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Preface

his book provides a detailed description of a 
comprehensive set of languages for modeling reactive 
systems. The approach is dominated by the language of 
Statecharts, used to describe behavior, combined with a 

hierarchical language — Activitycharts — for describing the 
system's activities (i.e., its functional building blocks — 
capabilities or objects) and the data that flows between them. 
These two languages are used to develop a conceptual model of 
the system, which can be combined with the system's physical, 
or structural model, described in our third language —
Modulecharts. The three languages are highly diagrammatic in 
nature, constituting full-fledged visual formalisms, complete 
with rigorous semantics. They are accompanied by a Data 
Dictionary for specifying additional parts of the model that are 
textual in nature.

The approach described here lies at the heart of the 
STATEMATE system, which the authors have helped design 
and build at I-Logix Inc. since 1984. STATEMATE is most 
beneficial in requirements analysis, specification, and high-
level design. Besides supporting the modeling effort using the 
aforementioned language set, STATEMATE provides powerful 
tools for inspecting and analyzing the resulting models, via 
model execution, dynamic testing and code-synthesis.

This book discusses the modeling languages in detail, with an 
emphasis on the language of Statecharts, since it is the most 
important and intricate language in the set, and also the most 
novel one. Statecharts are used to specify the behavior of 
activities, whether these represent functions in a functional 

T
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decomposition or objects in an object decomposition. We 
describe the syntax in a precise and complete manner, and 
discuss the semantics in a way that is intended to render the 
model’s behavior clear and intuitive. Our presentation is 
illustrated extensively with examples, most of them coming 
from a single sample model of an early warning system (EWS). 
Appendix B provides a summarized description of this model.

Whenever possible, we have tried to explain our motivation in 
including the various features of the languages. We also 
provide hints and guidelines on such methodological issues as 
decomposition criteria and the order in which charts are to be 
developed.

While we do provide a brief description of the STATEMATE 
system beginning on page 1-20, this book is not intended as a 
user manual for STATEMATE, but rather, as a definitive 
description of its languages and a guide to their use. For more 
on STATEMATE’s capabilities, we refer the reader to the 
documentation supplied by I-Logix Inc.

This book should be of interest to a wide variety of systems 
developers (both in software and hardware), and to teachers 
and students of software and hardware engineering.

David Harel and Michal Politi, authors

Note from I-Logix

Due to product enhancements after the original publication of 
this book, additional material has been added by I-Logix. 

Ä  Appendix C, Subroutines

Ä  Appendix D, Truth Tables

Ä  Appendix E, Decluttering Activities
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1Introduction

his chapter describes the role of models in a system 
development life cycle, and characterizes reactive 
systems, the ones for which the languages of this book 
are particularly suited. It then introduces the early 

warning system (EWS), a reactive system that we shall use as 
our running example throughout the book. It also presents an 
overview of the modeling languages and a brief description of 
the STATEMATE toolset, which was built around the language 
of Statecharts, and which supports the modeling process and 
provides means for executing and analyzing the models, 
synthesizing code from them, and more.

1.1 System Development and 
Methodologies

We first describe the background for our work, and the context 
in which our modeling languages fit. 

1.1.1 Specification in a System Life Cycle

It is common practice to identify several phases in the 
development life cycle of a system, each of which involves certain 
processes and tasks that have to be carried out by the 
development team. The main phases of the classic waterfall 
model [R70] are: requirements analysis and specification, design, 
implementation, testing and maintenance. Over the course of the 
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Introduction
past twenty years, many variations of this model were 
proposed, as well as quite different approaches to the life cycle 
[DBC88]. Some of these are centered around prototyping, 
incremental development, reusable software or automated 
synthesis.

Most proposals for system development life cycle patterns 
contain a requirements analysis phase. Since correcting 
specification errors and misconceptions that are discovered 
during later stages of the system’s life cycle is extremely 
expensive, it is commonly agreed that thorough comprehension 
of the system and its behavior should be carried out as early as 
possible in the life cycle. Special languages are therefore used in 
the requirements analysis phase to specify a model of the system, 
and special techniques are used to analyze it extensively. As 
described later, we advocate various kinds of analysis, 
including model execution and code synthesis. In this book, we 
shall use the terms model and specification interchangeably.

The availability of a good model is important for all participants 
in the system’s development. If a clear and executable model is 
constructed early on, customers and subcontractors, for 
example, can become acquainted with it, and can approve of the 
functionality and behavior of the system before investing 
heavily in the implementation stages. Precise and detailed 
models are also in the best interest of the system’s designers and 
testers. And clearly, the specification team itself uses modeling 
as the main medium for expressing ideas, and exploits the 
resulting models in analyzing the feasibility of the specification.

1.1.2 Development Methodologies and Supporting 
Tools

A term commonly used in connection with the development 
process is methodology. A methodology provides guidelines on 
how to perform the processes that comprise the various phases. 
Concentrating on the modeling and analysis phase, we may say 
that a methodology consists of the following components: 
1-2 Statemate MAGNUM



Development Methodologies and Supporting Tools
• The methodology's underlying approach and the 
concepts it uses, i.e., the terms and notions used to 
capture the conceptual construct of the system and 
to analyze it.

• The notation used, i.e., the modeling languages with 
their syntax and semantics. Sometimes these contain 
constructs that are sufficiently generic to be relevant 
to several different concepts of the underlying 
approach. 

• The process prescribed by the methodology, i.e., 
which activities have to be carried out to apply the 
methodology and in what order, how does the work 
progress from one activity to the next, and what are 
the intermediate outputs or products of each. The 
methodology usually also provides heuristics for 
making the process more beneficial.

• The tools that can be used to help in the process.

This book is mainly about notation, in that it describes a set of 
modeling languages and illustrates their use. However, it also 
describes several concepts and notions that underlie a number 
of development methodologies. Thus, while our approach to 
modeling and analysis is not necessarily connected with any 
particular methodology, it is more compatible with some 
methodologies than with others (just as flexible programming 
languages can be used with very different program design and 
implementation methods, but might be more fitting for some 
specific ones). In particular, our approach can be used smoothly 
with variants of structured analysis [D79, DOD88], but also 
with other methodologies, such as object-oriented analysis. 
Moreover, although the book does not get into the details of any 
particular methodological process, we do describe the 
STATEMATE set of tools (from I-Logix, Inc.) later in the chapter. 
STATEMATE can be used in conjunction with several relevant 
methodologies to apply our modeling and analysis approach, 
and implements all features of the languages described in the 
book.
Statemate MAGNUM 1-3



Introduction
1.2 Modeling Reactive systems

As explained above, the heart of the specification stage is the 
construction of the system model. In this section we discuss the 
overall nature and structure of models, thus preparing for the 
subject matter of the book, which involves the modeling 
languages themselves. However, we should first say something 
about the kinds of systems we are interested in.

1.2.1 The Nature of Reactive Systems

Our modeling approach, particularly the Statecharts language, 
is especially effective for reactive systems [HP85, MP91], whose 
behavior can be very complex, causing the specification 
problem to be notoriously elusive and error-prone. Most real-
time systems, for example, are reactive in nature. 

A typical reactive system exhibits the following distinctive 
characteristics:

• It continuously interacts with its environment, using 
inputs and outputs that are either continuous in 
time, or discrete. The inputs and outputs are often 
asynchronous, meaning that they may arrive or 
change values unpredictably at any point in time1.

• It must be able to respond to interrupts, i.e., high-
priority events, even when it is busy doing 
something else.

• Its operation and reaction to inputs often reflects 
stringent time requirements.

• It has many possible scenarios of operation, 
depending on the current mode of operation and the 
current values of its data, as well as its past behavior.

1. This should be contrasted with transformational systems, in which the 
timing of the inputs and outputs is much more predictable. A 
transformational system repeatedly waits for all its inputs to arrive, carries 
out some processing, and outputs the results when the processing is done.
1-4 Statemate MAGNUM



An Example: The Early Warning System
• It is very often based on interacting processes that 
operate in parallel.

Examples of reactive systems include on-line interactive 
systems, such as automatic teller machines (ATMs) and flight 
reservation systems, computer embedded systems, such as 
avionics, automotive and telecommunication systems, and 
control systems, such as chemical and manufacturing systems.

1.2.2 An Example: The Early Warning System

Many of the characteristics mentioned above are present in the 
simple early warning system (EWS) that we use as an example 
throughout this book to illustrate the ideas and features of the 
languages. The EWS monitors a signal arriving from outside, 
checks whether its value is in some predefined range, and if not 
it notifies the operator by an alarm and appropriate messages. 
This is a general kind of system, the likes of which can be found 
in a variety of applications. Here is a brief informal description 
of the EWS, that will become useful for understanding the 
details later on. 

The EWS receives a signal from an external sensor. When 
the sensor is connected, the EWS processes the signal and 
checks if the resulting value is within a specified range. If 
the value of the processed signal is out of range, the system 
issues a warning message on the operator display and 
posts an alarm. If the operator does not respond to this 
warning within a given time interval, the system prints a 
fault message on a printing facility and stops monitoring 
the signal. The range limits are set by the operator. The 
system becomes ready to start monitoring the signal only 
after the range limits are set. The limits can be re-defined 
after an out-of-range situation has been detected, or after 
the operator has deliberately stopped the monitoring. 

See Figure 1.1 for the schematic structure of the EWS.
Statemate MAGNUM 1-5



Introduction
1.2.3 Characteristics of Models

A system model constitutes a tangible representation of the 
system’s conceptual and physical properties, and serves as a 
vehicle for the specifier and designer to capture their thoughts. 
In some ways, it is like the set of plans drawn by an architect to 
describe a house. It is used mainly for communication, but 
should also facilitate inspection and analysis. The modeling 
process involves conceiving of the elements relevant to the 
system and the relationships between them, and representing 
them using specific well-defined languages. When the model 
reflects some pre-existing descriptions, e.g., requirements 
written in natural language, it is useful to keep track of how the 
components of the developing model are derived from the 
earlier descriptions.

To achieve their goal in enabling the systems developers to 
model a system, our modeling languages have been designed 
with several important properties in mind: to be intuitive and 
clear, to be precise, to be comprehensive, and to be fully 

Figure 1.1.  The early warning system
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executable. To achieve clarity, elements of the model are 
represented graphically wherever possible; for example, nested 
box shapes are used to depict hierarchies of elements, and 
arrows are used for flow of data and control. For precision, all 
features in the languages have rigorous mathematical 
semantics, which is a prerequisite for carrying out meaningful 
analysis. Comprehension comes from the fact that the 
languages have the full expressive power needed to model all 
relevant issues, including the what, the when, and the how. As 
to executabilty, the behavioral semantics is detailed and 
rigorous enough to enable the model to be both executed 
directly, like a computer program, and to be translated into 
running code for prototyping and even for implementation 
purposes.

1.2.4 Modeling Views of Reactive Systems

Building a model can be considered as a transition from ideas 
and informal descriptions to concrete descriptions that use 
concepts and predefined terminology. In our approach, the 
descriptions used to capture the system specification are 
organized into three views, or projections, of the system: the 
functional, the behavioral and the structural.

The functional view captures the “what”. It describes the 
system's functions, processes or objects, also called activities, 
thus pinning down its capabilities. This view also includes the 
inputs and outputs of the activities, i.e., the flow of information 
to and from the external environment of the system, as well as 
the information flowing among the internal activities. For 
example, the activities of the EWS include sampling the input 
signal, comparing the read signal value with the predefined 
limits, and generating an alarm. The information flows in the 
EWS include the signal that flows from the external sensor, the 
operator commands that are input from the operator console, 
and the message and alarm notification that are output to the 
operator.
Statemate MAGNUM 1-7



Introduction
The behavioral view captures the “when”. It describes the 
system's behavior over time, including the dynamics of 
activities, their control and timing behavior, the states and 
modes of the system, and the conditions and events that cause 
modes to change and other occurrences to take place. It thus 
also provides answers to questions about causality, 
concurrency and synchronization. In the EWS example, the 
behavioral view might identify those states in which the system 
is waiting for commands, processing the signal, generating an 
alarm, or setting up new limit values. The behavioral view 
would also identify the events that cause transitions between 
these states, e.g., it would specify what causes the system to 
generate an alarm, or when the processing stops and the set-up 
procedure starts. Hence, it specifies precisely when the 
activities described in the functional view are active, and when 
the information actually flows between them.

There is a tight connection between the functional and 
behavioral views. On the one hand, activities and data-flow 
need dynamic control in order to come to life, and, on the other 
hand, the behavioral aspects are all but worthless if they have 
nothing to control. Technically, each activity in the functional 
view can be provided with a behavioral description given in the 
behavioral view, whose role it is to control the activity's internal 
parts, i.e., its subactivities and their flow of information.

The structural view captures the “how”. It describes the 
subsystems, modules or objects constituting the real system, 
and the communication between them. The EWS could be 
specified in the structural view to consist of an operator 
monitor, a control and computation unit, a signal processor, an 
alarm generator, and so on.

While the two former views provide the conceptual model of the 
system, the structural view is considered to be its physical model, 
since it concerns itself with the various aspects of the system's 
implementation. As a consequence, the conceptual model 
usually involves terms and notions borrowed from the problem 
1-8 Statemate MAGNUM



Modeling Views of Reactive Systems
domain, whereas the physical model draws more upon the 
solution domain.

The main connection between the conceptual and physical 
models is captured by specifying the modules of the structural 
view that are responsible for implementing the activities in the 
functional view. For example, the EWS activity that compares 
the input signal with the predefined limit values is 
implemented in the control and computation unit.

Figure 1.2.  The three specification views
Statemate MAGNUM 1-9
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1.2.5 Modeling Heuristics

Modeling heuristics are guidelines as to how the notation 
should be used to model the system. This involves several 
issues, such as:

• The mapping between the methodology's concepts 
and the elements allowed in the notation. If the 
notation is flexible and its constructs can be used to 
depict several different concepts, this mapping has 
to be defined carefully.

• The type of decomposition to be used. Some 
possibilities are decompositions that are function 
based, object based, mode based, module based, and 
scenario based. Which one is chosen depends, in 
general, on the conceptual base of the methodology, 
although within a given methodology there is often 
some flexibility, according to the nature of the 
system and the role the model will play in the overall 
development effort. In the context of our notation, 
this issue is mainly relevant to the functional view 
and will be discussed further in Chapter 2.

• The step-by-step order of the modeling process. 
Which view are we to start with? Should we be 
working in a bottom up or top down fashion? Again, 
this is an issue that mostly depends on the 
methodology, but it also depends on what is already 
known about the system. 

In addition, modeling guidelines are often concerned with more 
marginal details, such as naming conventions and the number 
of allowed offspring in each decomposition level, as well as 
layout rules for improving the model's aesthetics and clarity.

In this book we do not mean to address or recommend any 
specific global methodology. Although most parts of our 
running example will use one particular method, we will 
mention other possibilities too.
1-10 Statemate MAGNUM



The Modeling Languages
1.3 The Modeling Languages

The three views of a system model are described in our 
approach using three graphical languages: Activity-charts for 
the functional view, Statecharts for the behavioral view, and 
Module-charts for the structural view. Additional nongraphical 
information related to the views themselves and their inter-
connections is provided in a Data Dictionary. See Figure 1.3. 

Some of the basic ideas that make up our languages have been 
adapted from other modeling languages, such as data-flow 
diagrams, state-transition diagrams, data dictionaries and mini-
specs. However, they include many extensions that increase 
their expressive power and simplify and clarify the model. In 
addition, all the languages have precise semantics, so much so, 
that models can be fully executed, or translated into other 
executable formalisms, such as software code. We now briefly 

Figure 1.3.  The modeling languages
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Introduction
describe the modeling languages and their main connections. 
As we shall see, the general visual style, as well as many of the 
conventions and syntax rules, are common to all three.

1.3.1 Activity-Charts

Activity-charts can be viewed as multi-level data-flow 
diagrams. They capture functions, or activities, as well as data-
stores, all organized into hierarchies and connected via the 
information that flows between them. We adopt extensions that 
distinguish between data and control information in the arrow 
types, and also provide several kinds of graphical connectors, as 
well as a semantics for information that flows to and from non-
basic activities. 

Figure 1.4 illustrates some of these notions using the EWS 
example. We see internal activities, such as GET_INPUT, 

Figure 1.4.  An activity-chart
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Statecharts
SET_UP and COMPARE, external activities, such as OPERATOR 
and SENSOR, a data-store LEGAL_RANGE, data flows, such as 
RANGE_LIMITS and SAMPLE, control flows, such as COMMANDS 
and OUT_OF_RANGE, and the control activity EWS_CONTROL, 
whose internal description is to be given in the language of 
statecharts for the behavioral view. Notice how the hierarchy of 
activities is depicted graphically by encapsulation, so that a 
single chart can represent multiple levels of activities.

In addition to the graphical information, each element in the 
description has an entry in the Data Dictionary, which may 
contain nongraphical information about the element. For 
example, the activity entry contains fields called mini-spec and 
long description, in which it is possible to provide formal and 
informal textual descriptions of the activity’s workings. See 
Figure 1.5.

Activity-charts are described in detail in Chapter 2. 

1.3.2 Statecharts

Statecharts [H84] constitute an extensive generalization of state-
transition diagrams. They allow for multi-level states, 

Figure 1.5.  An activity entry in the Data Dictionary
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decomposed in an and/or fashion, and thus support 
economical specification of concurrency and encapsulation. 
They incorporate a broadcast communication mechanism, 
timeout and delay operators for specifying synchronization and 
timing information, and a means for specifying transitions that 
depend on the history of the system’s behavior. 

Figure 1.6 contains a statechart taken from the EWS model. It 
consists of a top-level state EWS_CONTROL which is 
decomposed into two substates. One of the substates, ON, is 
decomposed into two parallel behavioral components, 
MONITORING and PROCESSING; each of these is further 

Figure 1.6.  A statechart
1-14 Statemate MAGNUM



Module-Charts
decomposed into exclusive states. This means that the system 
must be simultaneously in two states, each from a different 
component. For example, when the statechart starts, the system 
is in WAITING_FOR_COMMAND and in DISCONNECTED. The 
chart also depicts events that cause transitions, such as 
ALARM_TIME_PASSED, which causes the system to go from the 
GENERATING_ALARM state to WAITING_FOR_COMMAND, and 
RESET, which causes the system to leave both COMPARING and 
GENERATING_ALARM and enter WAITING_FOR_COMMAND. 
Some transitions are guarded by conditions, like the one from 
WAITING_FOR_COMMAND to COMPARING, which is taken when 
the event EXECUTE occurs, but only if the condition 
in(CONNECTED) is true, namely, the system is in the 
CONNECTED state of the SAMPLING component. Some transition 
labels contain actions, which are to be carried out when the 
transitions are taken. For example, when moving from 
COMPARING to GENERATING_ALARM the system sends a HALT 
signal to the PROCESSING component.

Here too, each element in the statechart has an entry in the Data 
Dictionary, which may contain additional information. For 
example, an event entity can be used to define a compound 
event by an expression involving other events and conditions.

Statecharts are discussed in Chapters 4, 5 and 6.

1.3.3 Module-Charts

A module-chart can also be regarded as a certain kind of data-
flow diagram or block diagram. Module-charts are used to 
describe the modules that constitute the implementation of the 
system, its division into hardware and software blocks and their 
inner components, and the communication between them
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Figure 1.7 shows a module-chart for the EWS. It contains 
internal modules, such as the control and computation unit 
(CCU), the SIGNAL_PROCESSOR, and the OPERATOR_MONITOR. 
The latter module contains the submodules KEYBOARD and 
SCREEN. (Here too, the hierarchy of modules is depicted by 
encapsulation.) The module-chart also contains environment 
modules, such as OPERATOR and SENSOR, and it is noteworthy 
that these are similar to the external activities depicted in the 
functional view. The communication signals between modules 
includes KEY_PRESSING from the OPERATOR to the 
KEYBOARD, the ALARM_SIGNAL from the CCU to the 
ALARM_SYSTEM, and so on.

Elements of the module-charts also have entries in the Data 
Dictionary, in which additional information can be specified.

Module-charts are described in Chapter 9.

Figure 1.7.  A module-chart
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1.3.4 Relationships Between the Languages

The relationships between the concepts of the three views are 
reflected in corresponding connections between the three 
modeling languages. Most of these connections are provided in 
the Data Dictionary, and they serve to tie the pieces together, 
thus yielding a complete model of the system under 
development.

The main relationship between the functional and behavioral 
views is captured by the fact that statecharts describe the 
behavior and control of activities in an activity-chart. We thus 
associate a statechart with each control activity in an activity-
chart. In Figure 1.4, the @ symbol denotes that the statechart 
named EWS_CONTROL (which appears in Figure 1.6) is to be 
taken as the “contents” of the control activity.

Another relationship between activity-charts and statecharts 
involves activities that are specified as being active throughout 
states. For example, in the Data Dictionary entry for the state 
COMPARING, we can specify that the activity COMPARE is 
active throughout (see Figure 1.8). This means that 
COMPARE will start when the state COMPARING is entered and 
will terminate when it is exited.  

There are ways to directly refer to activities from within a 
statechart. For example, the event sp(SET_UP), that labels a 

Figure 1.8.  Specifying an activity throughout a 
state
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transition in Figure 1.6, occurs when the activity SET_UP 
terminates (the sp stands for stopped). It causes the transition 
from the SETTING_UP state to WAITING_FOR_COMMAND.

Chapters 7 and 8 are devoted to the connections between 
activity-charts and statecharts.

The relationships between the conceptual and physical models 
of the system are reflected in connections between activity-
charts and module-charts. One such connection involves 
specifying which module implements a given activity. This is 
done in the activity entry of the Data Dictionary. For example, 
in the entry for the COMPARE activity we might say that 
COMPARE is implemented in the CCU module. 

Another connection involves associating an activity-chart with 
a specific module in the module-chart, thus describing the 
module’s functionality in detail. This kind of association is 
specified in the Data Dictionary entry for the module. For 
example, the activity-chart EWS_ACTIVITIES (which was 
shown in Figure 1.4) describes the functionality of the EWS 
module. See Figure 1.9. 

Chapter 10 is devoted to describing these relationships.  

Figure 1.9.  An activity-chart describing a module
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1.3.5 Handling Large Scale Systems

Methodological approaches, and in particular the models that 
they recommend constructing, are essential for developing 
large systems. Our own approach is thus intended primarily for 
such systems. These involve vast quantities of information and 
numerous components and levels of detail, as well as portions 
that may appear repeatedly in many parts of the model. Such 
systems are usually developed by several separate teams. Our 
languages support features designed specifically to ease in this 
work.

Although a single chart can describe a multi-level hierarchy of 
elements, it is not advisable to overuse this capability when the 
model grows beyond a certain size. Accordingly, our languages 
allow splitting large hierarchical charts into separate ones. See 
Figure 1.10, in which a separate chart is used to describe the 
contents of activity A. 

Chapter 11 is devoted to this subject.  

A related issue involves coping with visibility and information 

Figure 1.10.  Splitting up charts
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hiding by setting scoping rules of elements in the model. It is 
also possible to introduce global shared information in a model 
component called a global definition set. This is analogous to the 
scoping issue in programming languages. 

Scoping is discussed in Chapter 13.

A very important feature of our languages is that of generic 
charts, which allow reusing parts of the specification. A generic 
chart makes it possible to represent common portions of the 
model as a single chart that can be instantiated in many places, 
and in this it is similar to a procedure in a conventional 
programming language.

Generic charts are described in Chapter 14.

Another feature that contributes to reusability is that of user-
defined types, described in Chapter 3. This feature makes it 
possible to define a data type that will be used for many data 
elements in the model.

1.4 The STATEMATE Toolset

We now provide a very brief description of the STATEMATE 
toolset [HLNPPST88], which supports the languages and 
approach presented here. STATEMATE was intended primarily 
to help address the goals of the specification stage, though it 
supports some of the activities carried out in other stages too. 
See Figure 1.11 for a schematic overview of the STATEMATE 
toolset

We should note that the modeling approach presented here has 
a life of its own, whether or not it is used in conjunction with a 
computerized tool. Moreover, there are other tools in existence, 
both commercial and of research nature, that support 
statecharts and other aspects of the approach. We describe 
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STATEMATE here both because we have been part of the team 
that designed it and because it still seems to be the most 
powerful tool of its kind available.  

For entering the information contained in the model, 
STATEMATE has graphic editors for the three graphical 
languages, as well as a Data Dictionary. It carries out syntax 
checking and tests for consistency and completeness of the 
various parts of the model. While constructing the model the 
specifier can link original textual requirements to elements of 
the model. These links can be used later in requirement 
traceability reports. STATEMATE also provides extensive means 
for querying the model’s repository and retrieving information 

Figure 1.11.  The Statemate toolset

1

Note 1. Effective with Statemate MAGNUM v2.0, Analysis is done using Simulation Testing and Static Testing. 
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from it. A number of fixed-format reports can be requested, and 
there are document generation facilities with which users can 
tailor their own documents from the information constituting 
the model.

Our view of system development emphasizes “good” 
modeling, but it also regards as crucial the need to enable a user 
to run, debug and analyze the resulting models, and to translate 
them into working code for software and/or hardware. 
Accordingly, STATEMATE has been constructed to 
“understand” the model and its dynamics. The user can then 
execute the specification, by emulating the environment of the 
system under development and letting the model progress in 
response.

Using STATEMATE, the model can be executed in a step-by-step 
interactive fashion or by batch execution. In both cases, the 
currently active states and activities are highlighted with 
special coloring, resulting in an (often quite appealing) 
animation of the diagrams. It is also possible to execute the 
model under random conditions, and in both typical and less 
typical situations. A variety of possible results of the executions 
can be accumulated, to be inspected and analyzed later.

We should note that it is possible to execute only part of the 
model (in any of the execution modes), as long as the portion 
executed is syntactically intact. This implies that there is no 
need to wait until the entire model is specified in order to carry 
out executions, and even an incomplete model can be executed 
and analyzed. Moreover, it is possible to attach external code to 
the model, to complete unspecified processing portions, to 
produce input stimuli, or to process execution results on line. 
This openness enables STATEMATE to be linked to other tools.

STATEMATE also supports several dynamic tests, which are 
intended to detect crucial dynamic properties, such as whether 
a particular situation can be reached starting in a given state. 
These tests are carried out by the tool using a form of exhaustive 
execution of scenarios. We shall not get into a discussion of the 
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feasibility of such exhaustive executions here; the reader is 
referred to [H92] for some comments on the matter.

Once a model has been constructed, and has been executed and 
analyzed to the satisfaction of the specifiers, STATEMATE can be 
instructed to translate it automatically into code in a high-level 
programming language. This is analogous to the compilation of 
a conventional program into assembly language, whereas 
model execution is analogous to its direct interpretation. 
Currently, translations into Ada and C are supported. A variant 
of STATEMATE enables translation into hardware description 
languages VHDL and Verilog. Code supplied by the user for 
bottom-level basic activities can be appropriately linked to the 
generated code, resulting in a complete running version of the 
system. The resulting code is sometimes termed prototype code, 
since it is generated automatically and reflects only those design 
decisions made in the process of preparing the conceptual 
model. It may not always be as efficient as final code, though it 
runs much faster than the executions of the model itself, just as 
compiled code runs faster than interpreted code. For some 
kinds of systems, however, this code is quite satisfactory.

One of the main uses of the synthesized code is in observing the 
model performing in circumstances that are close to its final 
environment. The code can be ported and executed in the actual 
target environment, or – as is more realistic in most cases – in a 
simulated version of the target environment. To this end, 
STATEMATE makes it possible to construct a “soft” version of 
the user interface of the final system, which can then be 
activated, driven by the synthesized code. The resulting setup 
can be used to debug the model by subcontractors and 
customers, for example.

Associated with the code synthesis facility is a debugging 
mechanism, with which the user can trace the executing parts of 
the code back up to the model using back animation. The 
requirements traceability feature makes it possible to trace 
problems back up to the (textual) requirements.
Statemate MAGNUM 1-23



Introduction
For more on these topics, we refer the reader to the STATEMATE 
documentation supplied by I-Logix Inc.
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2The Functional View: 
Activity-Charts

his chapter deals with the language of Activity-charts, 
which is used to depict the functional view of the system 
under development. We describe how the functionality 
of a system is specified by a hierarchy of functional 

components, called activities, what kinds of information are 
exchanged between these activities and manipulated by them, 
how this information flows and how it is stored, and so on.

Many of the concepts and notions represented in this view are 
quite well known, and are not specific to our approach. They are 
used in other notations and methods, perhaps with small 
variations. In fact, Activity-charts can be viewed as a variant of 
hierarchical data flow diagrams, but they embody many 
enhancements and use some special terms and notations.

2.1 Functional Description of a 
System

The functional description of a system specifies the system’s 
capabilities. It details the functional components, or activities, 
that the system is capable of carrying out, and how these 
components communicate through the flow of information 
among them. It does so in the context of the system’s 
environment, i.e., it defines the environment with which the 
system interacts and the interface between the two.

The functional view does not address the physical and 
implementational aspects of the system. As to the dynamic and 
behavioral issues, it attempts to separate them from the 

T
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functional description whenever possible, but, as we shall see, 
there are tight relations between functionality and behavior.

For example, the functional view is appropriate for telling 
whether a medical diagnosis system can monitor a patient’s 
blood pressure, and, if so, where it would get its input data and 
which functions would have access to the output data. 
However, to deal with such issues as the conditions under 
which the monitoring is started and the question of whether it 
can be carried out in parallel to temperature monitoring, the 
behavioral view must be considered, as well as its connections 
with the functional view. These crucial parts of modeling the 
system are described in Chapters 4 to 8.

The structural view, which deals with sensors, processors, 
monitors, software modules, and so on, is described in 
Chapters 9 and 10.

2.1.1 Functional Decomposition

The main method for describing the functionality of a system in 
our approach is that of functional decomposition, by which the 
system is viewed as a collection of interconnected functional 
components (or activities, as they are called in our terminology), 
organized into a hierarchy. Thus, each of the activities may be 
decomposed into its subactivities, repeatedly, until the system 
has been specified in terms of basic activities, which are those 
that the specifiers have decided require no further 
decomposition. Basic activities are specified using alternative 
means, such as textual description, formal or informal, or code 
in a programming language. The intended meaning of the 
functional decomposition is that the capabilities of the parent 
activity are distributed between its subactivities. The order in 
which these subactivities are performed and the conditions that 
cause their activation or deactivation are not explicitly 
represented in the functional view, and are usually specified in 
the behavioral view, as discussed in later chapters.
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Note that the term functional decomposition is usually identified 
with the Structured Analysis methodology, in which the 
functional components of a system are functions in the 
mathematical sense of the word. Here we use this term in a 
broader meaning, where the main idea is to decompose the 
functionality of the entire system into activities, the functional 
components, which may very well be reactive in nature, and 
which together capture the whole picture.

The activities themselves can represent different concepts used 
in conventional modeling techniques. They can be objects, 
processes, functions, use cases, software procedures, logical 
machines, or any other kind of functionally distinct entity.

Which of these is selected depends on the modeler’s preference, 
but it is recommended to try to stick to a common type of 
functional component, based on a single conceptual approach 
or methodology. To some extent, this selection dictates the 
nature of the interface and communication between the 
activities, and also some of the behavioral aspects.

In the following subsections we discuss two types of 
decomposition: function based decomposition, in which the 
activities are system functions and object based decomposition, in 
which they are objects. Both styles are illustrated by the EWS 
example of Chapter 1.

2.1.2 Function Based Decomposition

In function based decomposition the activities are (possibly 
reactive) functions. To illustrate it, we consider the EWS 
example. We start from a narrative that describes its 
functionality, and reorganize it into the following list of 
requirements:

• The EWS receives a signal from an external sensor.

• It samples and processes the signal continuously, 
producing some result.
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• It checks if the value of the result is within a 
specified range, that is set by the operator.

• If the value is out of range, the system issues a 
warning message on the operator display and posts 
an alarm.

• If the operator does not respond within a given time 
interval, the system prints a fault message on a 
printing facility and stops monitoring the signal.

As the first step of our functional description of the EWS, we 
identify the various functions that are called for by these textual 
requirements:

SET_UP: receives the range limits from the operator.

PROCESS_SIGNAL: reads the “raw” signal from the sensor and 
performs some processing to yield a value that is to be 
compared to the range limits.

COMPARE: compares the value of the processed signal with the 
range limits.

DISPLAY_FAULT: issues a warning message on the operator 
display and posts an alarm.

PRINT_FAULT: prints a fault message on the printing facility.

Notice that the description of the activities also contains 
information about the data they handle. An activity may 
transform its input information into output information, to be 
consumed by other functions that can be either internal or 
external to the system. For example, the activity 
PROCESS_SIGNAL transforms its input, the raw signal, into a 
value that is checked by the COMPARE function. (The signal 
processing can be a simple conversion of an analog signal into a 
digital representation at a fixed rate. Of course, it could also be 
a more complex transformation, such as computing the average 
value over some time interval.)
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In the function based decomposition approach the interface of 
an activity is described in terms of input and output signals, 
both data and control. Also, the model will usually present the 
source activity of input information and the target activity of 
output information.

2.1.3 Object Based Decomposition

In an object based approach, the decomposition is defined by 
the entities on which operations are performed, or, 
alternatively, is based on the active agents, or the active 
components of the system (these are called logical machines in 
the ROOM methodology [SGW94]). In our approach, the 
interface between objects consists of the events and messages 
that cause the internal operations to take place, and sometimes 
also the data that is used in these operations, just as in function 
based decomposition. This is somewhat different from object-
oriented design paradigms (OOD), where an object’s interface 
consists of its operations.

To illustrate, we decompose the functionality of the EWS 
system into the following components, using encapsulation 
guidelines that are often presented in object-oriented methods. 
When applicable, a component is characterized by its subject 
and associated operations:

SIGNAL_PROCESSOR: handles the signal from the sensor; it 
reads the signal, processes the read value, and checks the 
processed signal against the legal range.

FAULT_HANDLER: consists of all functionality related to fault 
situations; it handles a fault occurrence by issuing the alarm, 
printing the fault report, and resetting the fault situation.

RANGE: handles the range limits against which the processed 
signal is compared; it reads the range limits provided by the 
operator, validates the read values, stores the current legal 
range, and makes its values and status available to the other 
objects.
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MMI_HANDLER: takes care of all interaction with the operator 
(i.e., the man machine interface); it accepts commands and data 
from the operator, and displays messages and other 
information.

CONTROLLER: controls the behavior of the entire system.

This decomposition is not overly detailed, and some of the 
components can be further decomposed into lower level objects 
that help them accomplish their goals.

2.1.4 System Context

One of the first decisions that should be taken when developing 
a system involves its boundaries, or context. We must determine 
the entities that are part of the system's environment – and these 
can be other systems, or functions or objects (depending on the 
decomposition approach) – and how they communicate with 
the system itself.

In both approaches to the EWS description above some of the 
inputs can be seen to come from outside the system and some of 
the outputs are sent outside. For example, in the function based 
decomposition, the raw signal consumed by PROCESS_SIGNAL 
comes from the SENSOR, which is not part of the specified 
system but belongs to the environment. Similarly, the printed 
message produced by PRINT_FAULT is sent to the OPERATOR, 
which is also external to the EWS. In the object based 
decomposition, the interaction with the environment is handled 
by the MMI_HANDLER that interfaces with the OPERATOR, and 
by the SIGNAL_PROCESSOR that reads the signal from the 
SENSOR.

As a result, we may now decide that the EWS's environment 
consists of two external entities, or systems: the (presumably 
human) OPERATOR and the SENSOR (see Figure 2.1).
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Figure 2.1.  The context of the EWS

The system context is sometimes given as part of the 
requirements, before the beginning of the specification process. 
However, it is often the responsibility of whoever carries out the 
functional description to determine the best way to set up the 
system boundaries. For example, we could have defined the 
specification boundaries of the EWS differently, since they were 
not given as part of the textual description, removing the 
printing facility from the system itself and turning it into an 
external entity.

2.1.5 The Decomposition Process

Some specification methodologies based on functional 
decomposition provide guidelines as to how the subfunctions 
ought to be defined and the order in which the functional 
description should actually be prepared. According to one of 
these methodologies, the analyst should start by describing the 
system’s context, i.e., the environment entities and the 
information flowing between them and the system itself. The 
process is then continued in a top-down manner, proceeding 
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from the description of the entire system to the description of its 
subfunctions, then to their subfunctions, etc. Alternatively, a 
bottom-up approach may be adopted, whereby the basic, 
lowest-level functions are to be specified first and are used as 
building-blocks to construct higher-level functions. We shall 
not address such methodological issues of order and process 
here; rather, we concentrate on the way the concepts relevant to 
the functional view of specification can be expressed in our 
languages.

The functional view is specified in our approach by Activity-
charts, together with a Data Dictionary that may contain 
additional information about the elements appearing in the 
charts. The following sections describe the details of the 
Activity-charts language. Almost all our examples will use 
function based decomposition, although the same language 
constructs can be used for other approaches, such as the object 
based one.

2.2 Activities and Their 
Representation

2.2.1 The Hierarchy of Activities

The activities in an activity-chart are depicted as rectangular or 
rectilinear solid-line boxes, and the subactivity relationship is 
depicted by box encapsulation. An activity’s name appears 
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inside its box. Figure 2.2 shows one level of the decomposition 
of the EWS system.  

Figure 2.2.  First level decomposition of an activity

The overall activity of the system has been named 
EWS_ACTIVITIES. In function based decomposition it is useful 
to use verbs for names of activities, with or without a qualifying 
noun, as we have done for the subactivities in Figure 2.2. This 
helps convey the purpose of the functions the activities 
perform. In other decomposition approaches some other 
naming policy may be more appropriate. In any case, names 
must follow the rules of legal element name, i.e., they start with 
an alphabetic character, and consist of alphanumeric characters 
and underscores. See Appendix A, page A-1.

We may further decompose subactivities into sub-subactivities 
on lower levels, and the new activities may be drawn inside 
their parent activities in the same chart. See Figure 2.3, in which 
SET_UP is decomposed into three sub-subactivities. We use the 
terms descendants and ancestors to denote subactivities and 
parent activities, respectively, on any level of nesting. Activities 
that have no descendants are termed basic, while those that do 
are called non-basic. Two activities with a common parent may 
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not have the same name, but subactivities of different parents 
may be named identically.   

Figure 2.3.  Multi-level decomposition of an activity

All the activities appearing in the examples above are referred 
to as internal regular activities, to distinguish them from other 
types of activities participating in the functional description, 
which are discussed later.

Like many of the elements in our languages, some of the 
information related to activities is represented non-graphically. 
Each activity has a corresponding item in the Data Dictionary, 
which may contain additional information about it, such as 
textual descriptions, attributes, and relationships with other 
elements. Parts of the activity’s Data Dictionary item are used to 
complete the description of its functionality, as discussed in 
Describing the Behavioral Functionality of Activities, beginning on 
page 2-22.

Note: You can also reduce the number of activities depicted at a 
single hierarchical level, while retaining the same 
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structure, for easier readability. See E, Decluttering 
Activities, for details.

2.2.2 The Context of an Activity

The functional description of a system may consist of multiple 
activity-charts, linked together. Each such chart focuses on a 
portion of the system’s functionality. It may describe the 
functionality of the entire system or that of some of its 
subsystems, or it may concentrate on some specific capability, 
object or process being defined as a functional component in the 
higher level decomposition. In each of the cases, it is important 
to delineate the borders of the described portion, separating it 
from its environment, and to represent the flow of information 
between the two.

Each activity-chart contains one top-level box, with solid-line 
edges. This box represents the top-level activity of the chart, and 
its borderline separates this activity (and its internal 
description) from its environment. The components that 
constitute the environment are always referred to as external 
activities of the considered chart, although they may correspond 
to physical modules, humans, or activities or data-stores that 
are internal to other activity-charts in the overall model. Of 
course, they may also be real environment entities, external to 
the entire system under description. This issue will become 
clearer in later chapters, where the relations between charts in a 
full model are described. 

External activities are depicted as boxes with dashed-line edges, 
which are located outside the top-level activity. They have the 
same names as the modules, the humans, the other activities 
(external, internal or control), or the data-stores that they 
represent in other parts of the specification.

For example, the environment of the EWS, as presented in 
Figure 2.1, consists of two components, the OPERATOR and the 
SENSOR. They are drawn as external activities in the activity-
Statemate MAGNUM 2-11



The Functional View: Activity-Charts
chart of Figure 2.5 that describes the overall functionality of the 
EWS.

Several external boxes in an activity-chart may bear the same 
name, in which case they are considered as representing the 
same external activity, and are merely duplicated to help de-
clutter the chart. Thus, for example, a flow-line (see below) that 
represents the flow of information between an internal activity 
and an external one can be drawn to connect to the closest 
occurrence of the latter activity. When the identity of a 
particular external component is unknown or is irrelevant, it 
may be represented by an unnamed external activity box.

External activities are beyond the scope of the chart and are 
therefore not decomposed further into subactivities. Later we 
shall see that representing information flow between them is 
not allowed either.

2.3 Flow of Information Between 
Activities

2.3.1 Flow-lines

To complete the functional view of the system, we complement 
the description of the activities themselves with the 
identification of inputs and outputs and the flow of information 
among subactivities.

We use the word “flow” to capture the communication and the 
transfer of information between activities. This flow of 
information can serve as a means not only to transfer data but 
also to post commands and to synchronize by exchanging 
control signals. As in data flow diagrams, we use labeled 
arrows for the visual representation of this flow. We refer to 
these connections as a-flow-lines (for activity-chart flow-lines), 
or just flow-lines for short.
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The label on a flow-line denotes either a single information 
element that flows along the line (i.e., a data-item, a condition or 
an event), or a group of such elements. We call a grouping of 
several information elements an information-flow. The flowing 
elements are used to specify communication according to the 
general specification approach that is adopted by the modeler. 
In particular, in the functional decomposition method they 
correspond to data and control flow.

A flow-line originates from its source activity, that is, the activity 
that produces the information elements described in the flow-
line’s label, and it leads to its target activity, that is, the one that 
consumes those elements. The communicating activities may 
belong to different levels in a multi-level activity-chart (see 
Figure 2.4), but they cannot be both external. 

Referring to Figure 2.4, we say that Y flows from A1 to B1 and U 
flows from A1 to A2. We also say that Y is an output of A and an 
input of B, since the flow-line labeled with Y exits A and enters 
B, crossing their respective borderlines.  

Figure 2.4.  Flow of information among levels

One of the graphical features present in all of our languages is 
that an arrow can be connected to a non-basic box. In general, 
this means that the arrow is relevant to all the sub-boxes 
contained within the box in question. (See the discussion of this 
feature in the general setting of highgraphs in [H88].) In activity-
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charts, this feature can take the form of a flow-line that leads to 
the edge of a non-basic activity A but does not cross it. The 
arrow is taken to represent flow of information to all A’s 
descendants. For example, the signal Z in Figure 2.4 is accessible 
to both A1 and A2. Similarly, an arrow departing from the 
borderline of a non-basic activity denotes the possibility that the 
corresponding information is produced by any of the 
descendant activities. For example, the arrow on the right hand 
side of Figure 2.4, emanating from B and labeled by V, can 
represent a global variable that is modified by the two activities 
B1 and B2, but is used only by B2. Note that this convention 
enables us to replace several flow-lines from/to subactivities by 
one arrow from/to the parent, thus better representing the 
modeled flow. We also use this convention in cases where most 
of the subactivities consume or produce the information but we 
do not want to specify exactly which.

Two types of flow-lines are allowed in Activity-charts: data flow-
lines, drawn as solid arrows, and control flow-lines, drawn as 
dashed arrows. Typically, control flow-lines carry information 
or signals that are used in making control decisions, e.g., 
commands or synchronization messages, while data flow-lines 
carry information that is used in computations and data-
processing operations. The different line types are intended to 
make this distinction visually. There are no clear criteria for 
deciding whether the flow of a given information element 
should be represented by a control flow-line or a data flow-line, 
but very often the source or target of a control flow-line will be 
the control activity that makes control decisions, as described in 
the next section.

Looking ahead to Figure 2.5 for a moment, we see an illustration 
of the interface of the activity EWS_ACTIVITIES with its 
environment, and the flow of information between its 
subactivities. The figure illustrates both data and control flow-
lines. The SIGNAL flowing along the data flow-line from the 
SENSOR to PROCESS_SIGNAL is used in data processing, while 
the OPERATOR’s COMMANDS, flowing along the control flow-line, 
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are used to decide control issues, such as which activities will be 
activated.

As hinted above, flow-lines in an activity-chart do not, by 
themselves, represent any specific method of transferring the 
information between the activities they connect, nor do they 
enforce or imply any timing specifications. Flow-lines may 
represent a variety of means for information transfer, such as 
parameter passing to procedures or global variables in software 
programs, messages transferred along transmission lines in 
distributed systems or through queues between tasks in real-
time software applications, as well as signals flowing along 
physical links in hardware systems. They can also be used to 
represent the flow of tangible matter or energy.

The flow itself can be continuous or discrete in time, and the 
target and source activities are not necessarily active at the time 
of writing or reading the transferred data. Only an event 
appearing on a flow-line does imply some timing constraints, 
since it is an information element with a specific time-related 
behavior. A special kind of element which is discussed later on, 
called a data-store, can be used to depict the presence of 
persistent data for lengthy periods, but a regular flow-line can 
serve the same purpose. Nevertheless, we shall emphasize that 
the dynamic aspects of the actual data transfer are not described 
in the activity-chart but in the statecharts or mini-specs 
associated with the relevant activities, as explained in 
Chapter 8.

