C is set to be true the event tr(C) is
added to the list);

• perform the scheduled actions whose scheduled time
has been exceeded, and calculate their derived
events;

• update the occurrence time of timeout events if their
triggering events have occurred;

• generate the timeout events whose occurrence time
has been exceeded;

The first phase may modify the input status, and the new status
is the one used in the following phases.

Second phase:

• evaluate the triggers of all relevant transition
reactions to compute the enabled transitions that
will be taken in this step (see below for how conflicts
are dealt with);
6-8 Statemate MAGNUM

The Details of Status and Step
• prepare a list of all states that will be exited and
entered; this may involve the use of default
entrances and history information; note that the lists
may contain non-basic states;

• evaluate the triggers of all relevant static reactions to
compute the ones that are enabled; static reactions in
states that are exited in this step are not included
among these.

The second phase ends with a list of actions to be performed in
the current step. Actions specifying the exit from and entrance
to states are included.

Third phase:

• update the information on the history of states;

• carry out all computations prescribed by the actions
in the list produced in the second phase, but without
event generation or the value updates called for by
the assignments to data-items and conditions (except
for context variables, which are assigned their new
values as the relevant actions are carried out);

• add scheduled actions from the list produced in the
second phase to the list of scheduled actions;

• carry out all updates called for by the actions on the
list produced in the second phase; this includes
actually making the value assignments to data-items
and conditions, and updating the list of events (i.e.,
removing all current events and adding the newly
generated ones).

• update the list of current states.

The second phase can end with no enabled reactions. If this
occurs we say that the system has reached a stationary status,
and the third phase is not performed at all. In such case,
execution will stay suspended until either new external changes
occur or time is advanced.
Statemate MAGNUM 96-

The Semantics of Statecharts
6.2 Handling Time

In reactive systems, as opposed to transformational systems, the
notion of sequentiality and its relationship with time is of
central importance. We now discuss this issue.

6.2.1 Sequentiality and Time Issues

We saw above that an execution scenario consists of steps
triggered by external changes and the advancement of time. We
also saw that reactions triggered by such happenings may
continue to generate a chain of steps caused by internal
changes. This raises the following questions:

• can external changes interleave with internal chain-
reactions, or are the former sensed by the system
only after the entire internal happenings end?

• when do external changes stop being accumulated to
make place for the execution of a step?

These questions deal only with the order in which things occur
during execution and do not get into detailed issues involving
the quantitative nature of elapsed time. They are relevant to all
kinds of models. On the other hand, quantitative issues cannot
be ignored when the model contains timeout events and
scheduled actions, since time quantification appears within
them explicitly, and the current time must be used to determine
whether these elements affect a particular step. When such
elements are present in a model, we may also ask

who and how causes time to progress during execution?

The time calculated in dealing with the explicit time expressions
appearing in timeout events and scheduled actions is measured
in terms of some abstract time unit common to an entire
statechart. Different statecharts can have different time units, in
which case the relation between them must be specified prior to
model execution. When the model runs in a real environment or
participates in a simulation where concrete time units, such as
seconds and minutes, are meaningful, the relationship between
the model’s time units and the real clock must be provided.
6-10 Statemate MAGNUM

Time Schemes
6.2.2 Time Schemes

We now propose two time schemes, and show how each of
them addresses the above questions. In both schemes we
assume that time does not advance during the step execution
itself, which can be viewed as taking zero time. The actual
meaning of this assumption is that no external changes occur
throughout the step, and the time information needed for any
timeout events and scheduled actions in a step is computed
using a common clock value.

The synchronous time scheme assumes that the system executes a
single step every time unit. This time scheme is particularly
fitting for modeling electronic digital systems, where the
execution is synchronized with clock signals, and external
changes can occur between any two steps. The execution
proceeds in cycles, in each of which time is incremented by one
time unit, all external changes that occurred since the last step
are collected, and a step is executed. When different clocks are
assumed for the various components of the model, time is
advanced to the nearest next clock value, and only the relevant
components perform a step.

The asynchronous time scheme is more flexible regarding the
advancement of time, and allows several steps to take place
within a single point in time. In general, external changes can
occur at any moment between steps, and several such changes
can occur simultaneously. Actually, any implementation of this
scheme can choose how it deals with these possibilities. An
execution pattern that fits many real systems responds to
external changes when they occur by executing the sequence of
all steps these changes entail, in a chain-reaction manner, until
it reaches a stationary, stable status. Only then does the system
become ready to react to further external changes. Such a series
of steps, initiated by external changes and proceeding until
reaching a stable status, is called a super step, and when
adopting this execution pattern time does not advance inside a
super step.
Statemate MAGNUM 116-

The Semantics of Statecharts
6.3 Non-Deterministic Situations

This section discusses the non-deterministic situations that a
model might run into during execution.

6.3.1 Multiple Enabled Transitions

Consider the
simple statechart
of Figure 6.6.
When the system
is in S1, there are
two relevant
outgoing
transitions. If E
occurs and both
C1 and C2 are
true, the system
does not know
which transition to take, and non-determinism occurs.

Such a situation occurs when several transitions that cannot be
taken simultaneously are enabled, and no additional criterion
has been given for selecting only one. Tools executing the model
can make an arbitrary decision in these situations, or can ask the
user to decide.

Now consider Figure 6.7, which shows a portion of the main
statechart of the EWS example. Assume that we are in the
COMPARING state, which is one of the substates of ON. If the
event POWER_OFF occurs at the same time as OUT_OF_RANGE,
two conflicting transitions will be enabled. However, in this
case, a non-deterministic situation will not occur, since the
higher-level transition i.e., the one from ON to OFF, has priority
over the internal transition. The criterion for priority of
transitions prefers the transition whose source and target have
a higher common ancestor state, if this is possible. If the
common ancestors of both transitions are identical, then non-
determinism indeed occurs.

Figure 6.6. Potential non-determinism
6-12 Statemate MAGNUM

Racing
6.3.2 Racing

We say that a racing situation occurs if during execution an
element is modified more than once, or is both modified and
used, at a single point in time. Situations like this usually
indicate some problem in the preparation of the model.

Figure 6.4
showed a case
where data-item
X is both
assigned a value
and used in the
same step. It is
an example of
what we call a
read-write racing
situation. Figure
6.8, on the other
hand, presents a write-write racing situation. According to the
definition of a step presented above, it is clear that multiple
assignments to a data-item or a condition in a single step are
meaningless, since the values are updated at the end of the step

Figure 6.7. Priorities on transitions

Figure 6.8. Write-write racing situation
Statemate MAGNUM 136-

The Semantics of Statecharts
only. What will happen in a write-write racing situation is that
the element will be assigned one of the values arbitrarily.

More information on racing situations can be found in [HN96].
6-14 Statemate MAGNUM

7Connections Between
the Functional and
Behavioral Views

n Chapter 2 we discussed the functional view and the
language of Activity-charts that is used to specify it. As
explained there, each activity in the chart may contain a
control activity whose role is to supervise the behavior of

its sibling activities. The internal descriptions of control
activities are given by Statecharts, the language for the
behavioral view discussed in Chapter 4.

In this chapter, we provide the link between the two languages,
by describing the mechanisms that a statechart may use to
control those parts of the activity-chart for which it is
responsible. We discuss the actions used by the statechart to
control activities, and the events and conditions used by it to
sense their status.

In addition, we show how the behavior of a basic activity (i.e.,
one that is not further decomposed into other activities) can be
specified by a mini-spec, using the textual language described
in Chapter 5.

Behavioral aspects of the communication between the activities
are described in Chapter 8.

I

Statemate MAGNUM 7-1

Connections Between the Functional and Behavioral Views
7.1 Dynamics in the Functional
Decomposition

The activities participating in the functional decomposition are
not necessarily always active. Being constantly active may be
the case when the functional components represent blocks of
electronic design, such as happens in chip-level modeling.
However, in most kinds of systems many of the activities have
limited periods in which they are active.

Here are some examples. Procedures and functions in software
programs start when they are “called” by another part of the
code, and upon completion they stop and return to the calling
statement. In multi-tasking or multi-processing systems, tasks
(or processes) are invoked, do their job, and then are “killed” or
“kill” themselves. Tasks with lower priorities are interrupted
and delayed when a mission of higher priority arrives, and are
resumed when the more urgent mission completes. Interactive
user interface is specified by “callback functions” of limited
execution time, performed as a reaction to keyboard and mouse
events. In object based decomposition, objects are dynamically
created and deleted, and operations related to an object are
activated only when needed.

Let us examine the dynamic and timing issues related to the
activities in our EWS example. Most of the details are obtained
from the textual description of the example in Chapter 1, and
others reflect decisions made later on in the text.

• SET_UP: activated by an explicit request of the
operator when the system is waiting for a command;
it terminates on its own.

• COMPARE: started when the operator invokes an
EXECUTE command, and stops when the event
OUT_OF_RANGE occurs or when the operator stops it
with the RESET command.
7-2 Statemate MAGNUM

Dynamics in the Functional Decomposition
• PROCESS_SIGNAL: active only when the system is
in the usual execution mode, and the COMPARE
activity is active and is consuming its output for
comparison.

• DISPLAY_FAULT: starts when the processed signal
has become out of range, and is stopped either by the
operator or after a predefined time period.

• PRINT_FAULT: activated if the predefined time
period has passed and has caused DISPLAY_FAULT
to stop; it terminates on its own.

Obviously, merely listing the activities and their connections, as
is done in the functional view, is not sufficient. We have to
specify the dynamics of controlling these activities, including
the starting and stopping of the subactivities of a non-basic
activity. In the following sections we shall see how these aspects
are covered in our models using the control activities and their
describing statecharts. But non-basic activities are not all we
have. In order to complete the specification, we have to add
something to describe the behavior of the basic activities, those
that have no subactivities, not even a control activity. In the
section, Activities in the Data Dictionary, beginning on page 2-24,
we examined the different types of basic activities – reactive
event-driven ones, procedure-like ones and data-driven ones –
and mentioned that their behavioral description is provided in
the Data Dictionary. In the last section of the present chapter we
show in detail how this is done.

Behavior related to the communication between activities, that
deals not only with reading the inputs and sending the outputs
but also with synchronization aspects, is discussed in Chapter 8.

We should emphasize that the order in which the functional
and behavioral views and their connections are developed
depends on the nature of the system and on the specification
methodology. One can start by carrying out a functional
decomposition in activity-charts, and then add the timing and
other dynamic information in statecharts to capture behavior.
Statemate MAGNUM 37-

Connections Between the Functional and Behavioral Views
In contrast, it is possible to start by using statecharts to describe
the system’s modes of operation and/or a collection of use-
cases (scenarios), and then construct an activity-chart from the
activities performed in these modes or scenarios.
7-4 Statemate MAGNUM

Dynamics of Activities
7.2 Dynamics of Activities

In order to capture the dynamic behavior of non-basic activities,
i.e., to manage and control their subactivities, our models
employ control activities that are associated with statecharts. In
this section and the next one, we discuss how this controlling is
carried out.

7.2.1 Statecharts in the Functional View

In general, when a non-basic activity that contains a control
activity starts its execution, the statechart associated with that
control activity becomes active, i.e., the system enters the top
level state of this statechart, and it starts reacting to external and
internal happenings, as described earlier.

Associating a statechart with the control activity is done by
using the “@” symbol. Figure 7.1 shows a control activity
named CNTRL_ACT, which is associated with the statechart
CNTRL_SC.

Note: The special dashed lines in this and similar figures in the
sequel are not part of our graphical languages; they are
used to denote associations between boxes and charts.

Figure 7.1. Associating a statechart with a control
activity
Statemate MAGNUM 57-

Connections Between the Functional and Behavioral Views
Very often the name of the control activity itself is omitted. (See
Figure 7.2 below), in which case it is referred to by the name of
its associated statechart.

An activity with a reactive behavior pattern can be described by
a statechart even though it is not further decomposed, so that it
has no subactivities to control; its only subactivity is the control
activity. See Figure 7.2; the activity in this example doubles the
rate of a clock pulse.

In some cases, the control behavior of an activity can be
captured by static reactions alone, without the need for states
and transitions. In such cases, the controlling statechart will
consist of a single top-level state with the static reactions given
in its Data Dictionary entry. If this behavior does not involve the
control of sibling activities, a mini-spec can be used instead; see
Specifying Behavior of Basic Activities, beginning on page 7-18.

Finally, we should mention that while the controlling statechart
may consume and produce external (control and data)
information, its interface does not appear in the statechart itself.
Rather, it shows up in the activity-chart, as the interface of the

Figure 7.2. A statechart describing a simple activity
7-6 Statemate MAGNUM

Termination Type of an Activity
control activity it is associated with. This issue is also discussed
in Chapter 8.

7.2.2 Termination Type of an Activity

In the discussion of dynamics in earlier chapters we saw several
examples of activities that stop by themselves, from “within”,
and some that are stopped only from the “outside”. We thus
distinguish between activities that have self-termination and
those that have controlled-termination. (Of course, some can have
both; in which case we consider them as self-terminating.)

If a self-terminating activity has a control activity, then the
corresponding statechart must contain a termination connector,
also called a T-connector. This connector can appear anywhere in
the statechart, and is considered a final state; in particular, it has
no exits. Upon entering this connector, the statechart “stops”, its
parent activity – call it A – becomes deactivated, and the event
stopped(A) (abbreviated by sp(A)) occurs.

In the EWS example, the activities SET_UP and PRINT_FAULT
are self-terminating. Figure 7.3 shows the controlling statechart
of SET_UP, and it contains a termination connector. In contrast,
COMPARE and PROCESS_SIGNAL are periodic activities with
controlled-termination. Also, DISPLAY_FAULT, which
produces an alarm sound and displays a message on the screen,
continues to do so until it is stopped (as we shall see later) by the
controlling statechart of EWS_ACTIVITIES.

While reactive activities, data-driven or event-driven, can have
either controlled or self-termination, procedure-like activities
are always of the self-termination type. When invoked, a
procedure-like activity performs a sequence of actions and
stops. It is always a basic activity, and lasts for one step of
execution only.

The distinction between the two termination types can be made
for both basic and non-basic activities, and is recorded in the
Data Dictionary entry of the activity.
Statemate MAGNUM 77-

Connections Between the Functional and Behavioral Views
An important point is that when a non-basic activity stops,
either by its statechart moving to a termination connector, or
from the outside (e.g., by an explicit stop action, as we shall see),
all its sub-activities stop immediately too.

7.2.3 Perpetual Activities

We mentioned activities whose components are “always
active”. Since this kind of behavior pattern is very common in
the specification of hardware systems, we refer to it as hardware
activation style. This is a case in which an activity does not need
to have a control activity. For non-basic activities that do not
have a control activity we provide special default behavior: all
the subactivities start when the parent activity starts, and they
all stop when it stops. (The latter fact is always true, even in the
presence of a control activity.)

In the EWS example, we may decompose DISPLAY_FAULT into
two subactivities with no control activity, as shown below.
When DISPLAY_FAULT is activated, both
DISPLAY_FAULT_MESSAGE and PRODUCE_ALARM_SOUND
start simultaneously. They stop when DISPLAY_FAULT is
stopped.

Figure 7.3. Termination connector in SET-UP’s
statechart
7-8 Statemate MAGNUM

Perpetual Activities
Figure 7.4. A non-basic activity with no control activity
Statemate MAGNUM 97-

Connections Between the Functional and Behavioral Views
7.3 Controlling the Activities

We now show how the controlling statecharts affect and sense
the status of their sibling activities.

7.3.1 Starting and Stopping Activities

One of the main mechanisms that statecharts use to control
activities is the ability to activate (start) and deactivate (stop)
them explicitly. This is usually carried out via the actions
start(A) and stop(A), which are abbreviated as st!(A)
and sp!(A), respectively.

To exemplify these actions, let us return to the dynamic and
timing issues related to our EWS example, as described in
Dynamics in the Functional Decomposition, page 7-2. Here is how
these decisions can be specified in the controlling statechart.
Consider the statechart of Figure 4.6 and compare it with Figure
7.5. The event PRINT_OUT_OF_RANGE, which is generated on
the transition from GENERATING_ALARM to
WAITING_FOR_COMMAND, is replaced by the action
st!(PRINT_FAULT).

This takes care of the activation of PRINT_FAULT. For all other
activities, we can link their activation with the entrance to a
state. For example, SET_UP is started by carrying out the action
st!(SET_UP) upon entering the state SETTING_UP. A good

Figure 7.5. An action that starts an activity
7-10 Statemate MAGNUM

Starting and Stopping Activities
way to achieve this effect is by attaching a static reaction:
ns/st!(SET_UP) to the SETTING_UP state. (Recall that ns
abbreviates the entering event.) Similarly, the activities
COMPARE, PROCESS_SIGNAL and DISPLAY_FAULT are started
upon entering the states COMPARING, OPERATING and
GENERATING_ALARM, respectively. The existence of the static
reactions attached to these states is marked by a “>” symbol
affixed to the state name, as shown in Figure 7.6. Notice that
entering these states is triggered by the events that were stated
above to start the corresponding activities. For example, the
SET_UP command causes entrance to the SETTING_UP state,
and therefore causes activation of the SET_UP activity.

The COMPARE activity is stopped when the COMPARING state is
exited, by the reaction xs/sp!(COMPARE) that appears in the
Data Dictionary entry of this state. (Recall that xs abbreviates
the exiting event.) Note that the events OUT_OF_RANGE and

Figure 7.6. States marked as having entering and
exiting reactions
Statemate MAGNUM 117-

Connections Between the Functional and Behavioral Views
RESET cause the system to exit the COMPARING state, and
therefore they stop the COMPARE activity.

It is noteworthy that the action st!(A) has no effect if A is
already active, and sp!(A) has no effect if it is not. Thus, for
example, no message will be printed if st!(PRINT_FAULT)
was executed a second time before the previous activation of
PRINT_FAULT terminated.

Starting an activity that has a controlling statechart with the
start action will cause the statechart to begin “running” in
parallel to all other statecharts that might be active in the model
at that time. Similarly, stopping an activity by the stop action
causes the controlling statechart of the stopped activity to abort,
and to remain dormant until its next activation, at which time it
will restart in its top-level state. Moreover, if the stopped
activity is nonbasic, all its subactivities stop too.

Recall that the control activity can control only its sibling
activities. Therefore, all actions that appear in its statechart may
refer to the sibling activities only.

7.3.2 Sensing the Status of Activities

The statechart that describes a control activity is not limited to
causing activities to start and stop. It can also sense whether
such happenings have indeed taken place. Specifically, the
control activity can sense the events started(A) and
stopped(A), and the condition active(A), abbreviated as
st(A), sp(A), and ac(A), respectively. The event st(A)
occurs when the activity A starts, sp(A) occurs when A
terminates either by self-termination or by an external stop
action, and the condition ac(A) is true for the duration of the
period in which A is active.

In the EWS example, we can be more specific about the actual
event that triggers the exit from SETTING_UP. It will be
sp(SET_UP), rather than SET_UP_COMPLETED. See Figure 7.7.
7-12 Statemate MAGNUM

Activities Throughout and Within States
Just as the control activity can control only its sibling activities,
so can it sense only these siblings. Therefore, the events and
conditions in the describing statechart are allowed to refer only
to the sibling activities.

7.3.3 Activities Throughout and Within States

Often, we wish an activity A to start when a certain state S is
entered, and to stop when S is exited. This can be specified by
associating the action st!(A) with the entering event ns as a
static reaction in the Data Dictionary entry for S and the action
sp!(A) with the exiting event xs therein. To cater for such
cases in a more compact way, we may specify in the Data
Dictionary entry for S that A is active throughout S. For example,
the COMPARE activity can be specified as being active
throughout the COMPARING state, and PROCESS_SIGNAL as
being active throughout the OPERATING state. See Figure
7.8.

The throughout correspondence between a state and an
activity is natural for activities with controlled-termination,
since exiting the state will stop the activity. However, a self-
terminating activity A may also be specified as being active
throughout a state S. In such a case, there is usually an exit
transition from S triggered by the event sp(A); this implies that

Figure 7.7. An event signifying termination of an
activity
Statemate MAGNUM 137-

Connections Between the Functional and Behavioral Views
if and when A stops of its own accord S will be exited via this
exit. If A stops and there is no such exit transition, the
specification is misleading, but it is not a language error. If S is
exited before A terminates on its own, A will stop as a result, just
as if A had been of the controlled termination kind.

The following example illustrates this case. Assume that the
self-terminating activity SET_UP is specified as active
throughout the SETTING_UP state. Figure 7.9 shows an exit
transition from this state, labeled sp!(SET_UP). We have also
added another exit transition, triggered by the RESET
command, that enables the operator to abort the SET_UP
activity during its execution.

Another similar association is active within, which represents a
looser connection between an activity and a state. Again, we use
the Data Dictionary to assert that activity A is active within
state S. This is mainly done as a temporary specification, to

Figure 7.8. Activities active throughout states in the
Data Dictionary
7-14 Statemate MAGNUM

Suspending and Resuming Activities
indicate that the activity is activated sometime during the time
the system is in S, but that we cannot be more concrete at
present. One of the technical ramifications of this association is
that when S is exited A stops (unless, of course, it had stopped
earlier for some other reason). However, in contrast to the
throughout connection, A does not necessarily start when S is
entered.

For example, in Figure 7.6, the activity PROCESS_SIGNAL can
be defined as active within the CONNECTED state before
that state is further decomposed into IDLE and OPERATING.
The reason is that even before the decomposition we do know
that it is meaningless to perform this activity when the sensor is
disconnected. Later on, we can be more concrete and define the
activity PROCESS_SIGNAL as being active throughout
OPERATING.

7.3.4 Suspending and Resuming Activities

In addition to being able to start and stop activities, control
activities can cause an activity to “freeze”, or suspend, its
activation, and to later resume from where it stopped. The
relevant actions are suspend(A) and resume(A)
(abbreviated as sd!(A) and rs!(A), respectively). Associated
with these actions is the condition hanging(A) (abbreviated as

Figure 7.9. Self-terminated activity active throughout
a state
Statemate MAGNUM 157-

Connections Between the Functional and Behavioral Views
hg(A)), which is true as long as A is suspended without being
resumed or stopped. It should be emphasized that an activity is
considered active even when suspended. Thus, whenever
hg(A) is true, so is ac(A).

Suspension may be used, for example, when we want to
interrupt the progress of an activity in favor of another activity
with a higher priority. Figure 7.10 shows a simple activity and
its controlling statechart. The event E causes A to be suspended,
while the preferred activity B is carried out to completion, at
which time A is resumed.

If A is suspended, its descendant subactivities become
suspended too, including all descendant control activities. This
means that the corresponding statecharts “stop in their tracks”:
they remain in the state configurations they were in at the
instant of suspension. Upon resuming, all such control activities
continue in a normal fashion from those configurations. While
suspended, the statechart does not react to events. In fact, all
events that occur during the suspension period are “lost” and
have no effect on the suspended statechart.

Figure 7.10. Suspending and resuming activities
7-16 Statemate MAGNUM

Suspending and Resuming Activities
Resuming a suspended activity sounds very much like entering
a state via a history entrance (see History Entrances, page 4-27).
However, these notions should not be naively interchanged. To
illustrate the difference, compare the statechart of Figure 7.10
with Figure 7.11. In the absence of any additional static
reactions, the exit from the AC_A state in Figure 7.11 does not
cause activity A to either stop or suspend. Now assume that we
remove the starting action from the default entrance in that
figure and the activity A is defined to be active throughout state
AC_A. In this case, the event E will cause A to stop, and returning
to AC_A will cause it to start at the beginning, which is not the
case in Figure 7.10. Thus, one must remember that reentering a
state via a history entrance is considered an entrance
nonetheless, and actions that are to be performed on entry (such
as starting activities that are defined throughout) are indeed
carried out.

Figure 7.11. History entrance vs. resume activity
Statemate MAGNUM 177-

Connections Between the Functional and Behavioral Views
7.4 Specifying Behavior of Basic
Activities

When carrying out functional decomposition, the lower level
building blocks of the description are the basic activities, those
that require no further breakup. We may utilize the textual
language of Chapter 5 to associate formal executable
descriptions with basic activities, without using the Statecharts
language. These descriptions, called mini-specs and
combinational assignments, are written in the Data Dictionary.
(They were mentioned also in Activities in the Data Dictionary,
page 2-24.) Basic activities that have additional textual
descriptions in the Data Dictionary are marked by a “>”
appended to their names, like states with static reactions.

7.4.1 Reactive Mini-Specs

In some cases the behavior of a basic activity can be described
by a collection of reactions, consisting of triggers and their
implied actions. In these cases, a reactive mini-spec can be used.

The syntax of a reactive mini-spec is similar to that of a static
reaction in a state, i.e., it is a list of reactions of the form
trigger/action, separated by a double semi-colon (;;). The
meaning is obvious: as long as the activity is active, an action is
performed whenever the corresponding trigger occurs.

It is also possible to associate actions to be carried out when the
activity starts, by using the event started (abbreviated by st)
as the trigger in the mini-spec. This event occurs one step after
the action st!(A) is performed, like the event started(A).
Notice that the name of the activity does not appear in this event
since the reaction is associated with the activity itself.

Figure 7.12 describes the PROCESS_SIGNAL activity of the EWS
as a reactive mini-spec.

This activity reads the sensor's output, SIGNAL, every
SAMPLE_INTERVAL and transfers the read value to a
7-18 Statemate MAGNUM

Reactive Mini-Specs
processing user function COMPUTE(), which is unspecified in
the model. The function’s output, SAMPLE, is later checked for
being inside the required range. The sampling cycle is
implemented by an internal event TICK, which is first
scheduled when the activity is started, and is then scheduled for
the subsequent cycle.

A reactive mini-spec can be attached to both self-terminating or
controlled-terminating activities. To stop a self-terminating
activity, the stop action (abbreviated sp!) is used, which also
has no activity name. The stopped activity becomes inactive in
the next step. In the current step, it continues to apply other
reactions, if there are other enabled triggers, and it even
completes the sequence of actions that follows the stop action
(although it is probably bad practice to write action expressions
with actions that follow a stop action).

To illustrate usage of the stop action in the EWS example, let
us assume (over and above the original requirements) that the
PROCESS_SIGNAL stops when it finds that the sensor signal is
zero. This can be specified as in Figure 7.13:

Figure 7.12. A reactive mini-spec in the Data
Dictionary
Statemate MAGNUM 197-

Connections Between the Functional and Behavioral Views
It is important to remember that states and activities cannot be
referred to in the mini-spec. All the activities and states of the
model are beyond the scope of an individual mini-spec.

7.4.2 Procedure-Like Mini-Specs

Very often, an activity can be described as a sequence of actions,
possibly with conditional branching and iterations. Such
activities are called procedure-like, and are actually similar to
actions: they are described by a mini-spec that has an action
syntax, and are active for a single step only. Obviously, such
activities are always self-terminating.

For example, let us return to the SET_UP activity, whose
activity-chart and controlling statechart are shown again in
Figure 7.14.

The VALIDATE_RANGE subactivity is active throughout the
VALIDATION state. It can be described by a very simple
procedure-like mini-spec, as shown in Figure 7.15.

Figure 7.13. The stop action in a mini-spec
7-20 Statemate MAGNUM

Procedure-Like Mini-Specs
Figure 7.14. SET-UP activity and controlling
statechart

Figure 7.15. A procedure-like mini-spec in the Data
Dictionary
Statemate MAGNUM 217-

Connections Between the Functional and Behavioral Views
Notice the “>” marks in the statechart and activity-chart, that
indicate that the VALIDATION state and the VALIDATE_RANGE
activity have an additional behavioral description in the Data
Dictionary.

As in the case of reactive mini-specs, procedure-like mini-specs
are not allowed to refer to states and activities.

7.4.3 Combinational Assignments

Another typical behavior for an activity is that of a data-driven
pattern. The activity is continuously ready to perform some
calculations whenever the input changes its values. In principle,
this pattern can be described by a reactive mini-spec in which
the required calculations are performed when the activity starts
and also whenever an event changed(X) occurs for any
relevant data-item or condition X. We provide an alternative,
more convenient way to describe data-driven activities:
combinational assignments. These are associated with the activity
via the Data Dictionary, just like with mini-specs.

The general syntax of a combinational assignment is:
X :=Y1 when C1 else

Y2 when C2 else

 . . .

Yn

when X is a variable condition or data-item, Y1 to Yn are
expressions, and C1 to Cn are condition expressions.

For example, let us define a subactivity COMPUTE_IN_RANGE of
the COMPARE activity, with the following combinational
assignment:
IN_RANGE:=false when (SAMPLE < LEGAL_RANGE.LOW_LIMIT)

else false when (SAMPLE > LEGAL_RANGE.HIGH_LIMIT)

else true
7-22 Statemate MAGNUM

Combinational Assignments
This combinational assignment was designed to illustrate the
syntax of the construct, but there is actually a simpler way to
obtain the same effect, using only a simple expression with no
when clause, as shown in Figure 7.16.

Whenever SAMPLE changes its value, the combinational
assignment re-computes the value of IN_RANGE. (The
OUT_OF_RANGE event will be generated by another action
when IN_RANGE becomes false.)

The left hand side of the assignment is called a combinational
element. It can be of a numeric type, a string or a condition. It can
be an array component (with a constant index) or a record field.
It can also be a bit-array slice, but, again, only with constant
range indices.

The combinational assignments are performed at the end of an
execution step. If, during the step, a value of an element
appearing on the right-hand side of some combinational
assignment is changed, the assignment is carried out using the
new values. If doing so changes the value of an element in some
assigned expression, an additional computation phase is called
for. Of course, this chain of computations can be infinite,
resulting in an unstable design.

Figure 7.16. Combinational assignments in the Data
Dictionary
Statemate MAGNUM 237-

Connections Between the Functional and Behavioral Views
7-24 Statemate MAGNUM

8Communication
Between Activities

pecifying the communication between activities consists
of the what and the when, just like for other parts of the
specification. The what is described by the flow-lines in
the activity-charts (see Chapter 2) and relevant parts of

the Data Dictionary (see Chapter 3). The when is to be specified
by the behavioral parts of the model, i.e., the statecharts and
mini-specs. This dynamic aspect of communication is the
subject of the present chapter. We discuss those parts of our
languages that serve to control the communication between
activities, and discuss how they are related to the flow-lines in
the functional view. We also describe the queue mechanism in
some detail.