2.3.2 Flowing Elements

We have already said that the information that flows between 
activities and is processed by them is an essential component of 
the functional view of a system. There are several types of 
information elements that may flow between activities: events, 
conditions, and data-items. The differences are in their domains of 
values and their timing characteristics. Any of them can appear 
as the label of a flow-line.
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Events are instantaneous signals used for synchronization 
purposes. They indicate that something has happened. In the 
EWS example, the activity COMPARE issues the event 
OUT_OF_RANGE to indicate that the tested value has been 
determined to be out of the expected range.

Conditions are persistent signals that may be either true or 
false. For example, the OPERATOR in the EWS model sets the 
condition signal SENSOR_CONNECTED, whose truth value 
indicates whether or not the SENSOR is connected to the system 
– an essential prerequisite to activating the signal processing.

Data-items may hold values of various types and structures, 
like variables in programming languages. They can be of basic 
types, such as integer, real, bit, string, etc., or of grouped types 
like records or unions. They can also be arrays or queues. In the 
EWS, the SIGNAL that comes from the SENSOR to be processed 
by the PROCESS_SIGNAL activity is of a numeric type (integer 
or real), while the LEGAL_RANGE, to which the processed value 
is compared, is a record consisting of two numeric fields: 
HIGH_LIMIT and LOW_LIMIT.

Figure 2.5 illustrates how these elements appear in the activity-
chart labeling the flow-lines. The top-level activity, 
EWS_ACTIVITIES, is surrounded by external activities, and 
the figure represents both the interface with the environment 
and the internal flow of information. Among other subactivities 
of EWS_ACTIVITIES, the figure shows the activity 
EWS_CONTROL, which is a special type of activity – a control 
activity – that will be discussed in Control Activities, beginning 
on page 2-22.
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Figure 2.5.  EWS_ACTIVITIES, its environment and 
flow of information

All three types of information elements, events, conditions and 
data-items, can be organized in an array structure. The flow of 
information between activities can consist of an entire array, 
denoted by its name, with no indexing notation. When an 
activity deals with individual components of an array we can 
label the flow-line with the component identification. A typical 
such case is shown in Figure 2.6, where each of three similar 
activities, A1, A2 and A3, takes care of one component of an 
array V, and produces a corresponding component of an array 
W. Similarly, a flow-line can be labeled by a portion of an array, 
such as V(1..8), or by a record or a union component, such as 
R.X.
Statemate MAGNUM 2-17



The Functional View: Activity-Charts
Figure 2.6.  Array components labelling flow-lines

Information elements do not just appear along flow-lines. Their 
main use is in behavioral description. Using the Data 
Dictionary, one can define an information element that depends 
on the status or values of other elements. For example, we may 
define an event whose occurrence depends on the occurrence of 
other events, or a data-item whose value is expressed by values 
of other data-items. Information elements that have been 
defined in such a way cannot be used as labels on flow-lines. 

We shall return to the information elements in more detail in 
Chapters 3 and 5.

2.3.3 Information-Flows

The number of flow-lines in an activity-chart can be reduced by 
grouping information elements into an information-flow, which 
is used to label a common flow-line, thus helping a viewer to 
better comprehend the specification. The contents of the 
information-flow are defined in the Data Dictionary, associated 
with the name of the information-flow, as illustrated in Figure 
2.7. In the figure, the information-flow COMMANDS, labeling a 
flow-line from OPERATOR to the control activity, is a compact 
representation of three separate flow-lines, each of which is 
labeled by an individual component event. Using the three 
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commands, SET_UP, EXECUTE, and RESET, the OPERATOR 
controls the operation of the EWS.   

Figure 2.7.  Information-flow COMMANDS in Data 
Dictionary

We should emphasize that since an information-flow is merely 
an abbreviation of several flow-lines, the elements it contains do 
not necessarily flow together. Also, an information-flow may be 
further decomposed into other information-flows, or into 
concrete information elements (data-items, conditions, events, 
or array or record components).

Another way of utilizing the information-flow feature is to 
consider it as the name of a link (or interface) between activities. 
This idea may be used as follows: at an initial stage, before 
getting into more detail, we can connect activity A1 to activity 
A2 by a flow-line labeled with some non-committing 
information-flow, such as A1_TO_A2. The contents of this line 
may then become increasingly more concrete, by filling in more 
of its contents in the corresponding information-flow item in 
the Data Dictionary. Clearly, this can be carried out repeatedly 
for nested information-flows. In any case, we expect the 
contents of all information-flows to be eventually specified in 
full.
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2.3.4 Data-Stores

As mentioned earlier, there are no restrictions on the time that 
data resides on a flow-line. Data produced by the source activity 
is available to the target activity even when the source activity 
is no longer active. In this sense, a flow-line may be viewed as a 
kind of storage unit. Nevertheless, it is often more natural to 
incorporate an explicit data-store in the chart, which serves to 
represent information that is stored for later use. In addition, a 
data-store may be used to specify the aggregation of large 
volumes of data, continuously accumulating over time. Data-
stores can be used to describe a buffer in computer memory, a 
message queue, a file on a disk, a database, or even a single 
variable. In object based decomposition, a data-store can be 
used to encapsulate the object data.

Information is written into the data-store by one or more 
activities and can be read by other (possibly the same) activities. 
Thus, the data-store can be viewed as a “passive” activity, i.e., 
one that does not change or produce information.

Data-stores are drawn as rectangular boxes with dashed 
vertical edges. The name of a data-store may be any legal name 
(see page A-1), but it must be unique among its sibling activities 
and data-stores.

Data-stores are always basic; they cannot contain other data-
stores or activities. The internal structure of a data-store may be 
defined by associating it with a data-item. To do this, a data-
item is defined in the Data Dictionary with the same name as 
the data-store. Any structure then given to this data-item is 
inherited by the data-store. For example, to specify that the 
data-store Q is a queue containing records of a certain type, say, 
MESSAGE, one defines the data-item Q in the Data Dictionary as 
a queue of the user-defined type MESSAGE, the structure of 
which is described separately.

In the EWS example, we might want to show that the record 
LEGAL_RANGE, composed of HIGH_LIMIT and LOW_LIMIT, is 
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stored in a data-store by the SET_UP activity and is consumed 
by COMPARE. To represent this, the flow-line labeled 
LEGAL_RANGE in Figure 2.5, is replaced by a data-store 
LEGAL_RANGE that contains the appropriate record, and which 
is then connected to the source and target activities. The 
appropriate part of the resulting diagram is presented in Figure 
2.8. LEGAL_RANGE is defined as a record data-item in the Data 
Dictionary, as shown in Records and Unions, beginning on 
page 3-9.  

Figure 2.8.  Data-store containing LEGAL_RANGE data

Notice that the lines flowing to and from the data-store 
LEGAL_RANGE are not labeled. This is because we can name the 
data-store with the same name as the data-item flowing to or 
from it, in which case the labels on the corresponding flow-lines 
can be omitted. However, in general, a data-store’s inputs and 
outputs can be any information elements, even when there is a 
data-item matched (by name) to this data-store. Data-stores can 
also store control elements, to be used for control decisions, so 
that control flow-lines can flow to and from data-stores too. 
Nevertheless, it is meaningless to have an event, which is of 
transient nature, stored in, or flowing to or from, a data-store.

Data-stores cannot be drawn as part of the activity-chart’s 
environment. The components of the environment are always 
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drawn as external activities even when their functionality is that 
of storage.

Textual descriptions of data-stores, and the relationships they 
may have with other elements, are entered in the Data 
Dictionary.

2.4 Describing the Behavioral 
Functionality of Activities

We have seen that the functionality of the system is described 
by decomposing activities into subactivities and data-stores, 
and identifying the information that flows between them. This 
can be done repeatedly, until basic activities are reached, but it 
is not enough to present the full picture.

For non-basic activities, which are decomposed into 
subactivities, we must provide information about the 
behavioral dynamics of the decomposition. In the methodology 
of Hatley and Pirbhai [HTP87], this issue is covered by what 
they call process activation tables. Other approaches deal with 
this differently. In our approach, we use the control activities 
for this (and more), as will be seen below. For describing the 
behavior of basic activities, there are other means, which are 
specified via the Data Dictionary entry associated with the 
activity.

Describing the behavior of activities in our approach is a broad 
subject, and is discussed in many of the later chapters. The 
present section should be viewed as an introduction.

2.4.1 Control Activities

In many systems, the activities at each level of the functional 
decomposition perform their functions in a simple fashion. 
Some are continuously active, consuming their inputs and 
producing their outputs periodically. Others start their active 
period when their inputs arrive and stop when they have 
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produced the outputs corresponding to these inputs. 
Sometimes, the behavior of activities follows more intricate 
patterns. 

The way these aspects are addressed in our approach is by 
introducing special control activities, which are drawn as 
subactivities of regular internal activities, and whose function is 
to control their sibling activities. For example, as we shall see in 
Chapter 7, a control activity may explicitly start and stop its 
sibling activities. In the EWS model, EWS_CONTROL is 
responsible for determining the activation and deactivation of 
all the activities on the same level, i.e., SET_UP, 
PROCESS_SIGNAL, COMPARE, etc. (See Figure 2.9.)  

Figure 2.9.  A control activity in an activity-chart

The control activity will typically receive signals from the 
siblings it controls or from other sources, make decisions based 
on them and, then, in turn, start and stop the activities it 
controls and produce signals that are consumed by its 
environment. In our example, the control activity 
EWS_CONTROL receives and reacts to the commands of the 
OPERATOR, and also to the OUT_OF_RANGE event generated by 
the COMPARE activity. (See Figure 2.5.)
Statemate MAGNUM 2-23



The Functional View: Activity-Charts
The control activity is depicted as a rectangle with rounded 
corners, and it cannot have subactivities. Rather, its 
specification is described in the language of Statecharts, the 
graphical language for modeling behavior. The control activity 
points to the statechart describing its behavior through its 
name, as explained in Chapter 7. The Statecharts language is 
described in Chapter 4, and the way a statechart controls the 
behavior of activities is discussed in Chapter 7.

Each activity may have at most one control activity. When an 
activity requires no further decomposition and its behavior can 
be conveniently described by a statechart alone, the control 
activity is its only subactivity. This situation is common in 
certain highly-reactive systems. Like other elements, the control 
activity has an associated item in the Data Dictionary.

2.4.2 Activities in the Data Dictionary

As mentioned earlier, almost every element in our models has a 
corresponding entry in the Data Dictionary, in which various 
kinds of textual information about the element can be specified. 
Such additional information can be formal (i.e., possessing 
some semantics that is relevant to the model and its behavior) 
or informal. Some kinds of textual information are relevant to 
all types of elements, such as a one line short description and an 
unlimited textual long description. These narrative additions, 
especially the long description, can be used to provide 
information about the element in an informal language, for the 
record. In addition, the general mechanism of an attribute pair, 
name and value, can be used to associate special characteristics 
with the element, as we shall see later on. The Data Dictionary 
can also be used to associate a synonym with the element, 
usually a shorter name that is easier to incorporate into a 
detailed chart.

In the case of activities, the long description is very often used 
to add functional specification in a textual language that is not 
an integral part of our approach, such as an unstructured 
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natural language. This additional information can be attached 
to basic or non-basic activities alike.

On the other hand, for basic activities, our approach supports a 
number of formal executable textual descriptions that specify 
specific patterns of behavior. These too are associated with the 
activity in its Data Dictionary entry. The patterns are:

• A reactive event-driven activity is continuously 
“active” in an idle state, and constantly waits for an 
event to occur and to cause it to perform some 
action. It then returns to being idle until the next 
event happens. An example of such an activity is a 
simple keyboard driver that accepts key press events 
and locally performs a very simple operation and/or 
transfers a command to some other activity. A 
reactive event-driven activity can be described by a 
reactive mini-spec which is a list of reactions, each one 
consisting of a trigger event and its implied action; 
see Figure 2.10(a). More complex reactive activities 
are described by statecharts, as we shall see, but 
simple event/action ones require no statechart, and 
they can be described by a reactive mini-spec.

• A procedure-like activity, when invoked, performs a 
sequence of operational statements and then stops. 
An example of such an activity is the 
VALIDATE_RANGE subactivity of the range SET_UP 
activity of the EWS. It is invoked when the user has 
inserted the range limits, and it checks the validity of 
the values, returning the check results. A procedure-
like activity can be described by a procedure-like mini-
spec which is simply a list of actions; see Figure 
2.10(b).

• A data-driven activity is also continuously “active”, 
checking to detect any changes in the values of its 
inputs. When any of them changes value, the activity 
computes new output values and resumes its 
waiting. A logical gate in an integrated circuit is an 
example of a simple data-driven activity. In the EWS 
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example, the COMPARE function has a subactivity 
COMPUTE_IN_RANGE which is data-driven; it 
continuously monitors the processed signal and 
compares it to the legal range limits to calculate an 
IN_RANGE condition. (When this condition becomes 
false the COMPARE function issues the 
OUT_OF_RANGE event.) A data-driven activity can be 
described by a collection of combinational assignments, 
which are ordinary-looking assignment statements 
that continuously compute the activity’s outputs 
based on its inputs; see Figure 2.10(c). 

Figure 2.10.  Data Dictionary entries describing 
activities
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Mini-specs and combinational assignments are described in 
detail in Chapter 7.

2.5 Connectors and Compound Flow-
Lines

Let us return to the technical mechanisms we provide for 
representing the flow of information between activities. Flow-
lines in activity-charts can be combined using various types of 
connectors. The main motivation for this is to economize in the 
number of arrows, to reduce clutter, and to provide a clearer 
and more intuitive graphical representation. We refer to the 
resulting connected object, consisting of a number of flow-lines 
and connectors, as a compound flow-line. We now discuss the 
various types of connectors.

2.5.1 Joint Connectors (Fork and Merge Constructs)

A fork construct allows us to represent a single information 
element as flowing from one source to several targets. Instead 
of drawing separate lines departing from the source, we can 
draw a single departing line, which then splits up into separate 
arrows at a convenient place in the chart. For example, instead 
of drawing two separate lines emanating from COMPARE and 
labeled with OUT_OF_RANGE_DATA, as we did in Figure 2.5, we 
can abbreviate as shown in Figure 2.11. 

Figure 11.  A joint 
connector (a fork 
construct)
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Similarly, we can represent common information flowing from 
several sources to a single target by joining them at some 
convenient point before they reach their target. This is called a 
merge construct, and it indicates that the target may receive the 
information from either of several sources.

In both constructs, fork and merge, we refer to the connection 
point as a joint connector. The compound flow-line, consisting 
of the connected segments, may have several sources and 
several targets but only a single associated flowing element 
(which may actually be an information-flow consisting of 
several data elements). As to location, the flow element 
common to the entire construct can label any of the compound 
flow-line’s segments.

2.5.2 Junction Connectors

Another way of reducing the number of lengthy flow-lines in an 
activity-chart is to use a junction connector. Several flow-lines 
conveying different information elements may be connected 
using a junction connector, to form a single flow-line that 
emanates from or enters a common box or connector.

Figure 2.12 illustrates several uses of junction connectors. 
Figure 2.12(a) contains three actual flows: X flows from A1 to B, 
Y flows from A2 to B, and Z flows from A3 to B. Notice that the 
line segment from the junction connector to B is unlabeled as it 
is used only to connect the different flowing elements to the 
common target.

The case of a common source is similar. In Figure 2.12(b), the 
flow-line that carries the three flow elements from A to the 
junction connector is labeled XYZ. In the Data Dictionary we 
define the element XYZ to be an information-flow containing X, 
Y and Z as components. Clustering flowing elements in this way 
and using the combined information-flow to label the common 
arrow is usually done when there is some logical relationship 
between the flowing elements; the additional name helps to 
clarify this relationship.
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Figure 2.12(c) illustrates how a number of junction connectors 
may be combined. Nine potential routes exist from the activities 
on the left to those on the right. However, the labeling used 
excludes six. The only three that represent actual flows are: X 
from A1 to B1, Y from A2 to B2, and Z from A3 to B3. A 
compound line with contradicting flow labels (such as the one 
composed of the segments labeled X and Y), is not considered a 
viable compound flow-line.  

Figure 2.12.  Junction connectors

If we want to show more than one element flowing along a 
single line, they can be combined using an information-flow. In 
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fact, consider the example in Figure 2.12(d). It represents three 
compound flow-lines, each of which carries XYZ and has a 
single source and a single target. Notice that the same diagram, 
but drawn with a joint connector instead of a junction 
connector, represents a single compound flow-line with one 
source and three targets. In this particular case the two are 
semantically equivalent, and although we used a junction 
connector a joint connector might be preferred because it 
emphasizes the fact that the same information is available to all 
three targets.

The junction connector is sometimes used with a record data-
item and its components. In the EWS example, the COMPARE 
activity can be decomposed into two subactivities: one 
compares the processed signal SAMPLE with the HIGH_LIMIT 
field of LEGAL_RANGE, and the other compares it with the 
LOW_LIMIT field, as shown in Figure 2.13. The junction 
connector is used here to direct the fields of the record to two 
different target activities.  

Figure 2.13.  A junction connector with record fields

2.5.3 Diagram Connectors

When the source of a flow-line is far from its target, we can 
avoid drawing a lengthy arrow by using a diagram connector. 
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The arrow emanating from the source ends in a named 
connector, and its continuation emanates from a second 
connector with the same name, which is positioned closer to the 
target. The pair of identically named connectors are identified 
as the same logical entity, and the result has the same meaning 
as a junction connector connecting the two arrows. It is 
important to emphasize that the arrow segments are matched 
according to the names of the connectors and not according to 
the labels along the segments. As a consequence, the label can 
be omitted from one of the segments.

Any legal name (see Appendix A, page A-1) may be used to 
label the diagram connectors, as can any integer number. Thus, 
one can use names that indicate the identity of the target (as in 
Figure 2.14), flowing signal names, or simply serial numbers. 

Figure 2.14.  A diagram connector

To make life even easier, we allow more than two diagram 
connectors to have the same name and thus denote the same 
logical junction. Several arrows can then emanate from or enter 
a common diagram connector, but all arrows connected to the 
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same occurrence of the connector must flow in the same 
direction.

2.5.4 Compound Flow-Lines

The various types of connectors presented above can be used to 
construct a variety of compound flow-lines. The compound flow-
lines are really the logical flow-lines that depict the actual flow 
between activities (or the other box-like entities in our other 
languages). When connectors are not used, a simple arrow that 
flows directly from one box to another depicts the actual flow, 
the logical flow-line consisting of a single segment. In Figure 
2.5, for example, no connectors are used, and all logical flow-
lines are actually simple flow-lines (ones consisting of a single 
segment).

We have seen that a joint connector yields a single compound 
flow-line with multiple sources or multiple targets, while a 
junction connector produces multiple compound flow-lines. 
Diagram connectors are interpreted as junctions, and as such 
they can represent multiple compound flow-lines, although 
they can also be used in a way that results in a single flow-line.

The segments constituting a compound flow-line can be data 
flow-lines or control flow-lines. When both types appear in a 
single compound flow-line, the entire combination will be 
considered to be a control flow-line if the final segment that 
leads to the target is a control flow-line. The reason for this is the 
fact that the type of flow is determined by the way the target 
uses the flowing information.
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3Information 
Elements

his chapter deals with the information elements of our 
languages: events, conditions and data-items. The data-
items can be of simple predefined types or compound user-
defined types. All information elements are defined in the 

Data Dictionary, and they can be used in both graphical charts 
and textual constructs. Each is defined as belonging to a 
particular chart or a global definition set, that is, to one of the 
specification components that make up the entire model. 
Information elements obey certain scoping rules that are 
described in Chapter 13.

3.1 Information Elements in the Model

The interface of the entire system, as well as that of each 
component, is an essential part of the specification and design 
capturing the way it communicates with its environment. In 
many methodologies (with the exception of object-oriented 
design methods, where things are somewhat different), a major 
part of the interface consists of a set of information elements 
that flow to and from the system or component. Very often the 
system development starts with the interface already given, and 
the specifier has to construct the model accordingly.

The interface specification must fit the nature of the system 
under description and its environment. For example, if the 
system communicates with a hardware environment, the 
interface may be specified in terms of bits in a connector 
structure; in communication systems, the interface description 
may consist of a message structure, sometimes adhering to an 
industrial standard or a pre-defined protocol. The information 

T
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modeling can be on a very concrete level – listing the bits of the 
connector or computer word, or on a higher level – involving 
abstract events, conditions and data-items. While the modeler 
in our approach is encouraged to use abstractions, a bit is 
supplied as one of the predefined types.

For example, assume that one of the functional components of 
the EWS is the operator panel driver, through which the 
OPERATOR inserts the commands and the range limits. The 
driver interprets the OPERATOR input and conveys it to the 
appropriate activity. The operator panel consists of the 
following components:

• Three command buttons:
set-up, for starting the setup procedure;
execute, for starting the execution mode;
reset, for transforming the system into an idle mode.

• Ten digit keys, 0 to 9, for entering the range limits.

• An Enter key for indicating the entry end of a range 
limit value.

• A Sensor Connected switch for indicating that the 
sensor is connected.

These elements can be represented on various levels of 
abstraction. The three commands can be referred to as events, 
or, alternatively, they can be three bit data-items; the range 
limits can be modeled by a bit-array of ten bits presenting the 
ten digits sent one at a time, or by whole numeric values, and so 
on. To some extent, the choices depend on whether such 
decisions have already been made, i.e., whether the interface is 
given or is awaiting the design or implementation phase.

As another example, the fault report of the EWS is basically a 
textual report consisting of the following information 
components:

• The time when the fault occurred.

• The out of range value, which is the computed value 
after the processing.
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• The legal range limits.

Again, different levels of abstraction can be used here, 
depending on where the borders of the specification are placed. 
The fault report can be modeled as a string of limited length, as 
an array of strings – one for each line in the report, or as a record 
of the numeric values that specify the report contents without 
being too precise about the implementation details.

Information elements are used not only in specifying interfaces, 
but also in the detailed behavioral and functional specification. 
It is very natural to use them to describe the logic and control of 
algorithms and to specify computations, just like the way 
variables are used in programming languages.

It is only natural to translate the requirement: “the system 
checks if the value of the result of the processing is within the 
specified range” to a construct that contains a condition 
expression such as:

(SAMPLE > LEGAL_RANGE.LOW_LIMIT) and 

(SAMPLE < LEGAL_RANGE.HIGH_LIMIT)

Here, SAMPLE denotes the processed value, and the allowed 
limits of the range are captured by the two fields of the record 
LEGAL_RANGE. All these elements are conventional real values, 
and can be compared by the standard kinds of relation symbols 
such as “<” and “>”.

In our notation, information elements can appear along the 
flow-lines of activity-charts and module-charts, and in the 
textual constructs used in behavioral and detailed functional 
descriptions. They appear in reactions, triggers and actions, and 
in other expressions in statecharts, mini-specs and 
combinational assignments, as well as in the parameters of 
generic charts. We will see examples of these in the coming 
chapters.
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Information elements and user-defined types are defined in the 
Data Dictionary, where their type and structure are specified. 
The names follow the naming rules of Appendix A, page A-1. 
As for all kinds of elements appearing in the Data Dictionary, 
we may attach additional information to these elements, such as 
synonyms, textual descriptions and user-defined attributes, 
using the standard mechanisms of the Data Dictionary. Some 
examples are given in the more detailed sections that follow. 
We can also use information elements whose values depend on 
other elements. Actually, these are named expressions, like 
macros and aliases in conventional programming, and are also 
defined using the Data Dictionary.

The following sections describe the particular types of 
information elements and the user-defined types. The way 
these elements are used in behavioral descriptions will be 
discussed in Chapters 4 to 8, particularly Chapter 5.

3.2 Events

Events are communication signals that indicate that something 
has happened. Very often they are used for synchronization 
purposes. When they flow they do not convey any content or 
value, only the very fact that they have occurred. They are thus 
instantaneous, and if not immediately sensed they are lost.

In the EWS example, the activity COMPARE sends the event 
OUT_OF_RANGE to the control activity (through a control flow-
line) to indicate that the tested value is not in the expected 
range. This event is an indication to the control activity that it 
should start its response to a fault occurrence, i.e., posting an 
alarm and issuing a fault message.

Events are used extensively in the modeling of real-time 
systems, to indicate interrupts, clock ticks, timing and 
synchronization signals, and to model cause/effect connections 
between different parts of the system. In communication 
protocol modeling they mark message sending and 
acknowledge arrival. Events are also used in the modeling and 
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implementation of interactive systems. Graphical user interface 
systems (GUI’s) are based on user-generated occurrences, and 
their subsequent responses and attached callbacks, all of which 
can be mapped naturally into events and corresponding 
reactions in our languages. This can be done in a low level 
fashion, referring to mouse button clicks and motions, and 
keyboard manipulations, or on a higher level, by abstracting 
them into menu selection and command activation.

In the EWS example, the OPERATOR’s commands, EXECUTE, 
SET_UP and RESET, are defined as events that control the 
system’s operation. Here we chose the names to be imperative 
verbs, but it is also useful to use short phrases in the past tense 
for event names, such as OPERATION_COMPLETED or 
BUTTON_PRESSED.

In object based decomposition, where the functional 
components consist of entities (or actors) and their associated 
operations, events can implement the request for individual 
operations. For example, we may model the request from the 
FAULT_HANDLER to DISPLAY_FAULT (i.e., post an alarm and 
issue a fault message) by an event bearing the same name; 
similarly, the event PRINT_FAULT will invoke the 
PRINT_FAULT operation.

A set of similar events can be organized in an array structure. 
For example, the EWS operator keyboard contains ten keys for 
digits, which are used to enter the range limits. The events of 
pressing these keys can be grouped in an array 
DIGIT_PRESSED consisting of ten event components. The 
individual component is accessed by its index in the array, just 
like in conventional programming languages, 
DIGIT_PRESSED(1) through DIGIT_PRESSED(10), where 
10 stands for the digit 0. Chapter 5 shows how to detect that one 
of these ten events has occurred, without referring to each one 
explicitly. Figure 3.1 shows the Data Dictionary entry defining 
the event array. It shows that besides the array size designation 
we can also incorporate a short description and a long 
description, as in other Data Dictionary entries. 
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Other aspects of events, namely, event expressions and named 
event expressions, are discussed in Chapter 5, where our 
expression language is described in full.

3.3 Conditions

As with events, conditions are also used for control purposes. 
These are persistent signals, i.e., ones that hold for continuous 
time spans. They can be either true or false.

An example of a condition in the EWS is the signal 
SENSOR_CONNECTED, which is generated by the OPERATOR 
and is sensed by the control activity. This condition is self-
explanatory, and it indicates whether or not the SENSOR is 
connected to the system – an essential prerequisite to activating 
the signal processing. Here it is beneficial to use short phrases 
in the present tense as names of conditions, in order to describe 
a situation that holds currently and for some continuous period 
of time.

Figure 3.1.  An event array in the Data Dictionary
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Conditions are often used to describe the status of two-state 
entities, as in the example above. For example, a switch can be 
modeled by a condition SWITCH_ON, that is either true or false. 
Conditions are also used to “remember” that some event has 
occurred, until the required response is taken.

Conditions, like events, can be organized in arrays in order to 
model the status of several similar elements. The information on 
the array index range is specified in the Data Dictionary.

Conditions, like other information elements, participate in 
detailed behavioral and functional descriptions. In subsequent 
chapters we shall see how they are manipulated, how they 
change values, and how they can influence the flow of control.

3.4 Data-Items

A data-item is a unit of information that may assume values of 
various types and structures. Data-items are very similar to the 
data elements in conventional programming languages: 
variables, constants, etc. They maintain their values until they 
are explicitly changed and assigned new values.

Data-items are defined via the Data Dictionary, where their 
type and structure are specified, and other descriptive 
information can be added (e.g., attributes such as units, 
resolution, or distribution). Data-items can be of predefined 
types (integer, real, string, etc.), or records and unions 
composed of fields of various types; they can also be structured 
in arrays or queues. Besides these, the modeler can construct 
user-defined types, based on predefined types and structures. 
All these concepts are described in the following sections.

3.4.1 Data-Items of Predefined Types

The basic types of data-items are similar to those existing in 
programming languages. A data-item can be numeric, either 
integer or real. For example, in the EWS, the data-item SAMPLE, 
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which is the result of the processing performed by the 
PROCESS_SIGNAL activity, has a numeric value, and can be 
specified as real or integer. The value of an integer data-item is 
usually limited by 231. It is also possible to limit the values of an 
individual integer data-item by restricting its range, or by 
shortening its actual length (in bits). For example, if the EWS is 
extended to deal with 5 sensors, the identification number of a 
sensor will be an integer whose value will be restricted to the 
range 1 to 5. There is no limitation on real values.

When dealing with hardware systems, e.g., integrated circuits, 
it is natural to talk in terms of bits and bit-arrays. For this 
purpose, it is possible to define a bit data-item that can take on 
the values 0 and 1, or a bit-array data-item that consists of a 
sequence of bits. The definition of a bit-array data-item specifies 
its index range (which determines the number of bits) and 
direction, to or downto, which determines the most significant 
bit in its value. The index range limits are non-negative integers.

In the EWS example, the sensor is a hardware component 
whose output, the SIGNAL, is described as a bit-array data-item. 
See Figure 3.2. 

The signal consists of 24 bits, with bit 23 being the most 
significant. The syntax for such data-type expressions is 
described in Appendix A, page A-8.

Figure 3.2.  A bit- array data-item in the Data 
Dictionary
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Both bit and bit-array data-items are considered numeric, in the 
sense that they can participate in numeric expressions with no 
need of any explicit conversion, as discussed in Chapter 5. 
Values of bit-arrays are usually displayed in binary (e.g., 
0B00101111), octal (0O057) or hexadecimal (0X2F), with the 
most significant bit being the leftmost one. A particular bit in 
the bit-array can be referred explicitly; for example, 
SIGNAL(23) is the most significant bit of the sensor’s output. 
Similarly, one can refer to a bit-array slice; for example, 
SIGNAL(2..0), which are the three bits of least significance. 
Note that if a bit-array is defined in the to (respectively, the 
downto) direction, the index range of its slices must be in 
ascending (respectively, descending) order.

A data-item can also be of type string, denoting a string of 
characters. String data-items are used when alphanumeric 
characters are involved, like in the EWS’s FAULT_REPORT. 

A string data-item can be used to introduce enumerated values. 
For example, we may define a string data-item COMMAND with 
one of three possible values, ‘execute‘, ‘set-up‘ or 
‘reset‘, that can be issued by the operator. Notice that the 
string value is written between single quotation marks. If 
needed, it is possible to specify the string length. For example, a 
data-item denoting an identifier name limited to 32 characters 
will be specified in the Data Dictionary with “Data-type: 
string length=32”.

3.4.2 Records and Unions

In addition to the above basic types, a data-item can be a 
composition of named components, referred to as fields, each of 
which may be a data-item of any type or a condition. We 
support two kinds of compositions: records and unions. In a 
record all components are present at any time, while a union 
contains, in any given time, exactly one of the components. 
Thus, a record can be viewed as an and-cluster of data, and a 
union as an or-cluster. The entire construct, record or union, is 
referenced by its name (e.g., on a flow-line), while a particular 
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field is referenced using the dot notation
record/union reference.field reference.

We mentioned that the LEGAL_RANGE data-item in the EWS is 
a record composed of two real fields: LOW_LIMIT and 
HIGH_LIMIT. The definition of this data-item in the Data 
Dictionary is shown in Figure 3.3. The fields of LEGAL_RANGE 
are referenced by LEGAL_RANGE.LOW_LIMIT and 
LEGAL_RANGE.HIGH_LIMIT. The array notations and dot 
notation can be combined, so that if, for example, one of the 
fields of a record R is the bit-array BA, we may refer to the 
particular bit R.BA(2) or to the slice R.BA(1..3). 

A union construct is used when different types of values are 
relevant to different situations. For example, a union is useful 
when specifying a communication protocol that involves 
several kinds of messages, each carrying a different type of data.

Assume that the operator’s input in the EWS example arrives 
via a single communication line that transfer two types of 
messages, commands and data (e.g., the range limits). Assume 
also that there is a channel along which the system is told the 
type of the arriving message. The data-item MESSAGE_DATA 
that carries the data can be defined to be a union of two possible 
fields: COMMAND of type string (see Data-Items of Predefined 
Types, page 3-7) and LIMIT_VALUE of type real. The system 

Figure 3.3.  A record in the Data Dictionary
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will refer to MESSAGE_DATA.COMMAND when it expects a string 
denoting the command, and to 
MESSAGE_DATA.LIMIT_VALUE when it expects the numeric 
range limit value. As explained above, at any given moment 
only one field of the union “exists”, and it is illegal to refer to 
any other.

The field type attached to every field of the record or the union 
in the Data Dictionary can be of the following data-types: basic 
predefined types (e.g., integer, real, etc.; see the previous 
section), condition, array or queue (see the following section), or 
a user-defined type. The field cannot be defined to be another 
record or union; this kind of construction must done with an 
intermediate definition of a user-defined type. See Appendix A, 
page A-8 for the syntax of data-type expressions.

3.4.3 Data-Item Structure

Data-items can be organized in structures, arrays or queues, with 
each component of the structure having one of the data-types 
described above, or a user-defined type, as discussed below.

An array is a sequence consisting of a fixed predefined number 
of components. Assume, for example, that the EWS is enhanced 
to deal with 5 sensors. It is then natural to talk about an array of 
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sensor’s signals: SIGNALS, defined as an array of 5 components, 
each is a bit-array, 23 downto 0. See Figure 3.4. 

Each array component can be of any of the basic predefined 
types, a record/union construct or a user-defined type. Each 
component is accessed by its index, e.g., SIGNALS(2), and 
double indexing is used to refer to components of components, 
e.g., SIGNALS(1)(23). If the array component is a record, the 
dot notation can be combined with indexing. For example, if AR 
is an array of records that have two fields, X and Y, then we may 
use AR(2).X to access the X field of AR(2).

The index range of the array is defined from left index to right 
index. There is no limitation on the array size. The index range 
limits are non-negative integers, and the left index is to be 
smaller or equal to the right index. (It might be more 
appropriate to call them “lower index” and “upper index” but 
the names came from the range limits in bit-arrays.) It is very 
common to define an array going from 1 to some named integer 
constant (these are described in Chapter 5). Assume that we 
have a constant definition NUMBER_OF_SENSORS = 5. Then 
SIGNALS can be defined as array 1 to 
NUMBER_OF_SENSORS, to emphasize the fact that the size of the 
array depends on some other value.

Figure 3.4.  An array data-item in the Data Dictionary
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Sometimes the size of one array depends on the size or index 
range of another. For example, we might want to set things up 
so that if the system allocates memory for an array, then any 
copy of it must be of the same size. In this case it is possible to 
use three predefined operators that apply to an array V: 
length_of(V), lindex(V), and rindex(V), that are 
evaluated to constant integer values.

A queue, as opposed to the fixed size arrays, is a dynamic list of 
components. Queues will be described in detail in Chapter 8, 
where communication mechanisms are discussed. As in the 
case of arrays, the components of a queue can be of one of the 
predefined data types described above or a user-defined type. 
The components cannot be directly defined as records or 
unions; a queue of such components can be defined with an 
intermediate user-defined type. Queues are defined in the Data 
Dictionary just like the other data-items.

3.5 User-Defined Types

It is often the case that several data-items in the model have the 
same characteristics, such as their data-type. It can be useful to 
define a named data-type, called a user-defined type, that will be 
used to define them all. Besides clarity, this reusability has the 
advantage of being efficient, since the full data-type definition 
appears only in a single location in the Data Dictionary.

In the EWS example, the range construct, with the low and high 
limits, appears at least twice: in the current LEGAL_RANGE and 
in the FAULT_REPORT that contains the values against which 
the faulty processed signal was compared. We can have the 
Data Dictionary contain the definition of a user-defined type 
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RANGE, which will be used later in the definition of these two 
data-items. This is shown in Figure 3.5. 

User-defined types are specified in terms of predefined types, 
record/union constructs or data structures (arrays and queues). 
It is also possible to define them as other user-defined types, or 
as conditions or arrays of conditions.

The user-defined type mechanism can also be used to define 
complex types, with multiple-level structure. The data-item 
FAULT_REPORT presented in Figure 3.5 is a record, two of 
whose fields, FAULT_TIME and FAULT_RANGE, are themselves 
records. To achieve this multi-level structure we must use the 
intermediate data-types, TIME and RANGE. We do not allow the 
definition of a record with an explicit record field.

Figure 3.5.  User-defined type RANGE in the Data 
Dictionary
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There are no limitations on the multi-level usage of user-
defined types. We can define multi-dimensional arrays, arrays 
of records, records with array fields, queues of records, etc., 
with any number of nesting levels. 

For example, in order to specify a display screen whose size is 
200x300 pixels, each of 8 bits, we use the data-item SCREEN and 
the user-defined types ROW and PIXEL, as shown in Figure 3.6. 
A particular bit can be accessed by indexing; e.g., 
SCREEN(7)(2)(0), is bit 0 in position (7,2) on the screen, that 
is, pixel number 2 in row number 7. 

In Chapter 13 we discuss the scope of elements, e.g., how their 
visibility depends on the chart in which they are defined. User-
defined types are often required to be visible throughout the 
entire model, so that they are usually defined in a global 
definition set, as discussed beginning on page 13-18.

Figure 3.6.  A definition of multi-dimensional array
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4The Behavioral View: 

Statecharts

his chapter describes the language of Statecharts [H87]1, 
which is used to describe the control activities in 
activity-charts. As explained in Chapter 2, these 
activities constitute the behavioral view of a model.

In the present chapter, and the following two, we concentrate 
on the pure features of statecharts and their semantics, leaving 
those parts that pertain to the connection with activity-charts to 
Chapter 7. Thus, we do not concern ourselves here with the way 
activities are controlled by statecharts, or with the way 
statecharts are affected by activities, but only with the internal 
features of the statecharts themselves.

This chapter describes how states are organized into an and/or 
hierarchy, and how they may represent levels of behavior and 
concurrency. We also show how transitions are used (with the 
various connectors) to describe changes in the states. In Chapter 
5 we describe the textual expression language used in 
statecharts to specify triggers and actions, and how it supports 
timing considerations. Chapter 6 describes the dynamic 
semantics of statecharts. Throughout, the reader will observe 
that statecharts constitute a powerful extension of conventional 
state-transition diagrams.

1. Parts of our description here follow [H87], though our version reflects 
some modifications and enhancements that were incorporated to make it 
better fit the STATEMATE modeling approach.

T
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4.1 Behavioral Description of a 
System

A behavioral description of a system specifies dynamic aspects 
of the entire system or of a particular function, including control 
and timing. It specifies the states and modes that the system 
might reside in, and the transitions between them. It also 
describes what causes activities to start and stop, and the way 
the system reacts to various events. The functional and 
behavioral views complete each other, as explained in later 
chapters.

A natural technique for describing the dynamic behavior of a 
system is to use a finite-state machine. The described system or 
function is always in one of a finite set of states. When an event 
occurs, the system reacts by performing actions, such as 
generating a signal, changing a variable value and/or taking a 
transition to another state. The events causing the reaction are 
called triggers.

For example, a simple mechanism that controls a light bulb may 
be in one of two states, OFF and ON. The event 
BUTTON_PRESSED might trigger the transitions from one of 
these states to the other. On moving from OFF to ON, the 
mechanism sends a signal TURN_ON to the light bulb, and 
similarly, the bulb is turned off on the other transition. 

Figure 4.1.  A finite-state machine controlling a light 
bulb
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Let us analyze the behavior of the EWS in terms of states or 
modes. From the informal description of the EWS presented in 
Chapter 1 we can identify several main states of the system:

WAITING_FOR_COMMAND: The system is idle, waiting for an 
operator command in order to start executing or to set-up the 
range values.

SETTING_UP: The range values are being set by the operator.

COMPARING: The signal processing is being performed and the 
processed signal is being checked.

GENERATING_ALARM: The system is generating the alarm to 
indicate that the value of the processed signal is out of range, 
and is awaiting the operator’s reset.

The above states are exclusive, i.e., when the system is accepting 
new range limits it is not performing signal processing or value 
comparisons. Similarly, the comparisons are not carried out 
when the alarm is generated. Regarding the transitions between 
states, when in WAITING_FOR_COMMAND, the EXECUTE 
command from the operator causes the system to move to the 
COMPARING state, and the SET_UP command causes a 
transition to SETTING_UP. This description implies that the 
system moves to the GENERATING_ALARM state in the event 
that the tested signal is out of range. More details about the 
transitions between these states are given in the following 
sections.

In some of the states, certain functions from the functional 
description are performed (on the assumption that we are 
carrying out a function based decomposition). For example, the 
SET_UP activity is performed in the SETTING_UP mode. In 
general, the functional and behavioral views are combined to 
yield the entire conceptual description of the system under 
description. This subject is discussed in Chapter 7.
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Finite-state machines have an appealing visual representation 
in the form of state-transition diagrams. These are directed 
graphs, with nodes denoting states and arrows denoting 
transitions. The transitions are labeled with the triggering 
events and caused actions, using the following general syntax 
for a reaction: trigger/action.

 Figure 4.2 shows a simple three-state diagram describing a system. 

If, for example, the system is in state S and event F occurs, the 
system is transformed into state U. If, in the same state, G occurs, 
the system performs the action A and ends up in state T.

In our approach we use the Statecharts language to describe the 
behavioral view. This language is similar to state-transition 
diagrams, but includes many enhancements, such as hierarchy, 
orthogonality, expressions, and connectors. As in the case of 
Activity-charts, the elements appearing in the charts have 
associated entities in the Data Dictionary. In the following 
sections, and in the two subsequent chapters, we describe the 
details of the Statecharts language. 

The way in which statecharts relate to activity-charts is dealt 
with in Chapters 7 and 8.

Figure 4.2.  A simple state-transition diagram
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4.2 Basic Features of Statecharts

As in conventional state-transition diagrams, statecharts are 
constructed basically from states and transitions. The states in a 
statechart are depicted as rectilinear boxes with rounded 
corners. The names of the states appear inside their boxes, and 
obey the name syntax appearing in Appendix A,  page A-1. The 
transitions are drawn as splined arrows, with the triggers 
serving as labels.

The main states of the EWS, and the transitions and their 
triggers are shown in Figure 4.3.  

The triggers of the transitions in the figure are all events, which 
are regarded as instantaneous occurrences; they are of two 
kinds:

• External events coming from external sources (such 
as commands coming from the operator via the 
control panel: SET_UP, EXECUTE, and RESET).

• Internal events coming from internal sources (such 
as OUT_OF_RANGE, which is output from the 
COMPARE activity, ALARM_TIME_PASSED, which is 

Figure 4.3.  States, transitions and event triggers
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the output of some invisible clock, and 
SET_UP_COMPLETED, which signifies that the 
SET_UP activity has terminated).

We shall see later that the event ALARM_TIME_PASSED can be 
defined to be more specific about the alarm duration, using the 
timing facilities provided by our languages. Note that we do not 
show the source of the triggering events in the statechart itself. 
We shall return to this issue in Chapter 8.

The trigger of a transition may be an expression that combines 
some events. It may include a condition too, enclosed in square 
brackets, and it can also consist of the condition only. Thus, if a 
transition is labeled E[C], the condition C is tested at the instant 
the event E occurs, guarding the transition from being taken if 
it is not true at that time. If the transition is labeled [C], the 
condition C is tested at each instant of time when the system is 
in the transition’s source state, and the transition is taken if it is 
true.

In the EWS example, we may want to prevent the transition 
between WAITING_FOR_COMMAND and COMPARING from being 
taken unless the sensor is connected to the system and there is a 
signal coming from the sensor. We could do this as in Figure 4.4, 
by enriching the statechart of Figure 4.3, with an appropriate 
condition.

In fact, a similar effect could be achieved differently, by using a 
condition to trigger a transition, rather than as a guard on a 
triggering event. In Figure 4.5, we take the transition to 
COMPARING when the EXECUTE command is issued, but, once 
in COMPARING, we continuously monitor the condition 

Figure 4.4.  A trigger with a condition
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NO_SIGNAL, returning to WAITING_FOR_COMMAND the instant 
we detect that it is true. In this way, if the sensor is not 
connected and there is no signal coming from the sensor when 
we enter COMPARING, we will immediately return to 
WAITING_FOR_COMMAND. However, if there is a signal, we will 
stay in COMPARING until the sensor is disconnected and the 
signal ceases. 

A transition can be labeled not only with the trigger that causes 
it to be taken, but also, optionally, with an action, separated 
from the trigger by a slash as follows: trigger/action. If and 
when the transition is taken, the specified action is carried out 
instantaneously. Some actions simply generate an event, but 
they may also cause other effects. We shall see that actions can 
modify values of conditions and data-items; they can start and 
stop activities, and more. Several actions can be performed 
when a transition is taken. The actions are written after the slash 
in a sequence, separated by “;”, e.g., E/A;B;C. 

A simple action incorporated into the EWS example is shown in 
Figure 4.6. 

Figure 4.5.  A condition as a trigger

Figure 4.6.  A simple action
Statemate MAGNUM 4-7



The Behavioral View: Statecharts
Here, we have decided that when the ALARM_TIME_PASSED 
event occurs in the GENERATING_ALARM state, two things 
happen simultaneously:

• the system returns to the WAITING_FOR_COMMAND 
state

• the event PRINT_OUT_OF_RANGE is generated, 
which is really an internal command to print a fault 
report on a printing device.

Another way of using conditions to guard transitions is to 
employ the condition connector. An arrow enters the connector, 
labeled with the triggering event, and the connector may have 
several exit arrows, each labeled with a condition enclosed in 
square brackets and optionally also with an action. In general, 
any number of exit arrows from a condition connector is 
allowed. 