S

Statemate MAGNUM 8-1

Communication Between Activities
8.1 Communication and
Synchronization Issues

Functional components in systems communicate between
themselves in order to pass along information and to help
synchronize their processing. A number of attributes
characterize the various communication mechanisms, and
different mechanisms are convenient for different application
domains. The communication can be instantaneous, meaning
that it is lost if not consumed immediately, or persistent,
meaning that it stays around until it gets consumed (which can
be achieved by queuing, for example). The communication can
be synchronous (e.g., the sender waits for an acknowledgment or
reply from the listener), or asynchronous (i.e., there is no waiting
on the part of the sender). The communication can be directly
addressed (i.e., the target is specified) or sent by broadcasting. And
there are other issues too. A flexible modeling and
implementation environment will make it possible to use many
variants of these communication patterns.

In our models, every element has a scope in which it is
recognized. The scoping depends on the element’s definition
chart, and is described in Chapter 13. The central point here is
that every change in the value of an element is broadcast to all
activities and statecharts in the element’s scope, and is thus
“seen” by them all. These changes include the occurrence of an
event, the assignment of a value to a data-item or condition, a
change in the status of an activity, and entering or exiting a
state.

Besides events, which are instantaneous and last for one step
only, all other elements keep their values until some explicit
action causes a change. Therefore, for all communicated
elements other than events, the receiver need not necessarily be
active when the sender assigns them a value. Moreover, in all
cases other than queues, the same information can be consumed
an unlimited number of times.
8-2 Statemate MAGNUM

Communication and Synchronization Issues
The following sections discuss the elements related to the flow
of information in our languages and illustrate how they can be
used to model various communication patterns.
Statemate MAGNUM 8-3

Communication Between Activities
8.2 Controlling the Flow of
Information

The statecharts and mini-specs are responsible, among other
things, for controlling the flow of information between
activities, and they are complemented by certain elements in the
textual language. The description of the information flow given
in the activity-charts completes the picture, and it should be
consistent with the control specification.

8.2.1 Elements Related to Flow of Information

Consider Figure 8.1, in
which X is specified to
flow between activities
A and B. When does X
flow, and what triggers
the flow?

Assume first that X is an event, and that the behavior of A is
described by the statechart that constitutes A’s control activity.
This statechart may contain an action that generates X along a
transition or in a static reaction, and at that instant the
controlling statechart of B (or of any of B’s descendants) can
sense X and modify its behavior accordingly. See Figure 8.2.
Similarly, A and B can be described by mini-specs, which,
respectively, contain an action that generates X and some
reaction triggered by it. Many other alternatives are also
possible.

If X is a condition or a data-item, it is considered to be
continuous in time. This means that the value of X may change
at any point in time as long as A is active, and B can sense and
use this value at all times (even when A is no longer active). The
actions and events that were described in the previous chapters
enable us to affect the values of the conditions and data-items
and to sense when changes in such values occur. More
specifically, if X is a condition, the source activity A (i.e., its
controlling statechart or its mini-spec, and those of its

Figure 8.1. An information element flowing
between activities
8-4 Statemate MAGNUM

Elements Related to Flow of Information
descendants) can change X’s value by the actions tr!(X) and
fs!(X). The change itself (via the events ch(X), tr(X) or
fs(X)), and the current truth value of X, can be sensed
anywhere in B. If X is a data-item or condition, it can be assigned
values in A by actions such as X:=E, for an expression E; in B we
can sense the event written(X) (abbreviated wr(X)), which
may be viewed as occurring at the instant the assignment takes
place. The value of X can also be used in any controlling
statechart, mini-spec or combinational assignment inside B.

If we are not interested in assigning a specific value to X, just in
stating that some value has been assigned, A may execute the
action write_data(X) (abbreviated wr!(X)), and B may
sense the event wr(X). Thus, informally, the action wr!(X)
means assign a value to X, but without specifying any specific
value, and the event wr(X) means that “X has been assigned a
value”. In a dual fashion, the target activity B of the data-item or
condition X may perform the action read_data(X)
(abbreviated rd!(X)), signifying that it has read the value of X,
without using it in any particular computation. At the same
time, the source activity A can sense the corresponding event
read(X) (abbreviated rd(X)).

Figure 8.2. Producing and consuming an event
Statemate MAGNUM 8-5

Communication Between Activities
Note the following rules, which hold when the actions wr! and
rd! are applied to structures, such as records and arrays, and
their components. The general idea is that when dealing with
structures all of whose components exist in every occurrence of
the structure, the special actions and events that involve the
structure as a whole apply to all components, but the converse
is not true. If R is a record, then the action wr!(R) and an
assignment to R trigger the event wr(R.X), for each component
R.X of R, and the action rd!(R) triggers the event rd(R.X). If
A is an array, the action wr!(A) triggers the event wr(A(I))
for each component of A, and the action rd!(A) triggers the
event rd(A(I)). An assignment to the entire array (e.g., A:=B),
or to an array slice (e.g., A(1..3):=T), triggers the event
wr(A(I)) for each index I in the assigned range, but not vice
versa; i.e., an assignment to A(I) does not cause the event
wr(A).

For unions, where the components have an exclusive nature,
actions on a component imply events related to the containing
union data-item, but not vice versa. Thus, if U.F is a component
of the union data-item U, then the action wr!(U.F) triggers the
event wr(U), as does an assignment to U.F. The action
rd!(U.F) triggers the event rd(U).

The written and read events are relevant to the queue data-
item too, as is discussed in Activities Communicating Through
Queues, page 8-13.

8.2.2 Interface Between “execution” Components

The actions and events described above provide the means to
monitor the behavior of the flow of information. An important
issue related to the information elements that appear in
controlling statecharts, mini-specs, and combinational
assignments pertains to their origins and destinations. In
particular, the statecharts themselves do not explicitly deal with
the flow of information. The inputs and outputs of a statechart
are presented in the activity-chart as flowing to/from the
control activity associated with the statechart in question.
8-6 Statemate MAGNUM

Interface Between “execution” Components
For example, refer to Figure 4.3, the simplest version of the
statechart describing the EWS_CONTROL. The operator
commands, EXECUTE, SET_UP and RESET are input events to
this statechart, and are shown as flowing from an external
activity into the control activity (as components of COMMANDS)
in Figure 2.5. Similarly, the event OUT_OF_RANGE, which is also
used in this statechart, is an input that comes from the COMPARE
activity.

Not all the elements used in the statecharts come from external
sources. We have seen that orthogonal components may
communicate via internal information elements. The events
OPERATE and HALT, shown in Figure 4.14, are generated by an
orthogonal component and, as such, they do not appear in the
external interface of the control activity in Figure 2.5 at all.

In general, each element that appears in a behavioral
description unit, i.e., a statechart, mini-spec or combinational
assignment, may be either used by or affected by this
description unit. Some elements, such as the events HALT and
OPERATE above, and the event TICK in the mini-spec of Reactive
Mini-specs, see page 7-18, are both used and affected by the
same statechart/mini-spec and are thus considered internal to
it.

If X appears in a trigger (along a statechart transition or in a
reaction in a state or mini-spec), then we say that it is used by the
statechart or activity. The same applies if X appears in a
conditional expression in the if or when parts of an action.
Data-items are also said to be used by a statechart or an activity
if they appear on the right-hand side of assignment actions or
combinational assignments.

Consider, for example, Figure 8.3. The event E and the condition
C are used by the statechart, since they appear in the transition’s
trigger. If C is a compound condition (say, it is defined as C1 or
I=J), then its components (in this case, C1, I, and J) are also
used by the statechart. The data-items X and Z in Figure 8.3 are
Statemate MAGNUM 8-7

Communication Between Activities
also used, since the former is tested and the latter participates in
an assignment.

Similarly, if X is an event generated by an action (along a
transition, or in a static reaction or a mini-spec) in the statechart
or in an activity, then it is affected by this behavioral unit. The
same applies if X is a data-item or a condition that is assigned a
value in an action (e.g., Y and K in Figure 8.3), or in a
combinational assignment (e.g., IN_RANGE see page 7-22).

In a complete specification, we expect all elements that are used
by a statechart or an activity (in its mini-spec or combinational
assignment), but are not affected by it, to be inputs to the
corresponding control activity or the activity itself, respectively.
Similarly, elements that are affected by the statechart or the
activity, but are not used internally, are expected to be outputs
of the control activity or the activity.

We should remark that actions related to activities (e.g.,
st!(A) and sp!(A)), although they can be viewed as signals
that flow out of the control activity, have no corresponding
flow-lines in the activity-chart. The same goes for the events
st(A) and sp(A), and the conditions ac(A) and hg(A),
which can be viewed as signals that flow from A into the control
activity.

Figure 8.3. Elements used and affected by a
statechart
8-8 Statemate MAGNUM

Examples of Communication Control
8.3 Examples of Communication
Control

We have seen several patterns by which activities communicate.
For example, the data-item LEGAL_RANGE was assigned a value
by the SET_UP activity, and this value was used later by the
COMPARE function. In this scheme of shared data, the exact
timing of the production and consumption of the values is not
significant. On the other hand, we have seen several cases
where events were used to detect an occurrence in which timing
was important, and an immediate response was required (the
OUT_OF_RANGE notification and the RESET command, for
example).

We shall now see examples in which the communication
involves synchronization aspects as well as data transfer.

8.3.1 Communication Between Periodic Activities

In distributed computation models, the functionality is often
divided among a number of periodic activities. Each of these
has some mission to carry out, and upon completion it transfers
control to some other activity. One activity might prepare data
for processing and then notify the consuming activity when the
data is ready. Figure 8.4 shows such a case from the EWS
example, where we specify the activities PROCESS_SIGNAL
and COMPARE. The checking that takes place in the latter is
synchronized to the periodic rate at which signals are produced
in the former. CHECK is a procedure-like activity that computes
the IN_RANGE value for the current SAMPLE, and then
terminates.

In this example, like other similar ones, some assumptions are
made about the processing time of the activities participating in
the cycle. For instance, it is assumed that in every cycle the
CHECK activity succeeds in completing its execution before the
next SAMPLE is ready for processing; otherwise some data may
be lost.
Statemate MAGNUM 8-9

Communication Between Activities
In Figure 8.4 we have shown only the top level behavior; there
is no explicit value assignment to SAMPLE, and no details on
how it is used in the CHECK activity. The timing of the data
transfer and how it influences the activity scheduling is
expressed with the abstract write_data action and the
written event. Actually, the read_data action and read
event can be used in a dual manner to synchronize an activity
execution with the time the data is consumed, so that a cycle of
preparing new data can start.

Figure 8.4. Communication between periodic
activities
8-10 Statemate MAGNUM

Message Passing
8.3.2 Message Passing

It is sometimes convenient to base the communication between
activities on message passing. A good way to deal with this
involves queues, which are described in the next section.
However, in many cases, the mechanisms already discussed are
sufficient. Data-less messages can be represented by events,
while messages with data can be modeled by record data-items,
whose departure from the source (or arrival at the target) can be
sensed by the receiver using the written event.

As an example, assume we have a simple client-server setup,
where the server waits in an idle state for a message that
denotes a request for some service. The server is able to deal
with three different kinds of messages, each one with its special
data. This can be achieved using a union data structure whose
components are the various message records, as follows.

First, we define a data-type MESSAGE as a record with two
fields:

The first field TYPE holds the message type, one of three
possible values, while the second holds the accompanying data.
The user-defined type MSG_DATA is a union, consisting of three
fields, each corresponding to one of the message types:

Each of the messages transfers some data represented by a
different user-defined type. The client prepares and sends the
message MSG (whose data-type is MESSAGE) by carrying out the
following actions:

Field Name: TYPE Field Type: Integer min=1 max=3

Field Name: DATA Field Type: MSG_DATA

Field Name: D1 Field Type: POSITION

Field Name: D2 Field Type: BITS

Field Name: D3 Field Type: KEY
Statemate MAGNUM 8-11

Communication Between Activities
MSG.TYPE:=1; MSG.DATA.D1:=NEW_POSITION; wr!(MSG)

In Figure 8.5 we see how the server may respond to the arrival
of the message. Each of the three services activated in response
to the respective message (i.e., service request) consumes its
appropriate data.

In this example we did not discuss whether the server is
guaranteed to be ready to respond when the request is sent, or
how the client knows whether the request was fulfilled. Our
language does not contain any built-in mechanism for
identifying message senders so that replies can be automatically
addressed. However, when this is required, e.g., for
synchronization or confirmation purposes in a multiple client
environment, it can be implemented using explicit
identification. Later, when multiple instances of generic charts
are discussed, we shall see that an instance number can be used
for this purpose.

Figure 8.5. Server responding to three service
requests
8-12 Statemate MAGNUM

Activities Communicating Through Queues
8.4 Activities Communicating Through
Queues

Queuing facilities for messages are virtually indispensable in
modeling multi-processing environments, and especially
multiple client-server systems. We would like to be able to
address situations in which an unlimited number of messages is
sent to the same address, while the receiver is not always in a
position to accept them. We also want to arrange things so that
no message is consumed before one that was sent earlier.
Moreover, we want it to be possible for concurrently active
components to write messages to the same address at the same
moment, and for concurrently active components to read
different messages from the same source, even at that very same
moment. In our language set we use message queues for this,
simply called queues for short.

8.4.1 Queues and Their Operation

A queue is an ordered, unlimited collection of data-items, all of
the same data-type. The queue is usually shared among several
activities, which can employ special actions to add elements to
the queue and read and remove elements from it. Our queues
are of unrestricted length, which is in contrast to those used in
some real-time kernels, which are defined with a maximal
number of components.

A queue is itself a structured data-item, just like an array, and
when defined in the Data Dictionary the data-type of its
components must be specified. This data-type can be any basic
predefined type (i.e., integer, real, etc.), or a user-defined type.
There are no limitations on combining queues with other
constructs, e.g., arrays, records/unions, or other queues. This
means that we can define an array of queues, a record with a
queue as a field thereof, or even a queue of queues. The usage
of such compound constructs is presented further below. A
queue of records or unions, for example, is achieved by an
intermediate definition of a user-defined type.
Statemate MAGNUM 8-13

Communication Between Activities
We supply several actions to manipulate a queue. The exact
timing of these actions during the execution of a step is a
delicate issue, which is discussed in The Semantics of Queues,
page 8-15.

The actions q_put(Q,D) (abbreviated put!(Q,D)) and
q_urgent_put(Q,D) (abbreviated uput!(Q,D)) add the
value of the expression D (a data-item or condition) to the queue
Q. The former action adds an element to the tail of the queue,
while the latter adds it to the head of the queue, allowing
messages with higher priority to precede all others. Both these
operations cause the event wr(Q) to occur. The type of the
expression D must be compatible with the data type of the
elements of the queue, like in assignment actions.

The action that is dual to these two is q_get(Q,D,S),
abbreviated get!(Q,D,S). Its effect is to extract the element
residing at the head of the queue Q and place it in D, removing
it from the queue in the process. The data type of D must be
compatible with the data type of the elements in the Q. The third
operand, the status condition S, is optional. It is set to true if the
queue contained elements when the action was carried out, and
to false if the operation failed to find data to extract.

The action q_peek(Q,D,S) (abbreviated peek!(Q,D,S)) is
similar to get!, but it is not destructive; it copies the element at
the head of the queue into D without removing it from the
queue.

The actions get! and peek! may succeed or fail, the latter
being the case if the queue is empty. If successful, D and S are
assigned values, and the events rd(Q and wr(D) occur. The
event wr(S) always occurs, and if the values of D and S are
changed from their previous values in the process, then ch(D)
and ch(S) occur too.

In addition to the above actions, a queue can be totally cleared
by the action q_flush(Q), abbreviated fl!(Q). It is also
possible to examine the queue length by the operator
8-14 Statemate MAGNUM

The Semantics of Queues
q_length(Q), which returns the length of the queue prior to
the step. More about this issue in the next subsection.

8.4.2 The Semantics of Queues

A queue is of inherently sequential nature, since the order in
which the messages are put in the queue determines the order
in which they are consumed (with the exception of the order-
overriding action uput!). A problem arises when operations on
the same queue occur in parallel components during the same
step. Since there is an element of non-determinism in the order
of the operations, which depends on the tool implementing the
execution of the model, the end result might not be fully
determined. We now describe a carefully defined semantics,
whose goal is to reduce this non-determinism.

All get actions are performed when they are encountered.
Actually, a get action immediately removes the element read
from the head of the queue. However, the assignment to D in
get!(Q,D,S) is performed only at the end of the step, unless
the assigned variable is a context variable (i.e., $D instead of D,
see Compound Actions and Context Variables, page 5-15). Several
get actions in the same step read the elements from the queue
sequentially, and each reads a different element one after the
other, in an order that is non-deterministic. Since get fails when
the queue is empty, it may be the case that some of the get
actions succeed and some of them fail. Using a context variable
for the status condition (i.e., $S instead of S) makes it possible
to check in the current step whether or not the operation
succeeded.

In contrast to get actions, a put does not immediately affect the
contents of the queue. All put actions are accumulated, and are
performed at the end of the step. This scheme reduces the
chances of racing (see Racing, page 6-13), because it prevents the
interleaving of get and put actions in the same step. The order
in which the put actions of the same step are performed at the
end of the step is also non-deterministic, and depends on the
tool implementing the execution.
Statemate MAGNUM 8-15

Communication Between Activities
The clearing action flush also takes effect at the end of the step.
When issued in the same step with some put actions on the
same queue, flush will be the last to be carried out, and will
result in an empty queue. Of course, this situation is considered
a racing condition.

Although the actual number of elements in the queue might
change during a step, the returned value of the q_length
operator is not updated continuously. Rather, it returns a
unique value per step retrieved before all other queue
operations of that step. The following example of its use is
inappropriate, and when started on a non-empty queue will
result in an infinite loop:

while q_length(Q)>0 loop

 get!(Q,$MSG,$S);

 if $S then

 end if;

end loop

The following loop is more suitable for processing all messages
in the queue:

for $I in 1 to q_length(Q) loop

 get!(Q,$MSG,$S);

 if $S then

 else

 break

 end if;

end loop

The status condition $S is checked during the loop, because
there may be several consumers reading from the queue in the
same step.
8-16 Statemate MAGNUM

Queues in an Activity-Chart
Figure 8.6 illustrates the order in which operations on a queue
are performed during a step.

8.4.3 Queues in an Activity-Chart

Queues can be associated with data-stores just like data-items of
other types can. To associate a queue with a data-store, both
must have the same name. Figure 8.7 illustrates the combined
use of data-stores and queues, and here too, if the incident flow-
lines are unlabeled, the queue Q is considered an output of the
source activity, PRODUCER, and an input to the target activity,
CONSUMER.

Note that P_MSG is not an output of PRODUCER, and is therefore
not written on the emerging flow-line. It is best to view the
put!(Q,P_MSG) action as the assignment queue-
head:=P_MSG. In terms of Interface Between "execution"
Components, page 8-6, P_MSG is actually used by the put
operation, and should thus flow into the PRODUCER activity, or,
alternatively, it should be assigned internally. Moreover,
P_MSG is not necessarily a variable data-item; it may be a
compound expression or a constant, that cannot even flow
along a flow-line. Dually, C_MSG is viewed as being affected by
the CONSUMER activity, where actually it can be viewed as being

Figure 8.6. Operations on a queue during a step

Figure 8.7. A queue associated with a data-store
Statemate MAGNUM 8-17

Communication Between Activities
assigned by C_MSG:=queue-head. Thus, it is expected to be an
output of CONSUMER, or used internally.

Sometimes a queue that transfers messages between activities is
marked just as a label on a flow-line between the sender and the
receiver. When messages flow among activities in both
directions, two opposite flowing lines can be used.

8.4.4 Example of Activities Communicating Through
Queues

The special characteristics of queues make them suitable for
modeling architectures consisting of several clients and servers.
Before sending a new request, a client does not need to check
whether its previous requests (and those of other clients) have
already been granted and a server is available, since all requests
are kept in the queue until they are granted. On the other hand,
the exclusive nature of the get operation guarantees that only
one server will handle an individual request, although multiple
servers may be available when the request arrives.

Let us now assume we have a multiple-EWS system, consisting
of several EWS units of the kind described so far, and connected
to several printers. Each of the printers may serve any one of the
units. See Figure 8.8, which shows an activity-chart with four
EWS units (the clients) connected via a queue PRINTING_Q to
two printers (the servers). The queue, in addition to its
appearance in the data-store, is defined in the Data Dictionary
as a data-item whose type is queue of PRINT_REQST.

Each of the EWS units contains a PRINT_FAULT activity that
converts the OUT_OF_RANGE_DATA into a printing request
(FAULT_MSG, of type PRINT_REQST) and sends it to the queue
PRINTING_Q. A printer, when ready, reads the next request
from the queue, if there is one, and performs the actual printing.
See Figure 8.9 for the mini-spec of the PRINT_FAULT activity,
and the internals of each PRINTER.
8-18 Statemate MAGNUM

Example of Activities Communicating Through Queues
Figure 8.9. Writing and reading messages from a
queue

Figure 8.8. Multiple clients served by multiple servers
via a queue
Statemate MAGNUM 8-19

Communication Between Activities
8.4.5 An Address of a Queue

The example above is
of loosely coupled
(asynchronous)
communication.
Since the sender does
not wait for a reply,
the receiver does not
need to know the
identity of its clients.
When the server does
not have any prior
knowledge of its
clients and tightly
coupled
(synchronous)
communication is
required, i.e., the
sender waits for a
response, the address
for reply should be
contained in the
original request. This
can be supported by
referring directly to
the queue data-item
that actually holds
the address to the
queue. This implies
that if Q1 and Q2 are
both defined as
queues of the same
component type, then
Q1:=Q2 is a legal
action, after which Q1
will point to the same
data that Q2 points to.
Any put and get

Figure 8.10. Using a queue address for
synchronous communication
8-20 Statemate MAGNUM

An Address of a Queue
operation using either Q1 or Q2 will affect the common queue.
We should point out that two queue data-items are considered
equal only if they point to the same real queue; e.g., Q1=Q2 is
true after the assignment Q1:=Q2. Otherwise, even if all of their
contents are the same, the two are unequal.

When synchronous communication is required, each client may
have its own queue, through which it receives replies. When
sending a message MSG, the client includes a field, say
MSG.SOURCE, to which it assigns its queue address, say
MY_QUEUE, by the action MSG.SOURCE:=MY_QUEUE. Assume
that the server reads the message into RECV_MSG, and
acknowledges its receipt by sending a reply using the action
put!(RECV_MSG.SOURCE,ACK). The client then waits for the
event wr(MY_QUEUE) that results from this put, and can then
proceed with its work. See Figure 8.10.

Note from I-Logix regarding queues within subroutines:

To avoid semantic and behavior conflicts, queues cannot be used
inside (or as parameters/globals) of subroutines.

In general, queues are useful for the synchronization of parallel
components, so the usage of queues as a local variable (inside a
subroutine) is not typically required.

There are semantic issues regarding the use of a queue as a
parameter of a subroutine. Queues outside subroutines work with
’double buffering’, that is; operations on queues (q_put, q_empty,
..) actually work on the content of the queue at the beginning of the
step, and this conflicts with the semantics of subroutines (that all
assignments are immediate).

In summary, to avoid semantic and behavior conflicts, queues are
not supported within subroutines.
Statemate MAGNUM 8-21

Communication Between Activities
8-22 Statemate MAGNUM

9The Structural View:
Module-Charts

his chapter deals with the language of Module-charts.
Module-charts describe the structural view – sometimes
called the architectural view – of the system under
development. This view deals with the system's actual

structure, i.e., its implementation, and should be contrasted
with the conceptual model described by the other views.
Module-charts are typically used in the high-level design stage
of the project.

T

Statemate MAGNUM 9-1

The Structural View: Module-Charts
9.1 Structural Description: High-Level
Design

The structural view captures the system’s high level design. A
structural description of the system specifies the components
that implement the capabilities described by the functional and
behavioral views. These components may eventually
materialize as hardware, software, or even humans. As in the
other views, they may be arranged in a hierarchy. The structural
view also specifies the communication lines that connect the
components. These lines can be described in terms of physical
links or flowing information.

Let us now present the structural description of our EWS
example. The subsystems constituting the implementation are
as follows:

CCU (control and computation unit): The central CPU, within
which the main control of the system and the basic
computations take place.

SIGNAL_PROCESSOR: The subsystem that processes the signal
produced by the sensor and computes the value to be checked.
It consists of an analog-to-digital unit, and a high speed
processor that works at the required checking rate.

MONITOR: The subsystem that communicates with the operator.
It consists of a KEYBOARD for commands and data entry, and a
SCREEN for displaying messages.

ALARM_SYSTEM: The subsystem that produces the alarm, in
visual and/or audible fashion.

PRINTER: The subsystem that receives the messages (text and
formatting instructions) and prints them.

The environment systems are the OPERATOR and the SENSOR.
By identifying these we define the borders of the system, i.e., we
determine which facilities are part of the system (for example,
9-2 Statemate MAGNUM

Structural Description: High-Level Design
the PRINTER), and which are external (for example, the
SENSOR). Note that the environment components are common
to the functional and structural view. We shall discuss this
matter further in Chapter 10.

Sometimes, there is a clear correspondence between the top-
level activities in the functional view and the top-level
subsystems in the structural view. Often, a particular
subsystem is responsible for carrying out a single activity from
the functional description. Here, for example, the subsystem
SIGNAL_PROCESSOR implements the algorithm specified in
the activity PROCESS_SIGNAL. However, in many cases the
structural decomposition is quite different from the functional
decomposition. Thus, a single subsystem in the structural view
may be responsible for carrying out a number of different
activities in the functional view, or an activity may be
distributed among several top-level subsystems. In the EWS
example, the CCU subsystem carries out both the EWS_CONTROL
and COMPARE activities, whereas the DISPLAY_FAULT activity
is divided into subactivities that are distributed among the
ALARM_SYSTEM and MONITOR subsystems.

The communication between the subsystems of the EWS is
discussed in Communication Lines Between Modules, beginning
on page 9-7.
Statemate MAGNUM 9-3

The Structural View: Module-Charts
9.2 Internal and External Modules

In our approach, the structural view is represented by the
language of Module-charts, and the associated entries in the
Data Dictionary. The components, or subsystems, are called
modules and are depicted as boxes (rectangles, or rectilinear
polygons). Names appear inside the boxes, adhering to the
naming conventions (see page A-1). As in Activity-charts and
Statecharts, decomposition is captured by multi-level
encapsulation. The general terminology is also similar; we have
basic modules, submodules, parent modules, descendants and
ancestors.

There are two kinds of internal modules: execution modules,
drawn with solid lines, and storage modules, drawn with dashed
sidelines like the data-stores in an activity-chart. The external
modules represent the systems that are outside the top-level
module, and are drawn with dotted lines. An external module
retains this line convention even if it really functions as storage,
such as a disk or computer memory. Like external activities in
an activity-chart, the external modules may correspond to real
environment modules, external to the entire system under
description, or to internal modules in other module-charts; this
issue is discussed in Chapter 12. As in the case of box elements
in other charts, sibling internal modules cannot have the same
name. Several external modules, however, can bear the same
name, in which case they are all occurrences of the same
external module.

Figure 9.1 shows the structural decomposition of the EWS,
including a storage module DISK, that stores the fault
messages. We have left the arrows unlabeled; they will be
discussed in the next section.
9-4 Statemate MAGNUM

Internal and External Modules
The following rules govern the allowed encapsulations in a
module-chart:

• Execution modules may be submodules of other
execution modules only.

• Storage modules may be submodules of other
storage modules or of execution modules.

• External modules are always external to an execution
module or storage module, and there is no hierarchy
of external modules.

Just as in the other graphical languages, we use the Data
Dictionary to specify additional information. Figure 9.2 shows
the Data Dictionary entry of the SIGNAL_PROCESSOR. In it, we
have used an attribute name/value pair to specify that the
module is to be implemented in hardware, and the synonym
field to identify the component in some another hardware
description. In addition to the standard fields, the Data
Dictionary entry for a module contains a special field,
Described by Activity-Chart, which is used to connect
modules with their functional descriptions. This will be

Figure 9.1. Structural decomposition of the EWS
Statemate MAGNUM 9-5

The Structural View: Module-Charts
explained further in Chapter 10, where we discuss the
connections between the functional and structural views. In
Figure 9.2 it is left empty.

Figure 9.2. A Data Dictionary entry of a module
9-6 Statemate MAGNUM

Communication Lines Between Modules
9.3 Communication Lines Between
Modules

The communication between modules can be described on
various levels of detail, from merely specifying the physical
connections existing between the modules, to specifying the
details of the information items comprising the interfaces of the
modules.

Like in the other graphical languages, we draw labeled arrows
between the modules. They are called flow-lines, as in activity-
charts, or m-flow-lines, to emphasize that they connect modules.
We do not use a different line style to distinguish lines that
represent flow of information items from those that depict
physical links.

As in activity-charts, lines attached to non-basic modules carry
special meaning. A flow-line emanating from a non-basic
module specifies that the information flowing along it can be
produced by any of its descendant modules, and a flow-line
leading to a non-basic target module specifies that the
information labeling it is available to any of its descendant
modules.

9.3.1 Flow of Information Between Modules

When a flow-line is used to denote information flowing
between modules, the label is as in an activity-chart. That is, it
can be a data-item, an event, a condition, or an information-flow
that may contain several types. These elements were described
in Chapter 3. As in activity-charts, the labels cannot contain
compound elements. Also, recall that additional information
about these elements (such as their physical implementation)
can be specified in their Data Dictionary entries.

Figure 9.3 depicts the module-chart for our EWS example, with
labels describing the information on the arrows.
Statemate MAGNUM 9-7

The Structural View: Module-Charts
Note that some of the elements appearing here appeared along
the flow-lines of the corresponding activity-chart in Figure 2.5,
and some are information-flows that contain elements
appearing therein. Here, USER_INPUT contains the
information-flow COMMANDS, the data-item RANGE_LIMITS,
and the condition SENSOR_CONNECTED. The precise
relationship between the flows in activity-charts and module-
charts is discussed in Chapter 10.

9.3.2 Physical Links Between Modules

Arrows in a module-chart may also denote physical
communication links, or channels, between modules. In this
case, information-flows are used to name the links. The Data
Dictionary entry for such a flow can be used to specify the type
of link and the way the data is represented along it. The actual
information elements that flow along the link can be specified
in the Consists of field.

Figure 9.3. Flow of information among modules
9-8 Statemate MAGNUM

Physical Links Between Modules
Figure 9.4 contains an alternative module-chart for the EWS
example, showing the physical links. Some of them are really
wires (or cables) of various types.

The interface with the user in the EWS is carried out by pressing
buttons or by audio or visual outputs. Despite the fact that these
are not associated with physical links, they are also shown in
the figure.

Figure 9.5 shows the Data Dictionary entry of the information-
flow W005, that connects the SIGNAL_PROCESSOR and the CCU.
The data-item SAMPLE flows inside this communication link. I

Figure 9.4. Physical links among modules
Statemate MAGNUM 9-9

The Structural View: Module-Charts
Figure 9.5. Information-flow describing a physical link
9-10 Statemate MAGNUM

Connectors and Compound Flow-Lines
9.4 Connectors and Compound Flow-
Lines

Module-charts contain features that help in preparing clear and
uncluttered charts, as in the two other types of charts.
Connectors and compound flow-lines are allowed in module-
charts exactly as in activity-charts. See Chapter 2.

Joint connectors are often used to depict a flow-line that links
several modules. An example is shown in Figure 9.6, where
several peripheral devices listen out for messages arriving
along a communication link that emanates from the central
controlling unit.

Figure 9.6. Communication link to several devices
Statemate MAGNUM 9-11

The Structural View: Module-Charts
9-12 Statemate MAGNUM

10Connections Between
the Functional and
Structural Views

n Chapter 2 we discussed the functional view, described
via the language of Activity-charts, and in Chapter 9 we
discussed the structural view, described via Module-
charts. The former depicts the system’s decomposition into

functional components, or activities, and the latter depicts its
decomposition into structural components, or modules. The
present chapter discusses the connections between these two
views, and the way the connections are captured in our
languages.

I

Statemate MAGNUM 10-1

Connections Between the Functional and Structural Views
10.1 Relating the Functional and
Structural Models

The functional view provides a decomposition of the system
under development into its functional components, i.e., its
capabilities and processes. The structural view, on the other
hand, provides a decomposition of the system into the actual
subsystems that will be part of the final system, and which
implement its functionality. The subsystems may be physical in
nature, as were indeed most of the modules in our description
of the EWS example in Chapter 9, or logical in nature. For
example, an MMI subsystem, which carries out all functions
related to the man-machine interface of some system, would be
considered a logical subsystem of that system.

We now describe the three types of connections between the
functional and structural views: one is to describe the
functionality of a module by an activity-chart (page 10-2); the
second is to allocate specific activities in an activity-chart to be
implemented in a module (page 10-4), and the third is to map
activities in the functional description of one module to
activities in that of some other module (page 10-5). The way
these three kinds of connections are specified in our languages
described in Activity-chart Describing a Module (page 10-7),
Activities Implemented by Modules (page 10-12), and Activities
Associated with a Module’s Activities (page 10-15), respectively.

10.1.1 Functional Description of a Module

Our discussion of the functional view of the EWS in Chapter 2
centered around providing a functional description of the entire
system, i.e., the EWS module. However, there are a number of
reasons for developing separate functional descriptions for
some or all of the various submodules identified in the
structural view.

• A module might represent an autonomous
subsystem, which is to be developed separately and
then combined with the whole system (often with a
10-2 Statemate MAGNUM

Functional Description of a Module
relatively humble interface). For example, we may
want to describe the SIGNAL_PROCESSOR of the EWS
as a separate component; it may be used in other
systems and its independent description could be
valuable for other purposes.

• A separate functional description of a submodule is
sometimes a necessary prerequisite to its detailed
design and implementation. Note that the
description of the submodule's functionality may
depend on a good understanding of the entire
system specification, in which case a top-down
approach is appropriate. For example, prior to the
implementation of the CCU – the control and
computation unit of the EWS – we might want to
develop a separate description of its functionality.
However, we can determine its specification only
after identifying relevant functions in the entire
EWS.

• It might be beneficial to obtain a good
understanding of the functionality of a subsystem,
identifying its capabilities, in order to help carry out
the functional specification of the entire system. In
this case, a bottom-up approach is best. For example,
we may prefer to first analyze the functionality of
the MONITOR module, identifying the activities it
will perform (such as GET_INPUT and
DISPLAY_MESSAGE), and use these later, in the
description of the processes that take place in the
overall system. We shall discuss this approach
further on page 10-5.

In conclusion, we may wish to attach functional descriptions,
i.e., activity-charts, to modules on different levels of the
structural decomposition. See Figure 10.1.
Statemate MAGNUM 10-3

Connections Between the Functional and Structural Views
10.1.2 Allocating Activities to Modules

The structural decomposition and the identification of the flow
of information between modules is part of the design stage of a
system’s development. But the design must be related to the
system's functionality. That is, the functions identified in the
functional view must be specified as being carried out by
certain modules in the structural view. To capture this
association, each of the functions must be allocated to one or
more modules. In the EWS, for example, the
SIGNAL_PROCESSOR performs the activity PROCESS_SIGNAL.
This is a straightforward case of such an allocation. A more
delicate case is the SET_UP activity, which contains
subactivities that interact with the operator, as well as activities
that carry out calculations. SET_UP should probably be divided
among several modules with appropriate capabilities;
interaction would be carried out by the MONITOR, while the
control of SET_UP and its calculation would be implemented by
the CCU.

Figure 10.1. Functional descriptions attached to
different modules
10-4 Statemate MAGNUM

Mapping Activities to a Module’s Activities
The allocation of activities to modules is the main activity
carried out during top level design. Indeed, some
methodologies provide heuristic criteria for allocating activities
to modules, e.g., by analyzing cohesion and coupling [YC79,
SPC91]. This allocation actually determines the flow of
information among the modules. Information that flows
between two activities that are carried out by two modules, will
flow also between those modules. It is possible to examine
alternatives for the allocation, using the amount of implied
communication among the modules to decide which is best.

The allocation of activities to modules is also used in
requirement traceability analysis. A functional requirement that
was part of the original requirements of the system, and which
was translated into an activity in the functional view, will be
automatically associated with the module that carries out that
activity.

The allocation of activities to modules also allows restructuring
the functional description to define the implementation
structure. One of the main criticisms against function based
decomposition methods, such as structured analysis, is that
there is a troublesome discontinuity between the specification
and design descriptions. This gap is overcome to some extent in
object based methods, where both specification and design use
the same components (objects) and the design is, in general, a
refinement of the specification. This means that if the functional
decomposition was carried out using an object based approach,
the mapping between activities and modules can be made easy:
the decomposition into modules will use (or at least it will start
with) the same components as the functional description.

10.1.3 Mapping Activities to a Module’s Activities

Sometimes, it is not sufficient to allocate activities described on
the system level to their implementing modules. We might
want to be more concrete about the activities within the
module’s specification (as a subsystem) that are responsible for
implementing the system activities. For example, since the
Statemate MAGNUM 10-5

Connections Between the Functional and Structural Views
COMPARE activity is performed by the CCU, there should be an
activity within the CCU’s functional description that implements
the comparison. We could thus include an activity in the CCU’s
functional description, called CMP, which would be responsible
for this. In such a case, we would map activities appearing on
the system-level to those appearing on the subsystem-level.

This type of connection is even more useful in a bottom-up
development process, where we first analyze the capabilities of
each of the subsystems by developing their functional
descriptions, and later use these to construct the functional
description of the entire system by detailing the scenarios in
which these functions participate. Actually, the two views can
be developed in parallel: while identifying the possible
scenarios that occur during system operation, the required
functions are defined and are specified as part of the
appropriate subsystem. This approach is suggested by the
ECSAM methodology, described in [LWK89] and in Chapter 15
below. It is somewhat similar to an object-oriented analysis
method in which the operations each object can perform are
identified in parallel to the development of the scenarios (use
cases) that use them. In Object-Oriented Analysis with Module-
charts (page 10-17), we illustrate this approach using the EWS.

In the following sections we show how our languages support
the three connections discussed in the three preceding
subsections.
10-6 Statemate MAGNUM

Activity-chart Describing a Module
10.2 Activity-chart Describing a Module

The activity-chart EWS_ACTIVITIES, shown in Figure 2.5,
constitutes the functional description of the entire EWS system.
In the structural view the system appears as the top-level
module of the module-chart EWS of Figure 9.1. We may thus say
that the activity-chart EWS_ACTIVITIES describes the
functionality of the module EWS.

This connection between a module and its describing activity-
chart is specified in the Data Dictionary entity of the module, in
the field Described by Activity-Chart (see Figure 10.2).

Notice that the connection is between an activity-chart and a
module (and not between an activity-chart and a module-chart,
or between an activity and a module). In our example, the
module thus related is a top-level module, but this is not
mandatory. It is possible to associate an activity-chart with any
module in a module-chart. One reasonable way of proceeding
(having already described the structural view of the system by
a module-chart) would be to first describe the functionality of
the entire system, i.e., to construct a functional view for the top-
level module, and then describe the detailed functionality of
specific lower-level modules. Thus, in our example, we may
now want to specify the activity-chart CCU_AC for the module
CCU. The situation is illustrated in Figure 10.3. (More about this
issue in Sections 10.4 and 10.5, and in Chapter 12.)

Figure 10.2. A module described by activity-chart
Statemate MAGNUM 10-7

Connections Between the Functional and Structural Views
There must be a correspondence between the functional and
structural decompositions of a module in terms of the
environment and the interface with it. Since the top-level
activity in the describing activity-chart represents the
“functional image” of the module, we expect the external
activities that interact with this top-level activity to correspond
to the environment of the module described by the module-
chart. When an external activity has been given a name, it must
be the name of some module from the relevant environment.
Indeed, as we saw in Figure 2.5, the external activities in the
chart EWS_ACTIVITIES were OPERATOR and SENSOR, the
same as the modules external to the EWS module in the module-
chart EWS. In this case, these are environment modules, since
EWS is the top-level module. However, in Figure 10.4, the
external activities in the activity-chart CCU_AC for the CCU
module will be MONITOR, SIGNAL_PROCESSOR,
ALARM_SYSTEM, and PRINTER, since these are the modules
external to the module CCU, with which it interacts.

Figure 10.3. Activity-charts describing modules
10-8 Statemate MAGNUM

Activity-chart Describing a Module
Notice that we included MONITOR as an external activity in
CCU_AC and not its submodules KEYBOARD and SCREEN,
although in the module-chart the CCU is connected to them
through the communication lines. This is because the CCU is not
supposed to know the internal structure of the modules with
which it communicates.

Since the external activities in an activity-chart that describes a
module correspond to modules, they have no entity of their
own in the Data-Dictionary, and they are viewed as “pointers”
to the modules they represent. Not only must the external
elements of a module and its corresponding activity-chart
match, but so must the information flowing in and out of them.
To get a feeling for this requirement, compare Figure 2.5 with
Figure 9.3. The former shows the information flowing to and
from EWS_ACTIVITIES, and the latter shows the same for the

Figure 10.4. External activities corresponding to
modules
Statemate MAGNUM 10-9

Connections Between the Functional and Structural Views
EWS module in the module-chart. Most of the flows connect
identically-named external elements. However, notice that
COMMANDS, RANGE_LIMITS, and SENSOR_CONNECTED were
drawn in the activity-chart as flowing from OPERATOR, while in
the module-chart they arrive from KEYBOARD (as components
of USER_INPUT), and not from OPERATOR. This inconsistency
arises from the fact that when we constructed the activity-chart
we did not include the activity named GET_INPUT, for
simplification. This activity is performed continuously in the
MONITOR, whose role is to translate the KEY_PRESSING of the
OPERATOR into COMMANDS and other information elements
contained in USER_INPUT. To correct this problem, thus
making the views consistent, we must add the GET_INPUT
activity to the functional description. The revised version of the
activity-chart EWS_ACTIVITIES of Figure 2.5 that describes the
module EWS is given in Figure 10.5.

Figure 10.5. Revised activity-chart describing the
EWS module
10-10 Statemate MAGNUM

Activity-chart Describing a Module
When constructing an activity-chart that describes a module,
the names of the particular modules that produce or consume
the externally flowing information may not be interesting. In
such cases, the external activities can remain unnamed, as we
illustrate in some of the examples below. However, as stated
earlier, if an external activity is named, that name must
correspond to a module in the corresponding module-chart.
Statemate MAGNUM 10-11

Connections Between the Functional and Structural Views
10.3 Activities Implemented by Modules

Now that we are familiar with the general connection, whereby
an activity-chart describes the functionality of a module in the
module-chart, we can discuss how the components of each of
these charts are related.

The relationship is this: all internal activities and control
activities that appear in the activity-chart that describes a
certain module are implemented by that module, and all the
data-stores that appear in the chart reside in that module. In our
EWS example, all activities in the EWS_ACTIVITIES chart, e.g.,
GET_INPUT, SET_UP, PROCESS_SIGNAL, etc. (see Figure 10.5),
are implemented by the EWS module, and the data-store
LEGAL_RANGE resides in the EWS module.

When the module described by the activity-chart is eventually
decomposed into submodules, we may be more concrete and
allocate the relevant activities and data-stores to the
submodules. This is done in the field Implemented by
Module of the activity entity in the Data Dictionary, or in the
field Resides in Module of the Data Dictionary entity for the
data-store. For example, the PROCESS_SIGNAL activity is
implemented by the module SIGNAL_PROCESSOR, and we
have written this information in the Data Dictionary entity of
the activity, as shown in Figure 10.6. Similarly, the fact that
LEGAL_RANGE resides in CCU appears in the Data Dictionary
entity of the data-store.

Figure 10.6. An activity implemented by a module
10-12 Statemate MAGNUM

Activities Implemented by Modules
Activities can be implemented by execution modules only (not
storage or external modules), and data-stores can reside in any
internal module, i.e., in either execution or storage modules.

Several activities and data-stores can be allocated to a single
module via the implemented by module or resides in
module relation. For example, the activities COMPARE and
EWS_CONTROL, as well as the data-store LEGAL_RANGE, are all
allocated to the CCU module. However, a single activity or data-
store cannot be distributed among several modules. In our
example, the activities SET_UP, DISPLAY_FAULT, and
PRINT_FAULT are each carried out by several modules. We
could, of course, assign them to sufficiently high-level modules
to cover this distribution, but this might lead to allocations that
are too general to be useful. It is often better to further
decompose such activities into subactivities that can each be
allocated to a single module. This allocation will obviously be
more informative. Thus, for example, SET_UP will be
decomposed into PROMPT_RANGE, DISPLAY_SU_ERROR,
VALIDATE_RANGE, and the control activity SET_UP_STATES.
The role of the first two of these is to display messages, and they
are implemented by the MONITOR module, while the other two
are implemented by the CCU module. See Figure 10.7.

The association of activities and data-stores with modules must
be consistent with the module hierarchy and the activity
hierarchy. As discussed earlier, all components of the top-level
activity must be implemented in the module described by the
activity-chart. Similarly, all subactivities and data-stores of an
activity A that is implemented by a module M must be
themselves implemented by M or its submodules. In other
words, descendants of A cannot be allocated to modules outside
of M. In the EWS example, we would not be allowed to specify
that the SET_UP activity is implemented by the CCU and, at the
very same time, that its subactivity DISPLAY_SU_ERROR is
implemented by the MONITOR module, since MONITOR is not
contained in the CCU.
Statemate MAGNUM 10-13

Connections Between the Functional and Structural Views
In the previous section, we discussed the consistency between
the interface of the described module and the flows to the top-
level activity. A similar consistency requirement applies to the
flow of information on all levels. If two activities in the activity-
chart are implemented by two different modules, we expect the
information elements flowing between the activities to also flow
between these modules. For example, compare Figures 9.4 and
10.5. We allocated the PROCESS_SIGNAL activity to the
SIGNAL_PROCESSOR module and the COMPARE activity to the
CCU. The data-item SAMPLE flows in both charts between the
corresponding boxes.

Figure 10.7. Allocation of subactivities of SET_UP to
modules
10-14 Statemate MAGNUM

Activities Associated with a Module’s Activities
10.4 Activities Associated with a
Module’s Activities

This section deals with the possibility of mapping activities
from the functional description of the entire system to activities
from the functional description of its subsystems. Here is an
example illustrating how this is actually done.

Figure 10.8 contains the activity-chart MONITOR_AC that
describes the functionality of the module MONITOR. This
module performs two functions, GET_INPUT and
DISPLAY_MESSAGE, which are described, together with their
inputs and outputs, in the activity-chart. (Some of the external
activities are left unnamed in the figure, because the sources
and targets of the flowing data are not relevant here.)

Thus, there are two activity-charts: EWS_ACTIVITIES for the
entire system (EWS), and MONITOR_AC for one of the
subsystems (MONITOR). In addition to allocating activities of the
former chart to the EWS modules, we can also specify which
activities in the latter chart correspond to these higher-level
activities. In this example, we say in the Data Dictionary entity
of the subactivity DISPLAY_SU_ERROR of SET_UP that it is
activity DISPLAY_MESSAGE, implemented by module

Figure 10.8. Activity-chart of MONITOR
Statemate MAGNUM 10-15

Connections Between the Functional and Structural Views
MONITOR. See Figure 10.9. Similarly, the subactivity
PROMPT_RANGE of SET_UP will also correspond to the activity
DISPLAY_MESSAGE, using the field Is Activity. Attaching
both activities to the same activity DISPLAY_MESSAGE means
that the two will actually be implemented by the same function.

We also attach the activity GET_INPUT from the
EWS_ACTIVITIES activity-chart to the activity GET_INPUT in
MONITOR_AC. Although we use the same name for both
activities, the field Is Activity must be specified. We say
that PROMPT_RANGE in SET_UP is an occurrence of the activity
DISPLAY_MESSAGE in the MONITOR module. The
DISPLAY_MESSAGE activity is called the principal activity of
PROMPT_RANGE.

Note that the field Is Activity is meaningful only when the
Implemented by Module field is non-empty. Moreover, the
activity referred to must be one of the activities in the activity-
chart that describes the implementing module.

In a similar way, a data-store may be associated with another
data-store in the description of the submodules. The relevant
field is Is Data-Store, which is completely analogous to Is
Activity in the Data Dictionary entity for an activity. The
terms used are the same: if a data-store P is defined as is
data-store Q, then P is called an occurrence of the data-store Q,
and Q is the principal data-store of P.

Figure 10.9. Mapping of activities by the is
activity relation
10-16 Statemate MAGNUM

Object-Oriented Analysis with Module-Charts
10.5 Object-Oriented Analysis with
Module-Charts

Chapter 2 discussed a possible approach to decomposition that
is object based. This approach often fails to address one of the
main goals of the specification phase, since the decomposition
alone makes it difficult to see the system’s global behavior.
Object oriented approaches recommend that during
requirement analysis the behavioral scenarios (use cases) that
might occur throughout the system should be identified, not
just the objects and their operations. Here we show how the
combination of module-charts and activity-charts and the Is
Activity relation described above can be utilized to provide
full specifications.

We shall use a module-chart to describe the system’s objects.
The operations of each object will be described as activities in
the activity-chart that describes the module (object). The
activity-chart that describes the top level module (i.e., the entire
system) will be used to describe the behavioral scenarios as
sequences of object operations. An activity with its controlling
statechart and subactivities will represent a set of related
scenarios, while the subactivities are mapped to the object
operations by the Is Activity relation. Figure 10.10
illustrates this scheme.

The module-chart EWS_OBJS in Figure 10.11 shows the
decomposition of the EWS into objects, and is similar to the one
described in Object Based Decomposition, page 2-5.
Statemate MAGNUM 10-17

Connections Between the Functional and Structural Views
Figure 10.10. An object-oriented analysis model

Figure 10.11. A module-chart based on object
decomposition
10-18 Statemate MAGNUM

Object-Oriented Analysis with Module-Charts
The operations of the RANGE object are described in the activity-
chart RANGE_OPS, shown in Figure 10.12. The Data Dictionary
entry for the module RANGE contains the fact that it is
described by activity-chart RANGE_OPS.

The activity-chart that describes the functionality of the entire
system – the top level module EWS in the figure – consists of the
possible scenarios. The SET_UP scenario is the activity shown in
Figure 10.13; it consists of subactivities mapped to operations of
the objects RANGE and MMI_HANDLER.

Figure 10.12. An activity-chart specifying the
operations of RANGE
Statemate MAGNUM 10-19

Connections Between the Functional and Structural Views
Figure 10.13. An activity-chart describing the SET_UP
scenario
10-20 Statemate MAGNUM

11Splitting Up Charts

he three graphical languages described here allow the
decomposition of elements: each activity, state, or
module is either basic or is described by a set of sub-
elements. Other modeling notations and tools also allow

multi-level descriptions, but many of them insist that each level
be described in a separate chart. Our languages allow drawing
multiple levels in the same chart, but also allow the description
to span several charts. In this chapter we discuss the possibility
of presenting different levels of decomposition in separate
charts. We deal mainly with linking the graphical information.
The visibility of elements belonging to different charts is
discussed in Chapter 13.

It is worth distinguishing separate charts depicting different
levels of the decomposition from generic charts that are
considered reusable components of a model. This chapter deals
with the former; the latter are described in Chapter 14.

T

Statemate MAGNUM 11-1

Splitting Up Charts
11.1 Separating a Chart into Multiple
Pages

The charts drawn in previous chapters contained a top-level
box, representing the element being described. This box was
then decomposed into lower level boxes, with each level being
drawn inside the higher one. See, e.g., Figures 2.3, 4.11, and 9.1.
Often, however, it is convenient to break down the drawing into
a number of charts, each containing one or more levels of
decomposition. For example, instead of chart A of Figure 11.1(a)
we might want to draw the two separate charts of Figure
11.1(b). Although there are now two physically distinct charts,
A and A2, logically there is just one, and the information in chart
A2 is treated as if it were drawn inside the box named A2 in A.
Thus, there is a single logical chart, consisting of two physical
charts, which are also called pages.

Figure 11.1. Splitting a chart into pages
11-2 Statemate MAGNUM

Separating a Chart into Multiple Pages
Here are some of the reasons for dividing a chart into pages.
They are similar to the reasons for breaking down a large piece
of software into functions and subroutines.

• Overly detailed charts: A complex chart containing
too many details is difficult to read and comprehend.
Breaking it down into several pages has a
decluttering effect. Since this reason is the dominant
one, we often term the separation of charts into
pages decluttering.

• Information relevant to different people: Often,
different parts of the information in a chart are
relevant to different observers: here, the breakup is
according to the responsibilities or interests of
different people. We might call this person-oriented
information hiding; i.e., each person gets to see only the
information relevant to those parts of the system he/
she is working on. This is a widely acclaimed
principle in system development, and decomposing
charts into pages can help support it. Also, such a
splitting can help overcome difficulties arising when
different people update parts of the same chart, or
when one updates it while another analyzes it.

• Information relevant to different levels: Here, the
idea is to support information hiding in the classical
sense of the word; i.e., to make sure that each level of
the specification contains only those elements
relevant to it.

• Information from different configuration
management units: Here, the splitting is according
to different versions and/or different releases of the
system under development, or according to different
ownership and read/write/modify privileges.

• Hybrid process of building the charts: Some charts
are built partly by a top-down process and partly by
a bottom-up one. Breaking down charts can be used
to draw the low-level components on separate pages
Statemate MAGNUM 11-3

Splitting Up Charts
and incorporate them as the internal descriptions of
components in charts of higher levels. This
introduces flexibility into the chart-building process.

• Easing modification: Splitting up the model into
many charts can make the logistics of modification
easy. Subcharts represented by separate pages can be
replaced easily by others with the same interface.
This makes it easy to present specification
alternatives, simply by changing the contents of
black boxes.

Although chart decluttering is in many cases beneficial,
sometimes it is not recommended. We have in mind situations
where the system does not lend itself to neat structuring, or
cases where despite the availability of a good structuring there
is a tight inter-relationship between the low-level elements in
different parts of the structure. In such cases, decluttered charts
may be harder to comprehend. For example, it is sometimes
easier to follow the behavioral aspects of a complex model
when these are concentrated in a single statechart. The same
goes for presenting and comprehending the flow of information
in an activity-chart down to the basic low-level activity that
actually produces and consumes the data elements.
11-4 Statemate MAGNUM

Offpage Charts
11.2 Offpage Charts

We now discuss the mechanism used for splitting a chart into
several pages. The contents of a box element (activity, state or
module) may be drawn in a separate chart. The box element is
called an instance box and the associated chart is called an offpage
chart or a definition chart. The relationship between these two is
sometimes termed the box-is-chart relation. The chart of the
instance box is sometimes referred to as the instance chart.

To represent the relation between an instance box A and a
definition chart B, we label the instance box by A@B, meaning
that this is box A but its internals are to be described in chart B.
If we want to use the same name for the box and its definition
chart, we may simply omit the first of the two names. Thus, a
box labeled @A means that the box and its definition chart are
both named A (which is therefore like labeling it A@A).

In our EWS example, the functional decomposition of the
SET_UP activity of Chapter 2 may be described in a separate
chart. Figure 11.2(a) shows this activity named @SET_UP,
meaning that its contents are defined in a chart named SET_UP,
and Figure 11.2(b) shows the corresponding definition chart
with its further decomposition. As explained, since there is no
name preceding the @ symbol, the box name is the same as the
definition chart name, and we may, for example, use the action
start(SET_UP) in the controlling statechart EWS_CONTROL.
Had we labeled the box SU@SET_UP, that action would have
had to take the form start(SU).

Note that the notation used to associate a box with its offpage
chart is the same as that used to associate a control activity with
its describing statechart. See Figure 11.2(a); the control activity
labeled @EWS_CONTROL is described by a statechart named
EWS_CONTROL.

When a box is described by an offpage chart, say A@B, the
definition chart B must have a unique top-level box, and the
instance box A may have no sub-boxes. Of course, the sub-boxes
Statemate MAGNUM 11-5

Splitting Up Charts
appearing in the top-level box in B are considered logical sub-
boxes of A, but A has no physical sub-boxes. This terminology is
used for parents too. Boxes may thus have logical and physical
parents.

Referring again to Figure 11.2, the PROMPT_RANGE activity is
considered a subactivity of the instance activity SET_UP, and
therefore also a logical descendant of EWS_ACTIVITIES. The
physical parent of PROMPT_RANGE is the top-level activity
SET_UP in the activity-chart with the same name. Since the top-
level box is considered an “image” of the instance box, we have
named the two identically in our example. However, it is

Figure 11.2. An instance activity and its definition
(offpage) chart
11-6 Statemate MAGNUM

Offpage Charts
possible, although not recommended, to have three different
names, one each for the instance box, the definition chart and
the top-level box.

The external activities presented in the definition chart are the
boxes that appear surrounding the SET_UP activity in the
instance chart (EWS_ACTIVITIES), and with which SET_UP
communicates. We shall return to this issue in the next section,
and also in Chapter 12 where the entire model is discussed.

Both the instance box and the top-level box of the definition
chart have associated entries in the Data Dictionary, and the
information appearing therein must be consistent. More
specifically, the following fields, if not empty, must contain the
same information: Termination Type and Implemented
by Module in an activity entry, and Described by
Activity-Chart in a module entry. For all other fields, such
as Static Reactions and Active Activities in a state
entry, and Attributes for all elements, the information in the
entries for the instance box and the top-level box of the
definition chart is accumulated and is viewed as applying to the
common entity.

We do not allow multiple instances of a common definition
chart. In other words, two instance boxes cannot be described
by the same definition chart. When the need arises for multiple
instances of the same chart, the generic chart mechanism of
Chapter 14 should be used.
Statemate MAGNUM 11-7

Splitting Up Charts
11.3 Connecting Offpage Charts by
Matching Flows

One of the advantages of having multiple levels in the same
chart is the ease of viewing arrows (flow-lines in activity-charts
and module-charts, and state transitions in statecharts), in that
sources and targets are seen together. When charts are
decluttered into separate pages this will necessarily be less
convenient. In any case, we need reasonable mechanisms for
combining arrows over pages. We supply two. The first,
discussed in the present section, concerns matching flows, and
can be used in activity-charts and module-charts only. The
second concerns diagram connectors, and is described in the
next section. Although diagram connectors can be used in all
three types of charts, we describe their use for statecharts only,
since the first method is preferred for the two other types of
charts.

Here is how to link flow-lines between pages in activity-charts
and module-charts. The arrows leading to and from the
borderline of the instance box are matched with the arrows
exiting or entering external boxes in the definition chart. The
actual matching is carried out by identifying common
information elements included in the labels.

Let us examine an example. Figure 11.3(a) is the original chart
and Figure 11.3(b) describes its partition into two charts, by
extracting the contents of A1 and relegating them to a new
activity-chart. The flow-lines in activity-chart A that depict the
interface of activity A1 are all connected to the borderline of the
instance box, including those that are related to the internal
activities of A1. In the definition chart of A1, all flow-lines are
labeled with the flowing elements, and are connected to their
actual sources and targets inside A1.

Note that the matching is carried out according to the flowing
elements and not the written labels. For example, in the
definition chart A1, the flow-line emanating from A12 is labeled
VW, an information flow consisting of V and W. This line is
11-8 Statemate MAGNUM

Connecting Offpage Charts by Matching Flows
matched with the two separate flows labeled V and W in the
instance chart.

Note also that the external boxes in the definition chart of Figure
11.3(b) are unnamed. This is done mainly to emphasize the fact
that arrows are linked by matching the flowing elements, and
not by the sources and targets. However, the names may be
added if it is important to represent these sources and targets
explicitly. This indeed might be the case in a top-down
development effort, since the sources and targets are already
determined in the instance chart.

Figure 11.3. Connecting pages by matching flows
Statemate MAGNUM 11-9

Splitting Up Charts
Another point worth making is that there is no correspondence
between sources and targets of the flows in the definition and
instance charts. For example, V and W of Figure 11.3, when
considered as the compound information item VW, have a single
external target in the definition chart, whereas in the instance
chart they lead to two separate boxes. This illustrates the fact
that unnamed external boxes are really just place holders of
sort, external agents that are connected to arrows that lead to or
from the outside. (In a bottom-up development effort this is
particularly helpful; we might not want to specify the actual
external elements when developing the definition chart, since
we might not yet know about them.) If the external boxes in the
definition chart are named, the names must be consistent with
those of the corresponding sources and targets in the instance
chart.

For example, Figure 11.4 shows the SET_UP definition chart
with its external interface. Comparing it with Figure 10.5, we
see that the boxes in this external interface correspond to the
various boxes with which the SET_UP activity communicates.
In the case of decluttering an activity-chart, the external
activities in the definition chart may correspond to the
following kinds of elements in the instance chart: regular
internal activities, control activities, external activities, and also
data-stores. In particular, the data-store LEGAL_RANGE is also

Figure 11.4. SET_UP definition chart
11-10 Statemate MAGNUM

Connecting Offpage Charts by Matching Flows
depicted as an external activity in the definition chart. In a
similar way, when decluttering a module-chart, external
modules in the defining chart may correspond to execution
modules, storage modules, or external modules in the instance
chart.