Figure 4.7 shows how the EXECUTE event causes a transition 
from WAITING_FOR_COMMAND, with the two mutually 
exclusive conditions NO_SIGNAL and SIGNAL_EXISTS, that 
determine whether the system enters COMPARING or returns to 
WAITING_FOR_COMMAND. In the latter case, we have also 
specified that the event ISSUE_DISCONNECTED_MSG will be 
generated, causing an error message to appear.   

Although the mechanisms of states and transitions labeled by 
triggers and actions allow rich and complex behavioral 
descriptions, they are not always enough. Later we discuss the 
ability to specify reactions that do not involve transitions 
between states, and to associate them with a specific state. These 

Figure 4.7.  A condition connector
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reactions, as well as the information about the activities that are 
active in a state, are attached to the state through the Data 
Dictionary. Just like the other elements appearing in statecharts, 
such as triggers and actions, each state also has an associated 
entry in the Data Dictionary. Transitions, though, do not have 
Data Dictionary entries, mainly because they are not 
identifiable by name.

4.3 The Hierarchy of States

As it turns out, highly complex behavior cannot be easily 
described by simple, “flat” state-transition diagrams. The 
reason is rooted in the unmanageable multitude of states, which 
may result in an unstructured and chaotic state-transition 
diagram. To be useful, the state machine approach must be 
modular, hierarchical, and well structured. In this section we 
show how states can be beneficially clustered into a hierarchy.

Recall Figure 4.2. Since event F takes the system to state U from 
either state S or state T, we may cluster the latter into a new 
state, call it V, and replace the two F-transitions by one, as in 
Figure 4.8.  

The semantics of the new state V is as follows: to be in V is to be, 
exclusively, in either one of its substates S or T. This is the 
classical “exclusive-or” applied to states. V is called an or-state, 

Figure 4.8.  Clustering of states
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and is the parent of the two sibling states S and T. The F 
transition now emanates from on V, meaning that whenever F 
occurs in V the system makes a transition to U. But since being 
in V is just being in S or T, the new F arrow precisely abbreviates 
the two old ones.

Applying this feature to our example, we may cluster the states 
COMPARING and GENERATING_ALARM into a new state (which 
does not need to have a name), simply because of the common 
exit transition triggered by the operator command RESET. See 
Figure 4.9.  

  We can also reach the likes of the above figures not by 
clustering, which is a bottom-up operation, but by refinement, 
which is a top-down one (as in the functional decomposition 
presented in a previous chapter). For example, we could have 
started the EWS behavioral description with the two-state 
decomposition of Figure 4.10, in which there is one top-level 
state, EWS_STATES, decomposed into two substates, OFF and 
ON. These are connected by two transitions, labeled POWER_ON 
and POWER_OFF. 

Figure 4.9.  Clustering of EWS states

Figure 4.10.  Top-level decomposition of EWS 
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We specify that the initial state of the system is OFF by using a 
default transition, specified by a small arrow emanating from a 
small solid circle. We can then “zoom-in” to the ON state, and 
show the next level state decomposition of the EWS. This results 
in the multi-level statechart of Figure 4.11. The EWS states from 
Figure 4.3 appear here as substates of the state ON. The default 
transition to WAITING_FOR_COMMAND indicates that this state 
is the default entrance of the ON state. This means that when 
there is a transition that leads to the borderline of the parent 
state, without indicating which of the substates is to be entered, 
like the one triggered by POWER_ON, the system enters the 
default substate.  

The main advantage of using default transitions is in cases 
where there is more than one entrance to the parent state. Note 
that the top level of each parent state can have at most one 
default entrance. A default transition usually leads to a substate 
in the first level of the state decomposition, but it can be made 
to directly enter a state on a lower level, as shown in Figure 4.12.  

Some terms and conventions that we use for the hierarchy of 
statecharts are similar to those used for activity-charts. A state 
that has no substates, such as WAITING_FOR_COMMAND, is 
referred to as a basic state. The state EWS_STATES is an ancestor 
of its descendants, which consist of all other states in Figure 4.11. 

Figure 4.11.  A multi-level statechart
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As in activity-charts, we say that a transition exits from its source 
state and enters its target state.

Figure 4.12.  Default entrance to a lower level state
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Orthogonality
4.4 Orthogonality

4.4.1 And-States and Event Broadcasting

:One of the main problems with descriptions of behavior is 
rooted in the acute growth in the number of states as the system 
is extended. Consider a statechart with 1000 states, describing 
certain control aspects of a flight-control system. Suppose that 
the behavior is now enriched, by making its details depend, to 
a large extent, on whether the aircraft is in auto-pilot mode or 
not. With the features we have so far we might have to double 
the number of states, obtaining two versions of each of the old 
states – one with auto-pilot and one without – altogether 2000 
states. As more such additions are made, the number of states 
grows exponentially.

An additional problem arises when we want to describe 
independent, or almost independent, parts of the behavior (for 
example, the behavior of several different subsystems) in a 
single statechart.

Statecharts handle these cases by allowing the and-decomposition 
of a state. This means that a state S is described as consisting of 
two or more orthogonal components, and to be in state S entails 
being in all of those components simultaneously. S is then 
called an and-state. The notation used is a dashed-line that 
partitions the state into its components. The name of the and-
state is attached to the state frame. The orthogonal components 
are named like regular states.

Figure 4.13(a) shows a state S consisting of the two components 
R and T, and being in S is being in both. However, since each 
component is an or-state, the first consisting of U and V and the 
second consisting of W, X and Y, it follows that to be in S is to be 
in one of U or V as well as one of W, X or Y. Such a tuple of states, 
each from a different orthogonal component is called a state 
configuration. We say that S is the parent of its components R and 
T, or that R and T are the substates of S, as in the case of or-
decomposition. The components R and T are no different from 
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any other states; they may have their own substates, default 
entrances, internal transitions, etc.

Entering S from the outside is actually tantamount to entering 
the configuration (U,X) by the default arrows. If E occurs in (U,X) 
the system transfers simultaneously to (V,Y), a transition that is 
really a form of synchronized concurrence – a single event 
triggering two simultaneous happenings. If K now occurs, the 
new configuration is (V,X), yielding a form of independence – a 
transition is taken in the T component, independently of what 
might be happening in the R component. Notice the in(Y) 
condition appearing in R; it signifies that the F transition from V 
to U is taken only if the system is in (V,Y). Thus, one component 
is allowed to sense which state the other is in.

Figure 4.13(b) is the conventional “and-free” equivalent of 
Figure 4.13(a), and while not much larger than Figure 4.13(a), it 
does illustrate the blow-up in the number of states: if Figure 
4.13(a) had 100 states in each component, giving a total of 200 
bottom-level (basic) states, Figure 4.13(b) would have had to 
contain all 10,000 combinations explicitly!

Returning once again to our EWS example, consider Figure 4.14. 
Here we have added an orthogonal component to the ON state, 
named PROCESSING. Its role is to describe the processing 
aspects of the raw signal read from the external sensor.  

The conditions SENSOR_CONNECTED and 
SENSOR_DISCONNECTED in the PROCESSING component 
indicate the status of the connection with the sensor. They are 
set by the operator and are thus external. The OPERATE and 
HALT events, on the other hand, are internal, being generated by 
the MONITORING component. They are generated by actions 
when the system enters and exits the COMPARING state, 
respectively, and serve to indicate to the processing unit 
whether the system has completed the comparing of the 
processed signal. 
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Notice how these events are sensed immediately by the 
orthogonal component. Moreover, events generated by actions 
in one component are sensed by all other orthogonal 
components. For example, if there were more than one sensor, 
each with a corresponding signal processing unit, we could 
have modeled each of them by its own component, and the 
OPERATE and HALT events would have then been broadcast 
automatically to each one of them.

Figure 4.13.  Orthogonality using and-decomposition
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4.4.2 Conditions and Events Related to States

It is interesting to note that some of the events and conditions 
that label transitions in the EWS example now depend on, and 
refer to, states in the orthogonal component. Thus, we may 
replace the conditions NO_SIGNAL and SIGNAL_EXISTS in 
Figure 4.14 by in(CONNECTED) and in(DISCONNECTED), 
respectively. In fact, we may refer not only to the status of being 
or not being in a state as a condition, but also to the moment of 
entrance or exit as an event. The syntax is entered(S) and 
exited(S), with en and ex abbreviating the verbs. We may 
thus replace the OPERATE and HALT events in the CONNECTED 
state by en(COMPARING) and ex(COMPARING), respectively, 
and the two events need no longer be explicitly generated by 
actions along transitions. The resulting statechart is shown in 
Figure 4.15.

Figure 4.14.  An and-state in the EWS
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Note that the meaning of the and/or decomposition of states 
implies the following:

• If the system is in a state S, then not only is in(S) 
true, but in(T) holds for each ancestor T of S.

• Entering a state S will trigger the event en(S), as 
well as en(T) for every ancestor T of S in which the 
system did not reside when S was entered.

• Exiting a state S will trigger the event ex(S), as well 
as ex(T) for each ancestor T of S in which the 
system does not reside after the transition.

Even in cases where states are exited and entered by looping 
transitions, such as the transition from/to 
WAITING_FOR_COMMAND shown in Figure 4.7, the 

Figure 4.15.  Conditions and events related to states
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corresponding events ex(S) and en(S) occur. See page 5-22 
for further explanation about when these events occur.

The condition in(S) and the events en(S) and ex(S) may 
not be applied to an and-component, such as PROCESSING. 
Instead, they should be applied to the parent and-state (in this 
case, the state ON).

4.4.3 Multi-Level State Decomposition

Orthogonal breakup into components is not restricted to a 
single level. For example, we might have further refined the 
OPERATING state of the EWS, within CONNECTED, into two 
components: one deals with the clock rate of the signal 
sampling and the other with the computation mode. This is 
shown in Figure 4.16. 

Note that “high-level” transitions continue to apply, regardless 
of whether a state has orthogonal components or not. Thus, the 
HALT event, for example, takes the system out of whatever state 
configuration within OPERATING it is in, and causes entry into 
IDLE.

Figure 4.16.  And-decomposition on any level
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An important point is that there are no scoping restrictions 
within a single statechart. Hence, any state can be referred to 
anywhere in the statechart, even if the state referred to appears 
some levels lower down.

Like with activities, two states may have the same name if they 
have different parent states, in which case their names are 
distinguished by using path names, i.e., attaching their ancestors’ 
names separated by periods. Thus, had we chosen to rename 
CONNECTED and DISCONNECTED simply by ON and OFF, we 
would have to write PROCESSING.ON and PROCESSING.OFF 
whenever they had to be distinguished from the ON and OFF 
that reside within the top-level state. This convention is not 
limited to a single level only; a sequence of several state names 
can be given, separated by periods, such as S1.S2.S3. Notice 
that no particular relationship is implied between states that 
have the same name.
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4.5 Connectors and Compound 
Transitions

As in activity-charts, we allow several kinds of connectors in 
statecharts. They are used to help economize in arrows in order 
to clarify the specification.

4.5.1 Condition and Switch Connectors

As mentioned earlier, statecharts may employ condition 
connectors, also called C-connectors. Figure 4.7 showed an 
example. In general, the conditions along the branches 
emanating from the C-connector must be exclusive, but there 
can be more than two such branches. When the conditions are 
not exclusive a situation of non-determinism ensues, which is 
discussed in more detail beginning on page 6-12. 

Figure 4.17 shows a simple case of using the C-connector, and 
the equivalent logical transitions. Each of these logical transitions 
is represented by a compound transition consisting of two simple 
transitions. The transition labeled E is part of both. 

Another connector, similar to the C-connector, is the switch 
connector, also called the S-connector, which is usually used with 
events rather than conditions. In our EWS example, we may 
define a named event, COMMAND_ENTERED, as the disjunction 

Figure 4.17.  A condition connector and compound 
transitions
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of three command events: EXECUTE or SET_UP or RESET. 
(Named events are discussed in Chapter 5.) We may then deal 
with the command-driven transitions of Figure 4.3 as in Figure 
4.18.  

4.5.2 Junction Connectors

Transition arrows can be joined using junction connectors, and 
the labels along them can be split as desired. This makes it 
possible to economize both in the number of lengthy arrows 
present in the chart and in the number of identical portions of 
labels. For example, Figure 4.19(a) shows how to use a junction 
connector if the same event (RESET, in this case) causes exit 
from two states, but we do not want to cluster the two states into 
one.  

Figure 4.19(b) shows a more subtle case, in which two events 
lead out of a state into two separate states, but there is a 
common action that is to be carried out along both. As this last 
example shows, the order in which events and actions appear 
along the parts of the compound transitions formed by using 
junction connectors is unimportant. However, all the triggers 
appearing along the parts of a compound transition must occur 

Figure 4.18.  A switch connector
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at the very same time in order for the transition to be taken. If 
and when that happens, all the actions appearing along the 
transition are carried out. As an example, the two parts of 
Figure 4.20 are actually equivalent. 

Multiple entrances and exits may be attached to a junction, and 
the semantics prescribes creation of logical compound 
transitions from all possible combinations of paths. The same is 
true of C-connectors and S-connectors. 

The different connectors are meant to visually emphasize the 
distinction between different kinds of behavior: a C-connector 
indicates branching by conditions, an S-connector branches by 

Figure 4.19.  Junction connectors
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events, and junction connectors are used for the remaining 
cases.

4.5.3 Diagram Connectors

Just like in activity-charts, statecharts also allow diagram 
connectors. These are simply a means for eliminating lengthy 
arrows from the chart in favor of marking two points in the 
chart and indicating that the arrow flows from one point to the 
other; see Figure 4.21.  

Figure 4.20.  Two equivalent transition constructs

Figure 4.21.  Diagram connectors
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Any legal name may be used to label the diagram connectors 
(see Appendix A, page A-1), as can any integer. Each occurrence 
must have only entering arrows or only exiting ones. Triggers 
and actions are concatenated along all possible combinations of 
paths that constitute compound transitions, as with other 
connectors.

4.6 More About Transitions

4.6.1 Transitions to and from And-States

Recall that being in an and-state is being in a configuration of 
states – one from each component. As a consequence, the 
Statecharts language allows splitting and merging arrows to 
denote entries to and exits from state configurations.

Figure 4.22 shows an alternative way of describing the 
transition from OFF to ON in our EWS example. Instead of 
having a default entrance in each component (as in Figure 4.14), 
we have a fork construct that depicts the entrance to the default 
configuration directly. We may view a fork as another kind of 
compound transition, with the splitting point of the two 
branches as a special joint connector. 

Figure 4.22.  A joint connector in a fork construct
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Such a transition is taken if and when all of its triggers occur, 
and, when taken, all of its actions are performed. Thus, Figure 
4.23, for example (while possibly misleading), shows a case 
where the transition is not taken unless all of E, E1 and E2 occur 
simultaneously. When it is taken, both actions A1 and A2 are 
performed. 

A dual kind of arrow can be used to exit a state configuration. 
Figure 4.24 shows a case where the system will enter S5 if it was 
in the configuration (S2,S4) and E occurred. This is a merge construct.  

If one portion of the transition is missing, the meaning is quite 
different; Figure 4.25 illustrates this case, in which the and-state 

Figure 4.23.  Triggers and actions on a fork construct

Figure 4.24.  A joint connector in a merge construct
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is exited and S5 is entered when E occurs and the system is in 
S2. The transition is performed independently of which of the 
substates in the other component the system is in (S3 or S4). 

Figure 4.26 shows a transition from S0 that causes entrance to 
the configuration (S1,S3). The entrance to S1 is by the arrow 
itself, overriding any default that might exist, and the entrance 
to S3 is by the default transition. 

Figure 4.25.  A transition from an and-state

Figure 4.26.  A transition into an and-state
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4.6.2 History Entrances

An interesting way to enter a group of states is by the system’s 
history in that group. The simplest kind of this “enter-by-
history” feature is to enter the state most recently visited within 
the group. This is depicted by the special history connector, also 
called an H-connector.

Returning once again to our EWS example, consider Figure 4.27. 
Here we have decided that once the sensor is connected when 
we are in state DISCONNECTED, we make a transition to state 
CONNECTED, and enter the inner state that was visited most 
recently, which will be either IDLE or OPERATING. The arrow 
leads to an H-connector, thus, the mode the EWS reenters is the 
mode it left when the sensor was disconnected. Notice that the 
H-connector also has a regular outgoing transition leading to 
IDLE. This signifies that IDLE is the state to be entered if there 
is no history (e.g., when the CONNECTED state is entered for the 
first time).  

The history connector specified in Figure 4.27 indicates an 
entrance by history on the first level only. If state OPERATING, 
for example, had substates SLOW and FAST, the history entrance 
would not extend down to these. In other words, it would not 

Figure 4.27.  A history connector
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“remember” which of these two substates the system last 
resided in, and the entrance would be to the one specified as 
default. In order to extend a history entrance down to all levels, 
the H-connector can appear with an asterisk attached, 
indicating an entrance to the most recently visited state (or 
configuration) on the lowest level. This is a deep history 
connector, and is illustrated in Figure 4.28. If the system was last 
in OPERATING.FAST, that would be the state entered, despite 
the fact that SLOW is the internal default.  

Once we have history entrances, we must provide the ability to 
“forget” the history at will. In our example, we may wish to 
specify that when the HALT event is generated the slate will be 
cleaned, and the next entrance to OPERATING will be to the 
default state SLOW, regardless of past behavior. We have special 
actions for this purpose, which can be used along the 
appropriate transitions: history_clear(S) and 
deep_clear(S), abbreviated hc!(S) and dc!(S), 
respectively. The former causes the system to forget the history 
information of state S. That is, the next time a history connector 
or a deep-history connector drawn in state S is entered, the 
system will behave as if S was entered for the first time. The 
latter causes the system to forget the history information of all 
of the descendants of S, to any depth of nesting.

Figure 4.28.  A deep history connector
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5The Textual 
Expression Language

his chapter describes the textual expression language 
that appears in several places in our models. This 
language is used to define the triggers of transitions and 
the implied actions in statecharts. It is also used to 

describe static reactions that can be attached to a state (which 
are discussed in this chapter too), as well as the mini-specs of 
activities and combinational assignments (which are discussed 
in Chapter 7).

The textual language supports data manipulation using 
arithmetical and logical operations, it allows sensing the status 
of other elements, handling timing issues, and many types of 
actions. Its syntax and semantics are somewhat similar to 
procedural programming languages, although there are some 
important differences that relate mainly to the “stepwise 
execution” of a model, as clarified in Chapter 6.

A complete description of the textual expression language is 
presented in ÄAppendix A, Names and Expressions.

T
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5.1 Event, Condition and Data-Item 
Expressions

In the previous chapters events and conditions were used in 
triggers, and data-items in interface definitions. We also saw 
some examples that used more complicated expressions, and 
not just element names, were used. There were dependencies of 
expressions on other elements in the system (for example, in the 
condition expression in(S)) and compound expressions that 
involved several elements (for example, the event E1 or E2). 
We now describe in more detail how to construct such 
expressions for events, conditions and data-items.

5.1.1 Event Expressions

Most of the transition triggers shown in the previous chapter 
consisted of just an event name. However, a trigger can be any 
event expression, as described here. Figure 4.15 showed events 
that occur upon entering or exiting a state, en(S) and ex(S). 
Other events indicate changes in the status of other elements, 
such as changes in the values of conditions and data-items, and 
in the status of activities. These will be discussed where the 
manipulation of the relevant elements is presented.

Expressions for compound events can be constructed by using the 
Boolean operations and, or and not. In the EWS example, the 
two transitions from GENERATING_ALARM to 
WAITING_FOR_COMMAND in Figure 4.3 may be combined, using 
an event disjunction, as in Figure 5.1. The transition labeled 
with the event disjunction is taken when at least one of the 
events occurs. 

The negation of an event using the not operation must be 
approached with caution. This negation means that the 
specified event did not occur, and it makes sense only when the 
negated event is checked at a specific point in time, i.e., when 
combined with other events. This is achieved by using an and 
operation or a compound transition. Thus, for example, if the 
event E has been defined as 
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E1 or E2 or E3 or E4 or E5 (using the Data Dictionary, 
as explained in the next section), then we may use either Figure 
5.2(a) or Figure 5.2(b) instead of Figure 5.2(c). Recall that the 
junction connectors used in this figure denote the conjunction of 
triggers. 

Note also that the combination of an event and a condition, 
E[C] (even if the event is absent, as in the trigger [C]), is 
considered an event, so that E1[C1] and [C2] or E2, for 
example, is an event expression too.

Figure 5.1.  Disjunction of events

Figure 5.2.  Negating an event
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Event expressions are evaluated according to the conventional 
precedence rules of logical operations, and parentheses can be 
used in the usual way to override the default orderings. See 
Appendix A for detailed information about precedence of 
operations.

All the aforementioned event expressions evaluate to yield a 
single event (as opposed to an event array). A component of an 
event array can be used whenever an event expression is 
allowed, and it is identified by its index, e.g., 
DIGIT_PRESSED(1).

Very often we want to detect the fact that some unspecified 
component of an event array has occurred. We use the operator 
any for this. For example, the event expression 
any(DIGIT_PRESSED) refers to the event array defined in 
Figure 3.1, and captures the pressing of any one (or more) of the 
ten digit keys on the operator keyboard of the EWS. Similarly, 
although rarely used, the all operator captures the 
simultaneous occurrence of all events in the array.

5.1.2 Condition Expressions

Some of the transition labels presented in the previous chapter 
include condition expressions. In the simplest case, the 
condition expression is just the condition name, such as 
SIGNAL_EXISTS in Figure 4.4, but we also saw the condition 
expression in(CONNECTED) used in Figure 4.15. There are 
other condition expressions that are related to the status of other 
kinds of elements, and these will be presented as we go along.

We often want a condition to compare data-items in one of 
several ways. For this we allow the following comparison 
conditions, where # depicts inequality:

exp1 = exp2,  exp1 # exp2,

exp1 > exp2,  exp1 < exp2,

exp1 <= exp2,  exp1 >= exp2
5-4 Statemate MAGNUM



Condition Expressions
Assume that we have chosen to represent the operator 
command of the EWS by a string data-item COMMAND, that has 
three possible values: ‘execute‘, ‘set-up‘ or ‘reset‘. The 
exit from the WAITING_FOR_COMMAND state would be 
triggered by the event COMMAND_ENTERED, denoting the 
assignment of a value to this data-item, and would be 
channeled to the appropriate state, depending on that value. 
See Figure 5.3. 

The expressions on both sides of the comparisons must be of the 
same type, both numeric or both strings. They can also be arrays 
or records, and are then compared component-wise. Arrays 
must be of the same length and component type, and records 
can be compared only if they are of the same user-defined type. 
For strings we allow only = and #.

As in the case of events, the Boolean operations and, or and 
not can be used to construct compound conditions. Figure 5.4 
shows two alternative ways to restrict the transition from 
WAITING_FOR_COMMAND to COMPARING by using the 
conditions SET_UP_DONE and in(CONNECTED).  

Figure 5.3.  Comparison conditions
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Since conditions can be organized in arrays or constitute fields 
in a record, the condition expression can have the 
corresponding syntax. For example, if the EWS monitors an 
array of sensors and SENSORS_CONNECTED is the array of 
conditions representing their connection status, then 
SENSORS_CONNECTED(I) is a legal condition expression 
specifying the status of the I’th component. In order to capture 
the condition of at least one of the sensors being connected or all 
of them, we may use the any and all operators, respectively, 
as in any(SENSORS_CONNECTED). These operators can also be 
used to refer to a slice of the array, as in 
all(SENSORS_CONNECTED(1..3)), which is true when the 
three first sensors are connected.

5.1.3 Data-Item Expressions

We mentioned comparison conditions that compare data-item 
expressions. Data-item expressions can be used also in other 
places in the textual language, such as in assignment actions, 
and can be of different types: numeric (integer, real, bit and bit-
array), strings, and structured types.

Numeric expressions consist of constants and numeric data-
items (or numeric components of structured data-items), 
combined by conventional arithmetic and bit-wise operations 

Figure 5.4.  Condition expressions
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with the usual precedence rules. An example is 
Y+3*R.X-A(I+J). There is also a set of predefined functions 
that can be used within numeric expressions, such as arithmetic 
and trigonometric functions (e.g., abs(X), sin(A)), bit-array 
operations (e.g., the logical shift-left operation lshl(B)) and 
random number generators (e.g., rand_normal(R,S)). See 
Appendix A.

In addition, in numeric expressions we allow the use of 
functions that are not predefined. These are called user functions, 
and may employ data-item and condition parameters that come 
from the model. These functions usually denote parts of the 
system whose details are not currently essential. They may 
remain unspecified, and eventually could be taken from an 
existing implementation.

Numeric expressions can involve the various numeric types, 
and type conversion is carried out as needed. Integer and bit-
array constants can use different bases besides the decimal base, 
i.e., binary (e.g., 0B00101011), octal (e.g., 0O053) and 
hexadecimal (e.g., 0X2B). Real constants can be represented in 
exponential format (e.g., 2.5e-3).

As mentioned earlier, string constants are enclosed in quotes, 
(e.g., ‘abc‘). There are no operations on strings, but the 
language offers several functions for string manipulation, such 
as concatenation, sub-string search in another string, 
conversion between integer and string, and more. See 
Appendix A.

Structured data-items, i.e., arrays, records and unions, do not 
support operations either. There is a special representation for 
array constants, that uses commas between the components. An 
asterisk for repetitions is also allowed. For example, {20*0} is 
an array constant, consisting of 20 zeros, while 
{1,2,3,10*1,0,0} is an array constant, consisting of 15 
integer components. However, the language provides no record 
or union constants.
Statemate MAGNUM 5-7



The Textual Expression Language
Appendix A describes the full set of operations and functions 
that can be applied to data-items, and their relative precedence.

5.1.4 Named Expressions

We mentioned earlier that an element expression can be 
abbreviated by a simple element name. This is carried out by 
associating a definition with an element in the Data Dictionary, 
and here are the most common reasons for doing so:

• To shorten a lengthy expression that appears 
perhaps many times on transitions, or in other places 
where the textual language is used. A short 
definition in the Data Dictionary prevents errors of 
inconsistency, enhances clarity, and economizes in 
writing. In the EWS example, we can define the 
condition READY to be SET_UP_DONE and 
in(CONNECTED). This will shorten the trigger on 
the transition in Figure 5.4(a), yielding 
EXECUTE[READY].

• To abstract away the expression, hiding details that 
we might not have decided upon yet or which we 
might want to change later on. In the EWS example, 
we can define a data-item ALARM_DURATION whose 
value will be specified later. In this example, the 
reason could be our desire to be able to change the 
duration in a flexible way. Also, the exact time is not 
really important in an early stage of the 
specification.

Such an abbreviating definition can be associated with any 
event, condition or data-item. An element with no definition is 
called a primitive element or a variable, and can be generated (in 
case of an event) or modified (in case of a condition or a data-
item) in the model in the usual way. An element that has an 
expression definition is called a compound element (see Figure 
5.5(a)). The element is referred to as a compound element even 
when the expression is just the name of some other element; 
e.g., the event E is defined to occur when event G occurs. An 
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element, a data-item or condition, is referred to as a constant 
when its definition is a literal constant expression (see Figure 
5.5(b)).

Since compound elements or constants depend for their values 
on their associated expressions, they cannot be affected directly 
by actions. For example, such an element cannot appear on the 
left hand side of an assignment action, cannot label a flow-line, 
and cannot be a component of an information-flow.

These limitations do not apply to the special case of attaching an 
alias to a bit-array slice, which can be useful in applications such 
as digital chip design, and communication protocol 
specification. In such applications an individual bit or a slice of 
a bit-array might carry special meaning, and it helps to be able 
to refer to the bit-array portion by a special name. For example, 
a message can be composed of a series of bits, divided into 
groups that denote the message type, command code, data 
fields, etc. Assume that MSG is a message, and is implemented 
by a bit-array of 64 bits, indexed from 0 to 63. The first three bits, 
MSG(0..2), denote the message type. An integer data-item 
MSG_TYPE will be defined to be an alias of MSG(0..2) (see 
Figure 5.5.(c)). Now, the message sender can assign a value to 
MSG_TYPE, which is just like assigning a value to MSG(0..2), 
and the message reader can check the value of MSG_TYPE in the 
decoding process. A lower level of the communication protocol 
that handles these messages can be made to access the 
individual bits, with no extra conversion to another data 
structure.

It is possible to define a data-item of type integer, bit or bit-array 
to be an alias of an expression for a bit-array slice with a 
constant range of indices. As mentioned, an alias is treated like 
a variable, and can be used wherever a variable is allowed, 
which is in contrast to the case of compound and constant data-
items. 

Any occurrence of the element that has an expression definition 
can be viewed as if the expression were written out in full. 
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Moreover, the expression is re-evaluated whenever there is 
need to evaluate the element.

It is also possible to define named actions, as discussed in the 
next section.

Figure 5.5.  Elements with definitions in the Data 
Dictionary
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5.2 Actions

Besides the transitions between states, other things may happen 
during execution of the model. They are usually specified by the 
actions. We saw some examples of actions written along 
transitions. In addition, actions can appear in static reactions, as 
described later in this chapter, and in mini-specs of activities, as 
described in Chapter 7. 

The textual language allows various types of actions, which are 
described in the following sections. They can be classified as 
follows: 

• Basic actions that manipulate elements, causing 
changes that can be checked and triggering other 
happenings in the system. 

• Conditional and iterative actions, similar in structure 
to those in conventional programming languages.

5.2.1 Element Manipulation

The most basic actions manipulate three types of elements: 
events, conditions and data-items. 

Event manipulation is really just sending the event. This is 
performed by the action that is simply the name of the event. 
We saw examples of actions that send events in Figure 4.14: the 
events OPERATE and HALT are sent when the transitions to and 
from the COMPARING state are taken, respectively. 

Condition manipulation is a little more flexible; special actions 
can cause a condition to become true or false. In our EWS 
example, we may want to distinguish between success or failure 
of the setting-up procedure, in order to ensure that we start 
comparing values in the COMPARING state only if the setting-up 
succeeded. This may be achieved as follows. In Figure 5.4, we 
added the guarding condition SET_UP_DONE to the transition 
from WAITING_FOR_COMMAND to COMPARING. Now, in Figure 
5.6, we add the two self-explanatory events 
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SET_UP_SUCCEEDED and SET_UP_FAILED, that label two 
separate exits from the SETTING_UP state. In case of success, 
and in that case only, we carry out the action 
make_true(SET_UP_DONE) (abbreviated 
tr!(SET_UP_DONE)).

In general, the action tr!(C) has the effect of setting the truth 
value of condition C to true, and the corresponding action 
make_false(C) (abbreviated fs!(C)) sets it to false. The 
default entrance to WAITING_FOR_COMMAND, for example, is 
labeled with a make_false action that assigns a false value to 
SET_UP_DONE. So the system will react to the EXECUTE 
command only if the setting-up procedure ended successfully 
at least once. 

Instead of the actions tr!(C) and fs!(C), we may use the 
assignment actions C:=true and C:=false, respectively. In 
general, the right hand side of such a condition assignment can 
be any condition expression.

In addition to these actions, a condition C has two associated 
events, true(C) and false(C), which occur precisely when C 

Figure 5.6.  Actions on conditions
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changes from false to true and from true to false, respectively. 
We abbreviate them as tr(C) and fs(C). The condition C can 
be a condition expression that depends on other conditions or 
data-items. Interestingly, this makes it possible to replace 
events by conditions. In Figure 4.10, for example, instead of the 
two events POWER_ON and POWER_OFF, we could have a single 
condition, POWER_IS_ON, and use the two events 
true(POWER_IS_ON) and false(POWER_IS_ON).

A subtle point concerns the precise relationship between the 
actions tr!(C) and fs!(C) and the events tr(C) and fs(C). 
For example, does tr(C) always occur when tr!(C) is 
executed? The answer is no. The events occur only when the 
truth value of C changes value, but the actions can be executed 
without changing the truth value, if it was the desired one to 
start with. Thus, for example, if the setting-up procedure 
completed successfully twice in succession, then the first 
execution of the action tr!(SET_UP_DONE) will trigger the 
event tr(SET_UP_DONE), but the second execution will not.

Assignment actions can also be used to manipulate data-items, 
and, as in the case of conditions, there are events and conditions 
associated with them. In the EWS example, we may be 
interested in producing an alarm only after three occurrences of 
OUT_OF_RANGE. This may be achieved as in Figure 5.7. 

Figure 5.7.  Actions and conditions on data-items
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All types of data-items can be involved in assignments. The 
right hand side expression of the assignment must be type 
consistent with the assigned data-item on the left hand side. 
Both sides must be either numeric or string. They can also be 
arrays, in which case their lengths must be the same and the 
component types must be consistent. Assignments of an entire 
structured data-item (record or union) are also allowed, but 
both sides must be of exactly the same user defined type.

Whenever an assignment to X takes place, the event 
written(X) (abbreviated wr(X)) occurs. Thus, we may 
replace the trigger COMMAND_ENTERED in Figure 5.3 with the 
event wr(COMMAND). The exit from the 
WAITING_FOR_COMMAND state would be triggered by an 
(external) assignment to COMMAND, and would be channeled to 
the appropriate state, depending on its value. See Figure 5.8.  

A similar event is changed(X) (abbreviated ch(X)), which 
occurs when and if there was a change in the value of the data-
item expression X. Thus, in our example, we cannot replace the 
event wr(COMMAND) by ch(COMMAND) (as a trigger of the 
transition from WAITING_FOR_COMMAND), since this would 

Figure 5.8.  An event related to a data-item
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make it impossible to carry out two successive entries to 
SETTING_UP.

We may also use the actions write_data(X) and 
read_data(X) (abbreviated respectively, wr!(X) and 
rd!(X)). They apply to all types of data-items, including ones 
that are structured, and even to conditions. These actions cause 
the occurrence of the events written(X) and read(X), 
respectively. They will be discussed further in Chapter 8.

Note that we do not allow actions to be carried out on named 
compound elements. It makes no sense to perform the action 
tr!(C) when C is defined as C1 or C2, and similarly to assign 
a value directly to X1+X2. (Of course, these changes can be 
achieved by operating on the components, i.e., by changing the 
values of C1, C2, X1 or X2.)

5.2.2 Compound Actions and Context Variables

We already mentioned that it is possible to perform more than 
one action when a transition is taken. This compound 
sequential action is written by separating the component 
actions by a ; , e.g., A1;A2;A3.

Another kind of compound action is the conditional action, in 
which the actual action carried out depends on a condition or an 
event. The two cases differ in their format:

if C then A else B end if

when E then A else B end when

where A and B are actions, C is a condition expression and E is 
an event expression. The meaning of these is self-explanatory. 
In both cases the else B part is optional.

For example, in the EWS, we may define an event 
SET_UP_COMPLETED to be the disjunction 
SET_UP_SUCCEEDED or SET_UP_FAILED ; Figure 5.9 may 
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then be used to specify the transitions from SETTING_UP to 
WAITING_FOR_COMMAND in a concise fashion, and it should be 
compared with Figure 5.6.

Actions can be lengthy 
sequences of 
compound actions, and 
may involve complex 
expressions. It is thus 
helpful to attach a name 
to an action, using the 
Data Dictionary. For 
example, the 
conditional action in 
Figure 5.9 can be 
named SET_SUCCESS, 
shortening the 
transition label to 
SET_UP_COMPLETED/SET_SUCCESS.

When a sequence of actions involves assignments, the timing in 
which the left hand side variable gets its new value is 
significant. As explained in Chapter 6, the model is executed in 
steps, and the actual assignment is performed only at the end of 
the step, using the values from the end of the previous step. 
Therefore, an action like X:=1;Y:=X will result in Y becoming 
equal to the value that X had before the action execution, which 
may not necessarily be 1. Moreover, if we check the value of a 
variable X in a conditional action that follows an assignment to 
X, the value used will be the one from the previous step. For 
example, in the action sequence X:=Y; if X=Y then A1 
else A2 end if, the action A1 is not necessarily carried out, 
since X and Y might have had different values before the action.

This method of computation is sometimes inconvenient, 
especially when true sequentiality is required. For this purpose 
we provide context variables, identified by a prefixed “$”. In 
contrast to regular data-items and conditions, context variables 
get their values immediately, so that $X:=1; Y:=$X results in 

Figure 5-9.  A compound action
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Y being equal to 1, and $X:=Y; if $X=Y then A1 else A2 
end if causes A1 to be performed in any case.

Context variables have limited scope. They are recognized only 
within the action expression in which they appear, and their 
value is not saved between different invocations of the same 
action. Thus, context variables used in the definition of a named 
action A are not recognized in an action instantiating A, and 
vice-versa. Also, actions that appear in labels of different 
transition segments connected by a connector, do not share the 
context variables, even when they are performed in the same 
step. Context variables have no entry in the Data Dictionary; 
thus, they inherit their type from the expression first assigned to 
them.

5.2.3 Iterative Actions

We have seen how to define arrays of events, conditions and 
data-items. To help manipulate these arrays we provide 
iterative actions. In particular, the for loop action makes it 
possible to access the individual array components in 
successive order. The for loop action has the following 
syntax:

for $I in N1 to N2 loop

  A

end loop

Here, $I is a context variable, N1 and N2 are integer expressions 
and A is an action. For example, assume that there is an array of 
sensors monitored by the EWS. For each sensor I there is a 
corresponding SAMPLE(I) whose value is checked for being in 
the desired range, producing an array of self-explanatory 
IN_RANGE conditions. This can be done as follows:

for $I in 1 to NUMBER_OF_SENSORS loop

  IN_RANGE($I):=(SAMPLE($I) => LEGAL_RANGE.LOW_LIMIT)

            and (SAMPLE($I) =< LEGAL_RANGE.HIGH_LIMIT)

end loop
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The iterations can be carried out with the context variable 
repeatedly decremented, by using the keyword downto instead 
of to in the range designation.

Assume now that instead of producing the IN_RANGE values 
for all the sensors, it suffices to identify one sensor for which the 
value is out of legal range. When this happens, the 
OUT_OF_RANGE event should be produced. This can be done by 
the following for loop action:

for $I in 1 to NUMBER_OF_SENSORS loop

  if ((SAMPLE($I) < LEGAL_RANGE.LOW_LIMIT) or

         (SAMPLE($I) > LEGAL_RANGE.HIGH_LIMIT)) then

    OUT_OF_RANGE;

    break

  end if

end loop 

The action break, which is performed when an “out of range” 
situation is detected, will skip the rest of the loop’s iterations, 
and the action that follows the loop construct (if there is such an 
action) will be the next one to execute.

Another iterative action, the while loop construct, iterates until 
some condition becomes false. The above operation for the 
sensors can be implemented with this construct as follows:

$I:=1;

$ALL_IN_RANGE:=true;

while 

   (($I =< NUMBER_OF_SENSORS) and $ALL_IN_RANGE) loop

  if ((SAMPLE($I) < LEGAL_RANGE.LOW_LIMIT) or

         (SAMPLE($I) > LEGAL_RANGE.HIGH_LIMIT)) then

    OUT_OF_RANGE;

    $ALL_IN_RANGE:=false

  end if;

  $I := $I+1

end loop
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The break action can also be used in the while loop to 
“jump out” of the loop without completing the iteration.

Notice that the iteration counter in the for loop action and the 
iteration condition in the while loop involve context 
variables. The reason is that the values of these expressions 
must change during the execution of the action, i.e., within the 
same step.

Iterative actions can be used wherever any other action can be 
written, and, in particular, inside another iterative action. No 
limit is set on the level of nesting of iterations.
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5.3 Time-Related Expressions

Many kinds of reactive systems have timing restrictions, and 
their behavioral specification must involve reference to time 
delays and timed-out events. Our textual language provides 
several constructs to deal with timing.

5.3.1 Timeout Events

One way of introducing explicit timing information into a 
statechart is by using the timeout event. The general form is 
timeout(E,T) (abbreviated as tm(E,T)), where E is an event 
and T is an integer expression. This expression defines a new 
event, which will occur T time units after the latest occurrence 
of the event E. In the EWS example, we may replace the event 
ALARM_TIME_PASSED of Figure 4.3 by the more informative 
and detailed event: 
tm(en(GENERATING_ALARM),ALARM_DURATION). The new 
event will occur ALARM_DURATION time units after the state 
GENERATING_ALARM is entered. The waiting time, 
ALARM_DURATION, is measured in some “abstract” time units. 
The way these units refer to concrete time units, such as seconds 
or minutes, is not part of the language, and may be specified 
informally in the Data Dictionary. In addition, the relationship 
can be fixed in related tools, such as simulators, where concrete 
units are meaningful. However, in any case, the same abstract 
time units are used in all timing expressions throughout the 
entire statechart.

A subtle point related to the timeout(E,T) event is that the 
clock that “counts” the time from the occurrence of E is reset to 
zero each time E occurs. Thus, if less than ALARM_DURATION 
time units elapsed since the system entered the 
GENERATING_ALARM state, and in the meantime that state was 
left and reentered, thus retriggering the event 
en(GENERATING_ALARM), the counting of ALARM_DURATION 
will restart and the alarm will last until this new duration ends. 
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5.3.2 Scheduled Actions

A construct that is in a way dual to the timeout event is the 
scheduled action. The general format is schedule(G,T) 
(abbreviated as sc!(G,T)), where G is an action and T is an 
integer expression. It schedules G to be performed T time units 
from the present instant. Referring to Figure 4.7 of the EWS 
example, we can define the action that should be taken if 
NO_SIGNAL is true to be sc!(if NO_SIGNAL then 
ISSUE_DISCONNECTED_MSG,3). This will cause the system to 
wait for 3 time units and then check whether there is still no 
signal before issuing the message.

It is interesting to compare two ways of specifying that G is to 
occur T time units from a present occurrence of the event E. If 
we do this by using E/sc!(G,T), then indeed nothing can 
prevent G from being carried out on time. In contrast, if we use 
tm(E,T)/G, then, as mentioned earlier, a second occurrence of 
E before T units elapse resets the clock to zero, and G might take 
longer to occur or might never get around to doing so.
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5.4 Static Reactions

5.4.1 Reactions on Entering and Exiting a State

We are often interested in associating actions with the event of 
entering or exiting a particular state. This may be done by 
adding the required actions to all entering or exiting transitions. 
A better way, especially when there are many such transitions, 
is to associate corresponding reactions with the state in the Data 
Dictionary. These reactions are triggered by entering and 
exiting events (abbreviated by ns and xs). 

To use the EWS as an example, refer to Figure 4.14. The event 
OPERATE is generated on all transitions entering the 
COMPARING state, and the event HALT is generated on the 
exiting transitions thereof. We may instead omit these actions 
from the chart and associate two reactions with the COMPARING 
state in the Data Dictionary (separated by a double semicolon), 
as shown in Figure 5.10. 

Exactly when the events of entering and exiting a state occur in 
standard cases was explained in And-States and Event 
Broadcasting on page 4-13. However, there is a somewhat more 
subtle case – that of looping transitions. In Figure 5.11, assume 

Figure 5.10.  Reactions on entering and exiting a state
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we are in state S2; in part (a) the only entering and exiting 
events that occur when the transition is taken are those related 
to S2, but, in contrast, in both part (b) and part (c), the ones 
related to S occur too. 

5.4.2 General Static Reactions

The reactions attached to a state in the Data Dictionary are 
called static reactions. The general static reaction construct 
makes it possible to define the reaction of the system to an event 
within a particular state, even without associating it with a 
transition between states. Associating the reaction trigger/
action with state S in the Data Dictionary means that as long 
as the system is in state S, the action is performed whenever the 
trigger occurs. As in the case of a label of a transition, the trigger 
can be any event expression (not only entering and 
exiting, which are special cases), and the action can be any 
action expression.

In the EWS example, assume that there is no built-in clock that 
allows us to use the event 
tm(en(GENERATING_ALARM),ALARM_DURATION) to exit 

Figure 5.11.  Looping transitions
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from the GENERATING_ALARM state. We may instead employ a 
“self-made” clock, which, from the moment 
GENERATING_ALARM is entered, generates an event TICK every 
time unit. We can then introduce the data-item NO_OF_TICKS, 
and associate two static reactions with the 
GENERATING_ALARM state, as shown in Figure 5.12. 

We may then exit from GENERATING_ALARM when we have 
“seen”, say, three ticks. This could be achieved by a transition 
exiting from GENERATING_ALARM, and labeled with the 
condition [NO_OF_TICKS=3].

It is often tempting to replace a static reaction by a self-looping 
transition labeled with the reaction, so as to depict more of the 
specification graphically. This should be done with care. For 
example, we cannot naively replace the second static reaction 
for the GENERATING_ALARM state by the transition in Figure 
5.13, since each time we reenter GENERATING_ALARM the first 
static reaction will zero the data-item NO_OF_TICKS. 

Figure 5.12.  General static reactions in a state
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Finally, let us note that it is useful to mark on the chart those 
states that have associated static reactions in the Data 
Dictionary. We use the “>” character for this. Thus, for instance, 
when we add static reactions to the GENERATING_ALARM state, 
the name will be appended with a “>”, to mark the existence of 
additional information. See Figure 5.14.  

Figure 5.13.  Looping transition instead of static 
reaction

Figure 5.14.  Marking a state having static reactions
Statemate MAGNUM 5-25



The Textual Expression Language
5-26 Statemate MAGNUM



6The Semantics of 
Statecharts 

n the two previous chapters we described the language of 
Statecharts and the associated textual expression 
language. The meaning of the various notational 
constructs in these languages were discussed on an 

intuitive level to help aid the reader in grasping the way they 
are used to specify behavior. The present chapter defines the 
semantics of Statecharts more rigorously, and addresses some 
of the delicate issues that arise in working out such a definition. 
A fuller discussion of the semantics can be found in [HN96].