Clearly, each input or output of the top-level box in the
definition chart must also appear in the instance chart, either as
a direct flow to the instance box or as a flow-line connected to
one of its ancestors. We also expect each flow-line connected to
the instance box to appear in the definition chart that contains
the particular source or target, even when it is specified as being
consumed or produced by all sub-elements of the instance. For
example, comparing Figure 11.3(b) with Figure 11.3(a), we see
that although X1 is an output of A1, it also appears in the
definition chart. The reason for this is that when drawing the
interface of the instance, it is considered as the interface to a
“black box”. That is, drawing an input line means “one or more
of the components consume this input, and the actual
consumer(s) will be specified in the definition chart”. Similarly
for outputs.

In Compound Flow-Lines, page 2-32, we introduced the notion of
a compound flow-line; we talked about the logical flows
between activities (or modules) that consist of several flow-line
segments linked with connectors. Now here, although using a
different construction method, we have compound lines that
are distributed over several pages. Figure 11.5(a) shows an
example that contains two compound flow-lines: X, flowing
from A1 to B1, and Y, flowing from A2 to B2. An equivalent
construct is shown in Figure 11.5(b).
Statemate MAGNUM 11-11

Splitting Up Charts
Figure 11.5. Compound flow-lines distributed over
several pages
11-12 Statemate MAGNUM

Connecting Offpage Statecharts Using Connectors
11.4 Connecting Offpage Statecharts
Using Connectors

The method presented above for connecting offpage charts to
the description in the instance chart cannot be applied in the
case of statecharts, since these are not connected via flows. For
them we have an alternative mechanism, based on diagram
connectors. In previous chapters we already used diagram
connectors to combine several arrow segments into a single
logical compound arrow. See, for example, Figure 4.21, where
three compound transitions between states were constructed
from two segments each, using diagram connectors. Since these
connectors appear in the same chart, or page, we refer to them
as inpage diagram connectors. When they are used to connect
arrows on separate pages, as is the case here, we call them
offpage diagram connectors. In the instance chart (i.e., the chart
that contains the instance box) the connectors are drawn inside
the instance box, and in the definition chart they are drawn
outside the top-level box.

Offpage diagram connectors may be labeled, as with inpage
connectors, either by numbers, or by an alphanumeric string
that starts with a letter and possibly contains underscores. A
useful convention is to label the connector with the name of the
source or the target of the arrow in the instance chart. Another
possibility is to use the name of the trigger of the transition.

Each connector in the instance chart must have a matching
connector in the definition chart, with consistent directionality
of the arrow. See Figure 11.6(b), where one arrow enters the GO
connector in the instance chart and one exits the GO connector in
the definition chart. A connector is not allowed to have both
entering and exiting arrows. We allow several offpage
connectors in an instance box, all with the same label, and
similarly for connectors in the definition chart. Such multiple
occurrences must all have the same arrow directionality. The
same label can also be used for offpage connectors in separate
instances. However, we do not allow an offpage connector in an
Statemate MAGNUM 11-13

Splitting Up Charts
instance box to have the same label as an inpage connector on
the same page, as this may be confusing.

When imagining the compound arrows constructed from arrow
segments leading to and from connectors, the offpage
connectors are treated like junction connectors (as in the inpage
case; see Chapter 4). Consequently, the triggers on these
segments are combined by “and”, and all the actions on them
are performed.

When connecting the statechart pages logically, the only
transitions that have to be connected are those that cross the
boundary of instance states. Transitions that enter or exit an
instance state without crossing its borderline will typically not
appear in the definition chart at all. The reason is that such
entering transitions will enter substates in the definition chart
via the default connectors, and the exiting transitions will exit
the state regardless of the internal configuration. This rule is
consistent with the idea of a structured specification, in that the
reasons for entering and exiting the state are not to be known
inside the state. Exceptions to this rule include behaviors where
the reason for exiting is internal and we want this reason to be
made explicit in the specification of the state. In such cases, it is
appropriate to describe the outgoing transitions in the
definition chart as well as in the instance chart.

Figure 11.6 contains an example; part (a) is before decluttering
and part (b) after it. Notice that in Figure 11.6(b), transitions that
cross the borderline of state ON are connected by connectors,
while those that emanate from that borderline (i.e., TEST and
TURN_ON) are drawn with or without the connector, depending
on the particular case. The fact that TURN_OFF is an event that
triggers an exit from every state is important information on the
upper level. On the other hand, the decision as to which states
the event TEST acts on was made on the lower level. In Figure
11.6(b), the trigger labels appear in at least one page, depending
on the specifier's preference, but not necessarily in both.
11-14 Statemate MAGNUM

Connecting Offpage Statecharts Using Connectors
Figure 11.6. Transitions between pages of a
statechart
Statemate MAGNUM 11-15

Splitting Up Charts
11-16 Statemate MAGNUM

12Putting Things
Together

n the previous chapters we discussed different kinds of
charts and elements, and their inter-relationships. A full-
fledged model of a system may consist of many charts,
each containing many elements. Now, although we have

not yet described all the features of our languages, we pause
here to take a bird’s eye view, and discuss how charts are
connected to build a full model. Later, when we introduce
additional features, such as generic charts, we will also address
the issue of their location in the entire model. Do not be misled,
however; when modeling a system it is not necessary to specify
all parts of the full structure as presented here.

The present chapter also deals with entities external to the
model – environment systems and testbenches. It discusses
their role, and how they relate to the other elements of the
model.

Charts comprising the model share elements amongst
themselves. Therefore, the picture is incomplete without the
material of Chapter 13, where we talk about the scope of
elements and their visibility with regards to the various
components of the model. We also introduce there another
component of a model, the global definition set, which contains
information visible to the entire model.

I

Statemate MAGNUM 12-1

Putting Things Together
12.1 Relationships Between the Three
Kinds of Charts

We now describe the full picture of our EWS example, as it
emerges from the various “pieces” described in previous
chapters. The fact that our exposition follows a certain order is
not meant to imply any specific order recommended in
developing the model.

The interface of the EWS with its environment, and its
structural decomposition, appear in the module-chart EWS of
Figure 1.7, which is also shown on the left-hand side of
Figure 12.1. The entire system is depicted by the top-level
module therein, named EWS. The activity-chart
EWS_ACTIVITIES, whose contents is shown in Figure 1.4,
describes the functionality of this top-level module. The top-
level activity in that chart, EWS_ACTIVITIES, corresponds to

Figure 12.1. The charts of three views of the EWS
12-2 Statemate MAGNUM

Relationships Between the Three Kinds of Charts
the EWS module, and therefore the interfaces of the two must be
the same. See Chapter 10.

Control activities appearing in an activity-chart are described
by statecharts. See Chapters 6, 7 and 8. Thus, in Figure 12.1 we
see that the control activity of the activity EWS_ACTIVITIES is
described by the statechart EWS_CONTROL of Figure 1.6.
Similarly, the control activity of SET_UP is described by the
statechart of Figure 7.3.

We refer the reader to Appendix B, which contains the entire
EWS model.

As we saw in Chapter 10, an activity-chart can be attached to
any module in the module-chart as its functional description.
The control activities in these activity-charts are also described
by statecharts. For our EWS example, this results in the
structure shown in Figure 12.2.

Figure 12.2. Charts in multi-level specification of the
EWS
Statemate MAGNUM 12-3

Putting Things Together
Figure 12.2 captures only the relationships between the three
types of charts that describe the three views. However, as
explained in Chapter 11, each of these “logical charts” can be
decomposed into several “physical charts”, thus creating a
more complex network of charts. These additional connections
are based on the three types of relationships described therein:
one, a module described by an activity-chart, is specified in the
module entry in the Data Dictionary, and the other two, that
between a control activity and its describing statechart, and the
offpage (decluttering) relationship, are depicted graphically,
using the @ symbol.

A schematic example of a structure built up from many of these
relationships is shown in Figure 12.3. Notice that this particular
figure contains only one logical module-chart, consisting of the
three physical charts M, M1 and M11, but three logical activity-
charts, namely, M_AC, M111_AC, and M112_AC.
12-4 Statemate MAGNUM

Relationships Between the Three Kinds of Charts
Figure 12.3. Relations between charts in system
specification
Statemate MAGNUM 12-5

Putting Things Together
12.2 A Chart in a Model

Regarding the terms “logical chart” and “physical chart”, from
here on, we mostly use “chart” to mean physical chart. Each
(physical) chart plays a role in the whole specification according
to its relationships with other charts. The top-level box of the
chart is its subject. For example, the activity-chart
EWS_ACTIVITIES of Figure 10.5 describes the functionality of
the EWS module. Its top-level activity is EWS_ACTIVITIES,
which is therefore its subject. In our examples we almost always
use the same name for the chart and its top-level activity,
although this is not mandatory.

Charts will always be identified by name. Chart names must be
unique throughout the entire model, even those of different
types. Thus, we may not have a module-chart and an activity-
chart with the same name in a single model.

Like other elements in the model, a chart has an associated entry
in the Data Dictionary. This entry contains descriptive
information, such as short and long descriptions, and attributes.
It may contain also administrative information, such as the
owner of the chart, creation date, version number and access
privileges. We shall see later that this entry is also used to define
a chart as generic, i.e., as one that can be instantiated multiple
times in the model.
12-6 Statemate MAGNUM

Hierarchy of Charts
12.3 Hierarchy of Charts

The relations between boxes and charts induce a hierarchy of
charts. A chart is considered to be a parent chart of all the charts
that describe its boxes by the offpage chart relation, by the
relation between a control activity and its statechart, and by the
module described by activity-chart relation.
Referring to Figure 12.3, for example, we find that the module-
chart M is the root of the hierarchy; it is the parent of the module-
chart M1 and the activity-chart M_AC. The activity-chart M_AC, in
turn, is the parent of the activity-chart A1 and the statechart CA,
and the statechart CA is the parent of statecharts S1 and S2. As
in other cases, here too, we use the terminology subchart,
ancestor, and descendant. Thus, for example, the module-chart M1
is a subchart of M, and all the charts in Figure 12.3, except for M
itself, are descendants of M.

The chart hierarchy is
sometimes called the static
structure of charts. The structure
for the example of Figure 12.3 is
shown in tree form in
Figure 12.4. The chart hierarchy
serves as a sort of “table of
contents” for the specification.

The uniqueness rules discussed
in previous chapters (e.g., that
each chart can be a definition
chart of a single box only)
imply that each chart has (at
most) one parent. In addition,
cyclic definitions are not
allowed, so that the hierarchy of charts will indeed be either a
tree (as in Figure 12.4) or a forest of trees. Now, in a typical full
specification there is usually a module-chart that describes the
system context and sometimes the top-levels of the structural
decomposition too, and all the other charts are its descendants.
This renders that module-chart the root chart, so that the chart

Figure 12.4. Hierarchy of charts
Statemate MAGNUM 12-7

Putting Things Together
hierarchy is a single tree. However, in many cases, especially if
the specification is carried out in a bottom-up manner and is not
yet complete, or when using methodologies that do not call for
a single module-chart for the context description, there might
be no such root, and the structure will therefore be a forest.
Moreover, we shall see later that generic charts, those that can
be instantiated multiple times in the model, have no parents
and are considered roots in the chart hierarchy, so that here too
the structure will be a forest of trees. A tree in the chart
hierarchy is sometimes called a cluster; in Figure 12.4, the entire
structure consists of a single cluster.
12-8 Statemate MAGNUM

Entities External to the System Under Description
12.4 Entities External to the System
Under Description

The model that specifies the system under development
operates in the context of the environment systems. We now
discuss these systems, and other external entities that are
connected to the system model and might interact with it.

12.4.1 Environment Modules/Activities

A number of times we stated that the external boxes in a chart
represent either boxes in the parent chart, or parts of the real
environment of the model. The EWS example, as presented
throughout this book, models the context of the system by the
top level module-chart EWS. This is the root of the chart
hierarchy, and, as always with the context module-chart, all of
its external boxes (in our case, OPERATOR and SENSOR) are
environment modules and are not part of the system. In a typical
model, all other module-charts are offpage charts, whose
external modules are occurrences of modules from their parent
chart. For example, if the MONITOR’s structure is specified in a
separate offpage module-chart, this chart will contain two
external modules, the CCU and the OPERATOR, which are just
occurrences of the two modules appearing in its parent chart,
the module-chart EWS. See Figure 12.5.

In this figure, we also show the activity-chart
EWS_ACTIVITIES that describes the top-level module EWS (see
Activity-Chart Describing a Module, page 10-7), and which, as
such, is a subchart of the EWS module-chart. Its external
activities OPERATOR and SENSOR are just occurrences of the
corresponding environment modules from the parent module-
chart. Other offpage activity-charts participating in the
functional description, such as the SET_UP chart in Figure 11.2,
contain also external boxes that are linked to other activities and
data-stores from the parent chart, e.g., GET_INPUT,
LEGAL_RANGE and OPERATOR. However, a model does not
necessarily contain a module-chart. One can construct the
Statemate MAGNUM 12-9

Putting Things Together
functional view only, starting with a root activity-chart that will
contain the environment systems too.

An environment box – module or activity – has an entry in the
Data Dictionary, but an external box that points to another box
has no entry of its own. The Data Dictionary entry of an
environment box may contain descriptions and attributes, but
not behavioral information. For instance, a mini-spec cannot be
associated with an environment activity. In fact, when modeled
as external entities, the environment systems cannot be
associated with functional and behavioral descriptions in our
languages at all; it is impossible to associate an activity-chart or
a statechart with an environment module or activity. Often
there is only limited and imprecise knowledge about the

Figure 12.5. External and environment boxes
12-10 Statemate MAGNUM

Testbenches
external entities. However, in some cases there are assumptions
about the behavior of the interface signals that are significant to
the design of the system, and the designer might want to
express them explicitly. This can be done by including the
relevant environment systems as part of the model, and
representing them as internal modules or activities. It helps to
give them some user-defined marks, to indicate that they are
beyond the scope of the system under development. This
technique can also be used when the designer wants to simulate
the system in its environment, and wants to use the modeling
languages to describe the external systems too. It is often
convenient to specify environment behavior in a statistical
manner, for which purpose one can use the random functions
listed in Predefined Functions, page A-22.

The ECSAM methodology, which essentially employs our
modeling languages [LWK89], has been recently extended to
construct what its authors call “a black box external model” by
including the environment systems in the model, as we suggest
here [LK96].

Sometimes it is easier to use a conventional programming
language to simulate the external systems, in particular when
these have already been implemented in software. In general,
any existing implementation can be used for simulation and
prototyping purposes. The value of supporting tools based on
our languages can be enhanced if they can be made to provide
means for linking the model execution facilities to an external
existing environment1.

12.4.2 Testbenches

Other external entities that interact with a typical model are the
tests developed to check its behavior. These tests are valuable
even beyond their primary purpose, which is to check whether
the model matches some preliminary requirements and
behaves as expected. Sometimes the model is built as a
reference model – to be compared with its implementation. That
1. STATEMATE indeed provides such means.
Statemate MAGNUM 12-11

Putting Things Together
is, the model is developed for prototyping purposes, and the
real system is developed later, independently, with the
intention that it behave similarly. In this case, tests that are
developed to check the model can be used later to check the
implementation. Extensive testing of the model is even more
justified when the model is automatically transformed to yield
an implementation. In this case, if the model fulfills the
requirements and is found to be correct by the tests, then the
synthesized implementation is correct too.

One approach to testing the model is based on generating test
scenarios according to some patterns and rules, by a special
purpose test driver (written as an external program or with the
aid of our modeling languages). The outputs of the modeled
system are then collected by some monitoring function, and the
collected data can be analyzed and checked in order to learn
about the system’s behavior and performance and to detect
undesired reactions.

Another approach uses auxiliary charts (mainly statecharts) to
express and verify temporal requirements that are related to the
model, such as safety and liveness properties [MP91]. These
special charts are called testbenches, or sometimes watchdogs, and
we now illustrate how they are used.

Assume that we want to be convinced that the EWS model
satisfies the causality property “an alarm is issued only after an
out-of-range situation has been detected”. This requirement is
expressed in terms of our model as follows: “the activity
DISPLAY_FAULT operates (is started) only after the event
OUT_OF_RANGE has occurred”. We can now construct a
testbench statechart, ALARM_CAUSALITY, shown in
Figure 12.6, that will run in parallel to the system model and
will “watch” the model execution under different scenarios of
external changes. Whenever the requirement is violated by
some scenario, the testbench will enter the state ERROR.

This testbench checks for the kind of causality categorized as a
safety property in the literature on program verification. Safety
12-12 Statemate MAGNUM

Testbenches
properties often take the form “B never occurs after A” [MP91].
In such a case we look for a scenario that violates the property
(i.e., one in which B occurs after A), to prove that the model does
not satisfy the requirement. A similar technique can be used to
check whether the model satisfies what is called a liveness
property. One variation of liveness states that “after A occurs, B
can occur”. In order to convince ourselves that this requirement
is satisfied, we draw a testbench in which a scenario of “B after
A” leads to a “success” state.

A supporting tool (such as STATEMATE) can be instructed to try
out many scenarios, perhaps even all of them exhaustively, to
find one that satisfies or violates such requirements.

Testbench statecharts are not an integral part of the model and
the hierarchy of its charts. Due to their special role, they are
allowed to refer to the model's elements without necessarily
obeying the scoping rules discussed in the next chapter. For
example, in the above illustration, the testbench chart
ALARM_CAUSALITY refers to the activity DISPLAY_FAULT,
although this violates the visibility rules defined in Chapter 7
for activities.

In terms of the scoping rules, the difference between
environment modeling and using testbenches is analogous to

Figure 12.6. The testbench statechart
ALARM_CAUSALITY
Statemate MAGNUM 12-13

Putting Things Together
two different ways of testing a hardware board: the former has
a well defined interface and is therefore like connecting to a
board via the connector’s pins, and the latter is less disciplined
and therefore more like monitoring a signal with a probe.
12-14 Statemate MAGNUM

13Scope and Resolution
of Elements
harts are the building blocks of a model. These blocks
are not isolated entities; they are linked together by
information that might flow between them, and by
elements they might share. In particular, some of the

elements defined in one chart can be used in others. Clearly,
however, in large projects there are many elements that need
not be known outside a limited portion of the specification.

Hence, issues of scope, dealing with the questions of where
elements are defined, where they are recognized and where
they may be used, are important. This chapter discusses these
issues, and the way we deal with them is strongly related to the
hierarchy of charts, discussed in the previous chapter.

The present chapter also introduces a new component of our
languages, the global definition set, which contains information
that is visible throughout the entire model.

C

Statemate MAGNUM 13-1

Scope and Resolution of Elements
13.1 Visibility of Elements and
Information Hiding

Decomposing specifications into many charts raises issues of
visibility and the scoping of elements. Consider Figure 13.1. The
activity MAIN has two subactivities, A and B, between which X
flows, and each of them is described in a separate chart.
Obviously, we want X to be recognized in both charts, since it is
part of their external interface. The X in both charts is thus the
same X. On the other hand, we would like the two Y’s appearing
in these charts to be different, each internal to the chart in which
it appears. These two charts may actually have been prepared
by different teams. In fact, the two Y’s could be of quite different
types, say, a data-item in A and an event in B. Thus, X represents
the case of an element that has to be visible to several charts, and
the Y’s represent cases of elements that are to be hidden inside
specific charts.

These notions of visibility and information hiding are important in
any kind of structured development. Some elements are
allowed to be known only in specific parts of the model, and
others might be global, that is, known throughout it. Often, it is

Figure 13.1. Visibility vs. information hiding
13-2 Statemate MAGNUM

Visibility of Elements and Information Hiding
important to give subteams the freedom to name their elements
as they wish, regardless of the possible existence of identical
names elsewhere in the model, and to produce reports and
carry out analysis on particular portions thereof. To
accommodate these possibilities, we associate a scope with each
element. The scope of an element is a set of charts in which the
element is known and can be used. As in modern programming
languages, we have a notion of where the element is defined, and
a set of scoping rules that determine where it is visible.
Statemate MAGNUM 13-3

Scope and Resolution of Elements
13.2 Defining, Referencing and
Resolving Elements

Each element in the model belongs to a specific chart. We say
that it is defined in that chart. Graphical elements (boxes, arrows,
and connectors) are defined in the chart in which they are
drawn, besides the special case of external boxes. Textual
elements (information elements and actions) are defined in the
chart that is specified in the element’s Data Dictionary entry. See
The Scope of Textual Elements, page 13-14.

Elements defined in one chart may be used in others. For
example, we may define the data-item X of Figure 13.1 in the
higher-level chart MAIN, by writing MAIN in the field Defined
in Chart of its Data Dictionary entry, as shown in Figure 13.2.
Since X is used along a flow-line between the subactivities A and
B, it also appears along flow-lines in the charts for A and B. In
these two charts, where X is used but not defined, we say that X
is a reference element.

Another example of a reference element appears in Figure 13.3.
Here, the activity A is defined in the activity-chart MAIN, by

Figure 13.2. An element defined in a chart

Figure 13.3. A reference activity
13-4 Statemate MAGNUM

Defining, Referencing and Resolving Elements
virtue of its being drawn there. On the other hand, since it is
started in the statechart S that describes the control activity of
MAIN, activity A is a reference element in S, where it is used but
not defined.

Each reference element must be matched with, or resolved to, an
element in some other chart. The latter is said to be the resolution
of the former. In the aforementioned examples, the reference
data-items X of Figure 13.1 in both charts A and B are resolved
to the data-item X defined in the chart MAIN, and, similarly, the
reference activity A of Figure 13.3 in the statechart S is resolved
to the activity A in MAIN.

Often, it is useful to be able to refer to elements that have not yet
been defined. In the terminology just introduced, this amounts
to having a reference element that cannot be resolved to any
element. Such a situation might occur in intermediate stages of
the specification process. A simple example is the use of an
external event as a trigger in a statechart before the activity-
chart that defines that event is constructed. Another example
appears in Figure 13.4, which is similar to Figure 13.3. The
difference is that here the activity K, which is started in
statechart S, has not yet been defined in MAIN. This could have
been intentional (K is not ready yet), or it could indicate an error.
Thus, K is an unresolved reference element in chart S.

The specific rules for visibility and resolution differ for different
types of elements. They are discussed in detail for graphical

Figure 13.4. An unresolved reference activity
Statemate MAGNUM 13-5

Scope and Resolution of Elements
elements in The Scope of Charts and Graphical Elements (page 13-
7), and for textual elements in The Scope of Textual Elements (page
13-14).

Having scopes associated with elements makes it possible to
use the same name for different elements, and there are rules
that determine when this is allowed. Elements with the same
name can be distinguished by attaching the chart name (i.e., the
one in which they are defined) to their own name. The format
is: chart-name:element-name. However, this use is not
always allowed, and the rules for referring to elements in this
way are related to the scoping rules. Such practice is useful for
testbenches (see Chapter 12), where the scoping rules do not
hold, and any element of the model can be referred to freely.

The rules for uniqueness of names and for referencing are
discussed in the following sections.
13-6 Statemate MAGNUM

The Scope of Charts and Graphical Elements
13.3 The Scope of Charts and Graphical
Elements

Charts involve several kinds of graphical elements – boxes,
arrows, and connectors. These elements, with the exception of
external boxes (which are discussed later), are defined in the
chart in which they are drawn. Arrows have no names, and
cannot be referred to in other charts. Also, the only connectors
that have names are diagram connectors, and their naming and
reference rules were discussed in Chapter 11. This leaves us
with having to discuss the scoping and reference rules for charts
and boxes only.

13.3.1 Referring to Charts and Box Elements

Charts are global in the entire model. Their names are unique,
even for different types of charts, and they are recognized
everywhere. So far, we saw that charts are referred to in other
charts in two ways: in the names of boxes (to point to offpage
charts) and in the Data Dictionary (to specify that a module is
described by an activity-chart). We shall see later that generic
charts are referred to in a similar way. As for other elements of
the model, references to charts are resolved to charts of
appropriate type. If such charts do not exist yet in the model, we
say, like for other element types, that the reference charts are
unresolved.

The box elements of our languages are activities and data-
stores, which are defined in activity-charts, states, which are
defined in statecharts, and modules, which are defined in
module-charts. As we have seen in previous chapters, the box
elements are named in the graphics, and the name of the box
must be unique among its siblings boxes. When the name is not
unique in the chart, the box can be referred to by its pathname,
preceded by its ancestor(s), e.g., A.B.C; see page A-1. If there is
a synonym for the box, defined in its Data Dictionary entity,
then that synonym must be unique among the names and
synonyms of the boxes defined in the same chart. A box can be
referred to by its name or its synonym.
Statemate MAGNUM 13-7

Scope and Resolution of Elements
We now describe the rules for referencing a box element in a
chart other than the one in which it is defined. Any cases that
are not discussed, e.g., referencing a state in an activity-chart,
are not allowed.

13.3.2 Referring to Activities in Statecharts

Activities can be referred to in statecharts in actions (e.g.,
st!(A)), in events (e.g., sp(A)), and in conditions (e.g.,
ac(A)). These actions, events and conditions may appear as
part of labels along transitions, as part of static reactions, and in
the definitions of other elements in the Data Dictionary. In
addition, activities may be referred to in a state’s Data
Dictionary entity in the field Activities in State. See
Chapter 7.

As discussed in Chapter 7, in a (logical) statechart reference is
allowed only to activities that are siblings of the control activity
described by the statechart. This is the only way to refer to
activities in a statechart. As an example, in Figure 13.5, the
activity A in the chart MAIN is referred to in the statechart S2,
which belongs to the logical statechart S that controls the
activity MAIN.

Figure 13.5. Referring to an activity in a statechart
13-8 Statemate MAGNUM

Referring to States in Statecharts
Notice that the activities that can be referred to in a given
statechart SC must belong to a very particular activity-chart,
namely, the parent activity-chart of SC, i.e., the one containing
the control activity described by SC. Therefore, there is no need
to attach a chart name to the name of a referenced activity, and,
indeed, such an attachment is not allowed.

If a statechart refers to an activity name that does not appear in
the parent activity-chart, as in Figure 13.4, that reference
remains unresolved. This is true even if there is some activity
with the same name elsewhere in the model.

13.3.3 Referring to States in Statecharts

States can be referred to in statecharts in events (e.g., en(S))
and conditions (e.g., in(S)). These events and conditions can
be used along transitions, as part of static reactions, and in Data
Dictionary definitions of other elements. See Chapter 5.

The visibility rule is that a state can be referred to in any state
that belongs to the same logical statechart. In other words, any
state that is defined in a page that is a descendant of some
statechart SC is visible to all charts that are descendants of SC.
States defined in other charts, that are not part of the logical
statechart of SC, are not visible.

States in the same page are referred to by name or pathname (if
the name is non-unique in the page), while states in other pages
are preceded by the appropriate chart name, i.e., chart-
name:state-name. As an example, consider Figure 13.6. In
the statechart S2, the state OFF that appears in the label
E[in(OFF)] is understood to be the state OFF in the
orthogonal component S22, which appears in the same
statechart, although there is a state named OFF in the chart S1
too. On the other hand, to refer to S2:ON in the label in chart S1,
the state name is preceded by the chart name S2, and although
the name Q is unique in the entire logical chart, the chart name
is added to it too when used in another chart.
Statemate MAGNUM 13-9

Scope and Resolution of Elements
A reference to a state name that does not appear in any chart of
the same logical statechart remains unresolved.

13.3.4 External Activities/Modules

External activities and modules are considered to be “real”
elements, (e.g., they have their own entities in the Data
Dictionary) only when they are defined explicitly in the Data
Dictionary as environment activities or modules. An
unnamed external box is just a graphical object, like a connector,
that signifies some anonymous external source or target. A
named external box that is not defined as an environment box
serves as a reference to another box. Like other reference
elements, an attempt is made to resolve such a box to a
matching element – in this case, a box from the parent chart. The
matching box in the parent chart has the same name, and it can
be an internal box (i.e., a module, activity or data-store), or an
external box.

Consider the example in Figure 13.7. Activity-chart M1_AC
contains a number of external activities: E1 is resolved to the
environment module E1 and M2 is resolved to the internal

Figure 13.6. Referring to states in a statechart
13-10 Statemate MAGNUM

External Activities/Modules
module M2, but M31 does not match any module in M (although
M contains a module named M31). This is because the matching
boxes are allowed to be found only among the siblings of M1
(e.g., M3) or the siblings of M1’s ancestors (e.g., E1). Similarly, in
activity-chart A, the external activity D is resolved to the data-
store D in M1_AC, and E1 is resolved to E1 in M “via” E1 in
M1_AC.

A named external box in a root chart (i.e., one with no parent),
or a box to which no box in the parent can be matched, is
considered to be an unresolved external box. For example, if the
external module E2 in the root chart M is not explicitly defined
as an environment module, it is considered unresolved. Also, K
in the activity-chart A and M31 in M1_AC are unresolved
external boxes, because no matching boxes for them are found.

Figure 13.7. Resolution of external boxes
Statemate MAGNUM 13-11

Scope and Resolution of Elements
13.3.5 Referring to Modules and Activities in Activity-
Charts

Modules can be referred to in an activity-chart in the field
Implemented by (respectively, Resides in) of the Data
Dictionary entity of an activity (respectively, a data-store). See
Figure 10.6. Any module, from any module-chart, can be
referred to in these fields. Recall, however, that the rules of
Chapter 10 concerning the consistency of the hierarchies of
modules and activities have to be adhered to.

Since module names are not unique, our languages allow
referring to module names from different charts. In cases of
possible ambiguity the chart name should be attached to the
module name.

Activity names and data-store names are entered in the related
fields Is Activity and Is Data-Store, respectively. As
explained in Activities Associated with a Module’s Activities, page
10-15, an element name in these fields is meaningful only when
the implementing module is specified. The activity or data-store
entered must be from the activity-chart that describes the
implementing module. See Figure 13.8. Consequently, there is
no need to specify the chart name of the referred to element,
and, indeed, attaching this name is not allowed.
13-12 Statemate MAGNUM

Referring to Modules and Activities in Activity-Charts
Figure 13.8. Referring to activities in Is Activity
field
Statemate MAGNUM 13-13

Scope and Resolution of Elements
13.4 The Scope of Textual Elements

Textual elements, i.e., events, conditions, data-items, user-
defined types, information-flows, and actions, are defined via
the Data Dictionary. The chart in which the element is defined
is specified by the modeler in the field Defined in Chart. See
Figure 13.2. This should be contrasted with graphical elements,
for which the definition charts are determined by where they
are drawn.

13.4.1 Visibility of Textual Elements

A textual element that is defined in a particular chart is
recognized in, and can be used in, other charts. The visibility
rules for textual elements are very similar to those employed in
programming languages supporting nesting and block
structure. A textual element is clearly visible in the chart in
which it is defined. It is also visible in all the descendant charts
in the chart hierarchy defined in the Chapter 12. An exception is
when the element is masked by another textual element with the
same name, as discussed below.

Let us take an example. The event OUT_OF_RANGE, defined in
the activity-chart EWS_ACTIVITIES, is used in the statechart
EWS_CONTROL on a transition; see, e.g., Figure 4.3. To use our
terminology, the reference to OUT_OF_RANGE in EWS_CONTROL
is resolved to the event OUT_OF_RANGE that is defined in
EWS_ACTIVITIES. Since the statechart EWS_CONTROL is a
subchart of the activity-chart EWS_ACTIVITIES (see Figure
12.2), the textual elements defined in the latter are visible in the
former, and can therefore be used therein.

Figure 13.9 illustrates masking. The data-item X flows between
activities A and B in the activity-chart MAIN. Assume that it is
also defined there. The offpage chart C, which defines an
internal activity of MAIN, uses an element with the same name,
X (in the example, X is actually an event in C). According to the
visibility rule, the data-item X of MAIN could have been used in
the subchart C, but since an event X is defined in C, the data-item
13-14 Statemate MAGNUM

Naming Textual Elements
X is no longer recognized there. Moreover, the same applies to
C’s subchart C1, in which we may only refer to the event X of C,
and not to the data-item X of MAIN. In such a case, we say that
the data-item MAIN:X is masked by the event C:X.

13.4.2 Naming Textual Elements

The name and synonym of a textual element are given in its
Data Dictionary entity. Within a chart, all such names and
synonyms must be unique. Hence, if an event named E has
already been defined in some chart A, the name E cannot be
used to define, say, a condition in the same chart. It may be
used, however, in some other (physical) chart, to name an event,
a condition, or any other textual element. As for naming
graphical elements, the name E can be used anywhere, even in
the chart A itself.

The possibility of using the same name for different elements is
convenient and useful, especially in big projects when different
teams use the same names in different scopes. However, despite
the presence of rules for resolving references and detecting

Figure 13.9. Masking a textual element
Statemate MAGNUM 13-15

Scope and Resolution of Elements
masking situations, this possibility should be used with care, as
it may cause confusion.

Special attention must be paid when the same element is used
in several charts, to ensure that the different occurrences are
resolved to the same element. Since a textual element is visible
only in the descendants of the defining chart, an element should
be defined in a chart that is high enough in the hierarchy to be
the common ancestor of all charts within which the element is
to be referenced. For example, consider the event E in Figure
13.10, which is generated in state S1. If we want E to cause a
transition in state S2, it must be defined in the statechart S or in
one of its ancestor charts, even if it is not used there, since
elements that are defined in S1 are not visible in S2, and vice
versa. When E is defined in S, both references to it in S1 and S2
are resolved to the definition in S, and the two are therefore
understood to refer to the same element. This example should
be contrasted with the case illustrated in Figure 13.1, where we
used the same name Y in the two charts A and B for two different
elements flowing between subactivities. Since we want these
elements to be distinct, we should define them in separate
entities in the Data Dictionary, in each of the two charts.

A textual element can be referred to in the same chart or in some
other chart by its name or synonym. We do not allow the format
chart-name:element-name for textual elements, since the
chart name would be either redundant (if the chart is the one
containing the resolution) or illegal (if another chart is
referenced, thus referring to an “invisible” element or one that
is out of scope). For example, in Figure 13.10 we are not allowed
to replace the event E in the statechart S2 by S1:E, since
according to the visibility rules elements defined in S1 are not
visible in S2. Note that this rule is not applicable to testbenches,
where all elements of the model are visible.

13.4.3 More About Resolution of Textual Elements

Reference elements are always resolved to elements of the same
type. Thus, if we were to define a condition named E, not an
13-16 Statemate MAGNUM

More About Resolution of Textual Elements
event, in the statechart S of Figure 13.10, the two references to E
in S1 and S2 would not be resolved to this condition, since they
are used as events.

If a textual element is referred to without having been defined
explicitly in the Data Dictionary and there is no corresponding
element in the ancestor charts, the element remains unresolved.
This will typically happen in intermediate stages of the
specification. Sometimes the type of an unresolved element is
not clear from its usage. A good example is when an element
appears as a label on a flow-line, in which case it can be an
event, a condition, a data-item, or an information-flow.
However, elements appearing in transition labels, for example,
have uniquely determined types, as do ones appearing in
expressions that define other textual elements. (An exception is
the case of an action that can possibly turn out to be an event,
such as E in Figure 13.10.)

Being unresolved does not prevent elements from being visible,
and hence from being used, in descendant charts. Thus,
elements from such descendant charts can be resolved to

Figure 13.10. Connecting elements from different
charts
Statemate MAGNUM 13-17

Scope and Resolution of Elements
unresolved elements. For example, assume that in Figure 13.1
we do not explicitly define the element X. It will nevertheless be
considered a reference element in the three charts appearing in
the figure. It will be unresolved in chart MAIN, but in the other
two charts it will be resolved to an unresolved element X in
MAIN. As in other cases, however, this kind of resolution will be
carried out only if the types of the elements match. For example,
in Figure 13.11, E is not explicitly defined in chart MAIN, and
therefore it is an unresolved reference element. Judging only
from it usage in MAIN, it may be an information-flow, a
condition, a data-item or an event, but in this case it is
considered to be an event, since it is used as an event in the
subchart S.

13.5 Global Definition Sets (GDS’s)

The visibility rules imply that textual elements that have to be
global to the entire model should be defined in the root of the
chart hierarchy, which is the common ancestor of all charts in
the model. The resolution scheme described above, which is

Figure 13.11. Compatible usage of textual elements
13-18 Statemate MAGNUM

Global Definition Sets (GDS’s)
based on the hierarchy of the functional components, is
compatible with the functional decomposition method. In this
method, every accessed data variable – event, condition, and
data-item – is either local, i.e., it belongs to the functional
component, or is part of the external interface, i.e., it appears on
a flow-line and, as such, belongs to an ancestor functional
component. Textual elements that are employed as
abbreviations, i.e., information-flows and actions, are usually
defined in the charts in which they are used. Therefore, the only
“real” global information that has to be shared throughout the
entire model in an unstructured manner (and can even be
moved between models) is that of constant definitions and user-
defined types.

Our languages provide a special type of model component, the
global definition set (GDS), for capturing such global definitions.
This type of component is part of the Data Dictionary, and is
similar in many ways to a chart. There may be several global
definition sets in a model, each containing definitions of user-
defined types as well as constant data-items and conditions.
Figure 13.12 shows several Data Dictionary entities that belong
to a GDS named TIME_DEFS. A GDS that contains definitions
related to time, as in this example, is relevant to many
application domains.

As mentioned, elements appearing in a GDS are visible in the
entire model. For example, a data-item definition in any chart of
a model that contains the global definition set TIME_DEFS can
be of type TIME. In particular, definitions in one GDS can use
definitions in another GDS; but this should not be done in a
circular fashion.

There are no hierarchy relationships among the global
definition sets in a model, or between them and the charts of the
model itself.

Global definition sets have a special role in the context of
generic charts, as will be seen in Chapter 14.
Statemate MAGNUM 13-19

Scope and Resolution of Elements
Figure 13.12. Elements defined in a global definition
set
13-20 Statemate MAGNUM

14Generic Charts
hapter 11 discussed the possibility of describing the
contents of a box element in a separate offpage chart. An
offpage chart can describe a single box only. In this
chapter we introduce generic charts, which are reusable

components that may have multiple instances in a model. In
other words, a generic chart can be used to describe the contents
of several similar boxes.

Generic charts are linked to the rest of the model via
parameters; no other elements (besides the definitions in global
definition sets) are recognized by both generic charts and other
portions of the model.

In this chapter we describe how generic charts and their formal
parameters are defined, how they are instantiated in the model,
and how the actual elements are bound to their formal
parameters.

C

Statemate MAGNUM 14-1

Generic Charts
14.1 Reusability of Specification
Components

Many kinds of systems give rise to cases requiring a number of
similar components. For example, assume that the EWS
monitors several sensors, each with its own processing
function, and all with the same pattern, as shown in Figure 7.12.
The new activity-chart with the multiple sensors is shown in
Figure 14.1(a). The function PROCESS_SIGNALS contains five
similar activities, PS1 through PS5, processing SIGNAL_1
through SIGNAL_5, respectively. Each of the PSi is described
by a separate Data Dictionary entry, similar to the one shown
for PS1 in Figure 14.1(b). The output of the function dealing
with the i’th sensor is sent to the COMPARE function via the i’th
component of the array SAMPLES. The functions vary in the
sampling interval, SAMPLE_INTERVAL_i, and in the constant
factor K_i that multiplies the sampled signal.

It is quite obvious that this solution is not efficient; in addition,
it does not make it clear to a viewer that the components are
essentially identical. There should be a way to specify a
repetition of the same component many times, like in electronic
and software design, defining the detailed contents only once,
and using it generically wherever needed. For this purpose our
languages provide the mechanism of generic charts.

We saw that when used the various components can differ in
the details of their connections with the outside world (i.e., in
the data elements through which they exchange information),
as well as in the internal settings that determine the nature of
each specific instance. Both will be handled by parameters.

The generic chart mechanism can be used to model electronic
designs with repeating components, and software systems
containing multiple objects of the same class.
14-2 Statemate MAGNUM

Reusability of Specification Components
Figure 14.1. Processing multiple sensors in the EWS
Statemate MAGNUM 14-3

Generic Charts
14.2 Definition and Instances of
Generic Charts

In some sense, generic charts are similar to offpage charts: in
both cases we draw an empty box and point to another chart
that describes its contents. Here, though, we can specify
repetition; indeed, sometimes we draw an offpage chart first,
later realize that we really want to repeat the specified portion,
and switch to a generic chart. The similarities and differences
between these two mechanisms are discussed below.

14.2.1 Notation and Basic Rules of Generics

A chart can be defined as a generic chart in its Data Dictionary
entry, and it can then have multiple instances in the model. An
instance of a generic chart is sometimes called a generic instance,
to distinguish it from an offpage instance. To apply this to the
EWS example, we define an activity-chart PROCESS_SIGNAL
and specify it as generic. Its top level activity
PROCESS_SIGNAL has a Data Dictionary entry. This is shown
in Figure 14.2(a). We then specify instances of this generic
activity-chart (PS1 through PS5) inside PROCESS_SIGNALS,
using the symbol “<”, as in PS1<PROCESS_SIGNAL. See
Figure 14.2(b).

While this example was of a generic activity-chart, we can also
have generic module-charts and generic statecharts. The former
can be useful when the system is built out of similar modules,
such as multiple signal processors, and the latter are often used
to describe similar orthogonal components, as we shall see
below.

Since generic charts will normally appear in different contexts,
the external boxes in a generic chart are not allowed to point to
any particular boxes in the model, and are very often left
unnamed. In Figure 14.2(a), the SIGNAL comes from some
“generic” SENSOR, while the activity's output flows to an
unknown target, which is why the external box is left unnamed.
14-4 Statemate MAGNUM

Notation and Basic Rules of Generics
Regarding names, the box name can really be omitted in an
instance (and we can thus write, e.g., <GEN), as is usually done
for offpage instances. However, here this is not recommended,
and is only possible when the instance is unique on that level of
decomposition. The more common situation is when the

Figure 14.2. A generic activity-chart and its instances
Statemate MAGNUM 14-5

Generic Charts
instance activities have their own individual names, as in PS1,
PS2, etc. The name of the generic chart should not appear when
we refer to the instance, so that we write expressions like the
start action st!(PS1).

The instance box must be basic, i.e., it may not contain sub-
boxes. Moreover, it cannot contain any behavioral information,
and this applies to all three kinds of charts: instance states in a
statechart cannot have static reactions and attached activities,
instance activities in an activity-chart cannot have mini-specs
and combinational assignments, and instance modules in a
module-chart cannot be described by an activity-chart. All such
information is inherited by the instances from their describing
generic charts.

In modeling a generic chart, one may include instances of
offpage charts, as illustrated in Figure 14.3. Note that this
reference to the offpage chart COMPUTE in the generic chart
PROCESS_SIGNAL implies that there will be multiple
occurrences of COMPUTE in the full expansion of the model, but
each of them will belong to a different scope. A generic chart
may also contain instances of other generic charts, but care must
be taken to avoid cyclic instantiation thereof.

The notion of resolution is applied to charts just like it is applied
to other elements in the model, i.e., a reference to a chart
appearing in an instance name will be resolved to a chart of
appropriate type whose definition in the Data Dictionary

Figure 14.3. A generic chart containing an
offpage chart
14-6 Statemate MAGNUM

Generic Charts in the Chart Hierarchy
matches the reference. Therefore, if an ordinary activity, for
example, is named A>GEN, GEN must be an activity-chart
defined to be generic. Similarly, a chart defined to be generic
cannot be used as an offpage chart or as an activity-chart
describing a module. This means that if GEN is a generic chart no
box can be named A@GEN, and GEN cannot appear in the Data
Dictionary entry of any module in the field Described by
Activity-Chart. A model containing instances of charts that
do not yet exist is incomplete, and in such a case the same chart
cannot appear both as a generic and an offpage instance. For
example, A1>A and A2@A is an inconsistent situation, even
when A is not yet defined; any completion of such a model will
be illegal.

14.2.2 Generic Charts in the Chart Hierarchy

In Chapter 12 we discussed
the hierarchy of charts. We
saw that this hierarchy is
based on several kinds of
relationships between a box
and a chart: an instance of an
offpage chart, a control
activity described by a
statechart, and a module
described by an activity-
chart. The hierarchy of
charts in Figure 14.4 is
derived from the
components of the EWS
model appearing in
Figure 12.2.

The hierarchy of charts defines the visibility scope of textual
elements, and has a dominant role in the resolution algorithm.
Generic charts have no parent charts; each generic chart is the
root of a tree that it induces in the chart hierarchy. The tree itself
is defined just like in the ordinary case. Therefore, according to
the visibility rules and the resolution algorithm (see Chapter

Figure 14.4. The hierarchy of
charts for the EWS model
Statemate MAGNUM 14-7

Generic Charts
13), generic charts do not recognize elements from other
clusters. Instead, they share elements with the rest of the model
via parameters, as we shall see. In addition, like all portions of
the model, generic charts can see the data in the global
definition sets, and they may thus use the definitions of
constants and user-defined types appearing there.

The external boxes in a generic chart cannot be resolved to other
boxes in the model, because there is no parent chart to which
they can refer. As mentioned above, they are usually left
unnamed.

Since the chart hierarchy is determined by making an offpage
chart an offspring of the chart in which it is referred to, this
structure is actually a kind of “table of contents” for the model
that shows where charts are used. When generic charts are
involved, the chart hierarchy is expanded to a chart usage
hierarchy1; the generic charts appear under the chart in which
they are used (instantiated), just like offpage charts, but with the
special symbol “<” to distinguish them from the others, and to
emphasize the fact that they do not participate in the resolution
algorithm. Note that a generic chart can appear along several
branches of the hierarchical structure as a leaf. Since a generic
chart may have many instances in the same chart, it can be
useful to provide the number of instances near the chart name.

As an example, let us assume that the chart EWS_ACTIVITIES
contains five instances of the generic chart PROCESS_SIGNAL,
as described above, and that this generic chart contains an
instance of the offpage activity-chart COMPUTE. Figure 14.5
contains the tree of Figure 14.4 enhanced with these additional
components. Note that this usage hierarchy contains two
separate trees.

1. In Statemate, the chart usage hierarchy is called “the model tree.”
14-8 Statemate MAGNUM

Parameters of Generic Charts
14.3 Parameters of Generic Charts

Parameters are used to characterize the particular instances of a
generic chart and to link it to its environment. Parameters are
the main means by which an instance of a generic chart is able
to share data with the rest of the model.

14.3.1 Formal Parameters of a Generic Chart

Each generic chart has a set of formal parameters. These are either
ports, i.e., channels, through which information flows in and out
of the component, or constant parameters, i.e., values used to
characterize the particular instance at hand. The parameters are
defined explicitly by the specifier in the Data Dictionary entry
of the generic chart. They are given by their name, element type
(event, condition, data-item, or activity) and mode (constant,
or one of the three port modes: in, out and in/out). Each
formal parameter has a Data Dictionary entry in which more
information about the element can be added, such as its
structure and data-type.

The generic chart PROCESS_SIGNAL described above has an in
port SIGNAL, and an out port SAMPLE. In addition there are
two constant parameters, SAMPLE_INTERVAL and K, that
make it possible to set some values differently for each
individual instance; the first influences the sampling rate of the
sensor, and the second is used to calibrate the sampled value.
The Data Dictionary entries of the generic chart, including its
parameters, are shown in Figure 14.6.

Port parameters can be of any data-type and structure. Array
parameters can be defined with or without an index range. The
index range definition can use literal or named constants,
constant parameters, or it can be based on an index range (e.g.,
parameter A is array 1 to length_of(A) of integer,
which defines an array parameter whose upper range index is
equal to the length of the actual binding). When the array
parameter is defined without an index range, the index limits
Statemate MAGNUM 14-9

Generic Charts
Figure 14.6. Definition of formal parameters of a
generic chart

Figure 14.5. The chart usage hierarchy of the
enhanced EWS
14-10 Statemate MAGNUM

Formal Parameters of a Generic Chart
are inherited from the actual binding, a notion defined in the
next section.

A generic chart that communicates with its environment via a
queue will have a queue in/out parameter. The example
shown in Figure 8.8, in which four EWS instances communicate
with two printers, can be modified so that it uses generic charts
for the EWS and the printer, and each of these has a queue
parameter.

Record and union parameters must be defined with a user-
defined type that has the desired structure. This follows from
the rule that the actual bindings must be consistent in type with
the formal parameter, and two records/unions are consistent
only if they have the same user-defined type. This issue is
discussed further below.

The formal parameters are used inside the generic cluster like
any other element, but usage must be consistent with the
parameter’s mode: the value of an in parameter is expected to
be used by the component, while that of an out parameter
should be affected by the component. The value of an in
parameter may be modified, as long as the modified value is not
used later on outside the component.

Constant parameters can be used in places where constants are
allowed: they can appear, for example, in the definition of an
array index range, but they cannot label a flow-line or be
assigned a value in an assignment action. Very often, the
instances of a generic chart are arranged in an array, and an
integer constant parameter is used to identify the individual
instances. For example, in models of client-server architectures,
when multiple similar clients send messages to a server via a
queue, each client can be an instance of a generic chart that
identifies itself by its index.

Statecharts (but not activity-charts or module-charts) may have
parameters of type activity. An activity parameter is considered
to be an in/out port, the idea being that the component can
Statemate MAGNUM 14-11

Generic Charts
send a control signal to an activity (e.g., st!(A) or sp!(A)),
and can sense its status (e.g., by sp(A) or ac(A)). For example,
assume that in the processing unit of a mission critical system
there are several components that perform a similar function.
(Such redundancy is often incorporated to enhance reliability.)
Each of these components has the same behavioral pattern,
which is specified by the generic statechart ACT_CNTRL of
Figure 14.7. The formal parameters include the input events
that trigger transitions, and the activity A, which is activated by
the statechart. This pattern can control any activity that is
bound to the formal parameter when the chart is later
instantiated. The input events consist of control commands (GO,
HALT and RESET) and an indication of an error in the input
device. The out parameter FAULT is used to report the status of
the particular instance. A sample usage of this generic statechart
is illustrated below.

14.3.2 Actual Bindings of Parameters

For each instance of a generic chart there is a binding of actual
elements to the formal parameters. Ports can be bound to
variables or aliases; in fact, any data element that labels a flow-
line (with the exception of an information-flow) can be bound.
The port binding is analogous to connecting components ports
with signal lines in an electronic scheme. Every change in the
actual element will be available immediately to the instance,
and every change inside the instance will be sensed outside by
the connected elements. Constant parameters are bound to
constant values, i.e., literal constants, named constants, or
operators that yield constant values, such as those that relate to
the index range of arrays (e.g., length_of(A)).

The binding information is supplied in the Data Dictionary
entry of the instance. Figure 14.8 shows the parameter bindings
for the instances PS1 and PS2 of the generic chart
PROCESS_SIGNAL, whose formal parameters were defined in
Figure 14.6. The different bindings to the constant parameter
SAMPLE_INTERVAL determine different sampling rates in each
component. HIGH_RATE and LOW_RATE are two named
14-12 Statemate MAGNUM

Actual Bindings of Parameters
constants; they can be defined, for example, in a global
definition set. The in and out ports are bound to the actual
data-items – the signal that comes from the sensor and the
corresponding component in the array of SAMPLES.

As another example, we instantiate the generic statechart
ACT_CNTRL of Figure 14.7 three times in the statechart
PROC_CNTRL. The purpose of the containing statechart is to
activate three copies of an activity, each processing a signal
from a different sensor. The statechart also continuously

Figure 14.7. A generic statechart chart with an
activity parameter
Statemate MAGNUM 14-13

Generic Charts
monitors the status of these activities, and when all of them fail
it issues a fault alarm. See Figure 14.9, which shows the activity-
chart that contains PROC_CNTRL, the statechart itself, and the
Data Dictionary entries of the state instances. These entries
contain the actual parameter bindings; in particular, the binding
to the activity parameter.

The actual binding must have the same type and structure as
the formal parameter. In particular, in the case of data-items the
following rules hold:

• when the formal parameter is of a user-defined type
the actual binding should also be of this user-defined
type;

Figure 14.8. Activity instances and actual parameter
bindings
14-14 Statemate MAGNUM

Actual Bindings of Parameters
• arrays must be of the same length and must have the
same component types; if the index range of an array
formal parameter is not specified, the index range
values are inherited from the actual binding;

Figure 14.9. State instances and actual bindings
Statemate MAGNUM 14-15

Generic Charts
• queues must have the same component types;

• formal parameters cannot be defined directly as
records and unions, because these structures are
considered to be consistent only if they have the
same user-defined type.

Note that, since generic charts are the roots of the separate trees
in the chart hierarchy, only elements appearing in global
definition sets are commonly visible by them and to the charts
of their instances. Therefore, user-defined types and constants
that are used in the definition of the formal parameters must
belong to some global definition set.

Finally, the bindings to ports must be consistent with the flow
of information that appears in the activity-chart or module-
chart of the instance. The binding to an in port should flow into
the instance and the binding to an out port must be an output
of the instance. This has indeed been adhered to in the example,
as can be seen by inspecting Figure 14.2(b) and Figure 14.8.
14-16 Statemate MAGNUM

Referring to Elements In Instances
14.4 Referring to Elements In Instances

An element that belongs to a generic chart will have an
occurrence in the model for each instance of the chart. As
explained earlier, instances of generic charts share elements
with the rest of the model only via the parameters. In other
words, it is impossible to refer to elements appearing in
instances of charts outside the generic cluster, and therefore
references to these elements do not appear in expressions of the
model. However, testbenches, which do not obey any visibility
rules (see Testbenches, page 12-11), should be allowed to refer to
elements in a generic instance, for analysis purposes. In
addition, external tools, such as simulators and prototype
generators should also be allowed to refer to these elements.
Such tools should be able, for example, to present the value of
each particular instance of an element. Therefore, we have to
provide a way to identify each particular occurrence of an
element.

Going back to the example in Figure 14.2, the TICK event is
local to the generic chart PROCESS_SIGNAL. It has 5
occurrences in PROCESS_SIGNALS, one in each instance PS1
through PS5. Each of these occurrences can be identified by its
instance name, e.g., PS1^TICK, which means “TICK in the
instance PS1”. When the element name is not unique in the
generic cluster, the chart name should be added to the element
name. For example, if there is another TICK event in the
subchart COMPUTE of Figure 14.5, PS1^COMPUTE:TICK is the
way to refer to the occurrence of COMPUTE:TICK in PS1, which
is different from PS1^PROCESS_SIGNAL:TICK. The situation
becomes more complicated when generic instances are nested
within other generic charts. This may result in a chain of
instance names: e.g., PS1^CMP3^X, which is “element X in the
generic instance CMP3 in the generic instance PS1”. Box names
that might not be unique in their chart are identified in these
references by their unique pathname. See page A-1.
Statemate MAGNUM 14-17

Generic Charts
14-18 Statemate MAGNUM

ANames and
Expressions
his appendix presents the syntax rules for names and
expressions in the languages described in the book.

A.1 Names

Each entity in the language of statemate, such as an event, a
graphical element, an expression, and a data-item, can be
identified by a name. This name can also be used to reference
the entity elsewhere in the model.

Names consist of a sequence of alphanumeric characters, A to Z,
a to z, 0 to 9, $ (dollar sign), and _ (underscore). Names cannot
contain spaces or begin with a digit (0 to 9). This is discussed in
more detail later is this appendix.

Generally, Statemate MAGNUM is not case sensitive. However,
in many situations, the editors will not allow lower case name
assignments. Instead, they will automatically convert the lower
case typed entries into upper case terms. Keynames, on the
other hand, are generally expressed in lower case.

Several names have special meaning within Statemate
MAGNUM. These can be considered keywords in the same way
that other programming environments use “keywords.” Some
keywords are reserved and should never be used as names.
Others are nonreserved and may be used as names.

T

Statemate MAGNUM A-1

Names and Expressions
Note: Do not attempt to truncate characters from the end of
keywords. Although available in some environments, this
is not a valid practice within Statemate MAGNUM.

A.1.1 Reserved Words

Reserved Words (or reserved keywords) are typically a verb or
noun (frequently expressed as an abbreviation or acronym) in
the programming/command language that is part of the native
language of Statemate MAGNUM. These include:

Keyword Description

ac abbreviation for active

active possible condition/status of activity (see
page A-12)

all all elements of an array (see page A-12)

and Logical and (see page A-13)

any any element of an array (see page A-12)

break exit from loop (see page A-20)

ch abbreviation for changed

changed an element’s value was modified
(see page A-9)

dc abbreviation for deep_clear

deep_clear clears all history (see page A-18)

downto loop statement command (see page A-20)

else loop statement command (see page A-27)

en abbreviation for entered

end loop statement command (see page A-20)

entered possible status of state (see page A-9)

entering event generated when a state is entered;
useful as trigger for action based on entering
state (see page A-9)

enum_first retrieve first enumerated value
(see page A-33)

enum_last retrieve last enumerated value
(see page A-33)
A-2 Statemate MAGNUM

Reserved Words
enum_pred retrieve previous enumerated value
(see page A-33)

enum_ordinal retrieve ordinal position of enumerated value
(see page A-33)

enum_succ retrieve next enumerated value
(see page A-33)

enum_value value of enumerated element
(see page A-34)

enum_image string representation of enumerated value
(see page A-34)

ex abbreviation for exited

exited event caused by exiting a state
(see page A-9)

exiting trigger for action based on leaving a state
(see page A-9)

false boolean value = 0

for loop statement (see page A-20)

fs abbreviation for false

fl abbreviation for q-flush

get abbreviation for q-get

hanging possible condition/status of an activity (see
page A-12)

hc abbreviation for history_clear

hg abbreviation for hanging

history_clear clears history at current hierarchical level (see
page A-18)

if loop statement (see page A-20)

in possible condition of state; condition
statement (see page A-12)

length_of length of specified array (see page A-16)

lindex left index value of array (see page A-16)

loop loop statement (see page A-20)

make_false sets given element to false (see page A-17)

make_true sets given element to true (see page A-17)

nand Logical nand [not and] (see page A-17)

Keyword Description
Statemate MAGNUM A-3

Names and Expressions
nor Logical nor [not or] (see page A-17)

not Logical not (see page A-13)

ns abbreviation for entering

nxor Logical nxor [not exclusive or]
(see page A-17)

or Logical or (see page A-13)

put abbreviation for q_put

peek abbreviation for q_peek

q_put put item on queue (see page A-19)

q_urgent_put put item at beginning of queue
(see page A-19)

q_get remove value from front of queue (see
page A-19)

q_peek copy value from front of queue
(see page A-19)

q_flush clear queue contents (see page A-19)

q_length return length of queue (see page A-16)

rd abbreviation for read

read element has been read (event)
(see page A-9)

read_data action of reading an element (see page A-18)

return identifies output value of a function

resume see page A-18

rindex right index value of array ()

rs abbreviation for resume

schedule performs action some time in the future

sd abbreviation for suspend

sp abbreviation for stop

st abbreviation for start/started

start action performed to begin activity

started event generated when activity becomes active
(see page A-9)

stop action performed to halt activity
(see page A-18)

Keyword Description
A-4 Statemate MAGNUM

Textual Element Names
A.1.2 Textual Element Names

• A legal name of a textual element is a sequence of
alphanumeric characters, including "_" (underscore),
and excluding blanks. It must begin with a letter.

• The maximal length of a name is 31 characters.

• Names are not case-sensitive.

• Synonyms contain, at most, 16 characters.

• A name cannot be a reserved word.

• A name cannot be the same as the name of a
predefined function.

stopped event generated when activity is ended

suspend possible condition of an activity
(see page A-18)

then loop statement (see page A-20)

timeout see page A-10

tm abbreviation for timeout

to see page A-20

tr abbreviation for true

true boolean value = 1

uput abbreviation for q_urgent_put

wr abbreviation for written/write_data

write_data action of writing (see page A-18)

written element was assigned a value (see page A-
10)

when loop statement (see page A-20)

while loop statement (see page A-20)

xor Logical xor [exclusive or] (see page A-17)

xs abbreviation for exiting

Keyword Description
Statemate MAGNUM A-5

Names and Expressions
• User-defined types also cannot have the following
names:
integer, real, bit, array, queue, record,
union, bit_array, string, condition, single.

• When referring to a textual element in an expression
(e.g., in a transition label), names can be spread out
over multiple lines: writing a "\" (back slash) inside
the name is interpreted by the editor to equate to a
forced (or soft) line return.

• A textual element can be referred to outside the
model prefixed by the chart name in which it is
defined:
<chart name>:<element name> (e.g. MAIN:X).

A.1.3 Box Element Names

• A legal name of a box element is a sequence of
alphanumeric characters, including "_" (underscore),
and excluding blanks. It must begin with a letter.

• The maximal length of a name is 31 characters.

• The names are not case-sensitive.

• Synonyms contain at most 16 characters.

• The name cannot be a reserved word.