Later chapters of the book introduce additional features of our 
languages, and their behavioral meaning is defined in those 
places in a way that is consistent with the general principles of 
the semantics presented here.

I
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6.1 Execution of the Model

A semantic definition of a language for specifying behavior 
must be sufficiently detailed to give rise to a rigorous 
prescription of how the model is executed; that is, how it reacts 
to the inputs arriving from the environment in order to produce 
the outputs. Several times we mentioned that a model is 
executed in steps, and in this chapter we explain what exactly 
this means. We first present an intuitive view, and then get into 
a deeper description.

6.1.1 External Changes and System Reactions

The input to a reactive system consists of a sequence of stimuli 
– events and changes in the values of data elements – that are 
generated by the system's environment. We call them external 
changes. The system senses these changes, and may respond by 
moving from state to state along a transition, and/or by 
performing some actions.

In general, a model can be viewed as a collection of reactions, 
which are trigger/action pairs. When external changes 
occur, they may cause some of these triggers to be enabled, 
which causes the corresponding actions to be performed. We 
have seen two kinds of reaction so far:

• a reaction related to a transition; its trigger labels the 
transition, and there are three kinds of implied 
actions: the transfer from state to state, the actions 
connected with the exit from and entrance to the 
appropriate states, and the actions that appear on the 
transition itself. (Recall that when we talk about 
transitions we mean the logical compound 
transitions; see .)

• a static reaction associated with being in a state.

At any given moment, only some of the reactions are relevant, 
depending on the current states of the system. Later we shall see 
also reactions that are associated with activities by mini-specs. 
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These become relevant when their holding activities become 
active.

In Figure 6.1, for example, there are two transition reactions that 
are relevant in state S1, triggered by E[C1] and by E[not 
C1], respectively. The actions that are performed if E occurs 
when the system is in state S1 and condition C1 is true, are: 
make_false(P1), generate G, and make_true(P2). (Also, of 
course, S1 is exited and S2 is entered.) Note that the exiting and 
entering reactions are linked with all respective exiting/
entering transitions, as if they were part of their labels. Also, 
note that since the reaction E/K is associated with S2, and the 
event E “lives” only for an instance, the event K is not generated. 
Similarly, F/L is active only in S2, and if the event F occurs 
when the system is in S1, it will be lost and will have no effect.  

We say that the system executes a step when it performs all 
relevant reactions whose triggers are enabled. As a result of a 
reaction, the system may change its states, generate events, and 
modify values of internal data elements. In addition, these can 
cause derived events to occur (e.g., changed(D), if the data-item 
D changes value) and conditions to change their value (e.g., 
in(S), if state S is entered). Any of these resulting changes 
may, in turn, cause other triggers to be enabled, and, 

Figure 6.1.  A transition reaction
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subsequently, other reactions to be executed, in the next step. 
This has the effect of a chain-reaction, and some of the generated 
events and value changes can become outputs of the system. A 
series of steps representing the system’s responses to the 
sequence of external stimuli and their subsequent internal 
changes is called an execution scenario (or a run).

Figure 6.2 
illustrates three 
cases of chain-
reactions, each 
consists of two 
steps. All of them 
start with the 
system in S1 when 
the external event 
E occurs. The first 
one, 6.2(a), shows 
an event G 
generated by the 
reaction E/G in one 
state component 
S1, and triggering 
another reaction (a 
state transition), 
immediately 
thereafter, in the 
orthogonal 
component S2. In 
the second case, 
6.2(b), the 
subsequent step in 
the chain takes 
place, triggered by 
the derived event ex(S11), indicating an exit from S11. The 
third case, 6.2(c), is a little bit more intricate. The reaction 
triggered by E causes the system to move to S2, and as a result 
the transition labeled by [C] becomes relevant. Assuming that 
the condition C is true during the entire scenario, the following 

Figure 6.2.  Chain reactions
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step will take the system to state S3. See also Figures 4.14 and 
4.15, that show chain-reactions in the EWS example. 

In all three parts of Figure 6.2, the reactions are performed 
sequentially, since each somehow entails the other. However, 
more than one reaction can occur simultaneously, as in Figure 
6.3. Being in S11 and in S21 when E occurs results in taking the 
two transitions at the same time.

Since multiple 
external 
changes can 
occur exactly 
at the same 
time, multiple 
reactions may 
be enabled and 
performed in 
parallel 
components at 
the same time 
too, even when they depend on different triggers. Moreover, 
static reactions, even in the same state, are not exclusive; that is, 
a number of them can be performed at the very same time. 
Nevertheless, there are situations when two enabled reactions 
are exclusive and cannot both be taken in the same step. One 
example involves two transitions exiting from the same state, a 
situation that is dealt with in the last section of this chapter. 
Another example is an enabled transition exiting a state and an 
enabled static reaction associated with the same state. Here, the 
transition has priority, and it is taken, whereas the static 
reaction is not.

The parallel nature of our models raises a problem regarding 
the order in which the actions are performed. Consider Figure 
6.4, in which the previous example is enhanced with actions 
along the transitions. When E occurs, both actions are to be 
performed in the same step. The value of Y after carrying out the 
assignment Y:=X in this step depends upon whether or not the 

Figure 6.3.  Multiple transitions taken simultaneously
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assignment of 1 to X was performed before. Our semantics 
resolves this dilemma by postponing the actual value updates 
until the end of the step, at which time they are carried out “at 
once”, as we explain shortly. In this way, the evaluation of 
expressions that are used in actions is based on the “old” values 
of the variables. 

It is important 
to realize that, 
by our 
semantics, 
different actions 
in a step are not 
carried out in 
any particular 
order, even 
when they are 
specified in a 
way that 
appears to 
prescribe such an order. This includes the three kinds of actions 
appearing, for example, in Figure 6.1 – those associated with 
exiting a state, those appearing along transitions, and those 
associated with entering a state. The exceptional behavior of 
context variables, which are the ones that change their value 
immediately, during the step (see page 5-15), does not destroy 
the true concurrency among different actions performed in the 
same step. The scope of a context variable is the compound 
action it is in, and, as such, it influences only the sequential 
evaluations carried out inside that action.

In summary, all calculations taking place in a step – both those 
that evaluate the triggers and determine the reactions that will 
be taken, and those that affect the results of the actions – are 
based on what we call the status of the system prior to the step 
execution. The status includes the states the system is in, the 
values of variables at the beginning of the step, the events that 
were generated in the previous step and since then, and some 
information about the past that we discuss later.

Figure 6.4.  Multiple actions performed 
simultaneously
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Thus, an execution scenario consists of a sequence of statuses, 
starting with the initial (default) one, separated by steps that 
transfer the system from one status to another, in response to 
external stimuli, and/or to the actions generated in the previous 
step. See Figure 6.5. 

6.1.2 The Details of Status and Step

In this section, we describe the contents of the system status, 
and the algorithm for executing a step. Note that this 
description does not cover the behavioral aspects related to 
activities, although where the additional information is 
straightforward, and does not complicate the description, we 
include it. This additional information will be complexed in 
Chapters 7 and 8.

The status includes:

• a list of states in which the system currently resides;

• a list of activities that are currently active;

• current values of conditions and data-items;

• a list of regular and derived events that were 
generated internally in the previous step;

• a list of timeout events and their time for occurrence;

• a list of scheduled actions and their time for 
execution;

• relevant information on the history of states.

Figure 6.5.  An execution scenario
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The input to the algorithm for executing a step consists of:

• the current system status;

• a set of external changes (events and changes in the 
values of conditions and data-items) that occurred 
since the last step;

• the current time (see the discussion of time 
beginning on page 6-10 ).

The step execution algorithm works in three main phases:

First phase:

• calculate the events derived from the external 
changes and add them to the list of events (e.g., if a 
false condition C is set to be true the event tr(C) is 
added to the list);

• perform the scheduled actions whose scheduled time 
has been exceeded, and calculate their derived 
events;

• update the occurrence time of timeout events if their 
triggering events have occurred;

• generate the timeout events whose occurrence time 
has been exceeded;

The first phase may modify the input status, and the new status 
is the one used in the following phases.

Second phase:

• evaluate the triggers of all relevant transition 
reactions to compute the enabled transitions that 
will be taken in this step (see below for how conflicts 
are dealt with);
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• prepare a list of all states that will be exited and 
entered; this may involve the use of default 
entrances and history information; note that the lists 
may contain non-basic states;

• evaluate the triggers of all relevant static reactions to 
compute the ones that are enabled; static reactions in 
states that are exited in this step are not included 
among these.

The second phase ends with a list of actions to be performed in 
the current step. Actions specifying the exit from and entrance 
to states are included.

Third phase:

• update the information on the history of states;

• carry out all computations prescribed by the actions 
in the list produced in the second phase, but without 
event generation or the value updates called for by 
the assignments to data-items and conditions (except 
for context variables, which are assigned their new 
values as the relevant actions are carried out); 

• add scheduled actions from the list produced in the 
second phase to the list of scheduled actions;

• carry out all updates called for by the actions on the 
list produced in the second phase; this includes 
actually making the value assignments to data-items 
and conditions, and updating the list of events (i.e., 
removing all current events and adding the newly 
generated ones).

• update the list of current states.

The second phase can end with no enabled reactions. If this 
occurs we say that the system has reached a stationary status, 
and the third phase is not performed at all. In such case, 
execution will stay suspended until either new external changes 
occur or time is advanced.
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6.2 Handling Time

In reactive systems, as opposed to transformational systems, the 
notion of sequentiality and its relationship with time is of 
central importance. We now discuss this issue.

6.2.1 Sequentiality and Time Issues

We saw above that an execution scenario consists of steps 
triggered by external changes and the advancement of time. We 
also saw that reactions triggered by such happenings may 
continue to generate a chain of steps caused by internal 
changes. This raises the following questions:

• can external changes interleave with internal chain-
reactions, or are the former sensed by the system 
only after the entire internal happenings end?

• when do external changes stop being accumulated to 
make place for the execution of a step?

These questions deal only with the order in which things occur 
during execution and do not get into detailed issues involving 
the quantitative nature of elapsed time. They are relevant to all 
kinds of models. On the other hand, quantitative issues cannot 
be ignored when the model contains timeout events and 
scheduled actions, since time quantification appears within 
them explicitly, and the current time must be used to determine 
whether these elements affect a particular step. When such 
elements are present in a model, we may also ask 

who and how causes time to progress during execution?

The time calculated in dealing with the explicit time expressions 
appearing in timeout events and scheduled actions is measured 
in terms of some abstract time unit common to an entire 
statechart. Different statecharts can have different time units, in 
which case the relation between them must be specified prior to 
model execution. When the model runs in a real environment or 
participates in a simulation where concrete time units, such as 
seconds and minutes, are meaningful, the relationship between 
the model’s time units and the real clock must be provided.
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6.2.2 Time Schemes

We now propose two time schemes, and show how each of 
them addresses the above questions. In both schemes we 
assume that time does not advance during the step execution 
itself, which can be viewed as taking zero time. The actual 
meaning of this assumption is that no external changes occur 
throughout the step, and the time information needed for any 
timeout events and scheduled actions in a step is computed 
using a common clock value.

The synchronous time scheme assumes that the system executes a 
single step every time unit. This time scheme is particularly 
fitting for modeling electronic digital systems, where the 
execution is synchronized with clock signals, and external 
changes can occur between any two steps. The execution 
proceeds in cycles, in each of which time is incremented by one 
time unit, all external changes that occurred since the last step 
are collected, and a step is executed. When different clocks are 
assumed for the various components of the model, time is 
advanced to the nearest next clock value, and only the relevant 
components perform a step.

The asynchronous time scheme is more flexible regarding the 
advancement of time, and allows several steps to take place 
within a single point in time. In general, external changes can 
occur at any moment between steps, and several such changes 
can occur simultaneously. Actually, any implementation of this 
scheme can choose how it deals with these possibilities. An 
execution pattern that fits many real systems responds to 
external changes when they occur by executing the sequence of 
all steps these changes entail, in a chain-reaction manner, until 
it reaches a stationary, stable status. Only then does the system 
become ready to react to further external changes. Such a series 
of steps, initiated by external changes and proceeding until 
reaching a stable status, is called a super step, and when 
adopting this execution pattern time does not advance inside a 
super step.
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6.3 Non-Deterministic Situations

This section discusses the non-deterministic situations that a 
model might run into during execution.

6.3.1 Multiple Enabled Transitions

Consider the 
simple statechart 
of Figure 6.6. 
When the system 
is in S1, there are 
two relevant 
outgoing 
transitions. If E 
occurs and both 
C1 and C2 are 
true, the system 
does not know 
which transition to take, and non-determinism occurs.

Such a situation occurs when several transitions that cannot be 
taken simultaneously are enabled, and no additional criterion 
has been given for selecting only one. Tools executing the model 
can make an arbitrary decision in these situations, or can ask the 
user to decide.

Now consider Figure 6.7, which shows a portion of the main 
statechart of the EWS example. Assume that we are in the 
COMPARING state, which is one of the substates of ON. If the 
event POWER_OFF occurs at the same time as OUT_OF_RANGE, 
two conflicting transitions will be enabled. However, in this 
case, a non-deterministic situation will not occur, since the 
higher-level transition i.e., the one from ON to OFF, has priority 
over the internal transition. The criterion for priority of 
transitions prefers the transition whose source and target have 
a higher common ancestor state, if this is possible. If the 
common ancestors of both transitions are identical, then non-
determinism indeed occurs. 

Figure 6.6.  Potential non-determinism
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6.3.2 Racing

We say that a racing situation occurs if during execution an 
element is modified more than once, or is both modified and 
used, at a single point in time. Situations like this usually 
indicate some problem in the preparation of the model. 

Figure 6.4 
showed a case 
where data-item 
X is both 
assigned a value 
and used in the 
same step. It is 
an example of 
what we call a 
read-write racing 
situation. Figure 
6.8, on the other 
hand, presents a write-write racing situation. According to the 
definition of a step presented above, it is clear that multiple 
assignments to a data-item or a condition in a single step are 
meaningless, since the values are updated at the end of the step 

Figure 6.7.  Priorities on transitions

Figure 6.8.  Write-write racing situation
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only. What will happen in a write-write racing situation is that 
the element will be assigned one of the values arbitrarily. 

More information on racing situations can be found in [HN96].
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7Connections Between 
the Functional and 
Behavioral Views

n Chapter 2 we discussed the functional view and the 
language of Activity-charts that is used to specify it. As 
explained there, each activity in the chart may contain a 
control activity whose role is to supervise the behavior of 

its sibling activities. The internal descriptions of control 
activities are given by Statecharts, the language for the 
behavioral view discussed in Chapter 4.

In this chapter, we provide the link between the two languages, 
by describing the mechanisms that a statechart may use to 
control those parts of the activity-chart for which it is 
responsible. We discuss the actions used by the statechart to 
control activities, and the events and conditions used by it to 
sense their status.

In addition, we show how the behavior of a basic activity (i.e., 
one that is not further decomposed into other activities) can be 
specified by a mini-spec, using the textual language described 
in Chapter 5.

Behavioral aspects of the communication between the activities 
are described in Chapter 8.

I
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7.1 Dynamics in the Functional 
Decomposition

The activities participating in the functional decomposition are 
not necessarily always active. Being constantly active may be 
the case when the functional components represent blocks of 
electronic design, such as happens in chip-level modeling. 
However, in most kinds of systems many of the activities have 
limited periods in which they are active.

Here are some examples. Procedures and functions in software 
programs start when they are “called” by another part of the 
code, and upon completion they stop and return to the calling 
statement. In multi-tasking or multi-processing systems, tasks 
(or processes) are invoked, do their job, and then are “killed” or 
“kill” themselves. Tasks with lower priorities are interrupted 
and delayed when a mission of higher priority arrives, and are 
resumed when the more urgent mission completes. Interactive 
user interface is specified by “callback functions” of limited 
execution time, performed as a reaction to keyboard and mouse 
events. In object based decomposition, objects are dynamically 
created and deleted, and operations related to an object are 
activated only when needed.

Let us examine the dynamic and timing issues related to the 
activities in our EWS example. Most of the details are obtained 
from the textual description of the example in Chapter 1, and 
others reflect decisions made later on in the text.

• SET_UP: activated by an explicit request of the 
operator when the system is waiting for a command; 
it terminates on its own.

• COMPARE: started when the operator invokes an 
EXECUTE command, and stops when the event 
OUT_OF_RANGE occurs or when the operator stops it 
with the RESET command.
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• PROCESS_SIGNAL: active only when the system is 
in the usual execution mode, and the COMPARE 
activity is active and is consuming its output for 
comparison.

• DISPLAY_FAULT: starts when the processed signal 
has become out of range, and is stopped either by the 
operator or after a predefined time period.

• PRINT_FAULT: activated if the predefined time 
period has passed and has caused DISPLAY_FAULT 
to stop; it terminates on its own.

Obviously, merely listing the activities and their connections, as 
is done in the functional view, is not sufficient. We have to 
specify the dynamics of controlling these activities, including 
the starting and stopping of the subactivities of a non-basic 
activity. In the following sections we shall see how these aspects 
are covered in our models using the control activities and their 
describing statecharts. But non-basic activities are not all we 
have. In order to complete the specification, we have to add 
something to describe the behavior of the basic activities, those 
that have no subactivities, not even a control activity. In the 
section, Activities in the Data Dictionary, beginning on page 2-24, 
we examined the different types of basic activities – reactive 
event-driven ones, procedure-like ones and data-driven ones – 
and mentioned that their behavioral description is provided in 
the Data Dictionary. In the last section of the present chapter we 
show in detail how this is done.

Behavior related to the communication between activities, that 
deals not only with reading the inputs and sending the outputs 
but also with synchronization aspects, is discussed in Chapter 8.

We should emphasize that the order in which the functional 
and behavioral views and their connections are developed 
depends on the nature of the system and on the specification 
methodology. One can start by carrying out a functional 
decomposition in activity-charts, and then add the timing and 
other dynamic information in statecharts to capture behavior. 
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In contrast, it is possible to start by using statecharts to describe 
the system’s modes of operation and/or a collection of use-
cases (scenarios), and then construct an activity-chart from the 
activities performed in these modes or scenarios.
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7.2 Dynamics of Activities 

In order to capture the dynamic behavior of non-basic activities, 
i.e., to manage and control their subactivities, our models 
employ control activities that are associated with statecharts. In 
this section and the next one, we discuss how this controlling is 
carried out.

7.2.1 Statecharts in the Functional View

In general, when a non-basic activity that contains a control 
activity starts its execution, the statechart associated with that 
control activity becomes active, i.e., the system enters the top 
level state of this statechart, and it starts reacting to external and 
internal happenings, as described earlier.

Associating a statechart with the control activity is done by 
using the “@” symbol. Figure 7.1 shows a control activity 
named CNTRL_ACT, which is associated with the statechart 
CNTRL_SC. 

Note: The special dashed lines in this and similar figures in the 
sequel are not part of our graphical languages; they are 
used to denote associations between boxes and charts.  

Figure 7.1.  Associating a statechart with a control 
activity
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Very often the name of the control activity itself is omitted. (See 
Figure 7.2 below), in which case it is referred to by the name of 
its associated statechart. 

An activity with a reactive behavior pattern can be described by 
a statechart even though it is not further decomposed, so that it 
has no subactivities to control; its only subactivity is the control 
activity. See Figure 7.2; the activity in this example doubles the 
rate of a clock pulse.

In some cases, the control behavior of an activity can be 
captured by static reactions alone, without the need for states 
and transitions. In such cases, the controlling statechart will 
consist of a single top-level state with the static reactions given 
in its Data Dictionary entry. If this behavior does not involve the 
control of sibling activities, a mini-spec can be used instead; see 
Specifying Behavior of Basic Activities, beginning on page 7-18.

Finally, we should mention that while the controlling statechart 
may consume and produce external (control and data) 
information, its interface does not appear in the statechart itself. 
Rather, it shows up in the activity-chart, as the interface of the 

Figure 7.2.  A statechart describing a simple activity
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control activity it is associated with. This issue is also discussed 
in Chapter 8. 

7.2.2 Termination Type of an Activity

In the discussion of dynamics in earlier chapters we saw several 
examples of activities that stop by themselves, from “within”, 
and some that are stopped only from the “outside”. We thus 
distinguish between activities that have self-termination and 
those that have controlled-termination. (Of course, some can have 
both; in which case we consider them as self-terminating.)

If a self-terminating activity has a control activity, then the 
corresponding statechart must contain a termination connector, 
also called a T-connector. This connector can appear anywhere in 
the statechart, and is considered a final state; in particular, it has 
no exits. Upon entering this connector, the statechart “stops”, its 
parent activity – call it A – becomes deactivated, and the event 
stopped(A) (abbreviated by sp(A)) occurs.

In the EWS example, the activities SET_UP and PRINT_FAULT 
are self-terminating. Figure 7.3 shows the controlling statechart 
of SET_UP, and it contains a termination connector. In contrast, 
COMPARE and PROCESS_SIGNAL are periodic activities with 
controlled-termination. Also, DISPLAY_FAULT, which 
produces an alarm sound and displays a message on the screen, 
continues to do so until it is stopped (as we shall see later) by the 
controlling statechart of EWS_ACTIVITIES. 

While reactive activities, data-driven or event-driven, can have 
either controlled or self-termination, procedure-like activities 
are always of the self-termination type. When invoked, a 
procedure-like activity performs a sequence of actions and 
stops. It is always a basic activity, and lasts for one step of 
execution only.

The distinction between the two termination types can be made 
for both basic and non-basic activities, and is recorded in the 
Data Dictionary entry of the activity.
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An important point is that when a non-basic activity stops, 
either by its statechart moving to a termination connector, or 
from the outside (e.g., by an explicit stop action, as we shall see), 
all its sub-activities stop immediately too.

7.2.3 Perpetual Activities 

We mentioned activities whose components are “always 
active”. Since this kind of behavior pattern is very common in 
the specification of hardware systems, we refer to it as hardware 
activation style. This is a case in which an activity does not need 
to have a control activity. For non-basic activities that do not 
have a control activity we provide special default behavior: all 
the subactivities start when the parent activity starts, and they 
all stop when it stops. (The latter fact is always true, even in the 
presence of a control activity.)

In the EWS example, we may decompose DISPLAY_FAULT into 
two subactivities with no control activity, as shown below. 
When DISPLAY_FAULT is activated, both 
DISPLAY_FAULT_MESSAGE and PRODUCE_ALARM_SOUND 
start simultaneously. They stop when DISPLAY_FAULT is 
stopped.

Figure 7.3.  Termination connector in SET-UP’s 
statechart
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Figure 7.4.  A non-basic activity with no control activity
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7.3 Controlling the Activities

We now show how the controlling statecharts affect and sense 
the status of their sibling activities.

7.3.1 Starting and Stopping Activities

One of the main mechanisms that statecharts use to control 
activities is the ability to activate (start) and deactivate (stop) 
them explicitly. This is usually carried out via the actions 
start(A) and stop(A), which are abbreviated as st!(A) 
and sp!(A), respectively.

To exemplify these actions, let us return to the dynamic and 
timing issues related to our EWS example, as described in 
Dynamics in the Functional Decomposition, page 7-2. Here is how 
these decisions can be specified in the controlling statechart. 
Consider the statechart of Figure 4.6 and compare it with Figure 
7.5. The event PRINT_OUT_OF_RANGE, which is generated on 
the transition from GENERATING_ALARM to 
WAITING_FOR_COMMAND, is replaced by the action 
st!(PRINT_FAULT). 

This takes care of the activation of PRINT_FAULT. For all other 
activities, we can link their activation with the entrance to a 
state. For example, SET_UP is started by carrying out the action 
st!(SET_UP) upon entering the state SETTING_UP. A good 

Figure 7.5.  An action that starts an activity
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way to achieve this effect is by attaching a static reaction: 
ns/st!(SET_UP) to the SETTING_UP state. (Recall that ns 
abbreviates the entering event.) Similarly, the activities 
COMPARE, PROCESS_SIGNAL and DISPLAY_FAULT are started 
upon entering the states COMPARING, OPERATING and 
GENERATING_ALARM, respectively. The existence of the static 
reactions attached to these states is marked by a “>” symbol 
affixed to the state name, as shown in Figure 7.6. Notice that 
entering these states is triggered by the events that were stated 
above to start the corresponding activities. For example, the 
SET_UP command causes entrance to the SETTING_UP state, 
and therefore causes activation of the SET_UP activity.

The COMPARE activity is stopped when the COMPARING state is 
exited, by the reaction xs/sp!(COMPARE) that appears in the 
Data Dictionary entry of this state. (Recall that xs abbreviates 
the exiting event.) Note that the events OUT_OF_RANGE and 

Figure 7.6.  States marked as having entering and 
exiting reactions
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RESET cause the system to exit the COMPARING state, and 
therefore they stop the COMPARE activity. 

It is noteworthy that the action st!(A) has no effect if A is 
already active, and sp!(A) has no effect if it is not. Thus, for 
example, no message will be printed if st!(PRINT_FAULT) 
was executed a second time before the previous activation of 
PRINT_FAULT terminated.

Starting an activity that has a controlling statechart with the 
start action will cause the statechart to begin “running” in 
parallel to all other statecharts that might be active in the model 
at that time. Similarly, stopping an activity by the stop action 
causes the controlling statechart of the stopped activity to abort, 
and to remain dormant until its next activation, at which time it 
will restart in its top-level state. Moreover, if the stopped 
activity is nonbasic, all its subactivities stop too.

Recall that the control activity can control only its sibling 
activities. Therefore, all actions that appear in its statechart may 
refer to the sibling activities only.

7.3.2 Sensing the Status of Activities

The statechart that describes a control activity is not limited to 
causing activities to start and stop. It can also sense whether 
such happenings have indeed taken place. Specifically, the 
control activity can sense the events started(A) and 
stopped(A), and the condition active(A), abbreviated as 
st(A), sp(A), and ac(A), respectively. The event st(A) 
occurs when the activity A starts, sp(A) occurs when A 
terminates either by self-termination or by an external stop 
action, and the condition ac(A) is true for the duration of the 
period in which A is active.

In the EWS example, we can be more specific about the actual 
event that triggers the exit from SETTING_UP. It will be 
sp(SET_UP), rather than SET_UP_COMPLETED. See Figure 7.7.
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Just as the control activity can control only its sibling activities, 
so can it sense only these siblings. Therefore, the events and 
conditions in the describing statechart are allowed to refer only 
to the sibling activities. 

7.3.3 Activities Throughout and Within States

Often, we wish an activity A to start when a certain state S is 
entered, and to stop when S is exited. This can be specified by 
associating the action st!(A) with the entering event ns as a 
static reaction in the Data Dictionary entry for S and the action 
sp!(A) with the exiting event xs therein. To cater for such 
cases in a more compact way, we may specify in the Data 
Dictionary entry for S that A is active throughout S. For example, 
the COMPARE activity can be specified as being active 
throughout the COMPARING state, and PROCESS_SIGNAL as 
being active throughout the OPERATING state. See Figure 
7.8.

The throughout correspondence between a state and an 
activity is natural for activities with controlled-termination, 
since exiting the state will stop the activity. However, a self-
terminating activity A may also be specified as being active 
throughout a state S. In such a case, there is usually an exit 
transition from S triggered by the event sp(A); this implies that 

Figure 7.7.  An event signifying termination of an 
activity
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if and when A stops of its own accord S will be exited via this 
exit. If A stops and there is no such exit transition, the 
specification is misleading, but it is not a language error. If S is 
exited before A terminates on its own, A will stop as a result, just 
as if A had been of the controlled termination kind.

The following example illustrates this case. Assume that the 
self-terminating activity SET_UP is specified as active 
throughout the SETTING_UP state. Figure 7.9 shows an exit 
transition from this state, labeled sp!(SET_UP). We have also 
added another exit transition, triggered by the RESET 
command, that enables the operator to abort the SET_UP 
activity during its execution. 

Another similar association is active within, which represents a 
looser connection between an activity and a state. Again, we use 
the Data Dictionary to assert that activity A is active within 
state S. This is mainly done as a temporary specification, to 

Figure 7.8.  Activities active throughout states in the 
Data Dictionary
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indicate that the activity is activated sometime during the time 
the system is in S, but that we cannot be more concrete at 
present. One of the technical ramifications of this association is 
that when S is exited A stops (unless, of course, it had stopped 
earlier for some other reason). However, in contrast to the 
throughout connection, A does not necessarily start when S is 
entered.

For example, in Figure 7.6, the activity PROCESS_SIGNAL can 
be defined as active within the CONNECTED state before 
that state is further decomposed into IDLE and OPERATING. 
The reason is that even before the decomposition we do know 
that it is meaningless to perform this activity when the sensor is 
disconnected. Later on, we can be more concrete and define the 
activity PROCESS_SIGNAL as being active throughout 
OPERATING.

7.3.4 Suspending and Resuming Activities

In addition to being able to start and stop activities, control 
activities can cause an activity to “freeze”, or suspend, its 
activation, and to later resume from where it stopped. The 
relevant actions are suspend(A) and resume(A) 
(abbreviated as sd!(A) and rs!(A), respectively). Associated 
with these actions is the condition hanging(A) (abbreviated as 

Figure 7.9.  Self-terminated activity active throughout 
a state
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hg(A)), which is true as long as A is suspended without being 
resumed or stopped. It should be emphasized that an activity is 
considered active even when suspended. Thus, whenever 
hg(A) is true, so is ac(A).

Suspension may be used, for example, when we want to 
interrupt the progress of an activity in favor of another activity 
with a higher priority. Figure 7.10 shows a simple activity and 
its controlling statechart. The event E causes A to be suspended, 
while the preferred activity B is carried out to completion, at 
which time A is resumed.

If A is suspended, its descendant subactivities become 
suspended too, including all descendant control activities. This 
means that the corresponding statecharts “stop in their tracks”: 
they remain in the state configurations they were in at the 
instant of suspension. Upon resuming, all such control activities 
continue in a normal fashion from those configurations. While 
suspended, the statechart does not react to events. In fact, all 
events that occur during the suspension period are “lost” and 
have no effect on the suspended statechart. 

Figure 7.10.  Suspending and resuming activities
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Resuming a suspended activity sounds very much like entering 
a state via a history entrance (see History Entrances, page 4-27). 
However, these notions should not be naively interchanged. To 
illustrate the difference, compare the statechart of Figure 7.10 
with Figure 7.11. In the absence of any additional static 
reactions, the exit from the AC_A state in Figure 7.11 does not 
cause activity A to either stop or suspend. Now assume that we 
remove the starting action from the default entrance in that 
figure and the activity A is defined to be active throughout state 
AC_A. In this case, the event E will cause A to stop, and returning 
to AC_A will cause it to start at the beginning, which is not the 
case in Figure 7.10. Thus, one must remember that reentering a 
state via a history entrance is considered an entrance 
nonetheless, and actions that are to be performed on entry (such 
as starting activities that are defined throughout) are indeed 
carried out.

Figure 7.11.  History entrance vs. resume activity
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7.4 Specifying Behavior of Basic 
Activities

When carrying out functional decomposition, the lower level 
building blocks of the description are the basic activities, those 
that require no further breakup. We may utilize the textual 
language of Chapter 5 to associate formal executable 
descriptions with basic activities, without using the Statecharts 
language. These descriptions, called mini-specs and 
combinational assignments, are written in the Data Dictionary. 
(They were mentioned also in Activities in the Data Dictionary, 
page 2-24.) Basic activities that have additional textual 
descriptions in the Data Dictionary are marked by a “>” 
appended to their names, like states with static reactions.

7.4.1 Reactive Mini-Specs

In some cases the behavior of a basic activity can be described 
by a collection of reactions, consisting of triggers and their 
implied actions. In these cases, a reactive mini-spec can be used.

The syntax of a reactive mini-spec is similar to that of a static 
reaction in a state, i.e., it is a list of reactions of the form 
trigger/action, separated by a double semi-colon (;;). The 
meaning is obvious: as long as the activity is active, an action is 
performed whenever the corresponding trigger occurs.

It is also possible to associate actions to be carried out when the 
activity starts, by using the event started (abbreviated by st) 
as the trigger in the mini-spec. This event occurs one step after 
the action st!(A) is performed, like the event started(A). 
Notice that the name of the activity does not appear in this event 
since the reaction is associated with the activity itself.

Figure 7.12 describes the PROCESS_SIGNAL activity of the EWS 
as a reactive mini-spec. 

This activity reads the sensor's output, SIGNAL, every 
SAMPLE_INTERVAL and transfers the read value to a 
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processing user function COMPUTE(), which is unspecified in 
the model. The function’s output, SAMPLE, is later checked for 
being inside the required range. The sampling cycle is 
implemented by an internal event TICK, which is first 
scheduled when the activity is started, and is then scheduled for 
the subsequent cycle.

A reactive mini-spec can be attached to both self-terminating or 
controlled-terminating activities. To stop a self-terminating 
activity, the stop action (abbreviated sp!) is used, which also 
has no activity name. The stopped activity becomes inactive in 
the next step. In the current step, it continues to apply other 
reactions, if there are other enabled triggers, and it even 
completes the sequence of actions that follows the stop action 
(although it is probably bad practice to write action expressions 
with actions that follow a stop action).

To illustrate usage of the stop action in the EWS example, let 
us assume (over and above the original requirements) that the 
PROCESS_SIGNAL stops when it finds that the sensor signal is 
zero. This can be specified as in Figure 7.13: 

Figure 7.12.  A reactive mini-spec in the Data 
Dictionary
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It is important to remember that states and activities cannot be 
referred to in the mini-spec. All the activities and states of the 
model are beyond the scope of an individual mini-spec.

7.4.2 Procedure-Like Mini-Specs

Very often, an activity can be described as a sequence of actions, 
possibly with conditional branching and iterations. Such 
activities are called procedure-like, and are actually similar to 
actions: they are described by a mini-spec that has an action 
syntax, and are active for a single step only. Obviously, such 
activities are always self-terminating.

For example, let us return to the SET_UP activity, whose 
activity-chart and controlling statechart are shown again in 
Figure 7.14.  

The VALIDATE_RANGE subactivity is active throughout the 
VALIDATION state. It can be described by a very simple 
procedure-like mini-spec, as shown in Figure 7.15. 

Figure 7.13.  The stop action in a mini-spec
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Figure 7.14.  SET-UP activity and controlling 
statechart

Figure 7.15.  A procedure-like mini-spec in the Data 
Dictionary
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Notice the “>” marks in the statechart and activity-chart, that 
indicate that the VALIDATION state and the VALIDATE_RANGE 
activity have an additional behavioral description in the Data 
Dictionary. 

As in the case of reactive mini-specs, procedure-like mini-specs 
are not allowed to refer to states and activities.

7.4.3 Combinational Assignments

Another typical behavior for an activity is that of a data-driven 
pattern. The activity is continuously ready to perform some 
calculations whenever the input changes its values. In principle, 
this pattern can be described by a reactive mini-spec in which 
the required calculations are performed when the activity starts 
and also whenever an event changed(X) occurs for any 
relevant data-item or condition X. We provide an alternative, 
more convenient way to describe data-driven activities: 
combinational assignments. These are associated with the activity 
via the Data Dictionary, just like with mini-specs.

The general syntax of a combinational assignment is:
X :=Y1 when C1 else

Y2 when C2 else

 . . .

Yn

when X is a variable condition or data-item, Y1 to Yn are 
expressions, and C1 to Cn are condition expressions.

For example, let us define a subactivity COMPUTE_IN_RANGE of 
the COMPARE activity, with the following combinational 
assignment:
IN_RANGE:=false when (SAMPLE < LEGAL_RANGE.LOW_LIMIT)

else false when (SAMPLE > LEGAL_RANGE.HIGH_LIMIT)

else true
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This combinational assignment was designed to illustrate the 
syntax of the construct, but there is actually a simpler way to 
obtain the same effect, using only a simple expression with no 
when clause, as shown in Figure 7.16. 

Whenever SAMPLE changes its value, the combinational 
assignment re-computes the value of IN_RANGE. (The 
OUT_OF_RANGE event will be generated by another action 
when IN_RANGE becomes false.)

The left hand side of the assignment is called a combinational 
element. It can be of a numeric type, a string or a condition. It can 
be an array component (with a constant index) or a record field. 
It can also be a bit-array slice, but, again, only with constant 
range indices.

The combinational assignments are performed at the end of an 
execution step. If, during the step, a value of an element 
appearing on the right-hand side of some combinational 
assignment is changed, the assignment is carried out using the 
new values. If doing so changes the value of an element in some 
assigned expression, an additional computation phase is called 
for. Of course, this chain of computations can be infinite, 
resulting in an unstable design.

Figure 7.16.  Combinational assignments in the Data 
Dictionary
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8Communication 
Between Activities

pecifying the communication between activities consists 
of the what and the when, just like for other parts of the 
specification. The what is described by the flow-lines in 
the activity-charts (see Chapter 2) and relevant parts of 

the Data Dictionary (see Chapter 3). The when is to be specified 
by the behavioral parts of the model, i.e., the statecharts and 
mini-specs. This dynamic aspect of communication is the 
subject of the present chapter. We discuss those parts of our 
languages that serve to control the communication between 
activities, and discuss how they are related to the flow-lines in 
the functional view. We also describe the queue mechanism in 
some detail.

S
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8.1 Communication and 
Synchronization Issues

Functional components in systems communicate between 
themselves in order to pass along information and to help 
synchronize their processing. A number of attributes 
characterize the various communication mechanisms, and 
different mechanisms are convenient for different application 
domains. The communication can be instantaneous, meaning 
that it is lost if not consumed immediately, or persistent, 
meaning that it stays around until it gets consumed (which can 
be achieved by queuing, for example). The communication can 
be synchronous (e.g., the sender waits for an acknowledgment or 
reply from the listener), or asynchronous (i.e., there is no waiting 
on the part of the sender). The communication can be directly 
addressed (i.e., the target is specified) or sent by broadcasting. And 
there are other issues too. A flexible modeling and 
implementation environment will make it possible to use many 
variants of these communication patterns.

In our models, every element has a scope in which it is 
recognized. The scoping depends on the element’s definition 
chart, and is described in Chapter 13. The central point here is 
that every change in the value of an element is broadcast to all 
activities and statecharts in the element’s scope, and is thus 
“seen” by them all. These changes include the occurrence of an 
event, the assignment of a value to a data-item or condition, a 
change in the status of an activity, and entering or exiting a 
state.

Besides events, which are instantaneous and last for one step 
only, all other elements keep their values until some explicit 
action causes a change. Therefore, for all communicated 
elements other than events, the receiver need not necessarily be 
active when the sender assigns them a value. Moreover, in all 
cases other than queues, the same information can be consumed 
an unlimited number of times.
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The following sections discuss the elements related to the flow 
of information in our languages and illustrate how they can be 
used to model various communication patterns.
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8.2 Controlling the Flow of 
Information

The statecharts and mini-specs are responsible, among other 
things, for controlling the flow of information between 
activities, and they are complemented by certain elements in the 
textual language. The description of the information flow given 
in the activity-charts completes the picture, and it should be 
consistent with the control specification. 

8.2.1 Elements Related to Flow of Information

Consider Figure 8.1, in 
which X is specified to 
flow between activities 
A and B. When does X 
flow, and what triggers 
the flow? 

Assume first that X is an event, and that the behavior of A is 
described by the statechart that constitutes A’s control activity. 
This statechart may contain an action that generates X along a 
transition or in a static reaction, and at that instant the 
controlling statechart of B (or of any of B’s descendants) can 
sense X and modify its behavior accordingly. See Figure 8.2. 
Similarly, A and B can be described by mini-specs, which, 
respectively, contain an action that generates X and some 
reaction triggered by it. Many other alternatives are also 
possible.

If X is a condition or a data-item, it is considered to be 
continuous in time. This means that the value of X may change 
at any point in time as long as A is active, and B can sense and 
use this value at all times (even when A is no longer active). The 
actions and events that were described in the previous chapters 
enable us to affect the values of the conditions and data-items 
and to sense when changes in such values occur. More 
specifically, if X is a condition, the source activity A (i.e., its 
controlling statechart or its mini-spec, and those of its 

Figure 8.1.  An information element flowing 
between activities
8-4 Statemate MAGNUM



Elements Related to Flow of Information
descendants) can change X’s value by the actions tr!(X) and 
fs!(X). The change itself (via the events ch(X), tr(X) or 
fs(X)), and the current truth value of X, can be sensed 
anywhere in B. If X is a data-item or condition, it can be assigned 
values in A by actions such as X:=E, for an expression E; in B we 
can sense the event written(X) (abbreviated wr(X)), which 
may be viewed as occurring at the instant the assignment takes 
place. The value of X can also be used in any controlling 
statechart, mini-spec or combinational assignment inside B.

If we are not interested in assigning a specific value to X, just in 
stating that some value has been assigned, A may execute the 
action write_data(X) (abbreviated wr!(X)), and B may 
sense the event wr(X). Thus, informally, the action wr!(X) 
means assign a value to X, but without specifying any specific 
value, and the event wr(X) means that “X has been assigned a 
value”. In a dual fashion, the target activity B of the data-item or 
condition X may perform the action read_data(X) 
(abbreviated rd!(X)), signifying that it has read the value of X, 
without using it in any particular computation. At the same 
time, the source activity A can sense the corresponding event 
read(X) (abbreviated rd(X)).

Figure 8.2.  Producing and consuming an event
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Note the following rules, which hold when the actions wr! and 
rd! are applied to structures, such as records and arrays, and 
their components. The general idea is that when dealing with 
structures all of whose components exist in every occurrence of 
the structure, the special actions and events that involve the 
structure as a whole apply to all components, but the converse 
is not true. If R is a record, then the action wr!(R) and an 
assignment to R trigger the event wr(R.X), for each component 
R.X of R, and the action rd!(R) triggers the event rd(R.X). If 
A is an array, the action wr!(A) triggers the event wr(A(I)) 
for each component of A, and the action rd!(A) triggers the 
event rd(A(I)). An assignment to the entire array (e.g., A:=B), 
or to an array slice (e.g., A(1..3):=T), triggers the event 
wr(A(I)) for each index I in the assigned range, but not vice 
versa; i.e., an assignment to A(I) does not cause the event 
wr(A).

For unions, where the components have an exclusive nature, 
actions on a component imply events related to the containing 
union data-item, but not vice versa. Thus, if U.F is a component 
of the union data-item U, then the action wr!(U.F) triggers the 
event wr(U), as does an assignment to U.F. The action 
rd!(U.F) triggers the event rd(U).

The written and read events are relevant to the queue data-
item too, as is discussed in Activities Communicating Through 
Queues, page 8-13.

8.2.2 Interface Between “execution” Components

The actions and events described above provide the means to 
monitor the behavior of the flow of information. An important 
issue related to the information elements that appear in 
controlling statecharts, mini-specs, and combinational 
assignments pertains to their origins and destinations. In 
particular, the statecharts themselves do not explicitly deal with 
the flow of information. The inputs and outputs of a statechart 
are presented in the activity-chart as flowing to/from the 
control activity associated with the statechart in question. 
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For example, refer to Figure 4.3, the simplest version of the 
statechart describing the EWS_CONTROL. The operator 
commands, EXECUTE, SET_UP and RESET are input events to 
this statechart, and are shown as flowing from an external 
activity into the control activity (as components of COMMANDS) 
in Figure 2.5. Similarly, the event OUT_OF_RANGE, which is also 
used in this statechart, is an input that comes from the COMPARE 
activity.

Not all the elements used in the statecharts come from external 
sources. We have seen that orthogonal components may 
communicate via internal information elements. The events 
OPERATE and HALT, shown in Figure 4.14, are generated by an 
orthogonal component and, as such, they do not appear in the 
external interface of the control activity in Figure 2.5 at all.

In general, each element that appears in a behavioral 
description unit, i.e., a statechart, mini-spec or combinational 
assignment, may be either used by or affected by this 
description unit. Some elements, such as the events HALT and 
OPERATE above, and the event TICK in the mini-spec of Reactive 
Mini-specs, see page 7-18, are both used and affected by the 
same statechart/mini-spec and are thus considered internal to 
it.

If X appears in a trigger (along a statechart transition or in a 
reaction in a state or mini-spec), then we say that it is used by the 
statechart or activity. The same applies if X appears in a 
conditional expression in the if or when parts of an action. 
Data-items are also said to be used by a statechart or an activity 
if they appear on the right-hand side of assignment actions or 
combinational assignments.

Consider, for example, Figure 8.3. The event E and the condition 
C are used by the statechart, since they appear in the transition’s 
trigger. If C is a compound condition (say, it is defined as C1 or 
I=J), then its components (in this case, C1, I, and J) are also 
used by the statechart. The data-items X and Z in Figure 8.3 are 
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also used, since the former is tested and the latter participates in 
an assignment. 

Similarly, if X is an event generated by an action (along a 
transition, or in a static reaction or a mini-spec) in the statechart 
or in an activity, then it is affected by this behavioral unit. The 
same applies if X is a data-item or a condition that is assigned a 
value in an action (e.g., Y and K in Figure 8.3), or in a 
combinational assignment (e.g., IN_RANGE see page 7-22).

In a complete specification, we expect all elements that are used 
by a statechart or an activity (in its mini-spec or combinational 
assignment), but are not affected by it, to be inputs to the 
corresponding control activity or the activity itself, respectively. 
Similarly, elements that are affected by the statechart or the 
activity, but are not used internally, are expected to be outputs 
of the control activity or the activity.

We should remark that actions related to activities (e.g., 
st!(A) and sp!(A)), although they can be viewed as signals 
that flow out of the control activity, have no corresponding 
flow-lines in the activity-chart. The same goes for the events 
st(A) and sp(A), and the conditions ac(A) and hg(A), 
which can be viewed as signals that flow from A into the control 
activity.

Figure 8.3.  Elements used and affected by a 
statechart
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8.3 Examples of Communication 
Control

We have seen several patterns by which activities communicate. 
For example, the data-item LEGAL_RANGE was assigned a value 
by the SET_UP activity, and this value was used later by the 
COMPARE function. In this scheme of shared data, the exact 
timing of the production and consumption of the values is not 
significant. On the other hand, we have seen several cases 
where events were used to detect an occurrence in which timing 
was important, and an immediate response was required (the 
OUT_OF_RANGE notification and the RESET command, for 
example).

We shall now see examples in which the communication 
involves synchronization aspects as well as data transfer. 

8.3.1 Communication Between Periodic Activities

In distributed computation models, the functionality is often 
divided among a number of periodic activities. Each of these 
has some mission to carry out, and upon completion it transfers 
control to some other activity. One activity might prepare data 
for processing and then notify the consuming activity when the 
data is ready. Figure 8.4 shows such a case from the EWS 
example, where we specify the activities PROCESS_SIGNAL 
and COMPARE. The checking that takes place in the latter is 
synchronized to the periodic rate at which signals are produced 
in the former. CHECK is a procedure-like activity that computes 
the IN_RANGE value for the current SAMPLE, and then 
terminates.

In this example, like other similar ones, some assumptions are 
made about the processing time of the activities participating in 
the cycle. For instance, it is assumed that in every cycle the 
CHECK activity succeeds in completing its execution before the 
next SAMPLE is ready for processing; otherwise some data may 
be lost. 
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In Figure 8.4 we have shown only the top level behavior; there 
is no explicit value assignment to SAMPLE, and no details on 
how it is used in the CHECK activity. The timing of the data 
transfer and how it influences the activity scheduling is 
expressed with the abstract write_data action and the 
written event. Actually, the read_data action and read 
event can be used in a dual manner to synchronize an activity 
execution with the time the data is consumed, so that a cycle of 
preparing new data can start.

Figure 8.4.  Communication between periodic 
activities
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8.3.2 Message Passing

It is sometimes convenient to base the communication between 
activities on message passing. A good way to deal with this 
involves queues, which are described in the next section. 
However, in many cases, the mechanisms already discussed are 
sufficient. Data-less messages can be represented by events, 
while messages with data can be modeled by record data-items, 
whose departure from the source (or arrival at the target) can be 
sensed by the receiver using the written event. 

As an example, assume we have a simple client-server setup, 
where the server waits in an idle state for a message that 
denotes a request for some service. The server is able to deal 
with three different kinds of messages, each one with its special 
data. This can be achieved using a union data structure whose 
components are the various message records, as follows. 

First, we define a data-type MESSAGE as a record with two 
fields:

The first field TYPE holds the message type, one of three 
possible values, while the second holds the accompanying data. 
The user-defined type MSG_DATA is a union, consisting of three 
fields, each corresponding to one of the message types:

Each of the messages transfers some data represented by a 
different user-defined type. The client prepares and sends the 
message MSG (whose data-type is MESSAGE) by carrying out the 
following actions:

Field Name: TYPE Field Type: Integer min=1 max=3

Field Name: DATA Field Type: MSG_DATA

Field Name: D1 Field Type: POSITION

Field Name: D2 Field Type: BITS 

Field Name: D3 Field Type: KEY
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MSG.TYPE:=1; MSG.DATA.D1:=NEW_POSITION; wr!(MSG)

In Figure 8.5 we see how the server may respond to the arrival 
of the message. Each of the three services activated in response 
to the respective message (i.e., service request) consumes its 
appropriate data.  

In this example we did not discuss whether the server is 
guaranteed to be ready to respond when the request is sent, or 
how the client knows whether the request was fulfilled. Our 
language does not contain any built-in mechanism for 
identifying message senders so that replies can be automatically 
addressed. However, when this is required, e.g., for 
synchronization or confirmation purposes in a multiple client 
environment, it can be implemented using explicit 
identification. Later, when multiple instances of generic charts 
are discussed, we shall see that an instance number can be used 
for this purpose.

Figure 8.5.  Server responding to three service 
requests
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8.4 Activities Communicating Through 
Queues

Queuing facilities for messages are virtually indispensable in 
modeling multi-processing environments, and especially 
multiple client-server systems. We would like to be able to 
address situations in which an unlimited number of messages is 
sent to the same address, while the receiver is not always in a 
position to accept them. We also want to arrange things so that 
no message is consumed before one that was sent earlier. 
Moreover, we want it to be possible for concurrently active 
components to write messages to the same address at the same 
moment, and for concurrently active components to read 
different messages from the same source, even at that very same 
moment. In our language set we use message queues for this, 
simply called queues for short.

8.4.1 Queues and Their Operation

A queue is an ordered, unlimited collection of data-items, all of 
the same data-type. The queue is usually shared among several 
activities, which can employ special actions to add elements to 
the queue and read and remove elements from it. Our queues 
are of unrestricted length, which is in contrast to those used in 
some real-time kernels, which are defined with a maximal 
number of components.

A queue is itself a structured data-item, just like an array, and 
when defined in the Data Dictionary the data-type of its 
components must be specified. This data-type can be any basic 
predefined type (i.e., integer, real, etc.), or a user-defined type. 
There are no limitations on combining queues with other 
constructs, e.g., arrays, records/unions, or other queues. This 
means that we can define an array of queues, a record with a 
queue as a field thereof, or even a queue of queues. The usage 
of such compound constructs is presented further below. A 
queue of records or unions, for example, is achieved by an 
intermediate definition of a user-defined type.
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We supply several actions to manipulate a queue. The exact 
timing of these actions during the execution of a step is a 
delicate issue, which is discussed in The Semantics of Queues, 
page 8-15.

The actions q_put(Q,D) (abbreviated put!(Q,D)) and 
q_urgent_put(Q,D) (abbreviated uput!(Q,D)) add the 
value of the expression D (a data-item or condition) to the queue 
Q. The former action adds an element to the tail of the queue, 
while the latter adds it to the head of the queue, allowing 
messages with higher priority to precede all others. Both these 
operations cause the event wr(Q) to occur. The type of the 
expression D must be compatible with the data type of the 
elements of the queue, like in assignment actions.

The action that is dual to these two is q_get(Q,D,S), 
abbreviated get!(Q,D,S). Its effect is to extract the element 
residing at the head of the queue Q and place it in D, removing 
it from the queue in the process. The data type of D must be 
compatible with the data type of the elements in the Q. The third 
operand, the status condition S, is optional. It is set to true if the 
queue contained elements when the action was carried out, and 
to false if the operation failed to find data to extract.

The action q_peek(Q,D,S) (abbreviated peek!(Q,D,S)) is 
similar to get!, but it is not destructive; it copies the element at 
the head of the queue into D without removing it from the 
queue.

The actions get! and peek! may succeed or fail, the latter 
being the case if the queue is empty. If successful, D and S are 
assigned values, and the events rd(Q and wr(D) occur. The 
event wr(S) always occurs, and if the values of D and S are 
changed from their previous values in the process, then ch(D) 
and ch(S) occur too. 

In addition to the above actions, a queue can be totally cleared 
by the action q_flush(Q), abbreviated fl!(Q). It is also 
possible to examine the queue length by the operator 
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q_length(Q), which returns the length of the queue prior to 
the step. More about this issue in the next subsection.

8.4.2 The Semantics of Queues

A queue is of inherently sequential nature, since the order in 
which the messages are put in the queue determines the order 
in which they are consumed (with the exception of the order-
overriding action uput!). A problem arises when operations on 
the same queue occur in parallel components during the same 
step. Since there is an element of non-determinism in the order 
of the operations, which depends on the tool implementing the 
execution of the model, the end result might not be fully 
determined. We now describe a carefully defined semantics, 
whose goal is to reduce this non-determinism.

All get actions are performed when they are encountered. 
Actually, a get action immediately removes the element read 
from the head of the queue. However, the assignment to D in 
get!(Q,D,S) is performed only at the end of the step, unless 
the assigned variable is a context variable (i.e., $D instead of D, 
see Compound Actions and Context Variables, page 5-15). Several 
get actions in the same step read the elements from the queue 
sequentially, and each reads a different element one after the 
other, in an order that is non-deterministic. Since get fails when 
the queue is empty, it may be the case that some of the get 
actions succeed and some of them fail. Using a context variable 
for the status condition (i.e., $S instead of S) makes it possible 
to check in the current step whether or not the operation 
succeeded. 

In contrast to get actions, a put does not immediately affect the 
contents of the queue. All put actions are accumulated, and are 
performed at the end of the step. This scheme reduces the 
chances of racing (see Racing, page 6-13), because it prevents the 
interleaving of get and put actions in the same step. The order 
in which the put actions of the same step are performed at the 
end of the step is also non-deterministic, and depends on the 
tool implementing the execution.
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The clearing action flush also takes effect at the end of the step. 
When issued in the same step with some put actions on the 
same queue, flush will be the last to be carried out, and will 
result in an empty queue. Of course, this situation is considered 
a racing condition.

Although the actual number of elements in the queue might 
change during a step, the returned value of the q_length 
operator is not updated continuously. Rather, it returns a 
unique value per step retrieved before all other queue 
operations of that step. The following example of its use is 
inappropriate, and when started on a non-empty queue will 
result in an infinite loop:

while q_length(Q)>0 loop

  get!(Q,$MSG,$S);

  if $S then

  . . . . .

  end if;

end loop

The following loop is more suitable for processing all messages 
in the queue:

for $I in 1 to q_length(Q) loop

  get!(Q,$MSG,$S);

  if $S then

   . . . . .

  else

    break

  end if;

end loop

The status condition $S is checked during the loop, because 
there may be several consumers reading from the queue in the 
same step.
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Figure 8.6 illustrates the order in which operations on a queue 
are performed during a step. 

8.4.3 Queues in an Activity-Chart

Queues can be associated with data-stores just like data-items of 
other types can. To associate a queue with a data-store, both 
must have the same name. Figure 8.7 illustrates the combined 
use of data-stores and queues, and here too, if the incident flow-
lines are unlabeled, the queue Q is considered an output of the 
source activity, PRODUCER, and an input to the target activity, 
CONSUMER.  

Note that P_MSG is not an output of PRODUCER, and is therefore 
not written on the emerging flow-line. It is best to view the 
put!(Q,P_MSG) action as the assignment queue-
head:=P_MSG. In terms of Interface Between "execution" 
Components, page 8-6, P_MSG is actually used by the put 
operation, and should thus flow into the PRODUCER activity, or, 
alternatively, it should be assigned internally. Moreover, 
P_MSG is not necessarily a variable data-item; it may be a 
compound expression or a constant, that cannot even flow 
along a flow-line. Dually, C_MSG is viewed as being affected by 
the CONSUMER activity, where actually it can be viewed as being 

Figure 8.6.  Operations on a queue during a step

Figure 8.7.  A queue associated with a data-store
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assigned by C_MSG:=queue-head. Thus, it is expected to be an 
output of CONSUMER, or used internally.

Sometimes a queue that transfers messages between activities is 
marked just as a label on a flow-line between the sender and the 
receiver. When messages flow among activities in both 
directions, two opposite flowing lines can be used.

8.4.4 Example of Activities Communicating Through 
Queues

The special characteristics of queues make them suitable for 
modeling architectures consisting of several clients and servers. 
Before sending a new request, a client does not need to check 
whether its previous requests (and those of other clients) have 
already been granted and a server is available, since all requests 
are kept in the queue until they are granted. On the other hand, 
the exclusive nature of the get operation guarantees that only 
one server will handle an individual request, although multiple 
servers may be available when the request arrives.

Let us now assume we have a multiple-EWS system, consisting 
of several EWS units of the kind described so far, and connected 
to several printers. Each of the printers may serve any one of the 
units. See Figure 8.8, which shows an activity-chart with four 
EWS units (the clients) connected via a queue PRINTING_Q to 
two printers (the servers). The queue, in addition to its 
appearance in the data-store, is defined in the Data Dictionary 
as a data-item whose type is queue of PRINT_REQST. 

Each of the EWS units contains a PRINT_FAULT activity that 
converts the OUT_OF_RANGE_DATA into a printing request 
(FAULT_MSG, of type PRINT_REQST) and sends it to the queue 
PRINTING_Q. A printer, when ready, reads the next request 
from the queue, if there is one, and performs the actual printing. 
See Figure 8.9 for the mini-spec of the PRINT_FAULT activity, 
and the internals of each PRINTER. 
8-18 Statemate MAGNUM



Example of Activities Communicating Through Queues
Figure 8.9.  Writing and reading messages from a 
queue

Figure 8.8.  Multiple clients served by multiple servers 
via a queue
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8.4.5 An Address of a Queue

The example above is 
of loosely coupled 
(asynchronous) 
communication. 
Since the sender does 
not wait for a reply, 
the receiver does not 
need to know the 
identity of its clients. 
When the server does 
not have any prior 
knowledge of its 
clients and tightly 
coupled 
(synchronous) 
communication is 
required, i.e., the 
sender waits for a 
response, the address 
for reply should be 
contained in the 
original request. This 
can be supported by 
referring directly to 
the queue data-item 
that actually holds 
the address to the 
queue. This implies 
that if Q1 and Q2 are 
both defined as 
queues of the same 
component type, then 
Q1:=Q2 is a legal 
action, after which Q1 
will point to the same 
data that Q2 points to. 
Any put and get 

Figure 8.10.  Using a queue address for 
synchronous communication
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operation using either Q1 or Q2 will affect the common queue. 
We should point out that two queue data-items are considered 
equal only if they point to the same real queue; e.g., Q1=Q2 is 
true after the assignment Q1:=Q2. Otherwise, even if all of their 
contents are the same, the two are unequal.

When synchronous communication is required, each client may 
have its own queue, through which it receives replies. When 
sending a message MSG, the client includes a field, say 
MSG.SOURCE, to which it assigns its queue address, say 
MY_QUEUE, by the action MSG.SOURCE:=MY_QUEUE. Assume 
that the server reads the message into RECV_MSG, and 
acknowledges its receipt by sending a reply using the action 
put!(RECV_MSG.SOURCE,ACK). The client then waits for the 
event wr(MY_QUEUE) that results from this put, and can then 
proceed with its work. See Figure 8.10.

Note from I-Logix regarding queues within subroutines: 

To avoid semantic and behavior conflicts, queues cannot be used 
inside (or as parameters/globals) of subroutines. 

In general, queues are useful for the synchronization of parallel 
components, so the usage of queues as a local variable (inside a 
subroutine) is not typically required. 

There are semantic issues regarding the use of a queue as a 
parameter of a subroutine. Queues outside subroutines work with 
’double buffering’, that is; operations on queues (q_put, q_empty, 
..) actually work on the content of the queue at the beginning of the 
step, and this conflicts with the semantics of subroutines (that all 
assignments are immediate). 

In summary, to avoid semantic and behavior conflicts, queues are 
not supported within subroutines.
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9The Structural View: 
Module-Charts

his chapter deals with the language of Module-charts. 
Module-charts describe the structural view – sometimes 
called the architectural view – of the system under 
development. This view deals with the system's actual 

structure, i.e., its implementation, and should be contrasted 
with the conceptual model described by the other views. 
Module-charts are typically used in the high-level design stage 
of the project.

T
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9.1 Structural Description: High-Level 
Design

The structural view captures the system’s high level design. A 
structural description of the system specifies the components 
that implement the capabilities described by the functional and 
behavioral views. These components may eventually 
materialize as hardware, software, or even humans. As in the 
other views, they may be arranged in a hierarchy. The structural 
view also specifies the communication lines that connect the 
components. These lines can be described in terms of physical 
links or flowing information.

Let us now present the structural description of our EWS 
example. The subsystems constituting the implementation are 
as follows:

CCU (control and computation unit): The central CPU, within 
which the main control of the system and the basic 
computations take place.

SIGNAL_PROCESSOR: The subsystem that processes the signal 
produced by the sensor and computes the value to be checked. 
It consists of an analog-to-digital unit, and a high speed 
processor that works at the required checking rate.

MONITOR: The subsystem that communicates with the operator. 
It consists of a KEYBOARD for commands and data entry, and a 
SCREEN for displaying messages.

ALARM_SYSTEM: The subsystem that produces the alarm, in 
visual and/or audible fashion.

PRINTER: The subsystem that receives the messages (text and 
formatting instructions) and prints them. 

The environment systems are the OPERATOR and the SENSOR. 
By identifying these we define the borders of the system, i.e., we 
determine which facilities are part of the system (for example, 
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the PRINTER), and which are external (for example, the 
SENSOR). Note that the environment components are common 
to the functional and structural view. We shall discuss this 
matter further in Chapter 10.

Sometimes, there is a clear correspondence between the top-
level activities in the functional view and the top-level 
subsystems in the structural view. Often, a particular 
subsystem is responsible for carrying out a single activity from 
the functional description. Here, for example, the subsystem 
SIGNAL_PROCESSOR implements the algorithm specified in 
the activity PROCESS_SIGNAL. However, in many cases the 
structural decomposition is quite different from the functional 
decomposition. Thus, a single subsystem in the structural view 
may be responsible for carrying out a number of different 
activities in the functional view, or an activity may be 
distributed among several top-level subsystems. In the EWS 
example, the CCU subsystem carries out both the EWS_CONTROL 
and COMPARE activities, whereas the DISPLAY_FAULT activity 
is divided into subactivities that are distributed among the 
ALARM_SYSTEM and MONITOR subsystems.

The communication between the subsystems of the EWS is 
discussed in Communication Lines Between Modules, beginning 
on page 9-7.
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9.2 Internal and External Modules

In our approach, the structural view is represented by the 
language of Module-charts, and the associated entries in the 
Data Dictionary. The components, or subsystems, are called 
modules and are depicted as boxes (rectangles, or rectilinear 
polygons). Names appear inside the boxes, adhering to the 
naming conventions (see page A-1). As in Activity-charts and 
Statecharts, decomposition is captured by multi-level 
encapsulation. The general terminology is also similar; we have 
basic modules, submodules, parent modules, descendants and 
ancestors.

There are two kinds of internal modules: execution modules, 
drawn with solid lines, and storage modules, drawn with dashed 
sidelines like the data-stores in an activity-chart. The external 
modules represent the systems that are outside the top-level 
module, and are drawn with dotted lines. An external module 
retains this line convention even if it really functions as storage, 
such as a disk or computer memory. Like external activities in 
an activity-chart, the external modules may correspond to real 
environment modules, external to the entire system under 
description, or to internal modules in other module-charts; this 
issue is discussed in Chapter 12. As in the case of box elements 
in other charts, sibling internal modules cannot have the same 
name. Several external modules, however, can bear the same 
name, in which case they are all occurrences of the same 
external module.

Figure 9.1 shows the structural decomposition of the EWS, 
including a storage module DISK, that stores the fault 
messages. We have left the arrows unlabeled; they will be 
discussed in the next section.
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The following rules govern the allowed encapsulations in a 
module-chart:

• Execution modules may be submodules of other 
execution modules only.

• Storage modules may be submodules of other 
storage modules or of execution modules.

• External modules are always external to an execution 
module or storage module, and there is no hierarchy 
of external modules.

Just as in the other graphical languages, we use the Data 
Dictionary to specify additional information. Figure 9.2 shows 
the Data Dictionary entry of the SIGNAL_PROCESSOR. In it, we 
have used an attribute name/value pair to specify that the 
module is to be implemented in hardware, and the synonym 
field to identify the component in some another hardware 
description. In addition to the standard fields, the Data 
Dictionary entry for a module contains a special field, 
Described by Activity-Chart, which is used to connect 
modules with their functional descriptions. This will be 

Figure 9.1.  Structural decomposition of the EWS
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explained further in Chapter 10, where we discuss the 
connections between the functional and structural views. In 
Figure 9.2 it is left empty. 

Figure 9.2.  A Data Dictionary entry of a module
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9.3 Communication Lines Between 
Modules

The communication between modules can be described on 
various levels of detail, from merely specifying the physical 
connections existing between the modules, to specifying the 
details of the information items comprising the interfaces of the 
modules.

Like in the other graphical languages, we draw labeled arrows 
between the modules. They are called flow-lines, as in activity-
charts, or m-flow-lines, to emphasize that they connect modules. 
We do not use a different line style to distinguish lines that 
represent flow of information items from those that depict 
physical links.

As in activity-charts, lines attached to non-basic modules carry 
special meaning. A flow-line emanating from a non-basic 
module specifies that the information flowing along it can be 
produced by any of its descendant modules, and a flow-line 
leading to a non-basic target module specifies that the 
information labeling it is available to any of its descendant 
modules.

9.3.1 Flow of Information Between Modules

When a flow-line is used to denote information flowing 
between modules, the label is as in an activity-chart. That is, it 
can be a data-item, an event, a condition, or an information-flow 
that may contain several types. These elements were described 
in Chapter 3. As in activity-charts, the labels cannot contain 
compound elements. Also, recall that additional information 
about these elements (such as their physical implementation) 
can be specified in their Data Dictionary entries.

Figure 9.3 depicts the module-chart for our EWS example, with 
labels describing the information on the arrows. 
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Note that some of the elements appearing here appeared along 
the flow-lines of the corresponding activity-chart in Figure 2.5, 
and some are information-flows that contain elements 
appearing therein. Here, USER_INPUT contains the 
information-flow COMMANDS, the data-item RANGE_LIMITS, 
and the condition SENSOR_CONNECTED. The precise 
relationship between the flows in activity-charts and module-
charts is discussed in Chapter 10.

9.3.2 Physical Links Between Modules

Arrows in a module-chart may also denote physical 
communication links, or channels, between modules. In this 
case, information-flows are used to name the links. The Data 
Dictionary entry for such a flow can be used to specify the type 
of link and the way the data is represented along it. The actual 
information elements that flow along the link can be specified 
in the Consists of field.

Figure 9.3.  Flow of information among modules
9-8 Statemate MAGNUM



Physical Links Between Modules
Figure 9.4 contains an alternative module-chart for the EWS 
example, showing the physical links. Some of them are really 
wires (or cables) of various types.  

The interface with the user in the EWS is carried out by pressing 
buttons or by audio or visual outputs. Despite the fact that these 
are not associated with physical links, they are also shown in 
the figure.

Figure 9.5 shows the Data Dictionary entry of the information-
flow W005, that connects the SIGNAL_PROCESSOR and the CCU. 
The data-item SAMPLE flows inside this communication link. I

Figure 9.4.  Physical links among modules
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Figure 9.5.  Information-flow describing a physical link
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9.4 Connectors and Compound Flow-
Lines

Module-charts contain features that help in preparing clear and 
uncluttered charts, as in the two other types of charts. 
Connectors and compound flow-lines are allowed in module-
charts exactly as in activity-charts. See Chapter 2.

Joint connectors are often used to depict a flow-line that links 
several modules. An example is shown in Figure 9.6, where 
several peripheral devices listen out for messages arriving 
along a communication link that emanates from the central 
controlling unit. 

Figure 9.6.  Communication link to several devices
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10Connections Between 
the Functional and 
Structural Views

n Chapter 2 we discussed the functional view, described 
via the language of Activity-charts, and in Chapter 9 we 
discussed the structural view, described via Module-
charts. The former depicts the system’s decomposition into 

functional components, or activities, and the latter depicts its 
decomposition into structural components, or modules. The 
present chapter discusses the connections between these two 
views, and the way the connections are captured in our 
languages.

I

Statemate MAGNUM 10-1



Connections Between the Functional and Structural Views
10.1 Relating the Functional and 
Structural Models

The functional view provides a decomposition of the system 
under development into its functional components, i.e., its 
capabilities and processes. The structural view, on the other 
hand, provides a decomposition of the system into the actual 
subsystems that will be part of the final system, and which 
implement its functionality. The subsystems may be physical in 
nature, as were indeed most of the modules in our description 
of the EWS example in Chapter 9, or logical in nature. For 
example, an MMI subsystem, which carries out all functions 
related to the man-machine interface of some system, would be 
considered a logical subsystem of that system.

We now describe the three types of connections between the 
functional and structural views: one is to describe the 
functionality of a module by an activity-chart (page 10-2); the 
second is to allocate specific activities in an activity-chart to be 
implemented in a module (page 10-4), and the third is to map 
activities in the functional description of one module to 
activities in that of some other module (page 10-5). The way 
these three kinds of connections are specified in our languages 
described in Activity-chart Describing a Module (page 10-7), 
Activities Implemented by Modules (page 10-12), and Activities 
Associated with a Module’s Activities (page 10-15), respectively.

10.1.1 Functional Description of a Module

Our discussion of the functional view of the EWS in Chapter 2 
centered around providing a functional description of the entire 
system, i.e., the EWS module. However, there are a number of 
reasons for developing separate functional descriptions for 
some or all of the various submodules identified in the 
structural view.

• A module might represent an autonomous 
subsystem, which is to be developed separately and 
then combined with the whole system (often with a 
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relatively humble interface). For example, we may 
want to describe the SIGNAL_PROCESSOR of the EWS 
as a separate component; it may be used in other 
systems and its independent description could be 
valuable for other purposes.

• A separate functional description of a submodule is 
sometimes a necessary prerequisite to its detailed 
design and implementation. Note that the 
description of the submodule's functionality may 
depend on a good understanding of the entire 
system specification, in which case a top-down 
approach is appropriate. For example, prior to the 
implementation of the CCU – the control and 
computation unit of the EWS – we might want to 
develop a separate description of its functionality. 
However, we can determine its specification only 
after identifying relevant functions in the entire 
EWS.

• It might be beneficial to obtain a good 
understanding of the functionality of a subsystem, 
identifying its capabilities, in order to help carry out 
the functional specification of the entire system. In 
this case, a bottom-up approach is best. For example, 
we may prefer to first analyze the functionality of 
the MONITOR module, identifying the activities it 
will perform (such as GET_INPUT and 
DISPLAY_MESSAGE), and use these later, in the 
description of the processes that take place in the 
overall system. We shall discuss this approach 
further on page 10-5.

In conclusion, we may wish to attach functional descriptions, 
i.e., activity-charts, to modules on different levels of the 
structural decomposition. See Figure 10.1.
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10.1.2 Allocating Activities to Modules

The structural decomposition and the identification of the flow 
of information between modules is part of the design stage of a 
system’s development. But the design must be related to the 
system's functionality. That is, the functions identified in the 
functional view must be specified as being carried out by 
certain modules in the structural view. To capture this 
association, each of the functions must be allocated to one or 
more modules. In the EWS, for example, the 
SIGNAL_PROCESSOR performs the activity PROCESS_SIGNAL. 
This is a straightforward case of such an allocation. A more 
delicate case is the SET_UP activity, which contains 
subactivities that interact with the operator, as well as activities 
that carry out calculations. SET_UP should probably be divided 
among several modules with appropriate capabilities; 
interaction would be carried out by the MONITOR, while the 
control of SET_UP and its calculation would be implemented by 
the CCU.

Figure 10.1.  Functional descriptions attached to 
different modules
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The allocation of activities to modules is the main activity 
carried out during top level design. Indeed, some 
methodologies provide heuristic criteria for allocating activities 
to modules, e.g., by analyzing cohesion and coupling [YC79, 
SPC91]. This allocation actually determines the flow of 
information among the modules. Information that flows 
between two activities that are carried out by two modules, will 
flow also between those modules. It is possible to examine 
alternatives for the allocation, using the amount of implied 
communication among the modules to decide which is best.

The allocation of activities to modules is also used in 
requirement traceability analysis. A functional requirement that 
was part of the original requirements of the system, and which 
was translated into an activity in the functional view, will be 
automatically associated with the module that carries out that 
activity.

The allocation of activities to modules also allows restructuring 
the functional description to define the implementation 
structure. One of the main criticisms against function based 
decomposition methods, such as structured analysis, is that 
there is a troublesome discontinuity between the specification 
and design descriptions. This gap is overcome to some extent in 
object based methods, where both specification and design use 
the same components (objects) and the design is, in general, a 
refinement of the specification. This means that if the functional 
decomposition was carried out using an object based approach, 
the mapping between activities and modules can be made easy: 
the decomposition into modules will use (or at least it will start 
with) the same components as the functional description.

10.1.3 Mapping Activities to a Module’s Activities

Sometimes, it is not sufficient to allocate activities described on 
the system level to their implementing modules. We might 
want to be more concrete about the activities within the 
module’s specification (as a subsystem) that are responsible for 
implementing the system activities. For example, since the 
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COMPARE activity is performed by the CCU, there should be an 
activity within the CCU’s functional description that implements 
the comparison. We could thus include an activity in the CCU’s 
functional description, called CMP, which would be responsible 
for this. In such a case, we would map activities appearing on 
the system-level to those appearing on the subsystem-level. 

This type of connection is even more useful in a bottom-up 
development process, where we first analyze the capabilities of 
each of the subsystems by developing their functional 
descriptions, and later use these to construct the functional 
description of the entire system by detailing the scenarios in 
which these functions participate. Actually, the two views can 
be developed in parallel: while identifying the possible 
scenarios that occur during system operation, the required 
functions are defined and are specified as part of the 
appropriate subsystem. This approach is suggested by the 
ECSAM methodology, described in [LWK89] and in Chapter 15 
below. It is somewhat similar to an object-oriented analysis 
method in which the operations each object can perform are 
identified in parallel to the development of the scenarios (use 
cases) that use them. In Object-Oriented Analysis with Module-
charts (page 10-17), we illustrate this approach using the EWS.

In the following sections we show how our languages support 
the three connections discussed in the three preceding 
subsections.
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10.2 Activity-chart Describing a Module

The activity-chart EWS_ACTIVITIES, shown in Figure 2.5, 
constitutes the functional description of the entire EWS system. 
In the structural view the system appears as the top-level 
module of the module-chart EWS of Figure 9.1. We may thus say 
that the activity-chart EWS_ACTIVITIES describes the 
functionality of the module EWS.

This connection between a module and its describing activity-
chart is specified in the Data Dictionary entity of the module, in 
the field Described by Activity-Chart (see Figure 10.2). 

Notice that the connection is between an activity-chart and a 
module (and not between an activity-chart and a module-chart, 
or between an activity and a module). In our example, the 
module thus related is a top-level module, but this is not 
mandatory. It is possible to associate an activity-chart with any 
module in a module-chart. One reasonable way of proceeding 
(having already described the structural view of the system by 
a module-chart) would be to first describe the functionality of 
the entire system, i.e., to construct a functional view for the top-
level module, and then describe the detailed functionality of 
specific lower-level modules. Thus, in our example, we may 
now want to specify the activity-chart CCU_AC for the module 
CCU. The situation is illustrated in Figure 10.3. (More about this 
issue in Sections 10.4 and 10.5, and in Chapter 12.)  

Figure 10.2.  A module described by activity-chart
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There must be a correspondence between the functional and 
structural decompositions of a module in terms of the 
environment and the interface with it. Since the top-level 
activity in the describing activity-chart represents the 
“functional image” of the module, we expect the external 
activities that interact with this top-level activity to correspond 
to the environment of the module described by the module-
chart. When an external activity has been given a name, it must 
be the name of some module from the relevant environment. 
Indeed, as we saw in Figure 2.5, the external activities in the 
chart EWS_ACTIVITIES were OPERATOR and SENSOR, the 
same as the modules external to the EWS module in the module-
chart EWS. In this case, these are environment modules, since 
EWS is the top-level module. However, in Figure 10.4, the 
external activities in the activity-chart CCU_AC for the CCU 
module will be MONITOR, SIGNAL_PROCESSOR, 
ALARM_SYSTEM, and PRINTER, since these are the modules 
external to the module CCU, with which it interacts. 

Figure 10.3.  Activity-charts describing modules
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Notice that we included MONITOR as an external activity in 
CCU_AC and not its submodules KEYBOARD and SCREEN, 
although in the module-chart the CCU is connected to them 
through the communication lines. This is because the CCU is not 
supposed to know the internal structure of the modules with 
which it communicates.

Since the external activities in an activity-chart that describes a 
module correspond to modules, they have no entity of their 
own in the Data-Dictionary, and they are viewed as “pointers” 
to the modules they represent. Not only must the external 
elements of a module and its corresponding activity-chart 
match, but so must the information flowing in and out of them. 
To get a feeling for this requirement, compare Figure 2.5 with 
Figure 9.3. The former shows the information flowing to and 
from EWS_ACTIVITIES, and the latter shows the same for the 

Figure 10.4.  External activities corresponding to 
modules
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EWS module in the module-chart. Most of the flows connect 
identically-named external elements. However, notice that 
COMMANDS, RANGE_LIMITS, and SENSOR_CONNECTED were 
drawn in the activity-chart as flowing from OPERATOR, while in 
the module-chart they arrive from KEYBOARD (as components 
of USER_INPUT), and not from OPERATOR. This inconsistency 
arises from the fact that when we constructed the activity-chart 
we did not include the activity named GET_INPUT, for 
simplification. This activity is performed continuously in the 
MONITOR, whose role is to translate the KEY_PRESSING of the 
OPERATOR into COMMANDS and other information elements 
contained in USER_INPUT. To correct this problem, thus 
making the views consistent, we must add the GET_INPUT 
activity to the functional description. The revised version of the 
activity-chart EWS_ACTIVITIES of Figure 2.5 that describes the 
module EWS is given in Figure 10.5.

Figure 10.5.  Revised activity-chart describing the 
EWS module
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Activity-chart Describing a Module
When constructing an activity-chart that describes a module, 
the names of the particular modules that produce or consume 
the externally flowing information may not be interesting. In 
such cases, the external activities can remain unnamed, as we 
illustrate in some of the examples below. However, as stated 
earlier, if an external activity is named, that name must 
correspond to a module in the corresponding module-chart.
Statemate MAGNUM 10-11



Connections Between the Functional and Structural Views
10.3 Activities Implemented by Modules

Now that we are familiar with the general connection, whereby 
an activity-chart describes the functionality of a module in the 
module-chart, we can discuss how the components of each of 
these charts are related.

The relationship is this: all internal activities and control 
activities that appear in the activity-chart that describes a 
certain module are implemented by that module, and all the 
data-stores that appear in the chart reside in that module. In our 
EWS example, all activities in the EWS_ACTIVITIES chart, e.g., 
GET_INPUT, SET_UP, PROCESS_SIGNAL, etc. (see Figure 10.5), 
are implemented by the EWS module, and the data-store 
LEGAL_RANGE resides in the EWS module.

When the module described by the activity-chart is eventually 
decomposed into submodules, we may be more concrete and 
allocate the relevant activities and data-stores to the 
submodules. This is done in the field Implemented by 
Module of the activity entity in the Data Dictionary, or in the 
field Resides in Module of the Data Dictionary entity for the 
data-store. For example, the PROCESS_SIGNAL activity is 
implemented by the module SIGNAL_PROCESSOR, and we 
have written this information in the Data Dictionary entity of 
the activity, as shown in Figure 10.6. Similarly, the fact that 
LEGAL_RANGE resides in CCU appears in the Data Dictionary 
entity of the data-store. 

Figure 10.6.  An activity implemented by a module
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Activities Implemented by Modules
Activities can be implemented by execution modules only (not 
storage or external modules), and data-stores can reside in any 
internal module, i.e., in either execution or storage modules.

Several activities and data-stores can be allocated to a single 
module via the implemented by module or resides in 
module relation. For example, the activities COMPARE and 
EWS_CONTROL, as well as the data-store LEGAL_RANGE, are all 
allocated to the CCU module. However, a single activity or data-
store cannot be distributed among several modules. In our 
example, the activities SET_UP, DISPLAY_FAULT, and 
PRINT_FAULT are each carried out by several modules. We 
could, of course, assign them to sufficiently high-level modules 
to cover this distribution, but this might lead to allocations that 
are too general to be useful. It is often better to further 
decompose such activities into subactivities that can each be 
allocated to a single module. This allocation will obviously be 
more informative. Thus, for example, SET_UP will be 
decomposed into PROMPT_RANGE, DISPLAY_SU_ERROR, 
VALIDATE_RANGE, and the control activity SET_UP_STATES. 
The role of the first two of these is to display messages, and they 
are implemented by the MONITOR module, while the other two 
are implemented by the CCU module. See Figure 10.7. 

The association of activities and data-stores with modules must 
be consistent with the module hierarchy and the activity 
hierarchy. As discussed earlier, all components of the top-level 
activity must be implemented in the module described by the 
activity-chart. Similarly, all subactivities and data-stores of an 
activity A that is implemented by a module M must be 
themselves implemented by M or its submodules. In other 
words, descendants of A cannot be allocated to modules outside 
of M. In the EWS example, we would not be allowed to specify 
that the SET_UP activity is implemented by the CCU and, at the 
very same time, that its subactivity DISPLAY_SU_ERROR is 
implemented by the MONITOR module, since MONITOR is not 
contained in the CCU.
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In the previous section, we discussed the consistency between 
the interface of the described module and the flows to the top-
level activity. A similar consistency requirement applies to the 
flow of information on all levels. If two activities in the activity-
chart are implemented by two different modules, we expect the 
information elements flowing between the activities to also flow 
between these modules. For example, compare Figures 9.4 and 
10.5. We allocated the PROCESS_SIGNAL activity to the 
SIGNAL_PROCESSOR module and the COMPARE activity to the 
CCU. The data-item SAMPLE flows in both charts between the 
corresponding boxes.

Figure 10.7.  Allocation of subactivities of SET_UP to 
modules
10-14 Statemate MAGNUM



Activities Associated with a Module’s Activities
10.4 Activities Associated with a 
Module’s Activities

This section deals with the possibility of mapping activities 
from the functional description of the entire system to activities 
from the functional description of its subsystems. Here is an 
example illustrating how this is actually done.

Figure 10.8 contains the activity-chart MONITOR_AC that 
describes the functionality of the module MONITOR. This 
module performs two functions, GET_INPUT and 
DISPLAY_MESSAGE, which are described, together with their 
inputs and outputs, in the activity-chart. (Some of the external 
activities are left unnamed in the figure, because the sources 
and targets of the flowing data are not relevant here.)  

Thus, there are two activity-charts: EWS_ACTIVITIES for the 
entire system (EWS), and MONITOR_AC for one of the 
subsystems (MONITOR). In addition to allocating activities of the 
former chart to the EWS modules, we can also specify which 
activities in the latter chart correspond to these higher-level 
activities. In this example, we say in the Data Dictionary entity 
of the subactivity DISPLAY_SU_ERROR of SET_UP that it is 
activity DISPLAY_MESSAGE, implemented by module 

Figure 10.8.  Activity-chart of MONITOR 
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MONITOR. See Figure 10.9. Similarly, the subactivity 
PROMPT_RANGE of SET_UP will also correspond to the activity 
DISPLAY_MESSAGE, using the field Is Activity. Attaching 
both activities to the same activity DISPLAY_MESSAGE means 
that the two will actually be implemented by the same function.

We also attach the activity GET_INPUT from the 
EWS_ACTIVITIES activity-chart to the activity GET_INPUT in 
MONITOR_AC. Although we use the same name for both 
activities, the field Is Activity must be specified. We say 
that PROMPT_RANGE in SET_UP is an occurrence of the activity 
DISPLAY_MESSAGE in the MONITOR module. The 
DISPLAY_MESSAGE activity is called the principal activity of 
PROMPT_RANGE.

Note that the field Is Activity is meaningful only when the 
Implemented by Module field is non-empty. Moreover, the 
activity referred to must be one of the activities in the activity-
chart that describes the implementing module.

In a similar way, a data-store may be associated with another 
data-store in the description of the submodules. The relevant 
field is Is Data-Store, which is completely analogous to Is 
Activity in the Data Dictionary entity for an activity. The 
terms used are the same: if a data-store P is defined as is 
data-store Q, then P is called an occurrence of the data-store Q, 
and Q is the principal data-store of P.

Figure 10.9.  Mapping of activities by the is 
activity relation
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10.5 Object-Oriented Analysis with 
Module-Charts

Chapter 2 discussed a possible approach to decomposition that 
is object based. This approach often fails to address one of the 
main goals of the specification phase, since the decomposition 
alone makes it difficult to see the system’s global behavior. 
Object oriented approaches recommend that during 
requirement analysis the behavioral scenarios (use cases) that 
might occur throughout the system should be identified, not 
just the objects and their operations. Here we show how the 
combination of module-charts and activity-charts and the Is 
Activity relation described above can be utilized to provide 
full specifications.

We shall use a module-chart to describe the system’s objects. 
The operations of each object will be described as activities in 
the activity-chart that describes the module (object). The 
activity-chart that describes the top level module (i.e., the entire 
system) will be used to describe the behavioral scenarios as 
sequences of object operations. An activity with its controlling 
statechart and subactivities will represent a set of related 
scenarios, while the subactivities are mapped to the object 
operations by the Is Activity relation. Figure 10.10 
illustrates this scheme. 

The module-chart EWS_OBJS in Figure 10.11 shows the 
decomposition of the EWS into objects, and is similar to the one 
described in Object Based Decomposition, page 2-5.
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Figure 10.10.  An object-oriented analysis model

Figure 10.11.  A module-chart based on object 
decomposition
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The operations of the RANGE object are described in the activity-
chart RANGE_OPS, shown in Figure 10.12. The Data Dictionary 
entry for the module RANGE contains the fact that it is 
described by activity-chart RANGE_OPS. 

The activity-chart that describes the functionality of the entire 
system – the top level module EWS in the figure – consists of the 
possible scenarios. The SET_UP scenario is the activity shown in 
Figure 10.13; it consists of subactivities mapped to operations of 
the objects RANGE and MMI_HANDLER.

Figure 10.12.  An activity-chart specifying the 
operations of RANGE
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Figure 10.13.  An activity-chart describing the SET_UP 
scenario
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11Splitting Up Charts 

he three graphical languages described here allow the 
decomposition of elements: each activity, state, or 
module is either basic or is described by a set of sub-
elements. Other modeling notations and tools also allow 

multi-level descriptions, but many of them insist that each level 
be described in a separate chart. Our languages allow drawing 
multiple levels in the same chart, but also allow the description 
to span several charts. In this chapter we discuss the possibility 
of presenting different levels of decomposition in separate 
charts. We deal mainly with linking the graphical information. 
The visibility of elements belonging to different charts is 
discussed in Chapter 13.

It is worth distinguishing separate charts depicting different 
levels of the decomposition from generic charts that are 
considered reusable components of a model. This chapter deals 
with the former; the latter are described in Chapter 14.

T
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Splitting Up Charts
11.1 Separating a Chart into Multiple 
Pages

The charts drawn in previous chapters contained a top-level 
box, representing the element being described. This box was 
then decomposed into lower level boxes, with each level being 
drawn inside the higher one. See, e.g., Figures 2.3, 4.11, and 9.1. 
Often, however, it is convenient to break down the drawing into 
a number of charts, each containing one or more levels of 
decomposition. For example, instead of chart A of Figure 11.1(a) 
we might want to draw the two separate charts of Figure 
11.1(b). Although there are now two physically distinct charts, 
A and A2, logically there is just one, and the information in chart 
A2 is treated as if it were drawn inside the box named A2 in A. 
Thus, there is a single logical chart, consisting of two physical 
charts, which are also called pages. 

Figure 11.1.  Splitting a chart into pages
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Separating a Chart into Multiple Pages
Here are some of the reasons for dividing a chart into pages. 
They are similar to the reasons for breaking down a large piece 
of software into functions and subroutines.

• Overly detailed charts: A complex chart containing 
too many details is difficult to read and comprehend. 
Breaking it down into several pages has a 
decluttering effect. Since this reason is the dominant 
one, we often term the separation of charts into 
pages decluttering.

• Information relevant to different people: Often, 
different parts of the information in a chart are 
relevant to different observers: here, the breakup is 
according to the responsibilities or interests of 
different people. We might call this person-oriented 
information hiding; i.e., each person gets to see only the 
information relevant to those parts of the system he/
she is working on. This is a widely acclaimed 
principle in system development, and decomposing 
charts into pages can help support it. Also, such a 
splitting can help overcome difficulties arising when 
different people update parts of the same chart, or 
when one updates it while another analyzes it.

• Information relevant to different levels: Here, the 
idea is to support information hiding in the classical 
sense of the word; i.e., to make sure that each level of 
the specification contains only those elements 
relevant to it.

• Information from different configuration 
management units: Here, the splitting is according 
to different versions and/or different releases of the 
system under development, or according to different 
ownership and read/write/modify privileges.

• Hybrid process of building the charts: Some charts 
are built partly by a top-down process and partly by 
a bottom-up one. Breaking down charts can be used 
to draw the low-level components on separate pages 
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and incorporate them as the internal descriptions of 
components in charts of higher levels. This 
introduces flexibility into the chart-building process. 

• Easing modification: Splitting up the model into 
many charts can make the logistics of modification 
easy. Subcharts represented by separate pages can be 
replaced easily by others with the same interface. 
This makes it easy to present specification 
alternatives, simply by changing the contents of 
black boxes.

Although chart decluttering is in many cases beneficial, 
sometimes it is not recommended. We have in mind situations 
where the system does not lend itself to neat structuring, or 
cases where despite the availability of a good structuring there 
is a tight inter-relationship between the low-level elements in 
different parts of the structure. In such cases, decluttered charts 
may be harder to comprehend. For example, it is sometimes 
easier to follow the behavioral aspects of a complex model 
when these are concentrated in a single statechart. The same 
goes for presenting and comprehending the flow of information 
in an activity-chart down to the basic low-level activity that 
actually produces and consumes the data elements.
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11.2 Offpage Charts

We now discuss the mechanism used for splitting a chart into 
several pages. The contents of a box element (activity, state or 
module) may be drawn in a separate chart. The box element is 
called an instance box and the associated chart is called an offpage 
chart or a definition chart. The relationship between these two is 
sometimes termed the box-is-chart relation. The chart of the 
instance box is sometimes referred to as the instance chart.