• A box element can be referred to by its pathname,
i.e., preceded by its parents' name: ...
<grandparent name>.<parent name>.<box name>
(e.g., A. B. C), and optionally also with the chart-
name in which it is defined:
<chart name>:<pathname> (e.g., MAIN: A. B). The
pathname of a top level box is: .<box-name> (e.g.,
.TOP)

• When referring to a box element in an expression
(e.g., in a transition label), names can be spread out
over multiple lines: writing a "\" (back slash) inside
the name is interpreted by the editor to equate to a
forced (or soft) line return.
A-6 Statemate MAGNUM

Names of Elements in Generic Instances
A.1.4 Names of Elements in Generic Instances

• An element in a generic instance is referred to by:
<instance-name>^<unique-element-name-in-
instance>.

• An instance name can have several levels of nesting
(instance in instance in instance ...), in which case
several "^" signs are used.

• An instance name (box name) on each level of the
nesting and the element name in the instance must
be unique. Therefore each of them may contain a
chart name.

Example: A:K^L^B:M^C:X
Statemate MAGNUM A-7

Names and Expressions
A.2 Expressions

Expressions within Statemate take the form Trigger/Action. A
trigger is an event and/or condition that defines the criteria for
an action being taken. The action(s) specified what to do as a
consequence of the trigger occuring.

A.2.1 Event Expressions

Individual event and array of events

A primitive event is one of the following:

• Named single (non array) event.

• E (K), the K'th component of an event array E; K is
any integer expression.

An array of events (also referred to as an event array) is one of the
following:

• Named event array.

• Array slice, E (K. . L), of an event array E; K and L
are integer expressions.

Events Related to Other Elements

Table Table A.1 is a list of derived events that can be used as
triggers within your model. A derived event is an event which
occurs from a change in the system environment, not from any
external source.
A-8 Statemate MAGNUM

Event Expressions
The following operators, which are related to various types of
elements, produce a single (non-array) event.

Table A.1. Single Event Operators

Event Abbreviation Occurs When Notes

entered(S) en(S) state S is
entered

used only in
Statecharts

exited(S) ex(S) state S is exited used only in
Statecharts

entering ns current state is
being entered

used only as trigger
of reaction in state

exiting xs current state is
being exited

used only as trigger
of reaction in state

started(A) st(A) activity A is
started

used only in
Statecharts

started st current activity
is started

used only as trigger
in reactive activity

stopped(A) sp(A) activity A is
stopped

used only in
Statecharts

changed(X) ch(X) the value of X is
changed

x is data-item or
condition expression
or array (including
array slice); can be
structured, or a
queue

true(C) tr(C) the value of
condition C is
changed to true

C is condition
expression (not
array)

false(C) fs(C) the value of
condition C is
changed to
false

c is condition
expression (not
array)

read(X) rd(X) X is read by
action rd!, or
from a queue,
by peek! or
get!

X is primitive (not
alias) data-item or
condition; X can be
array (not slice),
array component (not
bit-array component),
structured and queue
Statemate MAGNUM A-9

Names and Expressions
Compound Events

The following operations use only single (non-array) events and
conditions.

written(X) wr(X) X is written by
action wr!, by
assignment, or
by put! in
queue

x is primitive (not
alias) data-item or
condition; x can be
array (not slice), or
queue array
component (not bit-
array component),
structured or queue

timeout(E,N) tm(E,N) N clock units
passed from
last time event
E occurred;

E is event expression
(not array)

N is numeric
expression

all(E) all components
of event array E
occurred

E is event array

any (E) at least one
component of
event array E
occurred

 E is event array

Table A.1. Single Event Operators (Continued)

Event Abbreviation Occurs When Notes

Table A.2. Compound Event Operators

Event Occurs When

E[C] E occurred and the condition C is true

[C] condition C is true

not E E did not occur

El and E2 El and E2 occurred simultaneously

El or E2 El or E2, or both, occurred
A-10 Statemate MAGNUM

Condition Expressions
Table A.2 presents operations in descending order of
precedence. Parentheses can be used to alter the evaluation
order. For example:

((E[C] or E2) and E3)

A.2.2 Condition Expressions

Individual Condition and Array of Conditions

A prinitive condition is one of the following:

• Literal constant: true, false (not case sensitive).

• Named single (non array) condition (can be of user-
defined type).

• C (K), the K'th component of a condition "indexable"
array C; X is any integer expression.

• R. C, a field expression of type condition in a
record/union R. For example: A. B. C, where C is a
field of type condition in the field B (with a record
structure), in the record A.

An array of conditions (also referred to as condition array) is one
of the following:

• Literal constant: (Cl, C2, K*CN,*CL); each Cr is a
literal constant condition, and r, is a literal constant
integer.

• Named condition array (can be of user-defined type).

• R. C, a field expression in a record/union of a type
condition array.

• Array slice, C (K..L), of a condition indexable array
C (defined next); R and L are integer expressions.

 An indexable condition array is one of the following:

• Named condition array (can be of user-defined type)
Statemate MAGNUM A-11

Names and Expressions
• R. C, a field expression in a record/union of a type
condition array.

• A component of an array, whose type is a condition
array.

For example: RRC (1), where RRC is an array of
condition arrays.

 RRC (1) is an array of conditions and RRC (I) (K) is a
condition.

Conditions Related to Other Elements

The following operators, which are related to various types of
elements, represent a single (non-array) condition.

Table A.3. Operators Producing Single (Non-array) Condition

Event Abbreviation True When Notes

in (S) system A is in state S used only in Statecharts

active (A) ac (A) activity A is active used only in Statecharts

hanging (A) hg (A) activity A is suspended used only in Statecharts

XI R X2 the values of XI and
X2 satisfy the relation
R

XI and X2 are data-item
or condition
expressions;

• when numeric, R
may be: =1 /=,
>, <, =<, => ;

• when strings,
arrays, structured or
queues, R may be
=1 /=

all (C) all components of
condition C are true

C is a condition array

any (C) at least one
component of
condition C is true

C is a condition array
A-12 Statemate MAGNUM

Data-Item Expressions
The following logical operations use only single (non-array)
conditions, and represent a single condition.

Table A.4 presents the operations in descending order of
precedence. Parentheses can be used to alter the evaluation
order. For example:

(not((C1 or C2) and C3))

Note: Logical operations have lower precedence than
comparison relations.

A.2.3 Data-I tem Expressions

 Data-item expressions are converted to the required type when
needed:

• Bit-arrays shorter than 32 bits to integer, and vice
versa

• Bit to integer

• Integer to real

Therefore, integer expression means also expression of type bit
and bit-array (with length less than 32); numeric expression
means real expression and integer expression, including bit-
array expressions (with length less than 32).

Individual, Array and Structured Data-items

An individual numeric data-item is one of the following:

• Literal constant:

Table A.4. Single Condition Logical Operators

Condition True When

not C c is not true

Cl and C2 Both Cl and C2 are true

Cl or C2 Cl or C2 or both are true
Statemate MAGNUM A-13

Names and Expressions
integer: decimal integer (of value less than 2**31)
bit-array: OX... (hexadecimal); OB... (binary); O0...
(octal) real: dec.dec[(Ele) [+I-] dec] (dec= decimal
integer).

• Named real, integer bit-array or bit (can be of user-
defined type).

• Named data-item defined as numeric expression.

• D (K), the K'th component of a numeric indexable
array or bit-array D, where K is any integer
expression.

• R. C, a field expression in a record/union of numeric
type.
For example: A. B. C, where C is a field of numeric
type in the field B (whose type is record), in the
record A.

An individual string data-item is one of the following:

• Constant literal: a sequence of characters enclosed by
single quotation marks (e.g. 'ABC'); maximal length is
79 characters.

• Named string (can be of a user-defined type).

• Named data-item defined as a string expression.

• S (K), the Kith component of a string indexable array
S, where K is any integer expression.

• R. C, a field expression in record/union of string
type.

 An array of data-items is one of the following:

• Literal constant: (Dl, D2, . . . , K*DN, . . . , *DL)
where each Di is a numeric or string literal constant
data-item, and K is a literal constant integer.

• Named bit-array, array of any type, or user-defined
array type.

• R. D, a field expression in a record/union, whose
type is a data-item, array or bit-array.
A-14 Statemate MAGNUM

Data-Item Expressions
• Array slice, D (K . . L), of an indexable data-item
array or bit-array D, where K and L are integer
expressions. * A component of an array, whose type
is a data-item, array or bit-array.

• Named data-item defined as an array or bit-array
expression.

 An "indexable" data-item array is one of the following:

• Named bit-array, array of any type, or user-defined
array type.

• R. D, a field expression in a record/union, whose
type is a data-item, array or bit-array.

• A component of an array, whose type is a data-item,
array or bit-array.

A structured data-item, record or union, is one of the following:

• Named data-item defined as record or union (can be
a structured user-defined type).

• R. S, a field expression in a record/union of a type
structured data-item.

• A component of an array, whose type is a structured
data-item.

Queue data-items are data-items, array components or record/
union fields defined in the Data Dictionary as having the
structure queue (directly or via a user-defined type).
Statemate MAGNUM A-15

Names and Expressions
Data-items related to other elements

The following operators are applicable to strings, arrays and
bit-array data-items, and to user-defined types that are defined
as string, array or bit-array. The result is a constant integer.

The following operator is applicable to queues:

Compound Data-item Expressions

Numeric Operations

The following operations are relevant to integer, bit, bit-arrays
(of length less than 32) and real operands; the result is numeric:

+EXP, -EXP

EXP1**EXP2

EXP1*EXP2, EXP1/EXP2

EXP1+EXP2,EXP1-EXP2

The list presents the operations in descending order of
precedence. Parentheses can be used to alter the evaluation
order.

operator meaning

length_of(A) length of array, bit-array and string A (data-item
or user-defined type)

rindex(A) right index of array or bit-array A (data-item or
user-defined type)

lindex(A) left index of array or bit-array A (data-item or
user-defined type)

operator meaning

q_length(Q) current number of elements in queue Q
A-16 Statemate MAGNUM

Action Expressions
Numeric operations have higher precedence than comparison
relations and logical operations.

Bitwise Operations

The following operations are relevant to integer, bit and bit-
array operands; the result is a bit-array:

 not EXPL

EXP1 & EXP2 (denotes concatenation)

EXP1 and EXP2,EXPl nand EXP2

EXP1 or EXP2,EXPl nor EXP2

EXP1 xor EXP2,EXPl nxor EXP2

The list presents the operations in descending order of
precedence. Parentheses can be used to alter the evaluation
order.

Bitwise operations, besides the not operation, have lower
precedence than comparison relations and numeric operations.
The not operation has higher precedence.

A.2.4 Action Expressions

Table A.5 is a list of action statements and how they would
appear in the language of Statemate.

Table A.5. Actions Manipulating Other Elements

Action Abbreviation Does Notes

E generates the event
E

E is primitive single
event (not array)

make_true(C) tr! (C) assigns true to
condition C

C is primitive single
condition (not array)

make_false(C) fs! (C) assigns false to
condition C

C is primitive single
condition (not array)
Statemate MAGNUM A-17

Names and Expressions
X:=EXP assigns the value of
EXP to X

X is primitive or alias
data-item, array or
bit-array, condition or
array condition
(including slices)

start(A) st! (A) activates activity A used only in
Statecharts

stop(A) sp! (A) stops activity A used only in
Statecharts

stop stops the current
activity

used only in mini-
spec of reactive
activity

suspend(A) sd! (A) suspends activity A used only in
Statecharts

resume(A) rs! (A) resumes activity A used only in
Statecharts

read_data(X) rd! (X) reads data-item or
condition X

X is primitive (not
alias) data-item or
condition, or array
(including slices); bit-
array components or
slices are not
allowed

write_data(X) wr! (X) writes to data-item
or condition X

X is primitive (not
alias) data-item or
condition, or array
(including slices); bit-
array components or
slices are not
allowed

history_clear
(S)

hc! (S) forgets history
information of state
S

used only in
Statecharts

deep_clear(S) dc! (S) forgets history
information of
descendants of
state S

used only in
Statecharts

Table A.5. Actions Manipulating Other Elements (Continued)

Action Abbreviation Does Notes
A-18 Statemate MAGNUM

Action Expressions
schedule(K,N) sc! (K,N) performs action K
delayed by N clock
units

N is numeric
expression

q_put(Q,X) put! adds data-item or
condition X to tail of
queue Q

X’s type is
compatible with type
of queue
components

q_urgent_put(
Q,X)

uput! adds data-item or
condition X to head
of queue Q
components

X’s type is
compatible with type
of queue
components

q_get(Q,X,S) get! moves head of the
queue Q into data-
item or condition X;
return status S

X’s type is
compatible with type
of queue
components

q_peek(Q,X,S) peek! copies head of the
queue Q to data-
item or condition X;
return status S

X’s type is
compatible with type
of queue
components

conditional S is
optional

q_flush (Q) fl! clears queue Q X’s type is
compatible with type
of queue
components

conditional S is
optional

Table A.5. Actions Manipulating Other Elements (Continued)

Action Abbreviation Does Notes
Statemate MAGNUM A-19

Names and Expressions
Compound, Conditional and Iterative
Actions

Action expressions may contain context variables:
$legal-name, of no more than 16 characters (see page A-1).
Context variables are allowed for any type of data-item or
condition.

Table A.6. Action Expressions with Context Variables

Action Expression Notes

AN1;AN2 the actions are performed
sequentially "; " is optional at
the end of the list

if C then ANI else AN2 end if C is a condition expression; the
else part is optional

when E then AN1 else AN2 end when E is an event expression; the
else part is optional

for $1 in X to|downto L loop AN end loop $I is a context variable; K and
L are integer expressions; AN
is an action expression

while C loop AN end loop C is a condition expression; AN
is an action expression

break causes the containing loop
action to terminate
A-20 Statemate MAGNUM

Data-Type Expressions
A.2.5 Data-Type Expressions

Data-types of a record/union’s fields can be defined (textually)
in the Data Dictionary entry of the record/union using the
following syntax. Note that fields of a structured type (record
and union) cannot be defined directly, but via user-defined
types.

The keywords and the element identifiers are not case
sensitive. N below is a constant integer expression, i.e., literal
integer constant, named integer constant or operation returning
a constant value. Square brackets denote optional segment.

Basic types:

integer

integer length=N

integer min=Nl

max=N2

real

string[length=N]

bit

bit-array [NI to N2]

condition

<user-defined type> (identifier)

Compound types:

array [Nl to N2] [of <basic type>]

queue [of <basic type>]
Statemate MAGNUM A-21

Names and Expressions
A.3 Predefined Functions

A predefined function call has the following syntax:

returned-value := function(argl,arg2,...)

To describe the arguments’ type and the returned value below
we use the following abbreviations:

I = Integer, R = Real, S = String, W = Bit-array, B = Bit.

Conversion of the arguments’ type is carried out when needed.

A.3.1 Arithmetic Functions

A.3.2 Trigonometric Functions

Table A.7. Arithmetic Functions

Function Arguments Returns Meaning

MAX mixed R and I input’s type maximum value

MIN mixed R and I input’s type minimum value

TRUNC R I truncated value

ROUND R I rounded value

ABS R or I input’s type absolute value

MOD I1, I2 I I1modulus I2

Table A.8. Trigonometric Functions

Function Arguments Returns Meaning

SIN R R sine

COS R R cosine

TAN R R tangent

ASIN R R arc sine (in radians)

ACOS R R arc cosine (in radians)

ATAN R R arc tangent (in radians)
A-22 Statemate MAGNUM

Exponential Functions
A.3.3 Exponential Functions

A.3.4 Random Functions

ATAN2 R R arc tangent (in radians) with two
parameters, i.e., arc tangent of
(a1/a2)

SINH R R hyperbolic sine (in radians)

COSH R R hyperbolic cosine (in radians)

TANH R R hyperbolic tangent (in radians)

SIND R R hyperbolic sine (in degrees)

COSD R R hyperbolic cosine (in degrees)

TAND R R hyperbolic tangent (in degrees)

ASIND R R arc sine (in degrees)

ACOSD R R arc cosine (in degrees)

ATAND R R arc tangent (in degrees)

ATAN2D R R arc tangent (in degrees) with two
parameters, i.e., arc tangent of
(a1/a2)

Table A.9. Exponential Functions

Function Arguments Returns Meaning

LOG R R log base e

LOG10 R R log base 10

LOG2 R R log base 2

EXP R R exponential

SQRT R R square root

Table A.10. Random Functions

Function Arguments Returns Meaning

RANDOM_EXPONENTIAL R R random exponential

RANDOM_BINOMIAL I,R I random binomial

Table A.8. Trigonometric Functions (Continued)

Function Arguments Returns Meaning
Statemate MAGNUM A-23

Names and Expressions
A.3.5 Bit-array Functions

RANDOM_POISSON R I random poisson

RANDOM_UNIFORM R,R R random uniform

RANDOM_IUNIFORM I,I I random integer uniform

RANDOM_NORMAL R,R, R random normal

RANDOM I R random

Table A.11. Bit-array Functions

Function Arguments Returns Meaning

SIGNED W I signed value (m.s.b. of W is a sign
bit)

ASHL W,I W arithmetic shift left by I, enters 0’s

ASHR W,I W arithmetic shift right by I, preserves
sign

LSHL W,I W logical shift left by I, enters 0’s

LSHR W, I W logical shift right by I, enters 0’s

BITS_OF W1,I1, I2 W slice of bit-array expression; I.s.b
of W1 is 0

EXPAND_BIT B,I W expand bit; creates a bit array of I
bits, all equal B

MUX W1, W2,B W returns: W1 if B=0, W2 if B=1

Table A.10. Random Functions

Function Arguments Returns Meaning
A-24 Statemate MAGNUM

String Functions
A.3.6 String Functions

Note: The index of the leftmost character in a string is 0.

Table A.12. String Functions

Function Arguments Returns Meaning

STRING_EXTRACT S,I1,I2 S extracts a string of length
I2 from index I1 of S

STRING_INDEX S1,I,S2 I index of sub-string S2
within S1; -1 if not found

STRING_CONCAT S1,S2 S concatenates strings

STRING_LENGTH S I string length

CHAR_TO_ASCII S I ASCII value of l’st
character of S

ASCII_TO_CHAR I S returns S of one character
with ASCII value I

INT_TO_STRING I S converts I to decimal
string; I can be negative

STRING_TO_INT S I integer value of a decimal
string
Statemate MAGNUM A-25

Names and Expressions
A.4 Predefined Constants

The following predefined constants can be used:

• pi

• e
A-26 Statemate MAGNUM

Reactions and Behavior of Activities
A.5 Reactions and Behavior of
Activities

A.5.1 Statechart Labels

A Statechart label is one of the following:

• trigger, which is a single event expression.

Note: While [condition] is a legal expression, it should not be
used as a trigger in an in-state expression, except in a
synchronous model.

• reaction, which is of the form trigger/action.

• /action.

A.5.2 State Reactions and Reactive Mini-Specs

A state reaction and a reactive mini-spec is a list of one or more
reactions (i.e., of the form trigger/action) separated by

reaction;; reaction;;

reaction;;

The ";; " is optional at the end of the list.

Restrictions on events, conditions, and actions depend on
whether they are used in a state or activity. See page A-8.

A.5.3 Procedure-Like Mini-Spec

A procedure-like mini-spec has the syntax of an action. See Action
Expressions, page A-17.

A.5.4 Combinational Assignments

A Combinational assignment has the following syntax:
CE :=EXP1 when COND1 else
Statemate MAGNUM A-27

Names and Expressions
 EXP2 when COND2 else

 . . .

 EXPN

Here, CE (the combinational element) is a primitive data-item or
condition, or an alias data-item, EXP1 is a data-item or
condition expression, and COND1 is a condition expression.

N can be = 1 (in which case the assignment is just CE: =EXPl) or
more.

Combinational assignments in a sequence are separated by ";",
like actions in a sequence.
A-28 Statemate MAGNUM

Flow of Information
A.6 Flow of Information

A.6.1 Flow Labels and Information-Flow
Components

Flow labels in activity-charts and module-charts can be any
primitive (variable) data element (event, condition, data- item)
or information flow. In addition they can be components on any
level of a primitive data element (array component, array slice,
and record/union field). Array components can use only literal
constants.

A.6.2 Actual Bindings of Generic Parameters

Actual bindings of parameters in generic instances have the
same syntax like flow labels. See Statechart Labels, page A-27.
Statemate MAGNUM A-29

Names and Expressions
A.7 Enumerated Types

You can define a User-Defined Type (UDT) that has a finite
number of values, define Data-Items of this UDT, and use them
in the model.

A.7.1 Defining an Enumerated Type

A User-Defined Type can be defined anywhere, i.e. both in
charts and GDSs. Scoping rules for these elements are like any
other textual element. They are resolved first in the current
chart, then in ancestor charts, and then in GDSs.

A.7.2 Structure of Enumerated Types

The structure of the UDT of type enumerated must be single (i.e.
not array or queue). One CAN, however, define an array of a
UDT that is enumerated.

A.7.3 Specification of Values

Enumerated values are listed in curly brackets, separated by
commas (,).

Example: {SUN,MON,TUE,WED,THU,FRI,SAT}

A.7.4 Distinct Values

All values in the same type must be distinct.

Example: {RED, GREEN, BLUE, RED} is illegal.

A.7.5 Non-Unique Values

Enumerated values can be non-unique across multiple
enumerated types. That is, they can be shared by more then one
A-30 Statemate MAGNUM

Referencing Non-Unique Values
enumerated type. In this case, the values are not considered to
be the same.

Example:

COLOR is defined as {RED,GREEN,BLUE}

MOOD is defined as {HAPPY,SAD,BLUE}

COLOR’BLUE <> MOOD’BLUE)

A.7.6 Referencing Non-Unique Values

If more than one enumerated type contains the same
enumerated-values within the same scope, the usages of these
values must refer to the unique name. However, the unique
name is not used in the declaration of the enumerated type
itself.

For example, the model will refer to ’/ X := COLOR’RED’ but
the declaration of the type for X will NOT read {COLOR’RED,
BLUE, GREEN} .

Note: Sets of characters as enumerated values are not
permitted.

A.7.7 Naming Rules

Naming rules for enumerated values shall be the same as for
textual element.

• Up to 31 characters.

• Case insensitive.

• Alphanumeric characters including '_'.

• Starts with a letter.

• Reserved words are not allowed.
Statemate MAGNUM A-31

Names and Expressions
A.7.8 Enumerated Values and Textual I tems

Enumerated values and other textual items cannot have the
same name within the same scope. For example, data-item SUN
cannot be declared in the same chart where an enumerated-
value SUN is declared.

A.7.9 Usage of Enumerated Types

A data-item cannot be directly defined as enumerated. Data-
Items can be defined of type User-Defined Type and the UDT
can be defined as an enumerated type. This Data-Item can be
defined as Variable, Compound or Constant, Single Array or
Queue.

A.7.10 Enumerated Values Usage

Enumerated values are referenced by their names. In case of
non-uniqueness within a specific scope a ’ notation is used. (i.e.
RED, COLOR’RED)

Enumerated values can be used in most situations in which an
integer literal or constant can be used:

• Right hand side of expressions

/COLOR_VARIABLE:= RED

• Relation operations

[COLOR_VARIABLE < RED]

• Range of arrays.

/ARR[RED] := 3;

• Range of 'for loops'.

for $i in SUN to FRI loop

• As actual parameters of generic instances.

• As aggregates

/ARR_COL := {RED,GREEN,BLUE};
A-32 Statemate MAGNUM

Constant Operators Related to Enumerated Types
/ARR_COL := {WHITE,8*BLACK};

/ARR_COL := {WHITE,BLACK,*WHITE};

Enumerated values cannot be used in:

• Numeric expressions

COLOR_VARIABLE:= RED + BLUE

• TImeout/schedule action duration

tm(E, APPLE) , sc!(A,RED)

A.7.11 Constant Operators Related to Enumerated
Types

Two constant operators are:
- enum_first(T)

First enumerated value of T=> T’FIRST in Ada

- enum_last(T)

Last enumerated value of T=> T’LAST in Ada

Parameters to these constant operators are user-defined types
that were defined as enumerated types.

Operators Related to Enumerated Values

Five operators support operations on enumerated values:

- enum_succ ([T’]VAL)(T’SUCC in Ada)

Successor enumerated value of T

- enum_pred ([T’] VAL)(T’PRED in Ada)

Predecessor enumerated value of T

- enum_ordinal ([T’]VAL)(T’ORD in Ada

Ordinal position of VAL in T
Statemate MAGNUM A-33

Names and Expressions
- enum_value (T,I)(T’VAL in Ada)

Value of the i’th element in T

- enum_image ([T’] VAL)(T’IMAGE in Ada)

String representation of VAL in T

Parameters to these operators are either enumerated values
(literals) or variables. The T’VAL notation is used for non-
unique literals.

Example:

A user-defined type DAY is defined as enumerated type with the
values: {SUN,MON,TUE,WED,THU,FRI,SAT}. Another UDT
VACATION can be defined as of type User-Type DAY with
subrange {FRI,SAT}. Another UDT can be defined as {SUN,
MON,TUE}

The order of enumerated values within the subtype is the same
as in the primary type, TUE must always be greater than SUN.

Ordinal values start with 0 (zero).

The ordinal of the values of a subtype is defined by the position
in the original type definition.

For example:
enum_ordinal(DAY’FRI) == enum_ordinal(VACATION’FRI) == 5
A-34 Statemate MAGNUM

BEarly Warning System
Example: Functional
Decomposition Approach
B.1 Textual Description of the System

The early warning system (EWS) receives a signal from an
external sensor. When the sensor is connected, the EWS
processes the signal and checks if the resulting value is within a
specified range. If the value of the processed signal is out of
range, the system issues a warning message on the operator
display and posts an alarm. If the operator does not respond to
this warning within a given time interval, the system prints a
fault message on a printing facility and stops monitoring the
signal. The range limits are set by the operator. The system
becomes ready to start monitoring the signal only after the
range limits are set. The limits can be re-defined after an out-of-
range situation has been detected, or after the operator has
deliberately stopped the monitoring.
Statemate MAGNUM B-1

Early Warning System Example: Functional Decomposition Approach
B.2 The Model

B.2.1 The Hierarchy of Charts

The following tree depicts the hierarchy of charts in the EWS
model.