To represent the relation between an instance box A and a 
definition chart B, we label the instance box by A@B, meaning 
that this is box A but its internals are to be described in chart B. 
If we want to use the same name for the box and its definition 
chart, we may simply omit the first of the two names. Thus, a 
box labeled @A means that the box and its definition chart are 
both named A (which is therefore like labeling it A@A).

In our EWS example, the functional decomposition of the 
SET_UP activity of Chapter 2 may be described in a separate 
chart. Figure 11.2(a) shows this activity named @SET_UP, 
meaning that its contents are defined in a chart named SET_UP, 
and Figure 11.2(b) shows the corresponding definition chart 
with its further decomposition. As explained, since there is no 
name preceding the @ symbol, the box name is the same as the 
definition chart name, and we may, for example, use the action 
start(SET_UP) in the controlling statechart EWS_CONTROL. 
Had we labeled the box SU@SET_UP, that action would have 
had to take the form start(SU).

Note that the notation used to associate a box with its offpage 
chart is the same as that used to associate a control activity with 
its describing statechart. See Figure 11.2(a); the control activity 
labeled @EWS_CONTROL is described by a statechart named 
EWS_CONTROL.

When a box is described by an offpage chart, say A@B, the 
definition chart B must have a unique top-level box, and the 
instance box A may have no sub-boxes. Of course, the sub-boxes 
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appearing in the top-level box in B are considered logical sub-
boxes of A, but A has no physical sub-boxes. This terminology is 
used for parents too. Boxes may thus have logical and physical 
parents.

Referring again to Figure 11.2, the PROMPT_RANGE activity is 
considered a subactivity of the instance activity SET_UP, and 
therefore also a logical descendant of EWS_ACTIVITIES. The 
physical parent of PROMPT_RANGE is the top-level activity 
SET_UP in the activity-chart with the same name. Since the top-
level box is considered an “image” of the instance box, we have 
named the two identically in our example. However, it is 

Figure 11.2.  An instance activity and its definition 
(offpage) chart
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possible, although not recommended, to have three different 
names, one each for the instance box, the definition chart and 
the top-level box.

The external activities presented in the definition chart are the 
boxes that appear surrounding the SET_UP activity in the 
instance chart (EWS_ACTIVITIES), and with which SET_UP 
communicates. We shall return to this issue in the next section, 
and also in Chapter 12 where the entire model is discussed.

Both the instance box and the top-level box of the definition 
chart have associated entries in the Data Dictionary, and the 
information appearing therein must be consistent. More 
specifically, the following fields, if not empty, must contain the 
same information: Termination Type and Implemented 
by Module in an activity entry, and Described by 
Activity-Chart in a module entry. For all other fields, such 
as Static Reactions and Active Activities in a state 
entry, and Attributes for all elements, the information in the 
entries for the instance box and the top-level box of the 
definition chart is accumulated and is viewed as applying to the 
common entity.

We do not allow multiple instances of a common definition 
chart. In other words, two instance boxes cannot be described 
by the same definition chart. When the need arises for multiple 
instances of the same chart, the generic chart mechanism of 
Chapter 14 should be used.
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11.3 Connecting Offpage Charts by 
Matching Flows 

One of the advantages of having multiple levels in the same 
chart is the ease of viewing arrows (flow-lines in activity-charts 
and module-charts, and state transitions in statecharts), in that 
sources and targets are seen together. When charts are 
decluttered into separate pages this will necessarily be less 
convenient. In any case, we need reasonable mechanisms for 
combining arrows over pages. We supply two. The first, 
discussed in the present section, concerns matching flows, and 
can be used in activity-charts and module-charts only. The 
second concerns diagram connectors, and is described in the 
next section. Although diagram connectors can be used in all 
three types of charts, we describe their use for statecharts only, 
since the first method is preferred for the two other types of 
charts.

Here is how to link flow-lines between pages in activity-charts 
and module-charts. The arrows leading to and from the 
borderline of the instance box are matched with the arrows 
exiting or entering external boxes in the definition chart. The 
actual matching is carried out by identifying common 
information elements included in the labels.

Let us examine an example. Figure 11.3(a) is the original chart 
and Figure 11.3(b) describes its partition into two charts, by 
extracting the contents of A1 and relegating them to a new 
activity-chart. The flow-lines in activity-chart A that depict the 
interface of activity A1 are all connected to the borderline of the 
instance box, including those that are related to the internal 
activities of A1. In the definition chart of A1, all flow-lines are 
labeled with the flowing elements, and are connected to their 
actual sources and targets inside A1. 

Note that the matching is carried out according to the flowing 
elements and not the written labels. For example, in the 
definition chart A1, the flow-line emanating from A12 is labeled 
VW, an information flow consisting of V and W. This line is 
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matched with the two separate flows labeled V and W in the 
instance chart.

Note also that the external boxes in the definition chart of Figure 
11.3(b) are unnamed. This is done mainly to emphasize the fact 
that arrows are linked by matching the flowing elements, and 
not by the sources and targets. However, the names may be 
added if it is important to represent these sources and targets 
explicitly. This indeed might be the case in a top-down 
development effort, since the sources and targets are already 
determined in the instance chart.

Figure 11.3.  Connecting pages by matching flows
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Another point worth making is that there is no correspondence 
between sources and targets of the flows in the definition and 
instance charts. For example, V and W of Figure 11.3, when 
considered as the compound information item VW, have a single 
external target in the definition chart, whereas in the instance 
chart they lead to two separate boxes. This illustrates the fact 
that unnamed external boxes are really just place holders of 
sort, external agents that are connected to arrows that lead to or 
from the outside. (In a bottom-up development effort this is 
particularly helpful; we might not want to specify the actual 
external elements when developing the definition chart, since 
we might not yet know about them.) If the external boxes in the 
definition chart are named, the names must be consistent with 
those of the corresponding sources and targets in the instance 
chart.

For example, Figure 11.4 shows the SET_UP definition chart 
with its external interface. Comparing it with Figure 10.5, we 
see that the boxes in this external interface correspond to the 
various boxes with which the SET_UP activity communicates. 
In the case of decluttering an activity-chart, the external 
activities in the definition chart may correspond to the 
following kinds of elements in the instance chart: regular 
internal activities, control activities, external activities, and also 
data-stores. In particular, the data-store LEGAL_RANGE is also 

Figure 11.4.  SET_UP definition chart
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depicted as an external activity in the definition chart. In a 
similar way, when decluttering a module-chart, external 
modules in the defining chart may correspond to execution 
modules, storage modules, or external modules in the instance 
chart.

Clearly, each input or output of the top-level box in the 
definition chart must also appear in the instance chart, either as 
a direct flow to the instance box or as a flow-line connected to 
one of its ancestors. We also expect each flow-line connected to 
the instance box to appear in the definition chart that contains 
the particular source or target, even when it is specified as being 
consumed or produced by all sub-elements of the instance. For 
example, comparing Figure 11.3(b) with Figure 11.3(a), we see 
that although X1 is an output of A1, it also appears in the 
definition chart. The reason for this is that when drawing the 
interface of the instance, it is considered as the interface to a 
“black box”. That is, drawing an input line means “one or more 
of the components consume this input, and the actual 
consumer(s) will be specified in the definition chart”. Similarly 
for outputs.

In Compound Flow-Lines, page 2-32, we introduced the notion of 
a compound flow-line; we talked about the logical flows 
between activities (or modules) that consist of several flow-line 
segments linked with connectors. Now here, although using a 
different construction method, we have compound lines that 
are distributed over several pages. Figure 11.5(a) shows an 
example that contains two compound flow-lines: X, flowing 
from A1 to B1, and Y, flowing from A2 to B2. An equivalent 
construct is shown in Figure 11.5(b). 
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Figure 11.5.  Compound flow-lines distributed over 
several pages
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11.4 Connecting Offpage Statecharts 
Using Connectors 

The method presented above for connecting offpage charts to 
the description in the instance chart cannot be applied in the 
case of statecharts, since these are not connected via flows. For 
them we have an alternative mechanism, based on diagram 
connectors. In previous chapters we already used diagram 
connectors to combine several arrow segments into a single 
logical compound arrow. See, for example, Figure 4.21, where 
three compound transitions between states were constructed 
from two segments each, using diagram connectors. Since these 
connectors appear in the same chart, or page, we refer to them 
as inpage diagram connectors. When they are used to connect 
arrows on separate pages, as is the case here, we call them 
offpage diagram connectors. In the instance chart (i.e., the chart 
that contains the instance box) the connectors are drawn inside 
the instance box, and in the definition chart they are drawn 
outside the top-level box.

Offpage diagram connectors may be labeled, as with inpage 
connectors, either by numbers, or by an alphanumeric string 
that starts with a letter and possibly contains underscores. A 
useful convention is to label the connector with the name of the 
source or the target of the arrow in the instance chart. Another 
possibility is to use the name of the trigger of the transition.

Each connector in the instance chart must have a matching 
connector in the definition chart, with consistent directionality 
of the arrow. See Figure 11.6(b), where one arrow enters the GO 
connector in the instance chart and one exits the GO connector in 
the definition chart. A connector is not allowed to have both 
entering and exiting arrows. We allow several offpage 
connectors in an instance box, all with the same label, and 
similarly for connectors in the definition chart. Such multiple 
occurrences must all have the same arrow directionality. The 
same label can also be used for offpage connectors in separate 
instances. However, we do not allow an offpage connector in an 
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instance box to have the same label as an inpage connector on 
the same page, as this may be confusing.

When imagining the compound arrows constructed from arrow 
segments leading to and from connectors, the offpage 
connectors are treated like junction connectors (as in the inpage 
case; see Chapter 4). Consequently, the triggers on these 
segments are combined by “and”, and all the actions on them 
are performed.

When connecting the statechart pages logically, the only 
transitions that have to be connected are those that cross the 
boundary of instance states. Transitions that enter or exit an 
instance state without crossing its borderline will typically not 
appear in the definition chart at all. The reason is that such 
entering transitions will enter substates in the definition chart 
via the default connectors, and the exiting transitions will exit 
the state regardless of the internal configuration. This rule is 
consistent with the idea of a structured specification, in that the 
reasons for entering and exiting the state are not to be known 
inside the state. Exceptions to this rule include behaviors where 
the reason for exiting is internal and we want this reason to be 
made explicit in the specification of the state. In such cases, it is 
appropriate to describe the outgoing transitions in the 
definition chart as well as in the instance chart.

Figure 11.6 contains an example; part (a) is before decluttering 
and part (b) after it. Notice that in Figure 11.6(b), transitions that 
cross the borderline of state ON are connected by connectors, 
while those that emanate from that borderline (i.e., TEST and 
TURN_ON) are drawn with or without the connector, depending 
on the particular case. The fact that TURN_OFF is an event that 
triggers an exit from every state is important information on the 
upper level. On the other hand, the decision as to which states 
the event TEST acts on was made on the lower level. In Figure 
11.6(b), the trigger labels appear in at least one page, depending 
on the specifier's preference, but not necessarily in both.
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Figure 11.6.  Transitions between pages of a 
statechart
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12Putting Things 
Together

n the previous chapters we discussed different kinds of 
charts and elements, and their inter-relationships. A full-
fledged model of a system may consist of many charts, 
each containing many elements. Now, although we have 

not yet described all the features of our languages, we pause 
here to take a bird’s eye view, and discuss how charts are 
connected to build a full model. Later, when we introduce 
additional features, such as generic charts, we will also address 
the issue of their location in the entire model. Do not be misled, 
however; when modeling a system it is not necessary to specify 
all parts of the full structure as presented here.

The present chapter also deals with entities external to the 
model – environment systems and testbenches. It discusses 
their role, and how they relate to the other elements of the 
model.

Charts comprising the model share elements amongst 
themselves. Therefore, the picture is incomplete without the 
material of Chapter 13, where we talk about the scope of 
elements and their visibility with regards to the various 
components of the model. We also introduce there another 
component of a model, the global definition set, which contains 
information visible to the entire model.

I
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12.1 Relationships Between the Three 
Kinds of Charts

We now describe the full picture of our EWS example, as it 
emerges from the various “pieces” described in previous 
chapters. The fact that our exposition follows a certain order is 
not meant to imply any specific order recommended in 
developing the model.

The interface of the EWS with its environment, and its 
structural decomposition, appear in the module-chart EWS of 
Figure 1.7, which is also shown on the left-hand side of 
Figure 12.1. The entire system is depicted by the top-level 
module therein, named EWS. The activity-chart 
EWS_ACTIVITIES, whose contents is shown in Figure 1.4, 
describes the functionality of this top-level module. The top-
level activity in that chart, EWS_ACTIVITIES, corresponds to 

Figure 12.1.  The charts of three views of the EWS
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the EWS module, and therefore the interfaces of the two must be 
the same. See Chapter 10.

Control activities appearing in an activity-chart are described 
by statecharts. See Chapters 6, 7 and 8. Thus, in Figure 12.1 we 
see that the control activity of the activity EWS_ACTIVITIES is 
described by the statechart EWS_CONTROL of Figure 1.6. 
Similarly, the control activity of SET_UP is described by the 
statechart of Figure 7.3.

We refer the reader to Appendix B, which contains the entire 
EWS model.

As we saw in Chapter 10, an activity-chart can be attached to 
any module in the module-chart as its functional description. 
The control activities in these activity-charts are also described 
by statecharts. For our EWS example, this results in the 
structure shown in Figure 12.2.  

Figure 12.2.  Charts in multi-level specification of the 
EWS
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Figure 12.2 captures only the relationships between the three 
types of charts that describe the three views. However, as 
explained in Chapter 11, each of these “logical charts” can be 
decomposed into several “physical charts”, thus creating a 
more complex network of charts. These additional connections 
are based on the three types of relationships described therein: 
one, a module described by an activity-chart, is specified in the 
module entry in the Data Dictionary, and the other two, that 
between a control activity and its describing statechart, and the 
offpage (decluttering) relationship, are depicted graphically, 
using the @ symbol.

A schematic example of a structure built up from many of these 
relationships is shown in Figure 12.3. Notice that this particular 
figure contains only one logical module-chart, consisting of the 
three physical charts M, M1 and M11, but three logical activity-
charts, namely, M_AC, M111_AC, and M112_AC. 
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Figure 12.3.  Relations between charts in system 
specification
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12.2 A Chart in a Model

Regarding the terms “logical chart” and “physical chart”, from 
here on, we mostly use “chart” to mean physical chart. Each 
(physical) chart plays a role in the whole specification according 
to its relationships with other charts. The top-level box of the 
chart is its subject. For example, the activity-chart 
EWS_ACTIVITIES of Figure 10.5 describes the functionality of 
the EWS module. Its top-level activity is EWS_ACTIVITIES, 
which is therefore its subject. In our examples we almost always 
use the same name for the chart and its top-level activity, 
although this is not mandatory.

Charts will always be identified by name. Chart names must be 
unique throughout the entire model, even those of different 
types. Thus, we may not have a module-chart and an activity-
chart with the same name in a single model.

Like other elements in the model, a chart has an associated entry 
in the Data Dictionary. This entry contains descriptive 
information, such as short and long descriptions, and attributes. 
It may contain also administrative information, such as the 
owner of the chart, creation date, version number and access 
privileges. We shall see later that this entry is also used to define 
a chart as generic, i.e., as one that can be instantiated multiple 
times in the model. 
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12.3 Hierarchy of Charts

The relations between boxes and charts induce a hierarchy of 
charts. A chart is considered to be a parent chart of all the charts 
that describe its boxes by the offpage chart relation, by the 
relation between a control activity and its statechart, and by the 
module described by activity-chart relation. 
Referring to Figure 12.3, for example, we find that the module-
chart M is the root of the hierarchy; it is the parent of the module-
chart M1 and the activity-chart M_AC. The activity-chart M_AC, in 
turn, is the parent of the activity-chart A1 and the statechart CA, 
and the statechart CA is the parent of statecharts S1 and S2. As 
in other cases, here too, we use the terminology subchart, 
ancestor, and descendant. Thus, for example, the module-chart M1 
is a subchart of M, and all the charts in Figure 12.3, except for M 
itself, are descendants of M.

The chart hierarchy is 
sometimes called the static 
structure of charts. The structure 
for the example of Figure 12.3 is 
shown in tree form in 
Figure 12.4. The chart hierarchy 
serves as a sort of “table of 
contents” for the specification.

The uniqueness rules discussed 
in previous chapters (e.g., that 
each chart can be a definition 
chart of a single box only) 
imply that each chart has (at 
most) one parent. In addition, 
cyclic definitions are not 
allowed, so that the hierarchy of charts will indeed be either a 
tree (as in Figure 12.4) or a forest of trees. Now, in a typical full 
specification there is usually a module-chart that describes the 
system context and sometimes the top-levels of the structural 
decomposition too, and all the other charts are its descendants. 
This renders that module-chart the root chart, so that the chart 

Figure 12.4.  Hierarchy of charts
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hierarchy is a single tree. However, in many cases, especially if 
the specification is carried out in a bottom-up manner and is not 
yet complete, or when using methodologies that do not call for 
a single module-chart for the context description, there might 
be no such root, and the structure will therefore be a forest. 
Moreover, we shall see later that generic charts, those that can 
be instantiated multiple times in the model, have no parents 
and are considered roots in the chart hierarchy, so that here too 
the structure will be a forest of trees. A tree in the chart 
hierarchy is sometimes called a cluster; in Figure 12.4, the entire 
structure consists of a single cluster.
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12.4 Entities External to the System 
Under Description

The model that specifies the system under development 
operates in the context of the environment systems. We now 
discuss these systems, and other external entities that are 
connected to the system model and might interact with it.

12.4.1 Environment Modules/Activities 

A number of times we stated that the external boxes in a chart 
represent either boxes in the parent chart, or parts of the real 
environment of the model. The EWS example, as presented 
throughout this book, models the context of the system by the 
top level module-chart EWS. This is the root of the chart 
hierarchy, and, as always with the context module-chart, all of 
its external boxes (in our case, OPERATOR and SENSOR) are 
environment modules and are not part of the system. In a typical 
model, all other module-charts are offpage charts, whose 
external modules are occurrences of modules from their parent 
chart. For example, if the MONITOR’s structure is specified in a 
separate offpage module-chart, this chart will contain two 
external modules, the CCU and the OPERATOR, which are just 
occurrences of the two modules appearing in its parent chart, 
the module-chart EWS. See Figure 12.5.  

In this figure, we also show the activity-chart 
EWS_ACTIVITIES that describes the top-level module EWS (see 
Activity-Chart Describing a Module, page 10-7), and which, as 
such, is a subchart of the EWS module-chart. Its external 
activities OPERATOR and SENSOR are just occurrences of the 
corresponding environment modules from the parent module-
chart. Other offpage activity-charts participating in the 
functional description, such as the SET_UP chart in Figure 11.2, 
contain also external boxes that are linked to other activities and 
data-stores from the parent chart, e.g., GET_INPUT, 
LEGAL_RANGE and OPERATOR. However, a model does not 
necessarily contain a module-chart. One can construct the 
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functional view only, starting with a root activity-chart that will 
contain the environment systems too.

An environment box – module or activity – has an entry in the 
Data Dictionary, but an external box that points to another box 
has no entry of its own. The Data Dictionary entry of an 
environment box may contain descriptions and attributes, but 
not behavioral information. For instance, a mini-spec cannot be 
associated with an environment activity. In fact, when modeled 
as external entities, the environment systems cannot be 
associated with functional and behavioral descriptions in our 
languages at all; it is impossible to associate an activity-chart or 
a statechart with an environment module or activity. Often 
there is only limited and imprecise knowledge about the 

Figure 12.5.  External and environment boxes
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external entities. However, in some cases there are assumptions 
about the behavior of the interface signals that are significant to 
the design of the system, and the designer might want to 
express them explicitly. This can be done by including the 
relevant environment systems as part of the model, and 
representing them as internal modules or activities. It helps to 
give them some user-defined marks, to indicate that they are 
beyond the scope of the system under development. This 
technique can also be used when the designer wants to simulate 
the system in its environment, and wants to use the modeling 
languages to describe the external systems too. It is often 
convenient to specify environment behavior in a statistical 
manner, for which purpose one can use the random functions 
listed in Predefined Functions, page A-22.

The ECSAM methodology, which essentially employs our 
modeling languages [LWK89], has been recently extended to 
construct what its authors call “a black box external model” by 
including the environment systems in the model, as we suggest 
here [LK96].

Sometimes it is easier to use a conventional programming 
language to simulate the external systems, in particular when 
these have already been implemented in software. In general, 
any existing implementation can be used for simulation and 
prototyping purposes. The value of supporting tools based on 
our languages can be enhanced if they can be made to provide 
means for linking the model execution facilities to an external 
existing environment1.

12.4.2 Testbenches

Other external entities that interact with a typical model are the 
tests developed to check its behavior. These tests are valuable 
even beyond their primary purpose, which is to check whether 
the model matches some preliminary requirements and 
behaves as expected. Sometimes the model is built as a 
reference model – to be compared with its implementation. That 
1.  STATEMATE indeed provides such means.
Statemate MAGNUM 12-11



Putting Things Together
is, the model is developed for prototyping purposes, and the 
real system is developed later, independently, with the 
intention that it behave similarly. In this case, tests that are 
developed to check the model can be used later to check the 
implementation. Extensive testing of the model is even more 
justified when the model is automatically transformed to yield 
an implementation. In this case, if the model fulfills the 
requirements and is found to be correct by the tests, then the 
synthesized implementation is correct too.

One approach to testing the model is based on generating test 
scenarios according to some patterns and rules, by a special 
purpose test driver (written as an external program or with the 
aid of our modeling languages). The outputs of the modeled 
system are then collected by some monitoring function, and the 
collected data can be analyzed and checked in order to learn 
about the system’s behavior and performance and to detect 
undesired reactions.

Another approach uses auxiliary charts (mainly statecharts) to 
express and verify temporal requirements that are related to the 
model, such as safety and liveness properties [MP91]. These 
special charts are called testbenches, or sometimes watchdogs, and 
we now illustrate how they are used.

Assume that we want to be convinced that the EWS model 
satisfies the causality property “an alarm is issued only after an 
out-of-range situation has been detected”. This requirement is 
expressed in terms of our model as follows: “the activity 
DISPLAY_FAULT operates (is started) only after the event 
OUT_OF_RANGE has occurred”. We can now construct a 
testbench statechart, ALARM_CAUSALITY, shown in 
Figure 12.6, that will run in parallel to the system model and 
will “watch” the model execution under different scenarios of 
external changes. Whenever the requirement is violated by 
some scenario, the testbench will enter the state ERROR. 

This testbench checks for the kind of causality categorized as a 
safety property in the literature on program verification. Safety 
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properties often take the form “B never occurs after A” [MP91]. 
In such a case we look for a scenario that violates the property 
(i.e., one in which B occurs after A), to prove that the model does 
not satisfy the requirement. A similar technique can be used to 
check whether the model satisfies what is called a liveness 
property. One variation of liveness states that “after A occurs, B 
can occur”. In order to convince ourselves that this requirement 
is satisfied, we draw a testbench in which a scenario of “B after 
A” leads to a “success” state. 

A supporting tool (such as STATEMATE) can be instructed to try 
out many scenarios, perhaps even all of them exhaustively, to 
find one that satisfies or violates such requirements.

Testbench statecharts are not an integral part of the model and 
the hierarchy of its charts. Due to their special role, they are 
allowed to refer to the model's elements without necessarily 
obeying the scoping rules discussed in the next chapter. For 
example, in the above illustration, the testbench chart 
ALARM_CAUSALITY refers to the activity DISPLAY_FAULT, 
although this violates the visibility rules defined in Chapter 7 
for activities.

In terms of the scoping rules, the difference between 
environment modeling and using testbenches is analogous to 

Figure 12.6.  The testbench statechart 
ALARM_CAUSALITY
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two different ways of testing a hardware board: the former has 
a well defined interface and is therefore like connecting to a 
board via the connector’s pins, and the latter is less disciplined 
and therefore more like monitoring a signal with a probe.
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13Scope and Resolution 
of Elements
harts are the building blocks of a model. These blocks 
are not isolated entities; they are linked together by 
information that might flow between them, and by 
elements they might share. In particular, some of the 

elements defined in one chart can be used in others. Clearly, 
however, in large projects there are many elements that need 
not be known outside a limited portion of the specification. 

Hence, issues of scope, dealing with the questions of where 
elements are defined, where they are recognized and where 
they may be used, are important. This chapter discusses these 
issues, and the way we deal with them is strongly related to the 
hierarchy of charts, discussed in the previous chapter.

The present chapter also introduces a new component of our 
languages, the global definition set, which contains information 
that is visible throughout the entire model.

C
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13.1 Visibility of Elements and 
Information Hiding

Decomposing specifications into many charts raises issues of 
visibility and the scoping of elements. Consider Figure 13.1. The 
activity MAIN has two subactivities, A and B, between which X 
flows, and each of them is described in a separate chart. 
Obviously, we want X to be recognized in both charts, since it is 
part of their external interface. The X in both charts is thus the 
same X. On the other hand, we would like the two Y’s appearing 
in these charts to be different, each internal to the chart in which 
it appears. These two charts may actually have been prepared 
by different teams. In fact, the two Y’s could be of quite different 
types, say, a data-item in A and an event in B. Thus, X represents 
the case of an element that has to be visible to several charts, and 
the Y’s represent cases of elements that are to be hidden inside 
specific charts. 

These notions of visibility and information hiding are important in 
any kind of structured development. Some elements are 
allowed to be known only in specific parts of the model, and 
others might be global, that is, known throughout it. Often, it is 

Figure 13.1.  Visibility vs. information hiding
13-2 Statemate MAGNUM



Visibility of Elements and Information Hiding
important to give subteams the freedom to name their elements 
as they wish, regardless of the possible existence of identical 
names elsewhere in the model, and to produce reports and 
carry out analysis on particular portions thereof. To 
accommodate these possibilities, we associate a scope with each 
element. The scope of an element is a set of charts in which the 
element is known and can be used. As in modern programming 
languages, we have a notion of where the element is defined, and 
a set of scoping rules that determine where it is visible.
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13.2 Defining, Referencing and 
Resolving Elements

Each element in the model belongs to a specific chart. We say 
that it is defined in that chart. Graphical elements (boxes, arrows, 
and connectors) are defined in the chart in which they are 
drawn, besides the special case of external boxes. Textual 
elements (information elements and actions) are defined in the 
chart that is specified in the element’s Data Dictionary entry. See 
The Scope of Textual Elements,  page 13-14.

Elements defined in one chart may be used in others. For 
example, we may define the data-item X of Figure 13.1 in the 
higher-level chart MAIN, by writing MAIN in the field Defined 
in Chart of its Data Dictionary entry, as shown in Figure 13.2. 
Since X is used along a flow-line between the subactivities A and 
B, it also appears along flow-lines in the charts for A and B. In 
these two charts, where X is used but not defined, we say that X 
is a reference element. 

Another example of a reference element appears in Figure 13.3. 
Here, the activity A is defined in the activity-chart MAIN, by 

Figure 13.2.  An element defined in a chart

Figure 13.3.  A reference activity
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virtue of its being drawn there. On the other hand, since it is 
started in the statechart S that describes the control activity of 
MAIN, activity A is a reference element in S, where it is used but 
not defined. 

Each reference element must be matched with, or resolved to, an 
element in some other chart. The latter is said to be the resolution 
of the former. In the aforementioned examples, the reference 
data-items X of Figure 13.1 in both charts A and B are resolved 
to the data-item X defined in the chart MAIN, and, similarly, the 
reference activity A of Figure 13.3 in the statechart S is resolved 
to the activity A in MAIN.

Often, it is useful to be able to refer to elements that have not yet 
been defined. In the terminology just introduced, this amounts 
to having a reference element that cannot be resolved to any 
element. Such a situation might occur in intermediate stages of 
the specification process. A simple example is the use of an 
external event as a trigger in a statechart before the activity-
chart that defines that event is constructed. Another example 
appears in Figure 13.4, which is similar to Figure 13.3. The 
difference is that here the activity K, which is started in 
statechart S, has not yet been defined in MAIN. This could have 
been intentional (K is not ready yet), or it could indicate an error. 
Thus, K is an unresolved reference element in chart S. 

The specific rules for visibility and resolution differ for different 
types of elements. They are discussed in detail for graphical 

Figure 13.4.  An unresolved reference activity
Statemate MAGNUM 13-5



Scope and Resolution of Elements
elements in The Scope of Charts and Graphical Elements (page 13-
7), and for textual elements in The Scope of Textual Elements (page 
13-14).

Having scopes associated with elements makes it possible to 
use the same name for different elements, and there are rules 
that determine when this is allowed. Elements with the same 
name can be distinguished by attaching the chart name (i.e., the 
one in which they are defined) to their own name. The format 
is: chart-name:element-name. However, this use is not 
always allowed, and the rules for referring to elements in this 
way are related to the scoping rules. Such practice is useful for 
testbenches (see Chapter 12), where the scoping rules do not 
hold, and any element of the model can be referred to freely.

The rules for uniqueness of names and for referencing are 
discussed in the following sections. 
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13.3 The Scope of Charts and Graphical 
Elements

Charts involve several kinds of graphical elements – boxes, 
arrows, and connectors. These elements, with the exception of 
external boxes (which are discussed later), are defined in the 
chart in which they are drawn. Arrows have no names, and 
cannot be referred to in other charts. Also, the only connectors 
that have names are diagram connectors, and their naming and 
reference rules were discussed in Chapter 11. This leaves us 
with having to discuss the scoping and reference rules for charts 
and boxes only.

13.3.1 Referring to Charts and Box Elements

Charts are global in the entire model. Their names are unique, 
even for different types of charts, and they are recognized 
everywhere. So far, we saw that charts are referred to in other 
charts in two ways: in the names of boxes (to point to offpage 
charts) and in the Data Dictionary (to specify that a module is 
described by an activity-chart). We shall see later that generic 
charts are referred to in a similar way. As for other elements of 
the model, references to charts are resolved to charts of 
appropriate type. If such charts do not exist yet in the model, we 
say, like for other element types, that the reference charts are 
unresolved.

The box elements of our languages are activities and data-
stores, which are defined in activity-charts, states, which are 
defined in statecharts, and modules, which are defined in 
module-charts. As we have seen in previous chapters, the box 
elements are named in the graphics, and the name of the box 
must be unique among its siblings boxes. When the name is not 
unique in the chart, the box can be referred to by its pathname, 
preceded by its ancestor(s), e.g., A.B.C; see page A-1. If there is 
a synonym for the box, defined in its Data Dictionary entity, 
then that synonym must be unique among the names and 
synonyms of the boxes defined in the same chart. A box can be 
referred to by its name or its synonym. 
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We now describe the rules for referencing a box element in a 
chart other than the one in which it is defined. Any cases that 
are not discussed, e.g., referencing a state in an activity-chart, 
are not allowed.

13.3.2 Referring to Activities in Statecharts

Activities can be referred to in statecharts in actions (e.g., 
st!(A)), in events (e.g., sp(A)), and in conditions (e.g., 
ac(A)). These actions, events and conditions may appear as 
part of labels along transitions, as part of static reactions, and in 
the definitions of other elements in the Data Dictionary. In 
addition, activities may be referred to in a state’s Data 
Dictionary entity in the field Activities in State. See 
Chapter 7.

As discussed in Chapter 7, in a (logical) statechart reference is 
allowed only to activities that are siblings of the control activity 
described by the statechart. This is the only way to refer to 
activities in a statechart. As an example, in Figure 13.5, the 
activity A in the chart MAIN is referred to in the statechart S2, 
which belongs to the logical statechart S that controls the 
activity MAIN. 

Figure 13.5.  Referring to an activity in a statechart
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Notice that the activities that can be referred to in a given 
statechart SC must belong to a very particular activity-chart, 
namely, the parent activity-chart of SC, i.e., the one containing 
the control activity described by SC. Therefore, there is no need 
to attach a chart name to the name of a referenced activity, and, 
indeed, such an attachment is not allowed.

If a statechart refers to an activity name that does not appear in 
the parent activity-chart, as in Figure 13.4, that reference 
remains unresolved. This is true even if there is some activity 
with the same name elsewhere in the model.

13.3.3 Referring to States in Statecharts

States can be referred to in statecharts in events (e.g., en(S)) 
and conditions (e.g., in(S)). These events and conditions can 
be used along transitions, as part of static reactions, and in Data 
Dictionary definitions of other elements. See Chapter 5.

The visibility rule is that a state can be referred to in any state 
that belongs to the same logical statechart. In other words, any 
state that is defined in a page that is a descendant of some 
statechart SC is visible to all charts that are descendants of SC. 
States defined in other charts, that are not part of the logical 
statechart of SC, are not visible.

States in the same page are referred to by name or pathname (if 
the name is non-unique in the page), while states in other pages 
are preceded by the appropriate chart name, i.e., chart-
name:state-name. As an example, consider Figure 13.6. In 
the statechart S2, the state OFF that appears in the label 
E[in(OFF)] is understood to be the state OFF in the 
orthogonal component S22, which appears in the same 
statechart, although there is a state named OFF in the chart S1 
too. On the other hand, to refer to S2:ON in the label in chart S1, 
the state name is preceded by the chart name S2, and although 
the name Q is unique in the entire logical chart, the chart name 
is added to it too when used in another chart.  
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A reference to a state name that does not appear in any chart of 
the same logical statechart remains unresolved.

13.3.4 External Activities/Modules

External activities and modules are considered to be “real” 
elements, (e.g., they have their own entities in the Data 
Dictionary) only when they are defined explicitly in the Data 
Dictionary as environment activities or modules. An 
unnamed external box is just a graphical object, like a connector, 
that signifies some anonymous external source or target. A 
named external box that is not defined as an environment box 
serves as a reference to another box. Like other reference 
elements, an attempt is made to resolve such a box to a 
matching element – in this case, a box from the parent chart. The 
matching box in the parent chart has the same name, and it can 
be an internal box (i.e., a module, activity or data-store), or an 
external box.

Consider the example in Figure 13.7. Activity-chart M1_AC 
contains a number of external activities: E1 is resolved to the 
environment module E1 and M2 is resolved to the internal 

Figure 13.6.  Referring to states in a statechart
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module M2, but M31 does not match any module in M (although 
M contains a module named M31). This is because the matching 
boxes are allowed to be found only among the siblings of M1 
(e.g., M3) or the siblings of M1’s ancestors (e.g., E1). Similarly, in 
activity-chart A, the external activity D is resolved to the data-
store D in M1_AC, and E1 is resolved to E1 in M “via” E1 in 
M1_AC.  

A named external box in a root chart (i.e., one with no parent), 
or a box to which no box in the parent can be matched, is 
considered to be an unresolved external box. For example, if the 
external module E2 in the root chart M is not explicitly defined 
as an environment module, it is considered unresolved. Also, K 
in the activity-chart A and M31 in M1_AC are unresolved 
external boxes, because no matching boxes for them are found.

Figure 13.7.  Resolution of external boxes
Statemate MAGNUM 13-11



Scope and Resolution of Elements
13.3.5 Referring to Modules and Activities in Activity-
Charts

Modules can be referred to in an activity-chart in the field 
Implemented by (respectively, Resides in) of the Data 
Dictionary entity of an activity (respectively, a data-store). See 
Figure 10.6. Any module, from any module-chart, can be 
referred to in these fields. Recall, however, that the rules of 
Chapter 10 concerning the consistency of the hierarchies of 
modules and activities have to be adhered to.

Since module names are not unique, our languages allow 
referring to module names from different charts. In cases of 
possible ambiguity the chart name should be attached to the 
module name.

Activity names and data-store names are entered in the related 
fields Is Activity and Is Data-Store, respectively. As 
explained in Activities Associated with a Module’s Activities, page 
10-15, an element name in these fields is meaningful only when 
the implementing module is specified. The activity or data-store 
entered must be from the activity-chart that describes the 
implementing module. See Figure 13.8. Consequently, there is 
no need to specify the chart name of the referred to element, 
and, indeed, attaching this name is not allowed. 
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Figure 13.8.  Referring to activities in Is Activity 
field
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13.4 The Scope of Textual Elements

Textual elements, i.e., events, conditions, data-items, user-
defined types, information-flows, and actions, are defined via 
the Data Dictionary. The chart in which the element is defined 
is specified by the modeler in the field Defined in Chart. See 
Figure 13.2. This should be contrasted with graphical elements, 
for which the definition charts are determined by where they 
are drawn.

13.4.1 Visibility of Textual Elements

A textual element that is defined in a particular chart is 
recognized in, and can be used in, other charts. The visibility 
rules for textual elements are very similar to those employed in 
programming languages supporting nesting and block 
structure. A textual element is clearly visible in the chart in 
which it is defined. It is also visible in all the descendant charts 
in the chart hierarchy defined in the Chapter 12. An exception is 
when the element is masked by another textual element with the 
same name, as discussed below.

Let us take an example. The event OUT_OF_RANGE, defined in 
the activity-chart EWS_ACTIVITIES, is used in the statechart 
EWS_CONTROL on a transition; see, e.g., Figure 4.3. To use our 
terminology, the reference to OUT_OF_RANGE in EWS_CONTROL 
is resolved to the event OUT_OF_RANGE that is defined in 
EWS_ACTIVITIES. Since the statechart EWS_CONTROL is a 
subchart of the activity-chart EWS_ACTIVITIES (see Figure 
12.2), the textual elements defined in the latter are visible in the 
former, and can therefore be used therein.

Figure 13.9 illustrates masking. The data-item X flows between 
activities A and B in the activity-chart MAIN. Assume that it is 
also defined there. The offpage chart C, which defines an 
internal activity of MAIN, uses an element with the same name, 
X (in the example, X is actually an event in C). According to the 
visibility rule, the data-item X of MAIN could have been used in 
the subchart C, but since an event X is defined in C, the data-item 
13-14 Statemate MAGNUM



Naming Textual Elements
X is no longer recognized there. Moreover, the same applies to 
C’s subchart C1, in which we may only refer to the event X of C, 
and not to the data-item X of MAIN. In such a case, we say that 
the data-item MAIN:X is masked by the event C:X. 

13.4.2 Naming Textual Elements

The name and synonym of a textual element are given in its 
Data Dictionary entity. Within a chart, all such names and 
synonyms must be unique. Hence, if an event named E has 
already been defined in some chart A, the name E cannot be 
used to define, say, a condition in the same chart. It may be 
used, however, in some other (physical) chart, to name an event, 
a condition, or any other textual element. As for naming 
graphical elements, the name E can be used anywhere, even in 
the chart A itself. 

The possibility of using the same name for different elements is 
convenient and useful, especially in big projects when different 
teams use the same names in different scopes. However, despite 
the presence of rules for resolving references and detecting 

Figure 13.9.  Masking a textual element
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masking situations, this possibility should be used with care, as 
it may cause confusion.

Special attention must be paid when the same element is used 
in several charts, to ensure that the different occurrences are 
resolved to the same element. Since a textual element is visible 
only in the descendants of the defining chart, an element should 
be defined in a chart that is high enough in the hierarchy to be 
the common ancestor of all charts within which the element is 
to be referenced. For example, consider the event E in Figure 
13.10, which is generated in state S1. If we want E to cause a 
transition in state S2, it must be defined in the statechart S or in 
one of its ancestor charts, even if it is not used there, since 
elements that are defined in S1 are not visible in S2, and vice 
versa. When E is defined in S, both references to it in S1 and S2 
are resolved to the definition in S, and the two are therefore 
understood to refer to the same element. This example should 
be contrasted with the case illustrated in Figure 13.1, where we 
used the same name Y in the two charts A and B for two different 
elements flowing between subactivities. Since we want these 
elements to be distinct, we should define them in separate 
entities in the Data Dictionary, in each of the two charts.  

A textual element can be referred to in the same chart or in some 
other chart by its name or synonym. We do not allow the format 
chart-name:element-name for textual elements, since the 
chart name would be either redundant (if the chart is the one 
containing the resolution) or illegal (if another chart is 
referenced, thus referring to an “invisible” element or one that 
is out of scope). For example, in Figure 13.10 we are not allowed 
to replace the event E in the statechart S2 by S1:E, since 
according to the visibility rules elements defined in S1 are not 
visible in S2. Note that this rule is not applicable to testbenches, 
where all elements of the model are visible.

13.4.3 More About Resolution of Textual Elements

Reference elements are always resolved to elements of the same 
type. Thus, if we were to define a condition named E, not an 
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event, in the statechart S of Figure 13.10, the two references to E 
in S1 and S2 would not be resolved to this condition, since they 
are used as events.

If a textual element is referred to without having been defined 
explicitly in the Data Dictionary and there is no corresponding 
element in the ancestor charts, the element remains unresolved. 
This will typically happen in intermediate stages of the 
specification. Sometimes the type of an unresolved element is 
not clear from its usage. A good example is when an element 
appears as a label on a flow-line, in which case it can be an 
event, a condition, a data-item, or an information-flow. 
However, elements appearing in transition labels, for example, 
have uniquely determined types, as do ones appearing in 
expressions that define other textual elements. (An exception is 
the case of an action that can possibly turn out to be an event, 
such as E in Figure 13.10.)

Being unresolved does not prevent elements from being visible, 
and hence from being used, in descendant charts. Thus, 
elements from such descendant charts can be resolved to 

Figure 13.10.  Connecting elements from different 
charts
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unresolved elements. For example, assume that in Figure 13.1 
we do not explicitly define the element X. It will nevertheless be 
considered a reference element in the three charts appearing in 
the figure. It will be unresolved in chart MAIN, but in the other 
two charts it will be resolved to an unresolved element X in 
MAIN. As in other cases, however, this kind of resolution will be 
carried out only if the types of the elements match. For example, 
in Figure 13.11, E is not explicitly defined in chart MAIN, and 
therefore it is an unresolved reference element. Judging only 
from it usage in MAIN, it may be an information-flow, a 
condition, a data-item or an event, but in this case it is 
considered to be an event, since it is used as an event in the 
subchart S.

13.5 Global Definition Sets (GDS’s)

The visibility rules imply that textual elements that have to be 
global to the entire model should be defined in the root of the 
chart hierarchy, which is the common ancestor of all charts in 
the model. The resolution scheme described above, which is 

Figure 13.11.  Compatible usage of textual elements
13-18 Statemate MAGNUM



Global Definition Sets (GDS’s)
based on the hierarchy of the functional components, is 
compatible with the functional decomposition method. In this 
method, every accessed data variable – event, condition, and 
data-item – is either local, i.e., it belongs to the functional 
component, or is part of the external interface, i.e., it appears on 
a flow-line and, as such, belongs to an ancestor functional 
component. Textual elements that are employed as 
abbreviations, i.e., information-flows and actions, are usually 
defined in the charts in which they are used. Therefore, the only 
“real” global information that has to be shared throughout the 
entire model in an unstructured manner (and can even be 
moved between models) is that of constant definitions and user-
defined types.

Our languages provide a special type of model component, the 
global definition set (GDS), for capturing such global definitions. 
This type of component is part of the Data Dictionary, and is 
similar in many ways to a chart. There may be several global 
definition sets in a model, each containing definitions of user-
defined types as well as constant data-items and conditions. 
Figure 13.12 shows several Data Dictionary entities that belong 
to a GDS named TIME_DEFS. A GDS that contains definitions 
related to time, as in this example, is relevant to many 
application domains.

As mentioned, elements appearing in a GDS are visible in the 
entire model. For example, a data-item definition in any chart of 
a model that contains the global definition set TIME_DEFS can 
be of type TIME. In particular, definitions in one GDS can use 
definitions in another GDS; but this should not be done in a 
circular fashion.

There are no hierarchy relationships among the global 
definition sets in a model, or between them and the charts of the 
model itself.

Global definition sets have a special role in the context of 
generic charts, as will be seen in Chapter 14.
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Figure 13.12.  Elements defined in a global definition 
set
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14Generic Charts
hapter 11 discussed the possibility of describing the 
contents of a box element in a separate offpage chart. An 
offpage chart can describe a single box only. In this 
chapter we introduce generic charts, which are reusable 

components that may have multiple instances in a model. In 
other words, a generic chart can be used to describe the contents 
of several similar boxes.

Generic charts are linked to the rest of the model via 
parameters; no other elements (besides the definitions in global 
definition sets) are recognized by both generic charts and other 
portions of the model.

In this chapter we describe how generic charts and their formal 
parameters are defined, how they are instantiated in the model, 
and how the actual elements are bound to their formal 
parameters.

C
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14.1 Reusability of Specification 
Components

Many kinds of systems give rise to cases requiring a number of 
similar components. For example, assume that the EWS 
monitors several sensors, each with its own processing 
function, and all with the same pattern, as shown in Figure 7.12. 
The new activity-chart with the multiple sensors is shown in 
Figure 14.1(a). The function PROCESS_SIGNALS contains five 
similar activities, PS1 through PS5, processing SIGNAL_1 
through SIGNAL_5, respectively. Each of the PSi is described 
by a separate Data Dictionary entry, similar to the one shown 
for PS1 in Figure 14.1(b). The output of the function dealing 
with the i’th sensor is sent to the COMPARE function via the i’th 
component of the array SAMPLES. The functions vary in the 
sampling interval, SAMPLE_INTERVAL_i, and in the constant 
factor K_i that multiplies the sampled signal. 

It is quite obvious that this solution is not efficient; in addition, 
it does not make it clear to a viewer that the components are 
essentially identical. There should be a way to specify a 
repetition of the same component many times, like in electronic 
and software design, defining the detailed contents only once, 
and using it generically wherever needed. For this purpose our 
languages provide the mechanism of generic charts.

We saw that when used the various components can differ in 
the details of their connections with the outside world (i.e., in 
the data elements through which they exchange information), 
as well as in the internal settings that determine the nature of 
each specific instance. Both will be handled by parameters.

The generic chart mechanism can be used to model electronic 
designs with repeating components, and software systems 
containing multiple objects of the same class.
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Figure 14.1.  Processing multiple sensors in the EWS
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14.2 Definition and Instances of 
Generic Charts

In some sense, generic charts are similar to offpage charts: in 
both cases we draw an empty box and point to another chart 
that describes its contents. Here, though, we can specify 
repetition; indeed, sometimes we draw an offpage chart first, 
later realize that we really want to repeat the specified portion, 
and switch to a generic chart. The similarities and differences 
between these two mechanisms are discussed below. 

14.2.1 Notation and Basic Rules of Generics

A chart can be defined as a generic chart in its Data Dictionary 
entry, and it can then have multiple instances in the model. An 
instance of a generic chart is sometimes called a generic instance, 
to distinguish it from an offpage instance. To apply this to the 
EWS example, we define an activity-chart PROCESS_SIGNAL 
and specify it as generic. Its top level activity 
PROCESS_SIGNAL has a Data Dictionary entry. This is shown 
in Figure 14.2(a). We then specify instances of this generic 
activity-chart (PS1 through PS5) inside PROCESS_SIGNALS, 
using the symbol “<”, as in PS1<PROCESS_SIGNAL. See 
Figure 14.2(b). 

While this example was of a generic activity-chart, we can also 
have generic module-charts and generic statecharts. The former 
can be useful when the system is built out of similar modules, 
such as multiple signal processors, and the latter are often used 
to describe similar orthogonal components, as we shall see 
below.

Since generic charts will normally appear in different contexts, 
the external boxes in a generic chart are not allowed to point to 
any particular boxes in the model, and are very often left 
unnamed. In Figure 14.2(a), the SIGNAL comes from some 
“generic” SENSOR, while the activity's output flows to an 
unknown target, which is why the external box is left unnamed.
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Regarding names, the box name can really be omitted in an 
instance (and we can thus write, e.g., <GEN), as is usually done 
for offpage instances. However, here this is not recommended, 
and is only possible when the instance is unique on that level of 
decomposition. The more common situation is when the 

Figure 14.2.  A generic activity-chart and its instances
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instance activities have their own individual names, as in PS1, 
PS2, etc. The name of the generic chart should not appear when 
we refer to the instance, so that we write expressions like the 
start action st!(PS1).

The instance box must be basic, i.e., it may not contain sub-
boxes. Moreover, it cannot contain any behavioral information, 
and this applies to all three kinds of charts: instance states in a 
statechart cannot have static reactions and attached activities, 
instance activities in an activity-chart cannot have mini-specs 
and combinational assignments, and instance modules in a 
module-chart cannot be described by an activity-chart. All such 
information is inherited by the instances from their describing 
generic charts.

In modeling a generic chart, one may include instances of 
offpage charts, as illustrated in Figure 14.3. Note that this 
reference to the offpage chart COMPUTE in the generic chart 
PROCESS_SIGNAL implies that there will be multiple 
occurrences of COMPUTE in the full expansion of the model, but 
each of them will belong to a different scope. A generic chart 
may also contain instances of other generic charts, but care must 
be taken to avoid cyclic instantiation thereof. 

The notion of resolution is applied to charts just like it is applied 
to other elements in the model, i.e., a reference to a chart 
appearing in an instance name will be resolved to a chart of 
appropriate type whose definition in the Data Dictionary 

Figure 14.3.  A generic chart containing an 
offpage chart
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matches the reference. Therefore, if an ordinary activity, for 
example, is named A>GEN, GEN must be an activity-chart 
defined to be generic. Similarly, a chart defined to be generic 
cannot be used as an offpage chart or as an activity-chart 
describing a module. This means that if GEN is a generic chart no 
box can be named A@GEN, and GEN cannot appear in the Data 
Dictionary entry of any module in the field Described by 
Activity-Chart. A model containing instances of charts that 
do not yet exist is incomplete, and in such a case the same chart 
cannot appear both as a generic and an offpage instance. For 
example, A1>A and A2@A is an inconsistent situation, even 
when A is not yet defined; any completion of such a model will 
be illegal.

14.2.2 Generic Charts in the Chart Hierarchy

In Chapter 12 we discussed 
the hierarchy of charts. We 
saw that this hierarchy is 
based on several kinds of 
relationships between a box 
and a chart: an instance of an 
offpage chart, a control 
activity described by a 
statechart, and a module 
described by an activity-
chart. The hierarchy of 
charts in Figure 14.4 is 
derived from the 
components of the EWS 
model appearing in 
Figure 12.2.

The hierarchy of charts defines the visibility scope of textual 
elements, and has a dominant role in the resolution algorithm. 
Generic charts have no parent charts; each generic chart is the 
root of a tree that it induces in the chart hierarchy. The tree itself 
is defined just like in the ordinary case. Therefore, according to 
the visibility rules and the resolution algorithm (see Chapter 

Figure 14.4.  The hierarchy of 
charts for the EWS model
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13), generic charts do not recognize elements from other 
clusters. Instead, they share elements with the rest of the model 
via parameters, as we shall see. In addition, like all portions of 
the model, generic charts can see the data in the global 
definition sets, and they may thus use the definitions of 
constants and user-defined types appearing there.

The external boxes in a generic chart cannot be resolved to other 
boxes in the model, because there is no parent chart to which 
they can refer. As mentioned above, they are usually left 
unnamed.

Since the chart hierarchy is determined by making an offpage 
chart an offspring of the chart in which it is referred to, this 
structure is actually a kind of “table of contents” for the model 
that shows where charts are used. When generic charts are 
involved, the chart hierarchy is expanded to a chart usage 
hierarchy1; the generic charts appear under the chart in which 
they are used (instantiated), just like offpage charts, but with the 
special symbol “<” to distinguish them from the others, and to 
emphasize the fact that they do not participate in the resolution 
algorithm. Note that a generic chart can appear along several 
branches of the hierarchical structure as a leaf. Since a generic 
chart may have many instances in the same chart, it can be 
useful to provide the number of instances near the chart name.

As an example, let us assume that the chart EWS_ACTIVITIES 
contains five instances of the generic chart PROCESS_SIGNAL, 
as described above, and that this generic chart contains an 
instance of the offpage activity-chart COMPUTE. Figure 14.5 
contains the tree of Figure 14.4 enhanced with these additional 
components. Note that this usage hierarchy contains two 
separate trees.

1. In Statemate, the chart usage hierarchy is called “the model tree.”
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14.3 Parameters of Generic Charts

Parameters are used to characterize the particular instances of a 
generic chart and to link it to its environment. Parameters are 
the main means by which an instance of a generic chart is able 
to share data with the rest of the model.

14.3.1 Formal Parameters of a Generic Chart 

Each generic chart has a set of formal parameters. These are either 
ports, i.e., channels, through which information flows in and out 
of the component, or constant parameters, i.e., values used to 
characterize the particular instance at hand. The parameters are 
defined explicitly by the specifier in the Data Dictionary entry 
of the generic chart. They are given by their name, element type 
(event, condition, data-item, or activity) and mode (constant, 
or one of the three port modes: in, out and in/out). Each 
formal parameter has a Data Dictionary entry in which more 
information about the element can be added, such as its 
structure and data-type.

The generic chart PROCESS_SIGNAL described above has an in 
port SIGNAL, and an out port SAMPLE. In addition there are 
two constant parameters, SAMPLE_INTERVAL and K, that 
make it possible to set some values differently for each 
individual instance; the first influences the sampling rate of the 
sensor, and the second is used to calibrate the sampled value. 
The Data Dictionary entries of the generic chart, including its 
parameters, are shown in Figure 14.6.  

Port parameters can be of any data-type and structure. Array 
parameters can be defined with or without an index range. The 
index range definition can use literal or named constants, 
constant parameters, or it can be based on an index range (e.g., 
parameter A is array 1 to length_of(A) of integer, 
which defines an array parameter whose upper range index is 
equal to the length of the actual binding). When the array 
parameter is defined without an index range, the index limits 
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Figure 14.6.  Definition of formal parameters of a 
generic chart

Figure 14.5.  The chart usage hierarchy of the 
enhanced EWS
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are inherited from the actual binding, a notion defined in the 
next section.

A generic chart that communicates with its environment via a 
queue will have a queue in/out parameter. The example 
shown in Figure 8.8, in which four EWS instances communicate 
with two printers, can be modified so that it uses generic charts 
for the EWS and the printer, and each of these has a queue 
parameter.

Record and union parameters must be defined with a user-
defined type that has the desired structure. This follows from 
the rule that the actual bindings must be consistent in type with 
the formal parameter, and two records/unions are consistent 
only if they have the same user-defined type. This issue is 
discussed further below.

The formal parameters are used inside the generic cluster like 
any other element, but usage must be consistent with the 
parameter’s mode: the value of an in parameter is expected to 
be used by the component, while that of an out parameter 
should be affected by the component. The value of an in 
parameter may be modified, as long as the modified value is not 
used later on outside the component.

Constant parameters can be used in places where constants are 
allowed: they can appear, for example, in the definition of an 
array index range, but they cannot label a flow-line or be 
assigned a value in an assignment action. Very often, the 
instances of a generic chart are arranged in an array, and an 
integer constant parameter is used to identify the individual 
instances. For example, in models of client-server architectures, 
when multiple similar clients send messages to a server via a 
queue, each client can be an instance of a generic chart that 
identifies itself by its index. 

Statecharts (but not activity-charts or module-charts) may have 
parameters of type activity. An activity parameter is considered 
to be an in/out port, the idea being that the component can 
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send a control signal to an activity (e.g., st!(A) or sp!(A)), 
and can sense its status (e.g., by sp(A) or ac(A)). For example, 
assume that in the processing unit of a mission critical system 
there are several components that perform a similar function. 
(Such redundancy is often incorporated to enhance reliability.) 
Each of these components has the same behavioral pattern, 
which is specified by the generic statechart ACT_CNTRL of 
Figure 14.7. The formal parameters include the input events 
that trigger transitions, and the activity A, which is activated by 
the statechart. This pattern can control any activity that is 
bound to the formal parameter when the chart is later 
instantiated. The input events consist of control commands (GO, 
HALT and RESET) and an indication of an error in the input 
device. The out parameter FAULT is used to report the status of 
the particular instance. A sample usage of this generic statechart 
is illustrated below. 

14.3.2 Actual Bindings of Parameters

For each instance of a generic chart there is a binding of actual 
elements to the formal parameters. Ports can be bound to 
variables or aliases; in fact, any data element that labels a flow-
line (with the exception of an information-flow) can be bound. 
The port binding is analogous to connecting components ports 
with signal lines in an electronic scheme. Every change in the 
actual element will be available immediately to the instance, 
and every change inside the instance will be sensed outside by 
the connected elements. Constant parameters are bound to 
constant values, i.e., literal constants, named constants, or 
operators that yield constant values, such as those that relate to 
the index range of arrays (e.g., length_of(A)).

The binding information is supplied in the Data Dictionary 
entry of the instance. Figure 14.8 shows the parameter bindings 
for the instances PS1 and PS2 of the generic chart 
PROCESS_SIGNAL, whose formal parameters were defined in 
Figure 14.6. The different bindings to the constant parameter 
SAMPLE_INTERVAL determine different sampling rates in each 
component. HIGH_RATE and LOW_RATE are two named 
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constants; they can be defined, for example, in a global 
definition set. The in and out ports are bound to the actual 
data-items – the signal that comes from the sensor and the 
corresponding component in the array of SAMPLES. 

As another example, we instantiate the generic statechart 
ACT_CNTRL of Figure 14.7 three times in the statechart 
PROC_CNTRL. The purpose of the containing statechart is to 
activate three copies of an activity, each processing a signal 
from a different sensor. The statechart also continuously 

Figure 14.7.  A generic statechart chart with an 
activity parameter
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monitors the status of these activities, and when all of them fail 
it issues a fault alarm. See Figure 14.9, which shows the activity-
chart that contains PROC_CNTRL, the statechart itself, and the 
Data Dictionary entries of the state instances. These entries 
contain the actual parameter bindings; in particular, the binding 
to the activity parameter. 

The actual binding must have the same type and structure as 
the formal parameter. In particular, in the case of data-items the 
following rules hold:

• when the formal parameter is of a user-defined type 
the actual binding should also be of this user-defined 
type;

Figure 14.8.  Activity instances and actual parameter 
bindings
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• arrays must be of the same length and must have the 
same component types; if the index range of an array 
formal parameter is not specified, the index range 
values are inherited from the actual binding;

Figure 14.9.  State instances and actual bindings
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• queues must have the same component types;

• formal parameters cannot be defined directly as 
records and unions, because these structures are 
considered to be consistent only if they have the 
same user-defined type.

Note that, since generic charts are the roots of the separate trees 
in the chart hierarchy, only elements appearing in global 
definition sets are commonly visible by them and to the charts 
of their instances. Therefore, user-defined types and constants 
that are used in the definition of the formal parameters must 
belong to some global definition set.

Finally, the bindings to ports must be consistent with the flow 
of information that appears in the activity-chart or module-
chart of the instance. The binding to an in port should flow into 
the instance and the binding to an out port must be an output 
of the instance. This has indeed been adhered to in the example, 
as can be seen by inspecting Figure 14.2(b) and Figure 14.8.
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14.4 Referring to Elements In Instances

An element that belongs to a generic chart will have an 
occurrence in the model for each instance of the chart. As 
explained earlier, instances of generic charts share elements 
with the rest of the model only via the parameters. In other 
words, it is impossible to refer to elements appearing in 
instances of charts outside the generic cluster, and therefore 
references to these elements do not appear in expressions of the 
model. However, testbenches, which do not obey any visibility 
rules (see Testbenches, page 12-11), should be allowed to refer to 
elements in a generic instance, for analysis purposes. In 
addition, external tools, such as simulators and prototype 
generators should also be allowed to refer to these elements. 
Such tools should be able, for example, to present the value of 
each particular instance of an element. Therefore, we have to 
provide a way to identify each particular occurrence of an 
element.

Going back to the example in Figure 14.2, the TICK event is 
local to the generic chart PROCESS_SIGNAL. It has 5 
occurrences in PROCESS_SIGNALS, one in each instance PS1 
through PS5. Each of these occurrences can be identified by its 
instance name, e.g., PS1^TICK, which means “TICK in the 
instance PS1”. When the element name is not unique in the 
generic cluster, the chart name should be added to the element 
name. For example, if there is another TICK event in the 
subchart COMPUTE of Figure 14.5, PS1^COMPUTE:TICK is the 
way to refer to the occurrence of COMPUTE:TICK in PS1, which 
is different from PS1^PROCESS_SIGNAL:TICK. The situation 
becomes more complicated when generic instances are nested 
within other generic charts. This may result in a chain of 
instance names: e.g., PS1^CMP3^X, which is “element X in the 
generic instance CMP3 in the generic instance PS1”. Box names 
that might not be unique in their chart are identified in these 
references by their unique pathname. See page A-1.
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ANames and 
Expressions                
his appendix presents the syntax rules for names and 
expressions in the languages described in the book.

A.1 Names

Each entity in the language of statemate, such as an event, a 
graphical element, an expression, and a data-item, can be 
identified by a name. This name can also be used to reference 
the entity elsewhere in the model. 

Names consist of a sequence of alphanumeric characters, A to Z, 
a to z, 0 to 9, $ (dollar sign), and _ (underscore). Names cannot 
contain spaces or begin with a digit (0 to 9). This is discussed in 
more detail later is this appendix.

Generally, Statemate MAGNUM is not case sensitive. However, 
in many situations, the editors will not allow lower case name 
assignments. Instead, they will automatically convert the lower 
case typed entries into upper case terms.  Keynames, on the 
other hand, are generally expressed in lower case.

Several names have special meaning within Statemate 
MAGNUM. These can be considered keywords in the same way 
that other programming environments use “keywords.” Some 
keywords are reserved and should never be used as names. 
Others are nonreserved and may be used as names.

T
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Names and Expressions
Note: Do not attempt to truncate characters from the end of 
keywords. Although available in some environments, this 
is not a valid practice within Statemate MAGNUM.

A.1.1 Reserved Words

Reserved Words (or reserved keywords) are typically a verb or 
noun (frequently expressed as an abbreviation or acronym) in 
the programming/command language that is part of the native 
language of Statemate MAGNUM.  These include: 

Keyword Description

ac abbreviation for active

active possible condition/status of activity (see  
page A-12)

all all elements of an array (see  page A-12)

and Logical and (see  page A-13)

any any element of an array (see  page A-12)

break exit from loop (see  page A-20)

ch abbreviation for changed

changed an element’s value was modified 
(see  page A-9)

dc abbreviation for deep_clear

deep_clear clears all history (see  page A-18)

downto loop statement command (see  page A-20)

else loop statement command (see  page A-27)

en abbreviation for entered

end loop statement command (see  page A-20)

entered possible status of state (see  page A-9)

entering event generated when a state is entered; 
useful as trigger for action based on entering 
state (see  page A-9)

enum_first retrieve first enumerated value 
(see  page A-33)

enum_last retrieve last enumerated value 
(see  page A-33)
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enum_pred retrieve previous enumerated value 
(see  page A-33)

enum_ordinal retrieve ordinal position of enumerated value 
(see  page A-33)

enum_succ retrieve next enumerated value 
(see  page A-33)

enum_value value of enumerated element 
(see  page A-34)

enum_image string representation of enumerated value 
(see  page A-34)

ex abbreviation for exited

exited event caused by exiting a state 
(see  page A-9)

exiting trigger for action based on leaving a state
(see  page A-9)

false boolean value = 0 

for loop statement (see  page A-20)

fs abbreviation for false

fl abbreviation for q-flush 

get abbreviation for q-get

hanging possible condition/status of an activity (see  
page A-12)

hc abbreviation for history_clear

hg abbreviation for hanging

history_clear clears history at current hierarchical level (see  
page A-18)

if loop statement (see  page A-20)

in possible condition of state; condition 
statement (see  page A-12)

length_of length of specified array (see  page A-16)

lindex left index value of array (see  page A-16)

loop loop statement (see  page A-20)

make_false sets given element to false (see  page A-17)

make_true sets given element to true (see  page A-17)

nand Logical nand [not and] (see  page A-17)

Keyword Description
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nor Logical nor [not or] (see  page A-17)

not Logical not (see  page A-13)

ns abbreviation for entering

nxor Logical nxor [not exclusive or] 
(see  page A-17)

or Logical or (see  page A-13)

put abbreviation for q_put

peek abbreviation for q_peek

q_put put item on queue (see  page A-19)

q_urgent_put put item at beginning of queue 
(see  page A-19)

q_get remove value from front of queue (see  
page A-19)

q_peek copy value from front of queue 
(see  page A-19)

q_flush clear queue contents (see  page A-19)

q_length return length of queue (see  page A-16)

rd abbreviation for read

read element has been read (event) 
(see  page A-9)

read_data action of reading an element (see  page A-18)

return identifies output value of a function

resume see  page A-18

rindex right index value of array ()

rs abbreviation for resume

schedule performs action some time in the future

sd abbreviation for suspend

sp abbreviation for stop

st abbreviation for start/started

start action performed to begin activity

started event generated when activity becomes active 
(see  page A-9)

stop action performed to halt activity
(see  page A-18)

Keyword Description
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Textual Element Names
A.1.2 Textual  Element Names

• A legal name of a textual element is a sequence of 
alphanumeric characters, including "_" (underscore), 
and excluding blanks. It must begin with a letter.                        

• The maximal length of a name is 31 characters. 

• Names are not case-sensitive. 

• Synonyms contain, at most, 16 characters. 

• A name cannot be a reserved word.

• A name cannot be the same as the name of a 
predefined function. 

stopped event generated when activity is ended

suspend possible condition of an activity 
(see  page A-18)

then loop statement (see  page A-20)

timeout see  page A-10

tm abbreviation for timeout

to see  page A-20

tr abbreviation for true

true boolean value = 1

uput abbreviation for q_urgent_put

wr abbreviation for written/write_data

write_data action of writing (see  page A-18)

written element was assigned a value (see  page A-
10)

when loop statement (see  page A-20)

while loop statement (see  page A-20)

xor Logical xor [exclusive or] (see  page A-17)

xs abbreviation for exiting

Keyword Description
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• User-defined types also cannot have the following 
names:
integer, real, bit, array, queue, record, 
union, bit_array, string, condition, single. 

• When referring to a textual element in an expression 
(e.g., in a transition label), names can be spread out 
over multiple lines: writing a "\" (back slash) inside 
the name is interpreted by the editor to equate to a 
forced (or soft) line return. 

• A textual element can be referred to outside the 
model prefixed by the chart name in which it is 
defined: 
<chart name>:<element name> (e.g. MAIN:X).

A.1.3 Box Element Names

• A legal name of a box element is a sequence of 
alphanumeric characters, including "_" (underscore), 
and excluding blanks. It must begin with a letter. 

• The maximal length of a name is 31 characters.

• The names are not case-sensitive.

• Synonyms contain at most 16 characters. 

• The name cannot be a reserved word. 

•  A box element can be referred to by its pathname, 
i.e., preceded by its parents' name: ... 
<grandparent name>.<parent name>.<box name> 
(e.g., A. B. C), and optionally also with the chart-
name in which it is defined:                            
<chart name>:<pathname> (e.g., MAIN: A. B). The 
pathname of a top level box is: .<box-name> (e.g., 
.TOP) 

• When referring to a box element in an expression 
(e.g., in a transition label), names can be spread out 
over multiple lines: writing a "\" (back slash) inside 
the name is interpreted by the editor to equate to a 
forced (or soft) line return. 
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A.1.4 Names of  Elements in Generic Instances

• An element in a generic instance is referred to by: 
<instance-name>^<unique-element-name-in-
instance>.

• An instance name can have several levels of nesting 
(instance in instance in instance ... ), in which case 
several "^" signs are used.

• An instance name (box name) on each level of the 
nesting and the element name in the instance must 
be unique. Therefore each of them may contain a 
chart name.

Example: A:K^L^B:M^C:X
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A.2 Expressions

Expressions within Statemate take the form Trigger/Action. A 
trigger is an event and/or condition that defines the criteria for 
an action being taken. The action(s) specified what to do as a 
consequence of the trigger occuring.

A.2.1 Event Expressions

Individual event and array of events

A primitive event is one of the following:     

• Named single (non array) event.     

• E (K), the K'th component of an event array E; K is 
any integer expression.

An array of events (also referred to as an event array) is one of the 
following:    

• Named event array.     

• Array slice, E (K. . L), of an event array E; K and L 
are integer expressions.

Events Related to Other Elements

Table Table A.1 is a list of derived events that can be used as 
triggers within your model. A derived event is an event which 
occurs from a change in the system environment, not from any 
external source.
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The following operators, which are related to various types of 
elements, produce a single (non-array) event.  

Table A.1.  Single Event Operators  

Event Abbreviation Occurs When Notes

entered(S) en(S) state S is 
entered

used only in 
Statecharts

exited(S) ex(S) state S is exited used only in 
Statecharts 

entering ns current state is 
being entered

used only as trigger 
of reaction in state 

exiting xs current state is 
being exited 

used only as trigger 
of reaction in state 

started(A) st(A) activity A is 
started

used only in 
Statecharts

started st current activity 
is started

used only as trigger 
in reactive activity 

stopped(A) sp(A) activity A is 
stopped

used only in 
Statecharts 

changed(X) ch(X) the value of X is 
changed 

x is data-item or 
condition expression 
or array (including 
array slice); can be 
structured, or a 
queue 

true(C)  tr(C) the value of 
condition C is 
changed to true 

C is condition 
expression (not 
array) 

false(C) fs(C) the value of 
condition C is 
changed to 
false 

c is condition 
expression (not 
array)

read(X) rd(X) X is read by 
action rd!, or 
from a queue, 
by peek! or 
get!

X is primitive (not 
alias) data-item or 
condition; X can be 
array (not slice), 
array component (not 
bit-array component), 
structured and queue 
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Compound Events

The following operations use only single (non-array) events and 
conditions. 

written(X) wr(X) X is written by 
action wr!, by 
assignment, or 
by put! in 
queue           

x is primitive (not 
alias) data-item or 
condition; x can be 
array (not slice),   or 
queue array 
component (not bit-
array component), 
structured or queue                          

timeout(E,N) tm(E,N) N clock units 
passed from 
last time event 
E occurred;   

E is event expression 
(not array)

N is numeric 
expression       

all(E) all components 
of event array E 
occurred

E is event array   

any (E) at least one 
component of    
event array E 
occurred 

 E is event array

Table A.1.  Single Event Operators   (Continued)

Event Abbreviation Occurs When Notes

Table A.2.  Compound Event Operators  

Event Occurs When

E[C] E occurred and the condition C is true

[C] condition C is true

not E E did not occur 

El and E2 El and E2 occurred simultaneously

El or E2 El or E2, or both, occurred
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Table A.2 presents operations in descending order of 
precedence. Parentheses can be used to alter the evaluation 
order. For example:

((E[C] or E2) and E3)

A.2.2 Condition Expressions

Individual Condition and Array of Conditions

A prinitive condition is one of the following:

• Literal constant: true, false (not case sensitive).

• Named single (non array) condition (can be of user-
defined type).

• C (K), the K'th component of a condition "indexable" 
array C; X is any integer expression.

• R. C, a field expression of type condition in a 
record/union R. For example: A. B. C, where C is a 
field of type condition in the field B (with a record 
structure), in the record A.

An array of conditions (also referred to as condition array) is one 
of the following: 

• Literal constant: (Cl, C2, K*CN,*CL); each Cr is a 
literal constant condition, and r, is a literal constant 
integer. 

• Named condition array (can be of user-defined type).

• R. C, a field expression in a record/union of a type 
condition array.

• Array slice, C (K..L), of a condition indexable array 
C (defined next); R  and L are integer expressions.

 An indexable condition array is one of the following:   

• Named condition array (can be of user-defined type)
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• R. C, a field expression in a record/union of a type 
condition array.                          

• A component of an array, whose type is a condition 
array.                              

For example: RRC (1), where RRC is an array of 
condition arrays.                             

 RRC (1) is an array of conditions and RRC (I) (K) is a 
condition.

Conditions Related to Other Elements

The following operators, which are related to various types of 
elements, represent a single (non-array) condition. 

Table A.3.  Operators Producing Single (Non-array) Condition 

Event Abbreviation True When Notes

in (S) system A is in state S used only in Statecharts 

active (A) ac (A) activity A is active used only in Statecharts 

hanging (A) hg (A) activity A is suspended used only in Statecharts

XI R X2 the values of XI and 
X2 satisfy the relation 
R 

XI and X2 are data-item 
or condition 
expressions; 

• when numeric, R 
may be:    =1 /=, 
>, <, =<, => ; 

• when strings,    
arrays, structured or 
queues, R may be 
=1 /=

all (C) all components of 
condition C are true

C is a condition array

any (C) at least one 
component of 
condition C is true

C is a condition array 
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The following logical operations use only single (non-array) 
conditions, and represent a single condition. 

Table A.4 presents the operations in descending order of 
precedence. Parentheses can be used to alter the evaluation 
order. For example:

(not((C1 or C2) and C3))

Note: Logical operations have lower precedence than 
comparison relations.

A.2.3 Data-I tem Expressions

 Data-item expressions are converted to the required type when 
needed: 

• Bit-arrays shorter than 32 bits to integer, and vice 
versa 

• Bit to integer 

• Integer to real

Therefore, integer expression means also expression of type bit 
and bit-array (with length less than 32); numeric expression 
means real expression and integer expression, including bit-
array expressions (with length less than 32).

Individual, Array and Structured Data-items

An individual numeric data-item is one of the following:

• Literal constant:         

Table A.4.  Single Condition Logical Operators

Condition True When

not C c is not true 

Cl and C2 Both Cl and C2 are true

Cl or C2 Cl or C2 or both are true
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integer: decimal integer (of value less than 2**31)         
bit-array: OX... (hexadecimal); OB... (binary); O0... 
(octal) real: dec.dec[(Ele) [+I-] dec] (dec= decimal 
integer). 

• Named real, integer bit-array or bit (can be of user-
defined type). 

• Named data-item defined as numeric expression. 

• D (K), the K'th component of a numeric indexable 
array or bit-array D, where K is any integer 
expression. 

• R. C, a field expression in a record/union of numeric 
type.     
For example: A. B. C, where C is a field of numeric 
type in the field B (whose type is record), in the 
record A.

An individual string data-item is one of the following: 

• Constant literal: a sequence of characters enclosed by 
single quotation marks (e.g. 'ABC'); maximal length is 
79 characters. 

• Named string (can be of a user-defined type). 

• Named data-item defined as a string expression. 

• S (K), the Kith component of a string indexable array 
S, where K is any integer expression. 

• R. C, a field expression in record/union of string 
type.

 An array of data-items is one of the following: 

•  Literal constant: (Dl, D2, . . . , K*DN, . . . , *DL)  
where each Di is a numeric or string literal constant 
data-item, and K is a literal constant integer. 

• Named bit-array, array of any type, or user-defined 
array type. 

• R. D, a field expression in a record/union, whose 
type is a data-item, array or bit-array. 
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• Array slice, D (K . . L), of an indexable data-item 
array or bit-array D, where K and L are integer 
expressions. * A component of an array, whose type 
is a data-item, array or bit-array. 

• Named data-item defined as an array or bit-array 
expression.

 An "indexable" data-item array is one of the following: 

• Named bit-array, array of any type, or user-defined 
array type.                      

• R. D, a field expression in a record/union, whose 
type is a data-item, array or bit-array.                      

• A component of an array, whose type is a data-item, 
array or bit-array.

A structured data-item, record or union, is one of the following: 

•  Named data-item defined as record or union (can be 
a structured user-defined type).                      

• R. S, a field expression in a record/union of a type 
structured data-item.                      

• A component of an array, whose type is a structured 
data-item.

Queue data-items are data-items, array components or record/
union fields defined in the Data Dictionary as having the 
structure queue (directly or via a user-defined type).
Statemate MAGNUM A-15



Names and Expressions
Data-items related to other elements

The following operators are applicable to strings, arrays and 
bit-array data-items, and to user-defined types that are defined 
as string, array or bit-array. The result is a constant integer.

The following operator is applicable to queues:

Compound Data-item Expressions

Numeric Operations

The following operations are relevant to integer, bit, bit-arrays 
(of length less than 32) and real operands; the result is numeric:

+EXP, -EXP 

EXP1**EXP2 

EXP1*EXP2, EXP1/EXP2 

EXP1+EXP2,EXP1-EXP2

The list presents the operations in descending order of 
precedence. Parentheses can be used to alter the evaluation 
order.

operator meaning

length_of(A) length of array, bit-array and string A (data-item 
or user-defined type)                      

rindex(A)  right index of array or bit-array A (data-item or 
user-defined type)                      

lindex(A) left index of array or bit-array A (data-item or 
user-defined type)

operator meaning

q_length(Q)    current number of elements in queue Q
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Numeric operations have higher precedence than comparison 
relations and logical operations.

Bitwise Operations

The following operations are relevant to integer, bit and bit-
array operands; the result is a bit-array:

       not EXPL                         

EXP1 & EXP2 (denotes concatenation)                        

EXP1 and EXP2,EXPl nand EXP2                         

EXP1 or EXP2,EXPl nor EXP2                         

EXP1 xor EXP2,EXPl nxor EXP2

The list presents the operations in descending order of 
precedence. Parentheses can be used to alter the evaluation 
order.

Bitwise operations, besides the not operation, have lower 
precedence than comparison relations and numeric operations. 
The not operation has higher precedence.

A.2.4 Action Expressions

Table A.5 is a list of action statements and how they would 
appear in the language of Statemate.

Table A.5.  Actions Manipulating Other Elements 

Action Abbreviation Does Notes

E generates the event 
E

E is primitive single 
event (not array) 

make_true(C) tr! (C) assigns true to 
condition C

C is primitive single  
condition (not array)

make_false(C) fs! (C) assigns false to 
condition C

C is primitive single 
condition (not array)
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X:=EXP assigns the value of 
EXP to X

X is primitive or alias 
data-item, array or 
bit-array, condition or 
array condition 
(including slices)

start(A) st! (A) activates activity A used only in 
Statecharts

stop(A) sp! (A) stops activity A used only in 
Statecharts

stop stops the current 
activity

used only in mini-
spec of reactive 
activity

suspend(A) sd! (A) suspends activity A used only in 
Statecharts

resume(A) rs! (A) resumes activity A used only in 
Statecharts

read_data(X) rd! (X) reads data-item or 
condition X

X is primitive (not 
alias) data-item or 
condition, or array 
(including slices); bit-
array components or 
slices are not 
allowed

write_data(X) wr! (X) writes to data-item 
or condition X

X is primitive (not 
alias) data-item or 
condition, or array 
(including slices); bit-
array components or 
slices are not 
allowed

history_clear
(S)

hc! (S) forgets history 
information of state 
S 

used only in 
Statecharts

deep_clear(S) dc! (S) forgets history 
information of 
descendants of 
state S 

used only in 
Statecharts

Table A.5.  Actions Manipulating Other Elements  (Continued)

Action Abbreviation Does Notes
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schedule(K,N) sc! (K,N) performs action K 
delayed by N clock 
units 

N is numeric 
expression

q_put(Q,X) put! adds data-item or 
condition X to tail of 
queue Q 

X’s type is 
compatible with type 
of queue 
components

q_urgent_put(
Q,X)

uput! adds data-item or 
condition X to head 
of queue Q 
components

X’s type is 
compatible with type 
of queue 
components

q_get(Q,X,S) get! moves head of the 
queue Q into data-
item or condition X; 
return status S 

X’s type is 
compatible with type 
of queue 
components

q_peek(Q,X,S) peek! copies head of the 
queue Q to data-
item or condition X; 
return status S 

X’s type is 
compatible with type 
of queue 
components

conditional S is 
optional

q_flush (Q) fl! clears queue Q X’s type is 
compatible with type 
of queue 
components

conditional S is 
optional

Table A.5.  Actions Manipulating Other Elements  (Continued)

Action Abbreviation Does Notes
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Compound, Conditional and Iterative 
Actions

Action expressions may contain context variables: 
$legal-name, of no more than 16 characters (see page A-1).  
Context variables are allowed for any type of data-item or 
condition.

Table A.6.  Action Expressions with Context Variables

Action Expression Notes

AN1;AN2  the actions are performed 
sequentially "; " is optional at 
the end of the list                           

if C then ANI else AN2 end if    C is a condition expression; the 
else part is optional                          

when E then AN1 else AN2 end when E is an event expression; the 
else part is optional 

for $1 in X to|downto L loop AN end loop $I is a context variable; K and 
L are integer expressions; AN 
is an action expression                         

while C loop AN end loop   C is a condition expression; AN 
is an action expression 

break  causes the containing loop 
action to terminate
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A.2.5 Data-Type Expressions

Data-types of a record/union’s fields can be defined (textually) 
in the Data Dictionary entry of the record/union using the 
following syntax. Note that fields of a structured type (record 
and union) cannot be defined directly, but via user-defined 
types.

The keywords and the element identifiers are not case 
sensitive. N below is a constant integer expression, i.e., literal 
integer constant, named integer constant or operation returning 
a constant value. Square brackets denote optional segment.

Basic types:

integer   

integer length=N    

integer min=Nl 

max=N2    

real    

string[length=N]    

bit    

bit-array [NI to N2]    

condition    

<user-defined type> (identifier)

Compound types:

array [Nl to N2] [of <basic type>]    

queue [of <basic type>]
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A.3 Predefined Functions

A predefined function call has the following syntax: 

returned-value := function(argl,arg2,...)

To describe the arguments’ type and the returned value below 
we use the following abbreviations:                              

I = Integer, R = Real, S = String, W = Bit-array, B = Bit.

Conversion of the arguments’ type is carried out when needed.

A.3.1  Arithmetic Functions

A.3.2  Trigonometric Functions

Table A.7.  Arithmetic Functions 

Function Arguments Returns Meaning

MAX mixed R and I input’s type maximum value

MIN mixed R and I input’s type minimum value

TRUNC R I truncated value

ROUND R I rounded value

ABS R or I input’s type absolute value

MOD I1, I2 I I1modulus I2

Table A.8.  Trigonometric Functions  

Function Arguments Returns Meaning

SIN R R sine

COS R R cosine

TAN R R tangent

ASIN R R arc sine (in radians)

ACOS R R arc cosine (in radians)

ATAN R R arc tangent (in radians)
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A.3.3  Exponential Functions
 

A.3.4  Random Functions

ATAN2 R R arc tangent (in radians) with two 
parameters, i.e., arc tangent of 
(a1/a2)

SINH R R hyperbolic sine (in radians)

COSH R R hyperbolic cosine (in radians)

TANH R R hyperbolic tangent (in radians)

SIND R R hyperbolic sine (in degrees)

COSD R R hyperbolic cosine (in degrees)

TAND R R hyperbolic tangent (in degrees)

ASIND R R arc sine (in degrees)

ACOSD R R arc cosine (in degrees)

ATAND R R arc tangent (in degrees)

ATAN2D R R arc tangent (in degrees) with two 
parameters, i.e., arc tangent of 
(a1/a2)

Table A.9.  Exponential Functions

Function Arguments Returns Meaning

LOG R R log base e

LOG10 R R log base 10

LOG2 R R log base 2

EXP R R exponential

SQRT R R square root

Table A.10.  Random Functions

Function Arguments Returns Meaning

RANDOM_EXPONENTIAL R R random exponential

RANDOM_BINOMIAL I,R I random binomial

Table A.8.  Trigonometric Functions   (Continued)

Function Arguments Returns Meaning
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A.3.5 Bit-array Functions

RANDOM_POISSON R I random poisson

RANDOM_UNIFORM R,R R random uniform

RANDOM_IUNIFORM I,I I random integer uniform

RANDOM_NORMAL R,R, R random normal

RANDOM I R random

Table A.11.  Bit-array Functions 

Function Arguments Returns Meaning

SIGNED W I signed value (m.s.b. of W is a sign 
bit)

ASHL W,I W arithmetic shift left by I, enters 0’s

ASHR W,I W arithmetic shift right by I, preserves 
sign

LSHL W,I W logical shift left by I, enters 0’s 

LSHR W, I W logical shift right by I, enters 0’s

BITS_OF W1,I1, I2 W slice of bit-array expression; I.s.b 
of W1 is 0

EXPAND_BIT B,I W expand bit; creates a bit array of I 
bits, all equal B

MUX W1, W2,B W returns: W1 if B=0, W2 if B=1

Table A.10.  Random Functions

Function Arguments Returns Meaning
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A.3.6 String Functions

Note:  The index of the leftmost character in a string is 0. 

Table A.12.  String Functions

Function Arguments Returns Meaning

STRING_EXTRACT S,I1,I2 S extracts a string of length 
I2 from index I1 of S

STRING_INDEX S1,I,S2 I index of sub-string S2 
within S1; -1 if not found

STRING_CONCAT S1,S2 S concatenates strings

STRING_LENGTH S I string length

CHAR_TO_ASCII S I ASCII value of l’st 
character of S

ASCII_TO_CHAR I S returns S of one character 
with ASCII value I

INT_TO_STRING I S converts I to decimal 
string; I can be negative

STRING_TO_INT S I integer value of a decimal 
string
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A.4 Predefined Constants

The following predefined constants can be used:

• pi

• e
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A.5 Reactions and Behavior of 
Activities

A.5.1 Statechart Labels

A Statechart label is one of the following:

• trigger, which is a single event expression.

Note: While [condition] is a legal expression, it should not be 
used as a trigger in an in-state expression, except in a 
synchronous model. 

•  reaction, which is of the form trigger/action.

•  /action.

A.5.2 State Reactions and Reactive Mini-Specs

A state reaction and a reactive mini-spec is a list of one or more 
reactions (i.e., of the form trigger/action) separated by

reaction;; reaction;;                      

reaction;;

The ";; " is optional at the end of the list.

Restrictions on events, conditions, and actions depend on 
whether they are used in a state or activity. See page A-8.

A.5.3 Procedure-Like Mini-Spec

A procedure-like mini-spec has the syntax of an action. See Action 
Expressions, page A-17.

A.5.4 Combinational  Assignments

A Combinational assignment has the following syntax:
CE :=EXP1 when COND1 else       
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     EXP2 when COND2 else

     . . .

     EXPN

Here, CE (the combinational element) is a primitive data-item or 
condition, or an alias data-item, EXP1 is a data-item or 
condition expression, and COND1 is a condition expression.                     

N can be = 1 (in which case the assignment is just CE: =EXPl) or 
more.

Combinational assignments in a sequence are separated by ";", 
like actions in a sequence.
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Flow of Information
A.6 Flow of Information

A.6.1 Flow Labels and Information-Flow 
Components

Flow labels in activity-charts and module-charts can be any 
primitive (variable) data element (event, condition, data- item) 
or information flow. In addition they can be components on any 
level of a primitive data element (array component, array slice, 
and record/union field). Array components can use only literal 
constants.

A.6.2 Actual  Bindings of  Generic Parameters

Actual bindings of parameters in generic instances have the 
same syntax like flow labels. See Statechart Labels, page A-27.
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A.7 Enumerated Types

You can define a User-Defined Type (UDT) that has a finite 
number of values, define Data-Items of this UDT, and use them 
in the model.

A.7.1 Defining an Enumerated Type 

A User-Defined Type can be defined anywhere, i.e. both in 
charts and GDSs. Scoping rules for these elements are like any 
other textual element. They are resolved first in the current 
chart, then in ancestor charts, and then in GDSs.

A.7.2 Structure of Enumerated Types

The structure of the UDT of type enumerated must be single (i.e. 
not array or queue). One CAN, however, define an array of a 
UDT that is enumerated. 

A.7.3 Specification of Values

Enumerated values are listed in curly brackets, separated by 
commas (,).

Example: {SUN,MON,TUE,WED,THU,FRI,SAT}

A.7.4 Distinct Values

All values in the same type must be distinct.

Example: {RED, GREEN, BLUE, RED} is illegal.

A.7.5 Non-Unique Values

Enumerated values can be non-unique across multiple 
enumerated types. That is, they can be shared by more then one 
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enumerated type. In this case, the values are not considered to 
be the same.

Example:

COLOR is defined as {RED,GREEN,BLUE}

MOOD is defined as {HAPPY,SAD,BLUE}

COLOR’BLUE <> MOOD’BLUE)

A.7.6 Referencing Non-Unique Values

If more than one enumerated type contains the same 
enumerated-values within the same scope, the usages of these 
values must refer to the unique name. However, the unique 
name is not used in the declaration of the enumerated type 
itself. 

For example, the model will refer to ’/ X := COLOR’RED’ but 
the declaration of the type for X will NOT read {COLOR’RED, 
BLUE, GREEN} .

Note: Sets of characters as enumerated values are not 
permitted.

A.7.7 Naming Rules

Naming rules for enumerated values shall be the same as for 
textual element.

• Up to 31 characters.

• Case insensitive.

• Alphanumeric characters including '_'.

• Starts with a letter.

• Reserved words are not allowed.
Statemate MAGNUM A-31



Names and Expressions
A.7.8 Enumerated Values and Textual  I tems

Enumerated values and other textual items cannot have the 
same name within the same scope. For example, data-item SUN 
cannot be declared in the same chart where an enumerated-
value SUN is declared.

A.7.9 Usage of  Enumerated Types

A data-item cannot be directly defined as enumerated. Data-
Items can be defined of type User-Defined Type and the UDT 
can be defined as an enumerated type. This Data-Item can be 
defined as Variable, Compound or Constant, Single Array or 
Queue.

A.7.10 Enumerated Values Usage 

Enumerated values are referenced by their names. In case of 
non-uniqueness within a specific scope a ’ notation is used. (i.e. 
RED, COLOR’RED) 

Enumerated values can be used in most situations in which an 
integer literal or constant can be used:

• Right hand side of expressions

/COLOR_VARIABLE:= RED

• Relation operations

[COLOR_VARIABLE < RED]

• Range of arrays.

/ARR[RED] := 3;

• Range of 'for loops'.

for $i in SUN to FRI loop ....

• As actual parameters of generic instances.

• As aggregates

/ARR_COL := {RED,GREEN,BLUE};
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/ARR_COL := {WHITE,8*BLACK};

/ARR_COL := {WHITE,BLACK,*WHITE};

Enumerated values cannot be used in: 

• Numeric expressions

COLOR_VARIABLE:= RED + BLUE

• TImeout/schedule action duration

tm(E, APPLE) , sc!(A,RED)

A.7.11 Constant  Operators Related to Enumerated 
Types

Two constant operators are:
- enum_first(T)

First enumerated value of T=> T’FIRST in Ada

- enum_last(T)

Last enumerated value of T=> T’LAST in Ada

Parameters to these constant operators are user-defined types 
that were defined as enumerated types.

Operators Related to Enumerated Values

Five operators support operations on enumerated values:

- enum_succ ( [T’]VAL )(T’SUCC in Ada)

Successor enumerated value of T

- enum_pred ( [T’] VAL )(T’PRED in Ada)

Predecessor enumerated value of T

- enum_ordinal ( [T’]VAL )(T’ORD in Ada

Ordinal position of VAL in T
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- enum_value ( T,I )(T’VAL in Ada)

Value of the i’th element in T

- enum_image ( [T’] VAL )(T’IMAGE in Ada)

String representation of VAL in T

Parameters to these operators are either enumerated values 
(literals) or variables.   The T’VAL notation is used for non-
unique literals. 