TIME_DEFS (GDS)

EWS (mc)

EWS_ACTIVITIES (ac)

EWS_CONTROL (sc)

SET_UP (ac)

DISPLAY_FAULT (ac)

SET_UP_STATES (sc)

CONTROL_FAULT_MESSAGE (sc)

CONTROL_ALARM_SIGNAL (sc)
B-2 Statemate MAGNUM

The Charts
B.2.2 The Charts

Module-chart EWS

OPERATOR

KEY_
PRESSING

EWS_ACTIVITIES
SENSOR_CONNECTED

COMMANDS

POWER_ON

ALARM_
NOTIFICATION

FAULT_REPORT

OUT_OF_RANGE_DATA

SIGNAL

DISPLAYED_
SU_MSG

SENSOR

GET_
INPUT

@EWS_CONTROL
OPERATOR

OPERATOR

COMPARE>
PRINT_
FAULT

@DISPLAY_
FAULT

LEGAL_
RANGE

DISPLAY_
SU_MSGS>

OUT_OF-RANGE

PROCESS_
SIGNAL>

SET_UP_DONE

@SET_UP

SAMPLE

RANGE_
LIMITS

SU_MSG_TO_DISPLAY

Activity-chart EWS_ACTIVITIES
Statemate MAGNUM B-3

Early Warning System Example: Functional Decomposition Approach
Statechart EWS_CONTROL
B-4 Statemate MAGNUM

The Charts
DISPLAY_
SU_MSGS

GET_INPUT

SET_UP

@SET_UP_STATES
LEGAL_
RANGE

EWS_
CONTROL

DISPLAY_
SU_MSG

DISPLAY_
SU_ERROR>

PROMPT_
RANGE> VALIDATE_

RANGE>

SU_MSG_
TO_DISPLAY

RANGE_LIMITS

SU_MSG_TO_DISPLAY

SET_UP_DONE

LEGAL_RANGE

Activity-chart SET_UP

SET_UP_STATES

WAIT_FOR
RANGE_DATA>

VALIDATION>

C

T

DATA_ENTERED

[SET_UP_DONE]/WRITE_RANGE

sp(VALIDATE_RANGE)

[not SET_UP_DONE]/
st! (DISPLAY_SU_ERROR);
CLEAR_RANGE

Statechart SET_UP_STATES
Statemate MAGNUM B-5

Early Warning System Example: Functional Decomposition Approach
COMPARE

DISPLAY_FAULT

DISPLAY_FAULT_MESSAGE PRODUCE_ALARM_SIGNAL

OPERATOR

OUT_OF_RANGE_
DATA

FAULT_MSG_
TO_DISPLAY

ALARM_SIGNAL

DISPLAYED_
FAULT_MSG

ALARM

@CONTROL_
FAULT_
MESSAGE

DISPLAY_
FAULT_
MESSAGE

@CONTROL_
ALARM_
SIGNAL GENERATE_

ALARM_
SOUND

Activity-chart DISPLAY_FAULT

CONTROL_FAULT_MESSAGE CONTROL_ALARM_SIGNAL>

/PREPARE_MESSAGE

DISPLAYING_
FAULT_MSG>

GENERATING_
SOUND>

STATECHART
CONTROL_ALARM_SIGNAL

STATECHART
CONTROL_FAULT_MESSAGE
B-6 Statemate MAGNUM

The Data Dictionary
B.3 The Data Dictionary

Modules

Module: EWS
Defined in Chart: EWS
Described by Activity-Chart: EWS_ACTIVITIES

Module: OPERATOR
Defined in Chart: EWS
Defined as: environment

Module: SENSOR
Defined in Chart: EWS
Defined as: environment

Activities and data-stores

Activity: COMPARE
Defined in Chart: EWS_ACTIVITIES
Termination Type: reactive controlled
Mini-spec:

wr(SAMPLE)/

 if ((SAMPLE < LEGAL_RANGE.LOW_LIMIT) or

 (SAMPLE > LEGAL_RANGE.HIGH_LIMIT) then

 OUT_OF_RANGE;

 OUT_OF_RANGE_DATA.VALUE:=SAMPLE;

 OUT_OF_RANGE_DATA.LIMITS:=LEGAL_RANGE

 end if

Implemented by Module: CCU

Activity: CONTROL_ALARM_SIGNAL
Defined in Chart: DISPLAY_FAULT
Implemented by Module: CCU
Statemate MAGNUM B-7

Early Warning System Example: Functional Decomposition Approach
Activity: CONTROL_FAULT_MESSAGE
Defined in Chart: DISPLAY_FAULT
Implemented by Module: CCU

Activity: DISPLAY_FAULT_MESSAGE
Defined in Chart: DISPLAY_FAULT
Implemented by Module: SCREEN

Activity: DISPLAY_SU_ERROR
Defined in Chart: SET_UP
Termination Type: procedure-like
Mini-spec:

SU_MSG_TO_DISPLAY:=’Range error; try again’

Activity: DISPLAY_SU_MSGS
Defined in Chart: EWS _ACTIVITIES
Tennination Type: reactive controlled
Combinational assignments:

DISPLAYED_SU_MSG:=SU_MSG_TO_DISPLAY

Implemented by Module: SCREEN

Activity: GENERATE_ALARM_SOUND
Defined in Chart: DISPLAY_FAULT
Termination Type: reactive controlled
Implemented by Module: ALARM_SYSTEM

Activity: GET_INPUT
Defined in Chart: EWS_ACTIVITIES
Description: Transforms key pressing to data
Termination Type: reactive controlled
Implemented by Module: KEYBOARD

Data-store: LEGAL_RANGE
Defined in Chart: EWS_ACTIVITIES
Resides in Module: CCU
B-8 Statemate MAGNUM

Activities and data-stores
Activity: PRINT_FAULT
Defined in Chart: EWS_ACTIVITIES
Description: Issues fault data to the printer

Activity: PROMPT_RANGE
Defined in Chart: SET_UP
Tennination Type: procedure-like
Mini-spec:

SU MSG TO DISPLAY:=’Enter range limits’

Activity: PROCESS_SIGNAL
Defined in Chart: EWS_ACTIVITIES
Termination Type: reactive controlled
Mini-spec:

 started/TICK;;

 TICK/$VALUE=SIGNAL;

 SAMPLE:=COMPUTE($VALUE);--ext.function

 sc!(TICK,SAMPLING_INTERVAL)

Implemented by Module: SIGNAL_PROCESSOR

Activity: SET_UP
Defined in Chart: EWS_ACTIVITIES
Termination Type: reactive self-terminated
Implemented by Module: CCU

Activity: VALIDATE_RANGE
Defined in Chart: SET_UP
Termination Type: procedure-like
Mini-spec:

fs!(SET_ UP_DONE);

if RANGE_LIMITS.LOW_LIMIT<RANGE_LIMIT.
 HIGH_LIMIT

 then tr!(SET_UP_DONE)

 end if

States
Statemate MAGNUM B-9

Early Warning System Example: Functional Decomposition Approach
State: COMPARING
Defined in Chart: EWS_CONTROL
Activities in State:

COMPARE (throughout)

State: CONTROL_ALARM_SIGNAL
Defined in Chart: CONTROL_ALARM_SIGNAL Static
Reactions:
 ns/tr!(ALARM_SIGNAL);;

 xs/fs!(ALARM_SIGNAL)

State: DISPLAYING_FAULT_MESSAGE
Defined in Chart: CONTROL_FAULT_MESSAGE
Activities in State:

DISPLAY_FAULT_MESSAGE (throughout)

State: GENERATING_ALARM
Defined in Chart: EWS_CONTROL
Activities in State:

DISPLAY_FAULT (throughout)

State: GENERATING_SOUND
Defined in Chart: CONTROL_ALARM_SIGNAL
Activities in State:

GENERATE_ALARM_SOUND (throughout)

State: ON
Defined in Chart: EWS_CONTROL
Static Reactions:
 ns/fs!(SET_UP_DONE)

Activities in State:
DISPLAY_SU_MSGS (throughout)

State: OPERATING
Defined in Chart: EWS_CONTROL
Activities in State
B-10 Statemate MAGNUM

Activities and data-stores
PROCESS_SIGNAL (throughout)

State: SETTING_UP
Defined in Chart: EWS_CONTROL
Static Reactions:

ns/st!(SET_UP)

State: VALIDATION
Defined in Chart: SET_UP_STATES
Static Reactions:

ns/st!(VALIDATE_RANGE)

State: WAIT_FOR_RANGE_DATA
Defined in Chart: SET_UP_STATES
Static Reactions:

ns/st!(PROMPT_RANGE)

Events

Event: ALARM_TIME_PASSED
Defined in Chart: EWS
Definition: tm (en (GENERATING_ALARM),
 ALARM_DURATION)

Event: DATA_ENTERED
Defined in Chart: SET_UP_STATES
Definition: wr (RANGE_LIMITS)

Event: EXECUTE
Defined in Chart: EWS

Event: EXECUTE_KEY
Defined in Chart: EWS

Event: HALT
Defined in Chart: EWS_CONTROL

Event: OPERATE
Defined in Chart: EWS_CONTROL
Statemate MAGNUM B-11

Early Warning System Example: Functional Decomposition Approach
Event: OUT_OF_RANGE
Defined in Chart: EWS_ACTIVITIES

Event: RESET
Defined in Chart: EWS

Event: RESET_KEY
Defined in Chart: EWS

Event: SET_UP
Defined in Chart: EWS

Event: SET_UP_KEY
Defined in Chart: EWS

Event: TICK
Defined in Chart: EWS_ACTIVITIES

Conditions

Condition: ALARM_SIGNAL
Defined in Chart: EWS

Condition: POWER_ON
Defined in Chart: EWS

Condition: READY
Defined in Chart: EWS_CONTROL
Definition: SET_UP_DONE and in (CONNECTED)

Condition: SET_UP_DONE
Defined in Chart: EWS_ACTIVITIES

Data-items

Data-Item: ALARM
Defined in Chart: EWS
Data-Type: real
B-12 Statemate MAGNUM

Activities and data-stores
Data-Item: ALARM_DURATION
Defined in Chart: EWS_CONTROL
Data-Type: real
Defined as: constant
Definition: 3 0.

Data-Item: DISPLAYED_FAULT_MSG
Defined in Chart: EWS
Data-Type: string

Data-Item: DISPLAYED_SU_MSG
Defined in Chart: EWS
Data-Type: string

Data-Item: FAULT_MSG_TO_DISPLAY
Defined in Chart: EWS
Data-Type: string

Data-Item: FAULT_REPORT_TO_PRINT
Defined in Chart: EWS
Data-Type: record

Field Name: FAULT_TIME Field Type: TIME
Field Name: FAULT_VALUE Field Type integer
Field Name: FAULT_RANGE Field Type: RANGE

Data-Item: FAULT_REPORT
Defined in Chart: EWS
Data-Type: string

Data-Item: HIGH_LIMIT_SLIDER
Defined in Chart: EWS
Data-Type: integer

Data-Item: LEGAL_RANGE
Defined in Chart: EWS_ACTIVITIES
Data-Type: RANGE
Statemate MAGNUM B-13

Early Warning System Example: Functional Decomposition Approach
Data-Item: LOW_LIMIT_SLIDER
Defined in Chart: EWS
Data-Type: integer

Data-Item: RANGE_LIMITS
Defined in Chart: EWS
Data-Type: RANGE

Data-Item: OUT_OF_RANGE_DATA
Defined in Chart: EWS_ACTIVITIES
Data-Type: record

Field Name: VALUE Field Type: integer
Field Name: LIMITS Field Type: RANGE

Data-Item: SAMPLE
Defined in Chart: EWS
Data-Type: integer

Data-Item: SAMPLE_INTERVAL
Defined in Chart: EWS_ACTIVITIES
Data-Type: real
Defined as: constant
Definition: 2.

Data-Item: SIGNAL
Defined in Chart: EWS
Data-Type: bit-array 23 downto 0

Data-Item: SU_MSG_TO_DISPLAY
Defined in Chart: EWS
Data-Type: string

Actions

Action: CLEAR_RANGE
Defined in Chart: SET_UP_STATES
Definition: LEGAL_RANGE.LOW_LIMIT:=0;
 LEGAL_RANGE.HIGH_LIMIT:=O
B-14 Statemate MAGNUM

Activities and data-stores
Action: PREPARE_MESSAGE
Defined in Chart: CONTROL_FAULT_MESSAGE
Definition:

$VALUE_STR:=INT_TO_STRING(OUT_OF_RANGE_
 DATA.VALUE);

$OUT_STR:=STRING_CONCAT($VALUE_STR,’ is out
 of range:\n’);

$LOW_STR:=STRING_CONCAT(
 INT_TO_STRING(OUT_OF_RANGE_DATA.LIMITS.
 LOW_LIMIT),’ - ’);
$HIGH_STR:=

 INT_TO_STRING(OUT_OF_RANGE_DATA.LIMITS.
 HIGH_LIMIT);

$RANGE_STR:=STRING_CONCAT($LOW_STR, $HIGH_STR);

FAULT_MSG_TO_DISPLAY:=
 STRING_CONCAT($OUT_STR,$RANGE_STR);

Action: WRITE_RANGE
Defined in Chart: SET_UP_STATES
Definition: LEGAL_RANGE:=RANGE_LIMITS

User-defined types

User-Defined Type: RANGE
Defined in Chart: EWS
Data-Type: record

Field Name: LOW_LIMIT Field Type: integer

Field Name: HIGH_LIMIT Field Type: integer

User-Defined Type: TIME
Defined in GDS: TIME_DEFS
Data-Type: record

Field Name: HOURS Field Type: integer min=0 max=23

Field Name: MINUTES FieldType: integer min=0 max=59
Statemate MAGNUM B-15

Early Warning System Example: Functional Decomposition Approach
Field Narne: SECONDS Field Type: integer min=0 max=59

Information-flows

Information-Flow: ALARM_NOTIFICATION
Defined in Chart: EWS_ACTIVITIES
Consists of:

ALARM
DISPLAYED_FAULT_MSG

Information-Flow: COMMANDS
Defined in Chart: EWS
Consists of:

SET_UP
EXECUTE
RESET

Information-Flow: COMMAND_KEYS
Defined in Chart: EWS
Consists of:

SET_UP_KEY
EXECUTE_KEY
RESET_KEY

Information-Flow: DISPLAYED_MSGS
Defined in Chart: EWS
Consists of:

DISPLAYED_FAULT_MSG
DISPLAYED_SU_MSG

Information-Flow: KEY_PRESSING
Defined in Chart: EWS
Consists of:

COMMAND_KEYS
RANGE_SLIDERS
ENTER_KEY
SENSOR_CONNECTED_SWITCH
B-16 Statemate MAGNUM

Activities and data-stores
Information-Flow: MSGS_TO_DISPLAY
Defined in Chart: EWS
Consists of:

SU_MSG_TO_DISPLAY
FAULT_MSG_TO_DISPLAY

Information-Flow: MSGS_TO_PRINT
Defined in Chart: EWS
Consists of:

FAULT_REPORT_TO_PRINT

Information-Flow: RANGE_SLIDERS
Defined in Chart: EWS
Consists of:

LOW_LIMIT_SLIDER
HIGH_LIMIT_SLIDER

Information-Flow: USER_INPUT
Defined in Chart: EWS
Consists of:

COMMANDS
SENSOR_CONNECTED
RANGE_LIMITS
Statemate MAGNUM B-17

Early Warning System Example: Functional Decomposition Approach
B-18 Statemate MAGNUM

CSubroutines
ithin Statemate, you can define three types of
subroutine using:

• K&R C

• ANSI C

• Ada

• Statemate Action Language

Procedural Statecharts (for procedures only) Procedural
Statecharts are a specialized form of Statechart described in this
appendix.

You can define:

• Functions—These have one return, multiple
parameters, all parameters are inputs.

• Procedures—These have no return, multiple
parameters, each parameter can be INPUT, OUTPUT,
or INPUT/OUTPUT.

• Tasks—Special form of procedure connected to
activities for C and Ada only. Parameters can be
INPUTs, OUTPUTs, INPUT/OUTPUTs.

W

Statemate MAGNUM C-1

Subroutines
C.1 Subroutines

You can use subroutines:

• Within a model as part of triggers and actions

• Connected to activities/blocks to describe their
implementation

• Connected to Statemate elements as callbacks.

In addition, any C code that has been used to describe
subroutines within a model can automatically be included
within the generated code.

When code is generated, any code you have used to describe
functions or procedures will automatically be included within
the generated code if the user-entered code is written in the
same language as the code being generated. You can specify
more than one code implementation.

Conversely, you can choose to disable this automatic use of
functions or procedures defined by code within simulation and
code generation on a per function/procedure basis.

Whether you are simulating or generating code, subroutines
can be used with the following restrictions:

• For simulation, the following can be used:

→ Statemate Action Language
→ Graphical Procedures
→ C (K&R, ANSI)

• For code generation, the following can be used:

→ Statemate Action Language
→ Graphical Procedures
→ Code

Use subroutines as follows.

• The scoping rules for subroutines are similar to the
rules for scoping other Statemate element types.
C-2 Statemate MAGNUM

Subroutines
• You can define subroutines within a chart or GDS.

• They cannot be made local to a single activity, block,
or state.

• The same visibility rules apply for subroutines that
apply for all textual elements within Statemate; that
is, the subroutine is visible in the chart in which it is
defined and downward from that point in the model
chart-hierarchy.

• Subroutine names must be unique within a workarea
when the model is simulated or code is generated
from it.

Here is a simple subroutine example using the Statemate Action
Language. This subroutine (named MYSUM) sums all the values
in an array between two indices and returns the sum value.

In this example,

• One parameter is defined—myarray

• Three variables are defined: i (the loop variable)
and the two index variables—leftindex and
rightindex. i is used here as a local variable (that is;
a variable that is known only to the subroutine in
which it is defined) and leftindex and rightindex
are global variables (that is; a variable that can be
accessed by any subroutine within your program).

The return statement completes the subroutine and puts the
result of the subroutine (sum) in the subroutine name.
for i in leftindex to rightindex loop

sum i := myarray (i) + sum;

end loop;

return (sum)

From the point of view of the calling chart, a subroutine
described in Statemate Action Language runs from start to
Statemate MAGNUM C-3

Subroutines
finish when called. The execution of the subroutine takes place
in zero time within a single simulation step.

The statements within the subroutine are executed in order
from the beginning of the subroutine to the end. (This is
different from actions in which all statements (other than those
involving context variables) are treated as being executed
concurrently.)

In order to differentiate it from a ’normal’ simulation step, the
execution of a single subroutine statement is termed a ’micro-
step’.

All elements, when assigned to parameters, receive their values
immediately within the subroutine. The new values can be used
within the subroutine in subsequent statements. The assigned
value can be used in the next statement in the subroutine and
multiple assignments are allowed within the subroutine.

This is also different from actions. In actions, all values are
assigned concurrently and take effect at the end of a step.

Parameter values are returned to the calling chart only at the end
of the subroutine. The new values can be accessed by the model
only after the subroutine returns.

Functions can read and write global data (i.e.elements that are
external to the subroutine but are not listed as a parameter. The
reading or writing of global data is termed a ’side effect’.

Similar to parameters, values assigned to global elements are
immediately accessible within the subroutine. The model
external to the subroutine views the global element in the same
way as all other Statemate elements. For example, the new
values assigned to global elements within subroutines are only
accessible to the model outside of the subroutine at the end of
the step in which the subroutine was called.
C-4 Statemate MAGNUM

Subroutines
Writing more than once to a global element within the body of
a subroutine is considered racing.

The actual parameter is updated a single time even if the
parameter is assigned multiple times during the duration of the
subroutine. The final assigned value is the value returned to the
calling chart.

Note: This racing case is different from the general racing
condition in which you have no way to determine which
value will be assigned. In this situation, the final value
assigned within the subroutine will be the resulting value
of the global element.

Subroutines defined in any language can call other functions/
procedures.

Note: Subroutines called from subroutines defined with code
cannot be simulated.

• Within functions and procedures, events are not
allowed as inputs, outputs, local variables, or
accessed as global elements. (They are permitted in
tasks, however.)

Note: Functions and procedures cannot use events, regardless
of the language in which they are described.

• Referring to activities in trigger statements, i.e.
[active()], [hanging()], started(),
stopped(), suspended(), or resumed()
([ac()], [hg()], st(), sp(), sd(), rs()) is not
allowed.

• Referring to activities in action statements, i.e.
start!(), stop!(), suspend!(), or resume!()
(st!(), sp!(), sd!(), rs!()) is not allowed.

• No references to named actions are allowed.

• No history (use or clearing) is allowed.
Statemate MAGNUM C-5

Subroutines
• To avoid semantic and behavior conflicts, queues
cannot be used inside (or as parameters/ globals) of
subroutines.

Subroutines do not use context variables because all elements
within subroutines behave like context variables (immediate
assignments).

Parameters are passed to subroutines by a copy/copy-back
(pass-by-value) mechanism. When the subroutine is called, it
will receive a copy of the value that any IN or INOUT
parameters currently hold. When the subroutine returns a copy
of the values held by all INOUT and OUT parameters will be
return to the calling chart.

Note: A subroutine has only IN parameters and has a single
return.

Note: Reading or writing data is the only possible side effect a
subroutine can have.

It is your responsibility to ensure that the subroutine writes to
global elements only a single time within the execution.

Global elements that are to be read or written within a
subroutine are specified within the subroutine Data Dictionary.

For each global element to be accessed, you identify:

• The name of the global element

• The mode that it will be accessed (IN, OUT, INOUT)

The type of the global element is not be part of the information
to be identified.
C-6 Statemate MAGNUM

Subroutines
The global elements affected by subroutines are determined by
the scope in which the subroutine is defined, not in the scope in
which it is called.

For instance, assume an Activity-Chart hierarchy with 2 charts,
A at the top and B at the bottom. Function F is defined in chart
A, but used in chart B. Two different elements named X are
defined, one in A, another in B. X is specified as a global element
to be accessed in F. The X that is accessed within F is the element
in the upper chart A where the subroutine is defined, even
though F is used in the lower chart B.

Functions accessing global elements cannot be defined within
GDSs. GDSs have no scope which can be used to associate the
global elements.

Note: Do not <write> global data in a subroutine that is used as
part of a trigger statement. Because of different internal
implementations, side effects written as part of a trigger
will behave differently between simulation and code.

F() Defined here A X Defined

F() Used here B X Defined
Statemate MAGNUM C-7

Subroutines
C.2 Procedural Statecharts

A Procedural Statechart is a specialized derivative of a
Statechart. Procedural Statecharts:

• Are executed entirely in one step

• Must contain a termination connector

• When called, run from the default to the termination
connector (including any loops) within a single step.

Note: Regardless of the parameter values or other input values,
all paths within the subroutine must eventually lead to the
termination connector. If the Procedural Statechart ever
stops in a state without reaching the termination
connector, a run-time error results.

Keep the following in mind:

• Events are not allowed as inputs, outputs, local
variables, or accessed as global elements.

• Functions/procedures cannot use events, regardless
of the language in which they are described.

• Referring to activities in trigger statements, i.e.
[active()], [hanging()], started(),
stopped(), suspended(), or resumed()
([ac()], [hg()], st(), sp(), sd(), rs()) is not
allowed.

• Referring to activities in action statements, i.e.
start!(), stop!(), suspend!(), or resume!()
(st!(), sp!(), sd!(), rs!()) is not allowed.

• No references to named actions are allowed.

• No history (use or clearing) is allowed.

• To avoid semantic and behavior conflicts, queues
cannot be used inside (or as parameters/ globals) of
subroutines.

Here is an example of a Procedural Statechart with its Data
Dictionary:
C-8 Statemate MAGNUM

Procedural Statecharts
 Parameter Data Type Mode

 SORT_LIMIT Integer In

 Local Variables Names Data Type

 TMP Integer
 LIM Integer
 I Integer

 Globals Name Mode

 GLOBBALARRAY In/Out
Statemate MAGNUM C-9

Subroutines
C.3 Action Language Subroutines

An action language subroutine is a subroutine written using the
standard Statemate action statements. Normally, these actions
statements are executed within the context of Statemate
semantics (for multiple action statements within a single step,
all of the assignments occur at the same time). Within an action
language subroutine, all the assignments occur in the order the
statements were written.

Keep the following in mind:

• Events are not allowed as inputs, outputs, local
variables, or accessed as global elements.

• Functions/procedures cannot use events, regardless
of the language in which they are described.

• Referring to activities in trigger statements, i.e.
[active()], [hanging()], started(),
stopped(), suspended(), or resumed()
([ac()], [hg()], st(), sp(), sd(), rs()) is not
allowed.

• Referring to activities in action statements, i.e.
start!(), stop!(), suspend!(), or resume!()
(st!(), sp!(), sd!(), rs!()) is not allowed.

• No references to named actions are allowed.

• No history (use or clearing) is allowed.

• To avoid semantic and behavior conflicts, queues
cannot be used inside (or as parameters/ globals) of
subroutines.

In general, queues are useful for the synchronization of parallel
components, so the usage of queues as a local variable (inside a
subroutine) is not typically required.

There are semantic issues regarding the use of a queue as a
parameter of a subroutine. Queues outside subroutines work
with 'double buffering' i.e., operations on queues (q_put,
q_empty, ..) actually work on the content of the queue at the
C-10 Statemate MAGNUM

Action Language Subroutines
beginning of the step, and this conflicts with the semantics of
subroutines (that all assignments are immediate). In summary,
to avoid semantic and behavior conflicts, queues are not
supported within subroutines.
Statemate MAGNUM C-11

Subroutines
C.4 Associating Subroutines with
Activities

You can specify the behavior of an activity by connecting it to a
subroutine.

• Procedure-like activities can be connected to
procedures within any of the languages supported.

• Internal primitive activities (reactive-controlled and
reactive-self) can be connected to tasks (no mini-
specs or decomposition is allowed).

• External activities can only be connected to tasks.
C-12 Statemate MAGNUM

Callbacks
C.5 Callbacks

Callbacks can be a useful way to extend the model or as test
procedures.

For example:
proc_name (<element_identifier>, actual_param1,
actual_param2)

The <element_identifier> is required and is necessary when
a callback is being connected to an aggregate element. An
aggregate element is an array, record, union, UDT, or any
element referenced in a generic or instance.

When the <element_identifier> is not needed, it will not be
referenced.

Callbacks may be connected to:

• Events

• Conditions

• States

• Activities

• Data-items

• Records (defined as a user-defined type)

• Fields of records (defined as a user-defined type)

• Unions (defined as a user-defined type)

• Entire arrays (defined as a user-defined type)

• Individual elements of an array (defined as a user-
defined type)

• Elements in generics (individual instance or all
instances)

• User-defined type equivalent to the above types

• Variables, compounds, and aliases

• Combinational elements
Statemate MAGNUM C-13

Subroutines
Callbacks cannot be connected to:

• Fields of unions

• Queues

• Records/fields/unions/arrays not defined as a
user-defined type

• Blocks

• Modules

• Data-stores/data storage modules

• External or environmental activities, blocks, or
modules

• Event expressions
C-14 Statemate MAGNUM

Graphical Functions
C.6 Graphical Functions

You can implement functions using ’Procedural Statecharts’.

You can associate a subroutine of sub-type function with a
’Procedural Statechart’. The mechanism to associate a function
with a ’Procedural Statechart’ is similar to that of associating a
procedure with a ’Procedural Statechart’.

The definition of ’Procedural Statechart’ includes a RETURN
statement. In a ’procedural Statechart’, the RETURN statement
is required on all transitions entering the termination connector.
The RETURN statement can ONLY be used on transitions
entering the termination connector. (i.e. it cannot be used within
a static reaction or on a transition that is not entering the
termination connector.

The rules for the RETURN statement are not checked/enforced
at data-entry stage. These rules are checked by the Check Model
tool (static-checks) and the Simulator (run-time errors.)

’Procedural Statecharts’ defined as functions are treated exactly
as ’Procedural Statecharts’ defined as procedures. (In other
words, there are not two different <types> of charts to
implement functions versus procedures.)

All Statemate tools recognize graphical functions as such. All
tools provide the same level of support for graphical functions
as for graphical procedures.
Statemate MAGNUM C-15

Subroutines
C-16 Statemate MAGNUM

DTruth Tables
 truth table is a tabular representation of inputs,
resulting outputs, and actions. In Statemate, you can use
truth tables in the body of actions and activities and as
an additional language to describe procedures.

A

ÀTruth Tables
Contents for
Subroutines ...
pg. D-15

ÀMicro-Step
Execution of
Procedure Truth
Tables ... pg. D-16

ÀExecution of
Action Truth
Tables ... pg. D-17

À “Factorization” of
Cells ... pg. D-18

Appendix
Contents

ÀOutput Columns ...
pg. D-11

ÀAction Column ...
pg. D-13

ÀDefault Row ...
pg. D-13

ÀRow Execution ...
pg. D-14

ÀTruth Table
Contents for
Activities and
Actions ... pg. D-
15

À Introduction ...
pg. D-2

ÀCreating Truth
Tables—Overview
... pg. D-5

ÀTruth Table
Format ... pg. D-6

ÀSpecial
Characters ...
pg. D-7

À Input Columns ...
pg. D-8
Statemate MAGNUM D-1

Truth Tables
D.1 Introduction

Truth tables are one method of representing logical expressions
in a tabular format. Within Statemate, a truth table can
represent:

• The behavior of an activity

• The definition of a named action

• Subroutine procedures

Figure D.1 is an example of a truth table bound to an activity.

D.1.1 Truth Tables Bound to Activi t ies

Only internal basic activities without descendants may be
bound to truth tables to specify their behavior. Although
semantically any Statemate element may contain only one
behavior, you may define a mini-spec, associate a truth table, or
bind the activity to a subroutine in the Data Dictionary for a
basic activity. Again, as in the case of an element, you then select
one of these methods as the desired implementation.

Truth tables that are bound to activities are evaluated and
executed once for each step that the activity is active. When the
activity is inactive, the truth table is not evaluated and the
outputs of the truth table remain unchanged. Unchanged
outputs are not “written.”

Note: If the termination type of an activity A is “procedure-like,'
for each activation of activity A, the attached truth table is
evaluated and executed during one step only.

D.1.2 Truth Tables Defining Actions

Actions that are defined using a truth table are considered as
compound actions and follow the same scoping rules as all
other textual elements in the model.
D-2 Statemate MAGNUM

Truth Tables Defining Actions
Figure D.1. Truth Table Bound to an Activity
Statemate MAGNUM D-3

Truth Tables
D.1.3 Truth Tables Representing Subroutines

You can also build a truth table within Statemate to implement
a subroutine procedure.

As with other procedures, procedures implemented by truth
tables have parameters, local variables, and access to global
elements. Procedures implemented with truth tables follow the
same scoping rules as all other functions and procedures.

Although an element can at one time only include one behavior,
you can define both a regular definition and a truth table
definition for an element and then select one of them as the
desired implementation at a time.
D-4 Statemate MAGNUM

Creating Truth Tables—Overview
D.2 Creating Truth Tables—Overview

Here is a brief overview of the truth table process:

1. Create the activity, defined action, or subroutine.

2. Open a Data Dictionary for the element created in
Step 1.

3. For the implementation method, select Truth Table.

4. Define the truth table using the template provided.

5. Save and exit from the truth table.

6. Save the updated element in the Data Dictionary.

The remainder of this appendix explains the semantics and
rules governing truth table constructions. See the Statemate
MAGNUM Reference Manual for more details on the steps listed
above.
Statemate MAGNUM D-5

Truth Tables
D.3 Truth Table Format

Figure D.2 illustrates the format of a truth table in Statemate.

The truth table contains rows and columns, with the columns
divided into three sections—Input, Output, and Action.

• Input columns represent input elements and values

• Output columns define output values

• The Action column is where you define actions

Each row in the truth table specifies a set of values. When the set
of input values is satisfied, the outputs for that row are
generated and the actions are executed. The semantics of the
outputs and actions are determined by the context of the truth
table; that is, a truth table that implements a procedure behaves
like a subroutine (immediate assignments, etc.), while a truth
table that is either a definition of an action or bound to an
activity uses the “regular” action language semantics.

Figure D.2. Truth Table Format
}}
D-6 Statemate MAGNUM

Special Characters
D.4 Special Characters

These characters have the following special meanings within
truth tables:

Table D.1. Truth Tables: Special Characters

Character Meaning

* Don’t Care

+ Event generated (input or output)

- Event not generated (input)
Statemate MAGNUM D-7

Truth Tables
D.5 Input Columns

Each column in the input section of the table is associated with
an input. Inputs can be either a Statemate element or
expression. Subroutine parameters and globals may appear as
inputs when the truth table is a subroutine implementation
body. Compound elements can be used as inputs, for example
CO_2 can be defined as D1> 5 and in (STATE_1).

Entries in the input section can be

• Literals

• Statemate elements

• Expressions

• Empty

• Don’t Care (*)

Elements that can be used as inputs are conditions and data-
items. Data-items can be defined as:

• Integers

• Reals

• Bits

• Bit-arrays

• Strings

• Records

• Record fields

Table D.2.

Input

CO_1 CO_2 DI_1 REC_1 ARR_1

True False 1 REC_2 {1,2,3}

False False 2 * *

True False 3 * *

False True 5 * *
D-8 Statemate MAGNUM

Input Columns
• Enumerated types

• Arrays of the previously listed types

• Elements of arrays

• User-defined types built of the previously listed
types

• Variables

• Alias constant and compound elements

• Events (but only in the titles of truth tables that are
associated with activities or actions)

Note: There is no literal syntax for these types:

Elements that cannot be used as inputs are:

• Unions

• Records that contain unions

• Arrays of unions

• Fields of unions

• Slices of arrays or bit-arrays

• Queues

• States

• Activities

Each input section of a row represents a Boolean expression.
The Boolean expresses an “and” of equivalence comparisons for
each of the inputs that has a non-“Don’t Care” value.

• Records

• Unions

• Arrays of complex types

The only legal comparison in the input section for these
elements is another element of the same type.
Statemate MAGNUM D-9

Truth Tables
Note: Input cells that are left blank are considered as “Don’t
Care” items by Simulation and Code Generation tools.

For example,

Row 1 =>
CO_1 and not CO_2 and DI_1=1 and REC_1=REC_2 and
ARR_1={1,2,3}

Row 2 =>

not CO_1 and not CO_2 and DATA_1=2
D-10 Statemate MAGNUM

Output Columns
D.6 Output Columns

Each output column must be a Statemate element. Local
elements, subroutine parameters, and subroutine global
elements may appear as outputs when the truth table is a
subroutine implementation body.

Entries in the cells of the output section can be

• Literals

• Statemate elements

• Statemate expressions

• Empty

Empty entries in the output section indicate outputs that are not
changed when the related row is executed. Unchanged items
are not “written.”