Example:

A user-defined type DAY is defined as enumerated type with the 
values: {SUN,MON,TUE,WED,THU,FRI,SAT}. Another UDT 
VACATION can be defined as of type User-Type DAY with 
subrange {FRI,SAT}. Another UDT can be defined as {SUN, 
MON,TUE}

The order of enumerated values within the subtype is the same 
as in the primary type, TUE must always be greater than SUN.

Ordinal values start with 0 (zero).

The ordinal of the values of a subtype is defined by the position 
in the original type definition.

For example:
enum_ordinal(DAY’FRI) == enum_ordinal(VACATION’FRI) == 5
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BEarly Warning System 
Example: Functional 
Decomposition Approach
B.1 Textual Description of the System

The early warning system (EWS) receives a signal from an 
external sensor. When the sensor is connected, the EWS 
processes the signal and checks if the resulting value is within a 
specified range. If the value of the processed signal is out of 
range, the system issues a warning message on the operator 
display and posts an alarm. If the operator does not respond to 
this warning within a given time interval, the system prints a 
fault message on a printing facility and stops monitoring the 
signal. The range limits are set by the operator. The system 
becomes ready to start monitoring the signal only after the 
range limits are set. The limits can be re-defined after an out-of-
range situation has been detected, or after the operator has 
deliberately stopped the monitoring. 
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B.2 The Model

B.2.1 The Hierarchy of Charts

The following tree depicts the hierarchy of charts in the EWS 
model. 

TIME_DEFS (GDS)

EWS (mc)

EWS_ACTIVITIES (ac)

EWS_CONTROL (sc)

SET_UP (ac)

DISPLAY_FAULT (ac)

SET_UP_STATES (sc)

CONTROL_FAULT_MESSAGE (sc)

CONTROL_ALARM_SIGNAL (sc)
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The Charts
B.2.2 The Charts

Module-chart EWS

OPERATOR

KEY_
PRESSING

EWS_ACTIVITIES
SENSOR_CONNECTED

COMMANDS

POWER_ON

ALARM_
NOTIFICATION

FAULT_REPORT

OUT_OF_RANGE_DATA

SIGNAL

DISPLAYED_
SU_MSG

SENSOR

GET_
INPUT

@EWS_CONTROL
OPERATOR

OPERATOR

COMPARE>
PRINT_
FAULT

@DISPLAY_
FAULT

LEGAL_
RANGE

DISPLAY_
SU_MSGS>

OUT_OF-RANGE

PROCESS_
SIGNAL>

SET_UP_DONE

@SET_UP

SAMPLE

RANGE_
LIMITS

SU_MSG_TO_DISPLAY

Activity-chart EWS_ACTIVITIES
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Statechart EWS_CONTROL
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The Charts
DISPLAY_
SU_MSGS

GET_INPUT

SET_UP

@SET_UP_STATES
LEGAL_
RANGE

EWS_
CONTROL

DISPLAY_
SU_MSG

DISPLAY_
SU_ERROR>

PROMPT_
RANGE> VALIDATE_

RANGE>

SU_MSG_
TO_DISPLAY

RANGE_LIMITS

SU_MSG_TO_DISPLAY

SET_UP_DONE

LEGAL_RANGE

Activity-chart SET_UP

SET_UP_STATES

WAIT_FOR
RANGE_DATA>

VALIDATION>

C

T

DATA_ENTERED

[SET_UP_DONE]/WRITE_RANGE

sp(VALIDATE_RANGE)

[not SET_UP_DONE]/
st! (DISPLAY_SU_ERROR);
CLEAR_RANGE

Statechart SET_UP_STATES
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COMPARE

DISPLAY_FAULT

DISPLAY_FAULT_MESSAGE PRODUCE_ALARM_SIGNAL

OPERATOR

OUT_OF_RANGE_
DATA

FAULT_MSG_
TO_DISPLAY

ALARM_SIGNAL

DISPLAYED_
FAULT_MSG

ALARM

@CONTROL_
FAULT_
MESSAGE

DISPLAY_
FAULT_
MESSAGE

@CONTROL_
ALARM_
SIGNAL GENERATE_

ALARM_
SOUND

Activity-chart DISPLAY_FAULT

CONTROL_FAULT_MESSAGE CONTROL_ALARM_SIGNAL>

/PREPARE_MESSAGE

DISPLAYING_
FAULT_MSG>

GENERATING_
SOUND>

STATECHART
CONTROL_ALARM_SIGNAL

STATECHART
CONTROL_FAULT_MESSAGE
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The Data Dictionary
B.3 The Data Dictionary

Modules

Module: EWS                            
Defined in Chart: EWS
Described by Activity-Chart: EWS_ACTIVITIES

Module: OPERATOR                            
Defined in Chart: EWS                            
Defined as: environment

Module: SENSOR                            
Defined in Chart: EWS                            
Defined as: environment

Activities and data-stores

Activity: COMPARE                            
Defined in Chart: EWS_ACTIVITIES                            
Termination Type: reactive controlled                            
Mini-spec:

wr(SAMPLE)/                                          

    if ((SAMPLE < LEGAL_RANGE.LOW_LIMIT) or 

       (SAMPLE > LEGAL_RANGE.HIGH_LIMIT) then

                          OUT_OF_RANGE;                                                 

            OUT_OF_RANGE_DATA.VALUE:=SAMPLE;

            OUT_OF_RANGE_DATA.LIMITS:=LEGAL_RANGE

   end if 

Implemented by Module: CCU

Activity: CONTROL_ALARM_SIGNAL                            
Defined in Chart: DISPLAY_FAULT                            
Implemented by Module: CCU
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Activity: CONTROL_FAULT_MESSAGE                            
Defined in Chart: DISPLAY_FAULT                            
Implemented by Module: CCU

Activity: DISPLAY_FAULT_MESSAGE                            
Defined in Chart: DISPLAY_FAULT                           
Implemented by Module: SCREEN

Activity: DISPLAY_SU_ERROR                  
Defined in Chart: SET_UP                  
Termination Type: procedure-like                  
Mini-spec: 

SU_MSG_TO_DISPLAY:=’Range error; try again’

Activity: DISPLAY_SU_MSGS                  
Defined in Chart: EWS _ACTIVITIES                  
Tennination Type: reactive controlled                  
Combinational assignments:                        

DISPLAYED_SU_MSG:=SU_MSG_TO_DISPLAY

Implemented by Module: SCREEN

Activity: GENERATE_ALARM_SOUND                  
Defined in Chart: DISPLAY_FAULT                 
Termination Type: reactive controlled                 
Implemented by Module: ALARM_SYSTEM

Activity: GET_INPUT                  
Defined in Chart: EWS_ACTIVITIES                  
Description: Transforms key pressing to data                  
Termination Type: reactive controlled                 
Implemented by Module: KEYBOARD

Data-store: LEGAL_RANGE                  
Defined in Chart: EWS_ACTIVITIES                  
Resides in Module: CCU
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Activity: PRINT_FAULT                  
Defined in Chart: EWS_ACTIVITIES                  
Description: Issues fault data to the printer

Activity: PROMPT_RANGE                  
Defined in Chart: SET_UP                  
Tennination Type: procedure-like                 
Mini-spec:                       

SU MSG TO DISPLAY:=’Enter range limits’

Activity: PROCESS_SIGNAL                  
Defined in Chart: EWS_ACTIVITIES                  
Termination Type: reactive controlled                  
Mini-spec:                      

    started/TICK;;

    TICK/$VALUE=SIGNAL; 

            SAMPLE:=COMPUTE($VALUE);--ext.function  

         sc!(TICK,SAMPLING_INTERVAL)

Implemented by Module: SIGNAL_PROCESSOR

Activity: SET_UP                  
Defined in Chart: EWS_ACTIVITIES                  
Termination Type: reactive self-terminated
Implemented by Module: CCU

Activity: VALIDATE_RANGE                                
Defined in Chart: SET_UP                               
Termination Type: procedure-like                               
Mini-spec:  

fs!(SET_ UP_DONE);                                         

if RANGE_LIMITS.LOW_LIMIT<RANGE_LIMIT.
                                   HIGH_LIMIT

     then tr!(SET_UP_DONE)

   end if

States
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State: COMPARING                                
Defined in Chart: EWS_CONTROL                                
Activities in State:                                        

COMPARE (throughout)

State: CONTROL_ALARM_SIGNAL                                
Defined in Chart: CONTROL_ALARM_SIGNAL                                Static 
Reactions:                                         
   ns/tr!(ALARM_SIGNAL);;

   xs/fs!(ALARM_SIGNAL)

State: DISPLAYING_FAULT_MESSAGE                                
Defined in Chart: CONTROL_FAULT_MESSAGE                                
Activities in State: 

DISPLAY_FAULT_MESSAGE (throughout)

State: GENERATING_ALARM                                
Defined in Chart: EWS_CONTROL                               
Activities in State:                                         

DISPLAY_FAULT (throughout)

State: GENERATING_SOUND                                
Defined in Chart: CONTROL_ALARM_SIGNAL                                
Activities in State:                                         

GENERATE_ALARM_SOUND (throughout)

State: ON                        
Defined in Chart: EWS_CONTROL                        
Static Reactions:                                
 ns/fs!(SET_UP_DONE)                        

Activities in State:                                
DISPLAY_SU_MSGS (throughout)

State: OPERATING                        
Defined in Chart: EWS_CONTROL                        
Activities in State
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PROCESS_SIGNAL (throughout)

State: SETTING_UP                        
Defined in Chart: EWS_CONTROL                        
Static Reactions:                               

ns/st!(SET_UP)

State: VALIDATION                        
Defined in Chart: SET_UP_STATES                       
Static Reactions:                                

ns/st!(VALIDATE_RANGE)

State: WAIT_FOR_RANGE_DATA                       
Defined in Chart: SET_UP_STATES                       
Static Reactions:                                

ns/st!(PROMPT_RANGE)

Events

Event: ALARM_TIME_PASSED                        
Defined in Chart: EWS                        
Definition: tm (en (GENERATING_ALARM),
                                      ALARM_DURATION)

Event: DATA_ENTERED                        
Defined in Chart: SET_UP_STATES                        
Definition: wr (RANGE_LIMITS)

Event: EXECUTE                        
Defined in Chart: EWS

Event: EXECUTE_KEY                        
Defined in Chart: EWS

Event: HALT                        
Defined in Chart: EWS_CONTROL

Event: OPERATE                        
Defined in Chart: EWS_CONTROL
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Event: OUT_OF_RANGE                             
Defined in Chart: EWS_ACTIVITIES

Event: RESET                             
Defined in Chart: EWS

Event: RESET_KEY                             
Defined in Chart: EWS

Event: SET_UP                             
Defined in Chart: EWS

Event: SET_UP_KEY                             
Defined in Chart: EWS

Event: TICK                             
Defined in Chart: EWS_ACTIVITIES

Conditions

Condition: ALARM_SIGNAL                             
Defined in Chart: EWS

Condition: POWER_ON                             
Defined in Chart: EWS

Condition: READY                             
Defined in Chart: EWS_CONTROL                             
Definition: SET_UP_DONE and in (CONNECTED)

Condition: SET_UP_DONE                            
Defined in Chart: EWS_ACTIVITIES

Data-items

Data-Item: ALARM                      
Defined in Chart: EWS                      
Data-Type: real
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Data-Item: ALARM_DURATION                      
Defined in Chart: EWS_CONTROL                     
Data-Type: real                      
Defined as: constant                     
Definition: 3 0.

Data-Item: DISPLAYED_FAULT_MSG                      
Defined in Chart: EWS                      
Data-Type: string

Data-Item: DISPLAYED_SU_MSG                      
Defined in Chart: EWS                      
Data-Type: string

Data-Item: FAULT_MSG_TO_DISPLAY                    
Defined in Chart: EWS                      
Data-Type: string

Data-Item: FAULT_REPORT_TO_PRINT                      
Defined in Chart: EWS                      
Data-Type: record                            

Field Name: FAULT_TIME      Field Type: TIME                             
Field Name: FAULT_VALUE     Field Type integer                             
Field Name: FAULT_RANGE     Field Type: RANGE

Data-Item: FAULT_REPORT                      
Defined in Chart: EWS                      
Data-Type: string

Data-Item: HIGH_LIMIT_SLIDER                      
Defined in Chart: EWS                      
Data-Type: integer

Data-Item: LEGAL_RANGE                      
Defined in Chart: EWS_ACTIVITIES                      
Data-Type: RANGE
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Data-Item: LOW_LIMIT_SLIDER                      
Defined in Chart: EWS                      
Data-Type: integer

Data-Item: RANGE_LIMITS                      
Defined in Chart: EWS
Data-Type: RANGE

Data-Item: OUT_OF_RANGE_DATA                             
Defined in Chart: EWS_ACTIVITIES                             
Data-Type: record                                    

Field Name: VALUE    Field Type: integer            
Field Name: LIMITS  Field Type: RANGE 

Data-Item: SAMPLE                             
Defined in Chart: EWS                             
Data-Type: integer

Data-Item: SAMPLE_INTERVAL                             
Defined in Chart: EWS_ACTIVITIES                             
Data-Type: real                             
Defined as: constant                             
Definition: 2.

Data-Item: SIGNAL                             
Defined in Chart: EWS                             
Data-Type: bit-array 23 downto 0

Data-Item: SU_MSG_TO_DISPLAY                             
Defined in Chart: EWS                             
Data-Type: string

Actions

Action: CLEAR_RANGE                     
Defined in Chart: SET_UP_STATES                     
Definition: LEGAL_RANGE.LOW_LIMIT:=0;
                   LEGAL_RANGE.HIGH_LIMIT:=O
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Action: PREPARE_MESSAGE                     
Defined in Chart: CONTROL_FAULT_MESSAGE                     
Definition:                     

$VALUE_STR:=INT_TO_STRING(OUT_OF_RANGE_
                             DATA.VALUE);

$OUT_STR:=STRING_CONCAT($VALUE_STR,’ is out
                             of range:\n’);

$LOW_STR:=STRING_CONCAT(                        
    INT_TO_STRING(OUT_OF_RANGE_DATA.LIMITS.
                          LOW_LIMIT),’ - ’);
$HIGH_STR:=                        

    INT_TO_STRING(OUT_OF_RANGE_DATA.LIMITS.
                                HIGH_LIMIT); 

$RANGE_STR:=STRING_CONCAT($LOW_STR, $HIGH_STR);

FAULT_MSG_TO_DISPLAY:=
    STRING_CONCAT($OUT_STR,$RANGE_STR);

Action: WRITE_RANGE                     
Defined in Chart: SET_UP_STATES                     
Definition: LEGAL_RANGE:=RANGE_LIMITS

User-defined types

User-Defined Type: RANGE                     
Defined in Chart: EWS                     
Data-Type: record                              

Field Name: LOW_LIMIT    Field Type: integer

Field Name: HIGH_LIMIT  Field Type: integer

User-Defined Type: TIME                     
Defined in GDS: TIME_DEFS                     
Data-Type: record                              

Field Name: HOURS       Field Type: integer min=0 max=23   

Field Name: MINUTES   FieldType: integer min=0  max=59
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Field Narne: SECONDS   Field Type: integer min=0 max=59

Information-flows

Information-Flow: ALARM_NOTIFICATION                                 
Defined in Chart: EWS_ACTIVITIES                                 
Consists of:                                         

ALARM                                         
DISPLAYED_FAULT_MSG

Information-Flow: COMMANDS                                 
Defined in Chart: EWS                                 
Consists of:                                         

SET_UP                                         
EXECUTE                                         
RESET

Information-Flow: COMMAND_KEYS                                 
Defined in Chart: EWS                                 
Consists of: 

SET_UP_KEY                                         
EXECUTE_KEY                                         
RESET_KEY

Information-Flow: DISPLAYED_MSGS                                 
Defined in Chart: EWS                                 
Consists of:                                         

DISPLAYED_FAULT_MSG                        
DISPLAYED_SU_MSG

Information-Flow: KEY_PRESSING                                 
Defined in Chart: EWS                                 
Consists of:

COMMAND_KEYS                               
RANGE_SLIDERS                                         
ENTER_KEY                                  
SENSOR_CONNECTED_SWITCH
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Information-Flow: MSGS_TO_DISPLAY                                 
Defined in Chart: EWS                                 
Consists of:                                         

SU_MSG_TO_DISPLAY                          
FAULT_MSG_TO_DISPLAY

Information-Flow: MSGS_TO_PRINT                                 
Defined in Chart: EWS                                 
Consists of:                                         

FAULT_REPORT_TO_PRINT

Information-Flow: RANGE_SLIDERS                   
Defined in Chart: EWS                   
Consists of:                          

LOW_LIMIT_SLIDER
HIGH_LIMIT_SLIDER

Information-Flow: USER_INPUT                   
Defined in Chart: EWS                   
Consists of:

COMMANDS
SENSOR_CONNECTED
RANGE_LIMITS
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CSubroutines
ithin Statemate, you can define three types of 
subroutine using:

• K&R C

• ANSI C

• Ada

• Statemate Action Language

Procedural Statecharts (for procedures only) Procedural 
Statecharts are a specialized form of Statechart described in this 
appendix.

You can define:

• Functions—These have one return, multiple 
parameters, all parameters are inputs.

• Procedures—These have no return, multiple 
parameters, each parameter can be INPUT, OUTPUT, 
or INPUT/OUTPUT.

• Tasks—Special form of procedure connected to 
activities for C and Ada only. Parameters can be 
INPUTs, OUTPUTs, INPUT/OUTPUTs. 

W
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C.1 Subroutines 

You can use subroutines:

• Within a model as part of triggers and actions

• Connected to activities/blocks to describe their 
implementation

• Connected to Statemate elements as callbacks.

In addition, any C code that has been used to describe 
subroutines within a model can automatically be included 
within the generated code.

When code is generated, any code you have used to describe 
functions or procedures will automatically be included within 
the generated code if the user-entered code is written in the 
same language as the code being generated. You can specify 
more than one code implementation.

Conversely, you can choose to disable this automatic use of 
functions or procedures defined by code within simulation and 
code generation on a per function/procedure basis.

Whether you are simulating or generating code, subroutines 
can be used with the following restrictions:

• For simulation, the following can be used:

→ Statemate Action Language
→ Graphical Procedures
→ C (K&R, ANSI)

• For code generation, the following can be used:

→ Statemate Action Language
→ Graphical Procedures
→ Code

Use subroutines as follows.

• The scoping rules for subroutines are similar to the 
rules for scoping other Statemate element types. 
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• You can define subroutines within a chart or GDS. 

• They cannot be made local to a single activity, block, 
or state. 

• The same visibility rules apply for subroutines that 
apply for all textual elements within Statemate; that 
is, the subroutine is visible in the chart in which it is 
defined and downward from that point in the model 
chart-hierarchy.

• Subroutine names must be unique within a workarea 
when the model is simulated or code is generated 
from it. 

Here is a simple subroutine example using the Statemate Action 
Language. This subroutine (named MYSUM) sums all the values 
in an array between two indices and returns the sum value.

In this example,

• One parameter is defined—myarray

• Three variables are defined: i (the loop variable) 
and the two index variables—leftindex and 
rightindex. i is used here as a local variable (that is; 
a variable that is known only to the subroutine in 
which it is defined) and leftindex and rightindex 
are global variables (that is; a variable that can be 
accessed by any subroutine within your program).

The return statement completes the subroutine and puts the 
result of the subroutine (sum) in the subroutine name. 
for i in leftindex to rightindex loop

sum i := myarray (i) + sum;

end loop;

return (sum)

From the point of view of the calling chart, a subroutine 
described in Statemate Action Language runs from start to 
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finish when called. The execution of the subroutine takes place 
in zero time within a single simulation step.

The statements within the subroutine are executed in order 
from the beginning of the subroutine to the end. (This is 
different from actions in which all statements (other than those 
involving context variables) are treated as being executed 
concurrently.)

In order to differentiate it from a ’normal’ simulation step, the 
execution of a single subroutine statement is termed a ’micro-
step’.

All elements, when assigned to parameters, receive their values 
immediately within the subroutine. The new values can be used 
within the subroutine in subsequent statements. The assigned 
value can be used in the next statement in the subroutine and 
multiple assignments are allowed within the subroutine.

This is also different from actions. In actions, all values are 
assigned concurrently and take effect at the end of a step. 

Parameter values are returned to the calling chart only at the end 
of the subroutine. The new values can be accessed by the model 
only after the subroutine returns. 

Functions can read and write global data (i.e.elements that are 
external to the subroutine but are not listed as a parameter. The 
reading or writing of global data is termed a ’side effect’.

Similar to parameters, values assigned to global elements are 
immediately accessible within the subroutine. The model 
external to the subroutine views the global element in the same 
way as all other Statemate elements. For example, the new 
values assigned to global elements within subroutines are only 
accessible to the model outside of the subroutine at the end of 
the step in which the subroutine was called.
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Writing more than once to a global element within the body of 
a subroutine is considered racing. 

The actual parameter is updated a single time even if the 
parameter is assigned multiple times during the duration of the 
subroutine. The final assigned value is the value returned to the 
calling chart.

Note: This racing case is different from the general racing 
condition in which you have no way to determine which 
value will be assigned. In this situation, the final value 
assigned within the subroutine will be the resulting value 
of the global element.

Subroutines defined in any language can call other functions/
procedures.

Note: Subroutines called from subroutines defined with code 
cannot be simulated.

• Within functions and procedures, events are not 
allowed as inputs, outputs, local variables, or 
accessed as global elements. (They are permitted in 
tasks, however.)

Note: Functions and procedures cannot use events, regardless 
of the language in which they are described. 

• Referring to activities in trigger statements, i.e. 
[active()], [hanging()], started(), 
stopped(), suspended(), or resumed() 
([ac()], [hg()], st(), sp(), sd(), rs()) is not 
allowed.

• Referring to activities in action statements, i.e. 
start!(), stop!(), suspend!(), or resume!() 
(st!(), sp!(), sd!(), rs!()) is not allowed.

• No references to named actions are allowed.

• No history (use or clearing) is allowed.
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• To avoid semantic and behavior conflicts, queues 
cannot be used inside (or as parameters/ globals) of 
subroutines. 

Subroutines do not use context variables because all elements 
within subroutines behave like context variables (immediate 
assignments).

Parameters are passed to subroutines by a copy/copy-back 
(pass-by-value) mechanism. When the subroutine is called, it 
will receive a copy of the value that any IN or INOUT 
parameters currently hold. When the subroutine returns a copy 
of the values held by all INOUT and OUT parameters will be 
return to the calling chart.

Note: A subroutine has only IN parameters and has a single 
return.

Note: Reading or writing data is the only possible side effect a 
subroutine can have.

It is your responsibility to ensure that the subroutine writes to 
global elements only a single time within the execution. 

Global elements that are to be read or written within a 
subroutine are specified within the subroutine Data Dictionary. 

For each global element to be accessed, you identify:

• The name of the global element

• The mode that it will be accessed (IN, OUT, INOUT) 

The type of the global element is not be part of the information 
to be identified.
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The global elements affected by subroutines are determined by 
the scope in which the subroutine is defined, not in the scope in 
which it is called. 

For instance, assume an Activity-Chart hierarchy with 2 charts, 
A at the top and B at the bottom. Function F is defined in chart 
A, but used in chart B. Two different elements named X are 
defined, one in A, another in B. X is specified as a global element 
to be accessed in F. The X that is accessed within F is the element 
in the upper chart A where the subroutine is defined, even 
though F is used in the lower chart B.

Functions accessing global elements cannot be defined within 
GDSs. GDSs have no scope which can be used to associate the 
global elements.

Note: Do not <write> global data in a subroutine that is used as 
part of a trigger statement. Because of different internal 
implementations, side effects written as part of a trigger 
will behave differently between simulation and code.

F() Defined here            A                 X Defined

F() Used here                 B                X Defined
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C.2 Procedural Statecharts

A Procedural Statechart is a specialized derivative of a 
Statechart. Procedural Statecharts:

• Are executed entirely in one step

• Must contain a termination connector

•  When called, run from the default to the termination 
connector (including any loops) within a single step.

Note: Regardless of the parameter values or other input values, 
all paths within the subroutine must eventually lead to the 
termination connector. If the Procedural Statechart ever 
stops in a state without reaching the termination 
connector, a run-time error results.

Keep the following in mind:

• Events are not allowed as inputs, outputs, local 
variables, or accessed as global elements.

• Functions/procedures cannot use events, regardless 
of the language in which they are described. 

• Referring to activities in trigger statements, i.e. 
[active()], [hanging()], started(), 
stopped(), suspended(), or resumed() 
([ac()], [hg()], st(), sp(), sd(), rs()) is not 
allowed.

• Referring to activities in action statements, i.e. 
start!(), stop!(), suspend!(), or resume!() 
(st!(), sp!(), sd!(), rs!()) is not allowed.

• No references to named actions are allowed.

• No history (use or clearing) is allowed.

• To avoid semantic and behavior conflicts, queues 
cannot be used inside (or as parameters/ globals) of 
subroutines. 

Here is an example of a Procedural Statechart with its Data 
Dictionary: 
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                     Parameter                            Data Type              Mode

                    SORT_LIMIT                         Integer                     In

                      Local Variables Names                    Data Type

                     TMP                                                     Integer
                      LIM                                                      Integer
                      I                                                           Integer

                      Globals Name                                          Mode

                      GLOBBALARRAY                                     In/Out
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C.3 Action Language Subroutines 

An action language subroutine is a subroutine written using the 
standard Statemate action statements. Normally, these actions 
statements are executed within the context of Statemate 
semantics (for multiple action statements within a single step, 
all of the assignments occur at the same time). Within an action 
language subroutine, all the assignments occur in the order the 
statements were written. 

Keep the following in mind:

• Events are not allowed as inputs, outputs, local 
variables, or accessed as global elements.

• Functions/procedures cannot use events, regardless 
of the language in which they are described. 

• Referring to activities in trigger statements, i.e. 
[active()], [hanging()], started(), 
stopped(), suspended(), or resumed() 
([ac()], [hg()], st(), sp(), sd(), rs()) is not 
allowed.

• Referring to activities in action statements, i.e. 
start!(), stop!(), suspend!(), or resume!()
(st!(), sp!(), sd!(), rs!()) is not allowed.

• No references to named actions are allowed.

• No history (use or clearing) is allowed.

• To avoid semantic and behavior conflicts, queues 
cannot be used inside (or as parameters/ globals) of 
subroutines. 

In general, queues are useful for the synchronization of parallel 
components, so the usage of queues as a local variable (inside a 
subroutine) is not typically required. 

There are semantic issues regarding the use of a queue as a 
parameter of a subroutine. Queues outside subroutines work 
with 'double buffering' i.e., operations on queues (q_put, 
q_empty, ..)  actually work on the content of the queue at the 
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beginning of the step, and this conflicts with the semantics of 
subroutines (that all assignments are immediate). In summary, 
to avoid semantic and behavior conflicts, queues are not 
supported within subroutines.
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C.4 Associating Subroutines with 
Activities

You can specify the behavior of an activity by connecting it to a 
subroutine.

• Procedure-like activities can be connected to 
procedures within any of the languages supported.

• Internal primitive activities (reactive-controlled and 
reactive-self) can be connected to tasks (no mini-
specs or decomposition is allowed).

• External activities can only be connected to tasks.
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C.5 Callbacks

Callbacks can be a useful way to extend the model or as test 
procedures.

For example:
proc_name ( <element_identifier>, actual_param1, 
actual_param2 )

The <element_identifier> is required and is necessary when 
a callback is being connected to an aggregate element. An 
aggregate element is an array, record, union, UDT, or any 
element referenced in a generic or instance.

When the <element_identifier> is not needed, it will not be 
referenced.

Callbacks may be connected to:

• Events

• Conditions

• States

• Activities

• Data-items

• Records (defined as a user-defined type)

• Fields of records (defined as a user-defined type)

• Unions (defined as a user-defined type)

• Entire arrays (defined as a user-defined type) 

• Individual elements of an array (defined as a user-
defined type) 

• Elements in generics (individual instance or all 
instances)

• User-defined type equivalent to the above types

• Variables, compounds, and aliases

• Combinational elements
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Callbacks cannot be connected to:

• Fields of unions

• Queues

• Records/fields/unions/arrays not defined as a 
user-defined type 

• Blocks

• Modules

• Data-stores/data storage modules

• External or environmental activities, blocks, or 
modules

• Event expressions
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C.6 Graphical Functions

You can implement functions using ’Procedural Statecharts’.

You can associate a subroutine of sub-type function with a 
’Procedural Statechart’. The mechanism to associate a function 
with a ’Procedural Statechart’ is similar to that of associating a 
procedure with a ’Procedural Statechart’.

The definition of ’Procedural Statechart’ includes a RETURN 
statement. In a ’procedural Statechart’, the RETURN statement 
is required on all transitions entering the termination connector. 
The RETURN statement can ONLY be used on transitions 
entering the termination connector. (i.e. it cannot be used within 
a static reaction or on a transition that is not entering the 
termination connector.

The rules for the RETURN statement are not checked/enforced 
at data-entry stage. These rules are checked by the Check Model 
tool (static-checks) and the Simulator (run-time errors.)

’Procedural Statecharts’ defined as functions are treated exactly 
as ’Procedural Statecharts’ defined as procedures. (In other 
words, there are not two different <types> of charts to 
implement functions versus procedures.)

All Statemate tools recognize graphical functions as such. All 
tools provide the same level of support for graphical functions 
as for graphical procedures.
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DTruth Tables
 truth table is a tabular representation of inputs, 
resulting outputs, and actions. In Statemate, you can use 
truth tables in the body of actions and activities and as 
an additional language to describe procedures.

A

ÀTruth Tables 
Contents for 
Subroutines ... 
pg. D-15

ÀMicro-Step 
Execution of 
Procedure Truth 
Tables ... pg. D-16

ÀExecution of 
Action Truth 
Tables ... pg. D-17

À “Factorization” of 
Cells ... pg. D-18

Appendix 
Contents

ÀOutput Columns ... 
pg. D-11

ÀAction Column ... 
pg. D-13

ÀDefault Row ... 
pg. D-13

ÀRow Execution ... 
pg. D-14

ÀTruth Table 
Contents for 
Activities and 
Actions ... pg. D-
15

À Introduction ... 
pg. D-2

ÀCreating Truth 
Tables—Overview 
... pg. D-5

ÀTruth Table 
Format ... pg. D-6

ÀSpecial 
Characters ... 
pg. D-7

À Input Columns ... 
pg. D-8
Statemate MAGNUM D-1



Truth Tables
D.1 Introduction

Truth tables are one method of representing logical expressions 
in a tabular format. Within Statemate, a truth table can 
represent:

• The behavior of an activity

• The definition of a named action

• Subroutine procedures

Figure D.1 is an example of a truth table bound to an activity. 

D.1.1 Truth Tables Bound to Activi t ies

Only internal basic activities without descendants may be 
bound to truth tables to specify their behavior. Although 
semantically any Statemate element may contain only one 
behavior, you may define a mini-spec, associate a truth table, or 
bind the activity to a subroutine in the Data Dictionary for a 
basic activity. Again, as in the case of an element, you then select 
one of these methods as the desired implementation.

Truth tables that are bound to activities are evaluated and 
executed once for each step that the activity is active. When the 
activity is inactive, the truth table is not evaluated and the 
outputs of the truth table remain unchanged. Unchanged 
outputs are not “written.”

Note: If the termination type of an activity A is “procedure-like,' 
for each activation of activity A, the attached truth table is 
evaluated and executed during one step only.

D.1.2 Truth Tables Defining Actions

Actions that are defined using a truth table are considered as 
compound actions and follow the same scoping rules as all 
other textual elements in the model.
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Truth Tables Defining Actions
Figure D.1.  Truth Table Bound to an Activity
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D.1.3 Truth Tables Representing Subroutines

You can also build a truth table within Statemate to implement 
a subroutine procedure.

As with other procedures, procedures implemented by truth 
tables have parameters, local variables, and access to global 
elements. Procedures implemented with truth tables follow the 
same scoping rules as all other functions and procedures.

Although an element can at one time only include one behavior, 
you can define both a regular definition and a truth table 
definition for an element and then select one of them as the 
desired implementation at a time. 
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D.2 Creating Truth Tables—Overview

Here is a brief overview of the truth table process:

1. Create the activity, defined action, or subroutine.

2. Open a Data Dictionary for the element created in 
Step 1.

3. For the implementation method, select Truth Table.

4. Define the truth table using the template provided.

5. Save and exit from the truth table.

6. Save the updated element in the Data Dictionary.

The remainder of this appendix explains the semantics and 
rules governing truth table constructions. See the Statemate 
MAGNUM Reference Manual for more details on the steps listed 
above.
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D.3 Truth Table Format

Figure D.2 illustrates the format of a truth table in Statemate. 

The truth table contains rows and columns, with the columns 
divided into three sections—Input, Output, and Action.

• Input columns represent input elements and values

• Output columns define output values

• The Action column is where you define actions

Each row in the truth table specifies a set of values. When the set 
of input values is satisfied, the outputs for that row are 
generated and the actions are executed. The semantics of the 
outputs and actions are determined by the context of the truth 
table; that is, a truth table that implements a procedure behaves 
like a subroutine (immediate assignments, etc.), while a truth 
table that is either a definition of an action or bound to an 
activity uses the “regular” action language semantics.

Figure D.2.  Truth Table Format
}}
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D.4 Special Characters

These characters have the following special meanings within 
truth tables:  

Table D.1.  Truth Tables: Special Characters

Character Meaning

* Don’t Care

+ Event generated (input or output)

- Event not generated (input)
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D.5 Input Columns

Each column in the input section of the table is associated with 
an input. Inputs can be either a Statemate element or 
expression. Subroutine parameters and globals may appear as 
inputs when the truth table is a subroutine implementation 
body. Compound elements can be used as inputs, for example 
CO_2 can be defined as D1> 5 and in (STATE_1).

Entries in the input section can be

• Literals

• Statemate elements

• Expressions

• Empty

• Don’t Care (*)

Elements that can be used as inputs are conditions and data-
items. Data-items can be defined as:

• Integers

• Reals

• Bits

• Bit-arrays

• Strings

• Records

• Record fields

Table D.2.  

Input

CO_1 CO_2 DI_1 REC_1 ARR_1

True False 1 REC_2 {1,2,3}

False False 2 * *

True False 3 * *

False True 5 * *
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• Enumerated types

• Arrays of the previously listed types

• Elements of arrays 

• User-defined types built of the previously listed 
types

• Variables

• Alias constant and compound elements

• Events (but only in the titles of truth tables that are 
associated with activities or actions)

Note: There is no literal syntax for these types:

Elements that cannot be used as inputs are:

• Unions

• Records that contain unions

• Arrays of unions

• Fields of unions

• Slices of arrays or bit-arrays

• Queues

• States

• Activities

Each input section of a row represents a Boolean expression. 
The Boolean expresses an “and” of equivalence comparisons for 
each of the inputs that has a non-“Don’t Care” value. 

• Records

• Unions

• Arrays of complex types

The only legal comparison in the input section for these 
elements is another element of the same type.
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Note: Input cells that are left blank are considered as “Don’t 
Care” items by Simulation and Code Generation tools. 

For example,

Row 1 =>
CO_1 and not CO_2 and DI_1=1 and REC_1=REC_2 and 
ARR_1={1,2,3}

Row 2 =>

not CO_1 and not CO_2 and DATA_1=2
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D.6  Output Columns

Each output column must be a Statemate element. Local 
elements, subroutine parameters, and subroutine global 
elements may appear as outputs when the truth table is a 
subroutine implementation body.

Entries in the cells of the output section can be

• Literals

• Statemate elements

• Statemate expressions

• Empty

Empty entries in the output section indicate outputs that are not 
changed when the related row is executed. Unchanged items 
are not “written.”

Elements that can be used as outputs are primitive conditions 
and data-items. Data-items can be defined as:

• Integers

• Reals

• Bits and bit-arrays

• Strings

• Records

• Record fields

Table D.3.  Truth Tables: Output Columns

Output

CON_3 DATA_2

True 100

False -1

True 1

False 2
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• Enumerated types

• Arrays of the previously listed types

• Elements of arrays 

• User-defined types built of the previously listed 
types

• Aliases

• Primitive events (but only in the titles of truth tables 
that are associated with activities or actions)

Note: There is no literal syntax for these types:

Elements that cannot be used as outputs are:

• Compounds

• Slices of arrays

• Slices of bit-arrays

• Queues

• Activities

• States

• Actions

Note: The same element can appear in the table as both an 
input and an output.

• Records

• Unions

• Arrays of complex types

The only legal comparison in the output section for these 
elements is another element of the same type.
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D.7  Action Column

In the Action column, you may include any action expression 
that is legal in the context of the truth table.

D.8 Default Row

You can optionally add a default row to the truth table. This row 
contains no input values and is only executed if none of the 
previous rows in the table have been executed. 

Table D.4.  Truth Tables: Action Column

Action

AN1; AN2

AN3

x:= X + Y
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D.9 Row Execution

Here is how the truth table is evaluated:

• When a truth table is executed, it is evaluated row by 
row, starting at the top of the table and proceeding 
downward to the end.

• The first row whose input expression evaluates to 
True is “fired.”

• Once the row is fired, all of the outputs listed in the 
output section of that row are generated and the 
action section is executed. 

• If any output columns are blank, the related outputs 
are not changed. Unchanged items are not “written.” 

• The order of execution is from left to right, first 
outputs, then actions (this is only relevant for truth 
tables that implement procedures).

• If the table contains a default row, and if during the 
evaluation of the table no other row has fired, the 
default row is fired.

• If the table does not contain a default row and no 
row fires during the evaluation of the table, a 
warning message is displayed during simulation and 
no output elements are changed.
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D.10 Truth Table Contents for 
Activities and Actions

Truth tables that are associated with actions or activities may 
include any legal Statemate actions expressions, including, for 
example:

• References to named actions

• Assignments

• Generation of events

• Operations on activities (within Statecharts)

Note: The semantics of the action section in this context is the 
“regular” Statemate step semantics. A racing situation will 
occur when the same element is assigned both from the 
output section and the action section.

D.11 Truth Tables Contents for 
Subroutines

Truth tables defined as subroutines may include any Statemate 
action expression that is legal in a subroutine body. They may 
not contain references to named actions or other actions, such as 
scheduled actions or actions on activities and events. They may 
contain references to local elements, subroutine parameters and 
globals. 

The semantics of the action section in this context will be the 
subroutine action language semantics, i.e., all assignments are 
done immediately. An element may be assigned more than once 
in the output and action sections with a racing, order of 
execution is from left to right.
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D.12 Micro-Step Execution of 
Procedure Truth Tables

Assignments are made within truth tables following the micro-
step and immediate update semantics of all functions and 
procedures.

This means that as soon as an assignment is made, it is available 
to be used. This does not affect the evaluation of the rows, 
because only one row fires each time the table is executed. It 
does, however, affect assigned values if an output refers to 
another output that has already been assigned.

In the following example (Table D.5), both DATA_2 and 
DATA_3 both receive the value 5 when the row fires, regardless 
of the previous value of DATA_2.

Table D.5.  Truth Tables: Micro-Step Execution

Inputs Outputs

CO_1 CO_2 DATA_1 DATA_2 DATA_3

* * * 5 DATA_2
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D.13 Execution of Action Truth Tables

The following applies to truth tables that are either

• Bound to activities

•  Defined as action bodies

Assignments are made within truth tables following the 
Statemate step semantics. New values are sensed only at the 
next step. Writing twice to the same element flags a write/write 
racing error. This means that after an assignment is made, it is 
not available for immediate use.

In the following example (Table D.6), DATA_2 receives the 
value 5 and DATA_3 receives the previous value of DATA_2.

Table D.6.  Action Truth Table Execution

Inputs Outputs

CO_1 CO_2 DATA_1 DATA_2 DATA_3

* * * 5 DATA_2
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D.14 “Factorization” of Cells

You can group vertically adjacent cells together and have the 
same value applied to the entire group. This grouping, called 
factorization, can be applied to all three columns in the truth 
table—inputs, outputs, and actions.

D.14.1 Factorization of Inputs

While factorization of inputs is a labor saving device, it also has 
an impact on the logic of the table and how it is implemented in 
code. The table is evaluated from top to bottom, and from left to 
right. The generated code, as well as the simulator, will match 
this specified behavior.

Table D.7 is an example of factorization:

This is the resulting logic, shown in pseudo-code 
representation:

if CO_1 then

 if CO_2 then

    if DI_1=1 and REC_1=REC_2 and ARR_1 = {1,2,3} then

      tr!(CON_3); DATA_2:=100;

    else

      if DI_1=2 then

Table D.7.  Factorization of Inputs

Inputs Outputs

CO_1 CO_2 DI_1 REC_1 ARR_1 CON_3 DATA_2

True

True
1 REC_2 {1,2,3} True 100

2 * * True -1

False
3 * * True 1

5 * * True 2

False * * * * False 0
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Incorrect factorization—Example 1:
        tr!(CON_3); DATA_2:=-1;

 else

    if DI_1=3 then

      tr!(CON_3); DATA_2:=1;

    else

      if DI_1=5 then

        tr!(CON_3); DATA_2:=2;

else

 fs!(CON_3); DATA_2:=0;

Note that factorization of inputs is allowed from left to right 
only. Reading from left to right, each subsequent factorization 
of inputs must be a subset of all those to the left, as this example 
illustrates.

The next two examples show incorrect implementations of 
factorization to further illustrate the points explained above.

Incorrect factorization—Example 1:

Note that in this example, input column 2 is a subset of input 
column 1 and this is not allowed.

Table D.8.  Incorrect Factorization: Example 1

Inputs Outputs

CO_1 CO_2 CON_3 DATA_2

True
True

True 100

True True -1
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Truth Tables
Incorrect factorization—Example 2:

Note that in this example, column 2 was not built so that each 
factorization is a subset of all those to the left of it.

D.14.2 Factorization of Outputs and Actions

You may also factorize output and action rows to repeat the 
same pattern. In contrast to factorization of input rows, this 
does not affect the code generated from the truth table, and is a 
labor-saving device only. Table D.10 is an example: 

 

Table D.9.  Incorrect Factorization: Example 2

Inputs Outputs

CO_1 CO_2 CON_3 DATA_2

True
1 True 100

2
False -1

False
True 1

3 False 2

Table D.10.  Factorization of Outputs and Actions

Inputs Outputs

DATA_1 CON_3 DATA_2 DATA_3 DATA_4

1

True 0 1

DATA_5

2 DATA_6

3 DATA_7

4 DATA_9

5 DATA_10

6 DATA_11
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EDecluttering 
Activities
n some models, the number of activities are too numerous 
to draw within a single Activity-chart in an easily-read 
manner. In this case, you may want to declutter the chart 
to be able to depict the model more simply. 

This appendix explains a method to declutter Activity-charts 
(as opposed to decomposing them into multiple hierarchical 
levels) using the Statemate Activity-chart Graphic Editor and 
the Data Dictionary Editor.

E.1 Example

Activities are activated, deactivated, and suspended by the 
controller that is at the same level as the activities being 
controlled. 

At times, you may find that the number of activities in a single 
chart are too numerous or complex to be able to depict in an 
easily-read manner. 

In this event, you may want to declutter the chart; that is, take 
one chart and break it out into several more easily-read charts, 
while keeping the same semantic structure.

Basically, the process consists of two steps:

1. Analyzing the design for an alternate, decluttered 
scheme.

2. Creating one or more transparent activities 
encapsulating a portion of the design. 

I
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Decluttering Activities
Here is an example illustrating the steps for decluttering a 
sample Activity-chart, named A0. 

E.1.1 Procedure

1. Analyze the original chart to define an alternate scheme 
to depict the structure more simply. In this example, 
two more charts will be created, each containing a 
portion of the total activities at this level. 

2. Draw a new activity, A5, encapsulating activities A5_1 
to A54_4.

 
Activity-chart ACT0 contains
12 activities, all
controlled by @SC1.

Figure E.1.  Activity Chart A0
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Procedure
3. Select activity A5 and then select File>Open Sub-Chart.

Result: Activity A5 and its encapsulated activities are 
now within a new chart named A5. 

Activity A5 encapsulates
these eight activities. 

Figure E.2.  New Activity A5

 

New Activity-chart A5.

Figure E.3.  New Activity Chart A5
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Decluttering Activities
4. Open a Data Dictionary for A5 by selecting the chart 
and then Tools>Data Dictionary. 

5. On the Data Dictionary dialog, 
select the Attributes button.

6. On the Attributes dialog, enter 
an attribute name, TRANSPARENT_LEVEL. (Use 
uppercase letters.)

7. Set the TRANSPARENT_LEVEL value to ON. (Use 
uppercase letters.) 

8. Select the Save button.

Note: When you re-view the saved Data Dictionary, you will see 
that the Enforced column now has the value No beside 
the TRANSPARENT_LEVEL attribute. This is the correct 
setting.

9. Draw a second new activity, A54, encapsulating 
activities A54_1 to A54_4 within it. 

 

New Activity A54.

Figure E.4.  New Activity A54
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Procedure
10. Repeat Steps 3-7 for Activity A54, creating a new 
Activity-chart, and setting the TRANSPARENT_LEVEL 
attribute value to ON. 

Result: Now there are three charts, all of them easily 
read. The Statechart (SC1) still controls all the 
activities, as it did in the original, cluttered chart.

Hint: The lack of a controlling activity within a decluttered activity is the 
visual clue that the activity is a decluttered one, versus a 
decomposed activity. You may want, however, to provide a 
textual note on the chart to remind readers of this fact.

 

New Activity-chart A54.

Figure E.5.  New Activity Chart A54
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