Elements that can be used as outputs are primitive conditions
and data-items. Data-items can be defined as:

• Integers

• Reals

• Bits and bit-arrays

• Strings

• Records

• Record fields

Table D.3. Truth Tables: Output Columns

Output

CON_3 DATA_2

True 100

False -1

True 1

False 2
Statemate MAGNUM D-11

Truth Tables
• Enumerated types

• Arrays of the previously listed types

• Elements of arrays

• User-defined types built of the previously listed
types

• Aliases

• Primitive events (but only in the titles of truth tables
that are associated with activities or actions)

Note: There is no literal syntax for these types:

Elements that cannot be used as outputs are:

• Compounds

• Slices of arrays

• Slices of bit-arrays

• Queues

• Activities

• States

• Actions

Note: The same element can appear in the table as both an
input and an output.

• Records

• Unions

• Arrays of complex types

The only legal comparison in the output section for these
elements is another element of the same type.
D-12 Statemate MAGNUM

Action Column
D.7 Action Column

In the Action column, you may include any action expression
that is legal in the context of the truth table.

D.8 Default Row

You can optionally add a default row to the truth table. This row
contains no input values and is only executed if none of the
previous rows in the table have been executed.

Table D.4. Truth Tables: Action Column

Action

AN1; AN2

AN3

x:= X + Y
Statemate MAGNUM D-13

Truth Tables
D.9 Row Execution

Here is how the truth table is evaluated:

• When a truth table is executed, it is evaluated row by
row, starting at the top of the table and proceeding
downward to the end.

• The first row whose input expression evaluates to
True is “fired.”

• Once the row is fired, all of the outputs listed in the
output section of that row are generated and the
action section is executed.

• If any output columns are blank, the related outputs
are not changed. Unchanged items are not “written.”

• The order of execution is from left to right, first
outputs, then actions (this is only relevant for truth
tables that implement procedures).

• If the table contains a default row, and if during the
evaluation of the table no other row has fired, the
default row is fired.

• If the table does not contain a default row and no
row fires during the evaluation of the table, a
warning message is displayed during simulation and
no output elements are changed.
D-14 Statemate MAGNUM

Truth Table Contents for Activities and Actions
D.10 Truth Table Contents for
Activities and Actions

Truth tables that are associated with actions or activities may
include any legal Statemate actions expressions, including, for
example:

• References to named actions

• Assignments

• Generation of events

• Operations on activities (within Statecharts)

Note: The semantics of the action section in this context is the
“regular” Statemate step semantics. A racing situation will
occur when the same element is assigned both from the
output section and the action section.

D.11 Truth Tables Contents for
Subroutines

Truth tables defined as subroutines may include any Statemate
action expression that is legal in a subroutine body. They may
not contain references to named actions or other actions, such as
scheduled actions or actions on activities and events. They may
contain references to local elements, subroutine parameters and
globals.

The semantics of the action section in this context will be the
subroutine action language semantics, i.e., all assignments are
done immediately. An element may be assigned more than once
in the output and action sections with a racing, order of
execution is from left to right.
Statemate MAGNUM D-15

Truth Tables
D.12 Micro-Step Execution of
Procedure Truth Tables

Assignments are made within truth tables following the micro-
step and immediate update semantics of all functions and
procedures.

This means that as soon as an assignment is made, it is available
to be used. This does not affect the evaluation of the rows,
because only one row fires each time the table is executed. It
does, however, affect assigned values if an output refers to
another output that has already been assigned.

In the following example (Table D.5), both DATA_2 and
DATA_3 both receive the value 5 when the row fires, regardless
of the previous value of DATA_2.

Table D.5. Truth Tables: Micro-Step Execution

Inputs Outputs

CO_1 CO_2 DATA_1 DATA_2 DATA_3

* * * 5 DATA_2
D-16 Statemate MAGNUM

Execution of Action Truth Tables
D.13 Execution of Action Truth Tables

The following applies to truth tables that are either

• Bound to activities

• Defined as action bodies

Assignments are made within truth tables following the
Statemate step semantics. New values are sensed only at the
next step. Writing twice to the same element flags a write/write
racing error. This means that after an assignment is made, it is
not available for immediate use.

In the following example (Table D.6), DATA_2 receives the
value 5 and DATA_3 receives the previous value of DATA_2.

Table D.6. Action Truth Table Execution

Inputs Outputs

CO_1 CO_2 DATA_1 DATA_2 DATA_3

* * * 5 DATA_2
Statemate MAGNUM D-17

Truth Tables
D.14 “Factorization” of Cells

You can group vertically adjacent cells together and have the
same value applied to the entire group. This grouping, called
factorization, can be applied to all three columns in the truth
table—inputs, outputs, and actions.

D.14.1 Factorization of Inputs

While factorization of inputs is a labor saving device, it also has
an impact on the logic of the table and how it is implemented in
code. The table is evaluated from top to bottom, and from left to
right. The generated code, as well as the simulator, will match
this specified behavior.

Table D.7 is an example of factorization:

This is the resulting logic, shown in pseudo-code
representation:

if CO_1 then

 if CO_2 then

 if DI_1=1 and REC_1=REC_2 and ARR_1 = {1,2,3} then

 tr!(CON_3); DATA_2:=100;

 else

 if DI_1=2 then

Table D.7. Factorization of Inputs

Inputs Outputs

CO_1 CO_2 DI_1 REC_1 ARR_1 CON_3 DATA_2

True

True
1 REC_2 {1,2,3} True 100

2 * * True -1

False
3 * * True 1

5 * * True 2

False * * * * False 0
D-18 Statemate MAGNUM

Incorrect factorization—Example 1:
 tr!(CON_3); DATA_2:=-1;

 else

 if DI_1=3 then

 tr!(CON_3); DATA_2:=1;

 else

 if DI_1=5 then

 tr!(CON_3); DATA_2:=2;

else

 fs!(CON_3); DATA_2:=0;

Note that factorization of inputs is allowed from left to right
only. Reading from left to right, each subsequent factorization
of inputs must be a subset of all those to the left, as this example
illustrates.

The next two examples show incorrect implementations of
factorization to further illustrate the points explained above.

Incorrect factorization—Example 1:

Note that in this example, input column 2 is a subset of input
column 1 and this is not allowed.

Table D.8. Incorrect Factorization: Example 1

Inputs Outputs

CO_1 CO_2 CON_3 DATA_2

True
True

True 100

True True -1
Statemate MAGNUM D-19

Truth Tables
Incorrect factorization—Example 2:

Note that in this example, column 2 was not built so that each
factorization is a subset of all those to the left of it.

D.14.2 Factorization of Outputs and Actions

You may also factorize output and action rows to repeat the
same pattern. In contrast to factorization of input rows, this
does not affect the code generated from the truth table, and is a
labor-saving device only. Table D.10 is an example:

Table D.9. Incorrect Factorization: Example 2

Inputs Outputs

CO_1 CO_2 CON_3 DATA_2

True
1 True 100

2
False -1

False
True 1

3 False 2

Table D.10. Factorization of Outputs and Actions

Inputs Outputs

DATA_1 CON_3 DATA_2 DATA_3 DATA_4

1

True 0 1

DATA_5

2 DATA_6

3 DATA_7

4 DATA_9

5 DATA_10

6 DATA_11
D-20 Statemate MAGNUM

EDecluttering
Activities
n some models, the number of activities are too numerous
to draw within a single Activity-chart in an easily-read
manner. In this case, you may want to declutter the chart
to be able to depict the model more simply.

This appendix explains a method to declutter Activity-charts
(as opposed to decomposing them into multiple hierarchical
levels) using the Statemate Activity-chart Graphic Editor and
the Data Dictionary Editor.

E.1 Example

Activities are activated, deactivated, and suspended by the
controller that is at the same level as the activities being
controlled.

At times, you may find that the number of activities in a single
chart are too numerous or complex to be able to depict in an
easily-read manner.

In this event, you may want to declutter the chart; that is, take
one chart and break it out into several more easily-read charts,
while keeping the same semantic structure.

Basically, the process consists of two steps:

1. Analyzing the design for an alternate, decluttered
scheme.

2. Creating one or more transparent activities
encapsulating a portion of the design.

I

Statemate MAGNUM E-1

Decluttering Activities
Here is an example illustrating the steps for decluttering a
sample Activity-chart, named A0.

E.1.1 Procedure

1. Analyze the original chart to define an alternate scheme
to depict the structure more simply. In this example,
two more charts will be created, each containing a
portion of the total activities at this level.

2. Draw a new activity, A5, encapsulating activities A5_1
to A54_4.

Activity-chart ACT0 contains
12 activities, all
controlled by @SC1.

Figure E.1. Activity Chart A0
E-2 Statemate MAGNUM

Procedure
3. Select activity A5 and then select File>Open Sub-Chart.

Result: Activity A5 and its encapsulated activities are
now within a new chart named A5.

Activity A5 encapsulates
these eight activities.

Figure E.2. New Activity A5

New Activity-chart A5.

Figure E.3. New Activity Chart A5
Statemate MAGNUM E-3

Decluttering Activities
4. Open a Data Dictionary for A5 by selecting the chart
and then Tools>Data Dictionary.

5. On the Data Dictionary dialog,
select the Attributes button.

6. On the Attributes dialog, enter
an attribute name, TRANSPARENT_LEVEL. (Use
uppercase letters.)

7. Set the TRANSPARENT_LEVEL value to ON. (Use
uppercase letters.)

8. Select the Save button.

Note: When you re-view the saved Data Dictionary, you will see
that the Enforced column now has the value No beside
the TRANSPARENT_LEVEL attribute. This is the correct
setting.

9. Draw a second new activity, A54, encapsulating
activities A54_1 to A54_4 within it.

New Activity A54.

Figure E.4. New Activity A54
E-4 Statemate MAGNUM

Procedure
10. Repeat Steps 3-7 for Activity A54, creating a new
Activity-chart, and setting the TRANSPARENT_LEVEL
attribute value to ON.

Result: Now there are three charts, all of them easily
read. The Statechart (SC1) still controls all the
activities, as it did in the original, cluttered chart.

Hint: The lack of a controlling activity within a decluttered activity is the
visual clue that the activity is a decluttered one, versus a
decomposed activity. You may want, however, to provide a
textual note on the chart to remind readers of this fact.

New Activity-chart A54.

Figure E.5. New Activity Chart A54
Statemate MAGNUM E-5

Decluttering Activities
E-6 Statemate MAGNUM

FReferences
[D78] T. DeMarco, Structured Analysis and System Specification,
Yourdon Press, New York, 1978.

[DBC88] A. M. Davis, E. H. Bersoff and E. R. Comer, "A Strategy
for Comparing Alternative Software Development Life Cycle
Model", IEEE Transactions on Software Engineering 14 (1988),
1453-1461.

[DOD88] Military Standard: Defense System Software Development,
DOD-STD-2167A, U.S. Department of Defense, February 1988.

[G93] H. Gomma, Software Design Methods for Concurrent and
Real-Time Systems, Addison-Wesley, 1993.

[H87] D. Harel, "Statecharts: A Visual Formalisms for Complex
Systems", Science of Computer Programming 8 (1987), 231-274.
(Preliminary version appeared as Tech. Report CS84-05, The
Weizmann Institute of Science, Rehovot, Israel, Feb. 1984.)

[H88] D. Harel, "On Visual Formalisms", Comm. ACM 31 (1988),
514-530.

[H92] D. Harel, "Biting the Silver Bullet: Toward a Brighter
Future for System Development", Computer (January 1992), 8-
20.

[HLNPPST88] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M.
Politi, R. Sherman, A. Shtull-Trauring and M. Trakhtenbrot,
"STATEMATE: A Working Environment for the Development
Statemate MAGNUM F-1

References
of Complex Reactive Systems", IEEE Transactions on Software
Engineering, 16 (1990), 403-414.

[HN96] D. Harel and A. Naamad, "The STATEMATE Semantics
of Statecharts", ACM Transactions on Software Engineering and
Methodology, 5:4, October 1996, pp. 293-333.

 [HP85] D. Harel and A. Pnueli, "On the Development of
Reactive Systems", Logics and Models of Concurrent Systems, (K.
R. Apt, ed.), NATO ASI Series, Vol F-13, Springer-Verlag, New
York, 1985, pp. 477-498.

 [HTP87] D. Hatley and I. Pirbhai, Strategies for Real-Time System
Specification, Dorset House, New York, 1987.

[LW89] J.Z. Lavi and M. Winokur, "ECSAM—A Method for the
Analysis of Complex Embedded Computer Systems and their
Software", Proc. 5th Structured Techniques Association Conference,
Chicago, IL, May 1989.

[LK96] J.Z. Lavi and J. Kudish, "Systematic Derivation of
Operational Requirements Using the ECSAM Method", Proc.
IEEE Computer Society Israel 7th Conf. on Computer-Based Systems
and Software Engineering, June 1996.

[MP91] Z. Manna and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems: Specification, Springer-Verlag, New
York, 1991.

[SGW94] B. Selic, G. Gullekson and P.T. Ward, Real-Time Object-
Oriented Modeling, John Wiley & Sons, New York, 1994.

[R70] W. W. Royce, "Managing the development of large
software systems: Concepts and techniques", Proc. IEEE
WESCON, August 1970, pp. 1-9.

[WM86] P. T. Ward and S. J. Mellor, Structured Development for
Real-Time Systems, Yourdon Press, New York, 1986.
F-2 Statemate MAGNUM

[YC79] E. Yourdon and L. Constantine, Structured Design,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.
Statemate MAGNUM F-3

References
F-4 Statemate MAGNUM

Index

$

actions, 7-10
compound, 5-15
constructing, 5-11
entering or exiting a state, 5-22
iterative, 5-17
scheduled, 5-21

Activities
communication rules, 8-6

activities
context, 2-11
control, 7-5
data-driven, 2-25
environment, 12-9
external, 13-10
flow of information between, 2-12
implemented by modules, 10-12
mapping, 10-15
mapping to modules, 10-5
modules, 10-4
perpetual, 7-8
procedure-like, 2-25
queues, 8-18
specifying behavior of basic, 7-18
starting and stopping, 7-10
status, 7-12
suspending and resuming, 7-15
throughout and within states, 7-13

activity
behavior, C-12
external, C-12
primitive, C-12

Activity-charts
activities within, 2-8, 13-12
describing a module, 10-7
flow labels, A-29
information-flow components, A-29
module references in, 13-12
overview, 1-12
queues, 8-17

and-states
defining, 4-13

Arithmetic Functions, A-22
arithmetic functions, A-22

%

Basic types, A-21
behavioral views, 1-8, 4-2
bit-array functions, A-24

&

callbacks, C-13, C-14
charts

elements defined in, 13-4
generic, 1-20
hierarchy, 12-7
model, 12-6
multiple page, 11-2
offpage, 11-5
scoping rules, 13-7

combinational assignments, 7-22, A-27
Statemate MAGNUM Index-1

&��FRQWLQXHG�

compound
actions, 5-15
events, A-10
flow-lines, 2-32

Compound types, A-21
concurrency, 4-1
condition

connectors, 4-8, 4-20
events, A-11

conditions, 2-15, 3-6
constructing, 5-4
related to states, 4-16

connectors
condition, 4-8, 4-20
diagram, 4-23
fork, 2-27
history, 4-27
joint, 9-11
junction, 2-28, 4-21
offpage Statecharts, 11-13
switch, 4-20
termination, 7-7

constants, predefined, A-26
control activities, 7-5
control activity, 8-6

'

Data Dictionary
EWS example, B-7
expressions, 5-8

data-driven activity, 2-25
data-items, 2-15, 3-7, 8-6

constructing, 5-6
expressions, A-13
operators, A-16
structure, 3-11

data-stores, 2-20

decomposition, 2-2
functional, 7-2, 7-18
function-based, 2-3
multi-level state, 4-18
object-based, 2-5
process, 2-7

default transitions, 4-11
diagram connectors, 4-23

(

elements, 2-15
bit-wise operations, A-17
combinational assignments, A-27
naming (reserved words), A-2
naming boxes, A-6
naming generic instances, A-7
naming textual, A-5
numeric operations, A-16
reference activities, 13-5
scoping, 13-2
textual, 13-14
unresolved, 13-5
visibility, 13-2

enumerated types, A-30
environment activities, 12-9
events, 2-15, 3-4

broadcasting, 4-13
compound, A-10
constructing, 5-2
operators, A-9
related to states, 4-16
timeout, 5-20

execution components, 8-6
exponential functions, A-23
expressions

condition, A-11
data-item, A-13
data-type, A-21

external events, 4-5
Index-2 Statemate MAGNUM

)

flow-lines
between charts, 11-8
compound, 2-32
information-flows, 2-18
Module-chart, 9-7
overview, 2-12

for loop action, 5-17
fork connectors, 2-27
formal parameters, 14-9
functional

decomposition, 2-2, 7-2
views, 1-7, 2-1, 7-5, 10-2

functions
arithmetic, A-22
bit-array, A-24
exponential, A-23
graphical, C-15
predefined, A-22
random, A-23
string, A-25
trigonometric, A-22

*

generic charts, 1-20
Global Definition Sets (GDSs), 13-18

overview, 1-19
gotolink AppF

firstpage, 2-11
graphical functions, C-15

+

hierarchy, 4-1
history connectors, 4-27

,

internal events, 4-5

iterative actions, 5-17

-

joint connectors, 9-11
junction connectors, 2-28, 4-21

/

languages
model, 1-11
relationship between, 1-17

0

message queues, 8-13
methodology

overview, 1-2
mini-specs, 7-18

procedure-like, 7-20, A-27
reactive, 7-18, A-27

models
characteristics, 1-6
views, 1-7

Module-charts
information-flow components, A-29
overview, 1-15
structural view, 9-2

multi-level state decomposition, 4-18
multiple transitions, 6-2

1

non-determinate situations, 6-12

2

object-oriented analysis, 10-17
offpage charts, 11-5
Statemate MAGNUM Index-3

3

parameters
formal, 14-9
generic instances, A-29

predefined
constants, A-26
functions, A-22

Procedural Statechart, C-8
Procedural Statecharts, C-15
procedure-like

activities, 2-25
mini-specs, 7-20, A-27

procedures, C-1
proprietary information, ii

4

queue, as subroutine parameter, C-10
queues, 8-13

activities, 8-18
Activity-chart, 8-17
addresses, 8-20
introduction, 8-13
overview, 8-13
semantics, 8-13

5

racing situations, 6-13
random functions, A-23
reactive mini-specs, 7-18, A-27
records, 3-9
reserved words (Statemate), A-2
RETURN statement, C-15

6

scoping of chart elements, 13-2
Statechart labels, A-27
Statecharts

activities within, 13-8

Statecharts (continued)
associating with control activity, 7-5
features, 4-5
hierarchy, 4-9
labels, A-27
language, 4-1
overview, 1-13
Procedural, C-8
reactive mini-specs, A-27
semantics, 6-2
state reactions, A-27
states within, 13-9

Statemate
reserved words, A-2
tools, 1-20

static reactions, 5-23
String Functions, A-25
string functions, A-25
structural views, 1-8, 9-2, 10-2
subroutine

action statement, C-10
subroutines, C-2–C-7

action statements, C-5
associating with activities, C-12
context variables, C-6
functions, C-1
generated code, C-2
global element, C-5
history, C-5
parameter passing, C-6
procedures, C-1
queues, C-6
racing, C-5
return statement, C-3
scoping rules, C-2
Statemate action language, C-10
tasks, C-1
three types, C-1
trigger statements, C-5
types, C-1
using, C-2
using Statemate Action Language, C-3

switch connectors, 4-20
Index-4 Statemate MAGNUM

6��FRQWLQXHG�

systems
large-scale, 1-19
life cycle, 1-1
reactive, 1-4

7

termination connectors, 7-7
testbenches, 12-11
textual elements, 13-14, A-5
time

asynchronous, 6-11
handling, 6-10
synchronous, 6-11

timeout events, 5-20
timing

expressions, 5-20
trademarks, ii
transitions

multiple, 6-2
multiple enables, 6-12
to and from and-states, 4-24

triggers, 4-6
Trigonometric Functions, A-22

trigonometric functions, A-22
truth tables

introduction, D-1

8

unions, 3-9, 8-6
unresolved elements, 13-5
user-defined types, 3-13

overview, 1-20

9

views
behavioral, 1-8, 4-2
functional, 1-7, 2-1, 7-5
functional and structural, 10-2
structural, 1-8, 9-2

visibility of chart elements, 13-2

:

while loop action, 5-17
Statemate MAGNUM Index-5

End of Document
Click here to
return to the

Reference
Library
Statemate MAGNUM

	Modeling Reactive Systems with Statecharts: The Statemate Approach
	Preface
	Note from I-Logix

	Contents
	Ch 1. Introduction
	1.1 System Development and Methodologies
	1.1.1 Specification in a System Life Cycle
	1.1.2 Development Methodologies and Supporting Tools

	1.2 Modeling Reactive systems
	1.2.1 The Nature of Reactive Systems
	1.2.2 An Example: The Early Warning System
	1.2.3 Characteristics of Models
	1.2.4 Modeling Views of Reactive Systems
	1.2.5 Modeling Heuristics

	1.3 The Modeling Languages
	1.3.1 Activity-Charts
	1.3.2 Statecharts
	1.3.3 Module-Charts
	1.3.4 Relationships Between the Languages
	1.3.5 Handling Large Scale Systems

	1.4 The STATEMATE Toolset

	Ch 2. The Functional View: Activity-Charts
	2.1 Functional Description of a System
	2.1.1 Functional Decomposition
	2.1.2 Function Based Decomposition
	2.1.3 Object Based Decomposition
	2.1.4 System Context
	2.1.5 The Decomposition Process

	2.2 Activities and Their Representation
	2.2.1 The Hierarchy of Activities
	2.2.2 The Context of an Activity

	2.3 Flow of Information Between Activities
	2.3.1 Flow-lines
	2.3.2 Flowing Elements
	2.3.3 Information-Flows
	2.3.4 Data-Stores

	2.4 Describing the Behavioral Functionality of Activities
	2.4.1 Control Activities
	2.4.2 Activities in the Data Dictionary

	2.5 Connectors and Compound Flow- Lines
	2.5.1 Joint Connectors (Fork and Merge Constructs)
	2.5.2 Junction Connectors
	2.5.3 Diagram Connectors
	2.5.4 Compound Flow-Lines

	Ch 3. Information Elements
	3.1 Information Elements in the Model
	3.2 Events
	3.3 Conditions
	3.4 Data-Items
	3.4.1 Data-Items of Predefined Types
	3.4.2 Records and Unions
	3.4.3 Data-Item Structure

	3.5 User-Defined Types

	Ch 4. The Behavioral View: Statecharts
	4.1 Behavioral Description of a System
	4.2 Basic Features of Statecharts
	4.3 The Hierarchy of States
	4.4 Orthogonality
	4.4.1 And-States and Event Broadcasting
	4.4.2 Conditions and Events Related to States
	4.4.3 Multi-Level State Decomposition

	4.5 Connectors and Compound Transitions
	4.5.1 Condition and Switch Connectors
	4.5.2 Junction Connectors
	4.5.3 Diagram Connectors

	4.6 More About Transitions
	4.6.1 Transitions to and from And-States
	4.6.2 History Entrances

	Ch 5. The Textual Expression Language
	5.1 Event, Condition and Data-Item Expressions
	5.1.1 Event Expressions
	5.1.2 Condition Expressions
	5.1.3 Data-Item Expressions
	5.1.4 Named Expressions

	5.2 Actions
	5.2.1 Element Manipulation
	5.2.2 Compound Actions and Context Variables
	5.2.3 Iterative Actions

	5.3 Time-Related Expressions
	5.3.1 Timeout Events
	5.3.2 Scheduled Actions

	5.4 Static Reactions
	5.4.1 Reactions on Entering and Exiting a State
	5.4.2 General Static Reactions

	Ch 6. The Semantics of Statecharts
	6.1 Execution of the Model
	6.1.1 External Changes and System Reactions
	6.1.2 The Details of Status and Step

	6.2 Handling Time
	6.2.1 Sequentiality and Time Issues
	6.2.2 Time Schemes

	6.3 Non-Deterministic Situations
	6.3.1 Multiple Enabled Transitions
	6.3.2 Racing

	Ch 7. Connections Between the Functional and Behavioral Views
	7.1 Dynamics in the Functional Decomposition
	7.2 Dynamics of Activities
	7.2.1 Statecharts in the Functional View
	7.2.2 Termination Type of an Activity
	7.2.3 Perpetual Activities

	7.3 Controlling the Activities
	7.3.1 Starting and Stopping Activities
	7.3.2 Sensing the Status of Activities
	7.3.3 Activities Throughout and Within States
	7.3.4 Suspending and Resuming Activities

	7.4 Specifying Behavior of Basic Activities
	7.4.1 Reactive Mini-Specs
	7.4.2 Procedure-Like Mini-Specs
	7.4.3 Combinational Assignments

	Ch 8. Communication Between Activities
	8.1 Communication and Synchronization Issues
	8.2 Controlling the Flow of Information
	8.2.1 Elements Related to Flow of Information
	8.2.2 Interface Between “execution” Components

	8.3 Examples of Communication Control
	8.3.1 Communication Between Periodic Activities
	8.3.2 Message Passing

	8.4 Activities Communicating Through Queues
	8.4.1 Queues and Their Operation
	8.4.2 The Semantics of Queues
	8.4.3 Queues in an Activity-Chart
	8.4.4 Example of Activities Communicating Through Queues
	8.4.5 An Address of a Queue

	Ch 9. The Structural View: Module-Charts
	9.1 Structural Description: High-Level Design
	9.2 Internal and External Modules
	9.3 Communication Lines Between Modules
	9.3.1 Flow of Information Between Modules
	9.3.2 Physical Links Between Modules

	9.4 Connectors and Compound Flow- Lines

	Ch 10. Connections Between the Functional and Structural Views
	10.1 Relating the Functional and Structural Models
	10.1.1 Functional Description of a Module
	10.1.2 Allocating Activities to Modules
	10.1.3 Mapping Activities to a Module's Activities

	10.2 Activity-chart Describing a Module
	10.3 Activities Implemented by Modules
	10.4 Activities Associated with a Module's Activities
	10.5 Object-Oriented Analysis with Module-Charts

	Ch 11. Splitting Up Charts
	11.1 Separating a Chart into Multiple Pages
	11.2 Offpage Charts
	11.3 Connecting Offpage Charts by Matching Flows
	11.4 Connecting Offpage Statecharts Using Connectors

	Ch 12. Putting Things Together
	12.1 Relationships Between the Three Kinds of Charts
	12.2 A Chart in a Model
	12.3 Hierarchy of Charts
	12.4 Entities External to the System Under Description
	12.4.1 Environment Modules/Activities
	12.4.2 Testbenches

	Ch 13. Scope and Resolution of Elements
	13.1 Visibility of Elements and Information Hiding
	13.2 Defining, Referencing and Resolving Elements
	13.3 The Scope of Charts and Graphical Elements
	13.3.1 Referring to Charts and Box Elements
	13.3.2 Referring to Activities in Statecharts
	13.3.3 Referring to States in Statecharts
	13.3.4 External Activities/Modules
	13.3.5 Referring to Modules and Activities in Activity- Charts

	13.4 The Scope of Textual Elements
	13.4.1 Visibility of Textual Elements
	13.4.2 Naming Textual Elements
	13.4.3 More About Resolution of Textual Elements

	13.5 Global Definition Sets (GDS’s)

	Ch 14. Generic Charts
	14.1 Reusability of Specification Components
	14.2 Definition and Instances of Generic Charts
	14.2.1 Notation and Basic Rules of Generics
	14.2.2 Generic Charts in the Chart Hierarchy

	14.3 Parameters of Generic Charts
	14.3.1 Formal Parameters of a Generic Chart
	14.3.2 Actual Bindings of Parameters

	14.4 Referring to Elements In Instances

	Appx A. Names and Expressions
	A.1 Names
	A.1.1 Reserved Words
	A.1.2 Textual Element Names
	A.1.3 Box Element Names
	A.1.4 Names of Elements in Generic Instances

	A.2 Expressions
	A.2.1 Event Expressions
	A.2.2 Condition Expressions
	A.2.3 Data-Item Expressions
	A.2.4 Action Expressions
	A.2.5 Data-Type Expressions

	A.3 Predefined Functions
	A.3.1 Arithmetic Functions
	A.3.2 Trigonometric Functions
	A.3.3 Exponential Functions
	A.3.4 Random Functions
	A.3.5 Bit-array Functions
	A.3.6 String Functions

	A.4 Predefined Constants
	A.5 Reactions and Behavior of Activities
	A.5.1 Statechart Labels
	A.5.2 State Reactions and Reactive Mini-Specs
	A.5.3 Procedure-Like Mini-Spec
	A.5.4 Combinational Assignments

	A.6 Flow of Information
	A.6.1 Flow Labels and Information-Flow Components
	A.6.2 Actual Bindings of Generic Parameters

	A.7 Enumerated Types
	A.7.1 Defining an Enumerated Type
	A.7.2 Structure of Enumerated Types
	A.7.3 Specification of Values
	A.7.4 Distinct Values
	A.7.5 Non-Unique Values
	A.7.6 Referencing Non-Unique Values
	A.7.7 Naming Rules
	A.7.8 Enumerated Values and Textual Items
	A.7.9 Usage of Enumerated Types
	A.7.10 Enumerated Values Usage
	A.7.11 Constant Operators Related to Enumerated Types

	Appx B. Early Warning System Example: Functional Decomposition Approach
	B.1 Textual Description of the System
	B.2 The Model
	B.2.1 The Hierarchy of Charts
	B.2.2 The Charts

	B.3 The Data Dictionary

	Appx C. Subroutines
	C.1 Subroutines
	C.2 Procedural Statecharts
	C.3 Action Language Subroutines
	C.4 Associating Subroutines with Activities
	C.5 Callbacks
	C.6 Graphical Functions

	Appx D. Truth Tables
	D.1 Introduction
	D.1.1 Truth Tables Bound to Activities
	D.1.2 Truth Tables Defining Actions
	D.1.3 Truth Tables Representing Subroutines

	D.2 Creating Truth Tables—Overview
	D.3 Truth Table Format
	D.4 Special Characters
	D.5 Input Columns
	D.6 Output Columns
	D.7 Action Column
	D.8 Default Row
	D.9 Row Execution
	D.10 Truth Table Contents for Activities and Actions
	D.11 Truth Tables Contents for Subroutines
	D.12 Micro-Step Execution of Procedure Truth Tables
	D.13 Execution of Action Truth Tables
	D.14 “Factorization” of Cells
	D.14.1 Factorization of Inputs
	D.14.2 Factorization of Outputs and Actions

	Appx E. Decluttering Activities
	E.1 Example
	E.1.1 Procedure

	Appx F. References
	Index

