
Monad Transformers and Modular Algebraic Effects
What Binds Them Together

Tom Schrijvers
KU Leuven
Belgium

Maciej Piróg
University of Wrocław

Poland

Nicolas Wu
Imperial College London

United Kingdom

Mauro Jaskelioff
CIFASIS-CONICET

Universidad Nacional de
Rosario

Argentina

Abstract
For over two decades, monad transformers have been the
main modular approach for expressing purely functional
side-effects in Haskell. Yet, in recent years algebraic effects
have emerged as an alternative whose popularity is growing.
While the two approaches have been well-studied, there

is still confusion about their relative merits and expressive-
ness, especially when it comes to their comparative modu-
larity. This paper clarifies the connection between the two
approaches—some of which is folklore—and spells out con-
sequences that we believe should be better known.

We characterise a class of algebraic effects that is modular,
and show how these correspond to a specific class of monad
transformers. In particular, we show that our modular al-
gebraic effects gives rise to monad transformers. Moreover,
every monad transformer for algebraic operations gives rise
to a modular effect handler.

CCS Concepts • Software and its engineering→ Func-
tional languages; Control structures; Coroutines; • Theory
of computation→ Categorical semantics.

Keywords Handlers, Effects, Monads, Transformers

ACM Reference Format:
Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff.
2019. Monad Transformers and Modular Algebraic Effects: What
Binds Them Together. In Proceedings of the 12th ACM SIGPLAN
International Haskell Symposium (Haskell ’19), August 22–23, 2019,
Berlin, Germany. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3331545.3342595

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Haskell ’19, August 22–23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00
https://doi.org/10.1145/3331545.3342595

1 Introduction
For decades monads [29, 42] have dominated the scene of
pure functional programming with effects, and the recent
popularisation of algebraic effects & handlers [3, 7, 21, 23,
35] promises to change the landscape. However, with rapid
change also comes confusion, and practitioners have been
left uncertain about the advantages and limitations of the
two competing approaches. This paper aims at clarifying the
essential differences and similarities between them.
Working with combinations of multiple different effects

demands a modular approach, where each effect is given
semantics separately. This allows for the construction of
complex custom effects from off-the-shelf building blocks.

A popular approach to achieving modularity for monads is
with monad transformers [27]. Monad transformers extend
an arbitrary monad with a new effect while at the same time
ensuring that original effects are available. The desired com-
bination of monads is achieved by stacking several monad
transformers in a particular order.
In the algebraic effects approach modularity is conceptu-

ally achieved in two stages. First, the syntax of all operations
involved in the effect are defined. Then a program is incre-
mentally interpreted by several handlers, which in turn give
the syntax of different effects a semantics.

Since each handler only knows about the part of the syntax
of the effect it is handling, a modular approach to algebraic
effects must provide a way of leaving unknown syntax unin-
terpreted and to be dealt with later by other handlers.
There are several properties that can be studied when

comparing approaches, such as expressivity, ease of use,
modularity, boilerplate automation, and efficiency. This pa-
per focuses only on the essential expressivity of transformers
and algebraic effects, leaving other important properties out
of scope. To study expressivity, we formulate a minimal im-
plementation of both approaches and abstract over all other
aspects. In this way, we aim to explain the main ideas in an
approachable manner and provide general insights that can
be applied to everyone’s favourite Haskell library. Much of
what we present is folklore among experts, but the tale has
yet to be collected in a single, consistent place for the wider
Haskell community to enjoy, as we have done here.
After an introduction to monad transformers (Section 2)

that fixes notation, the contributions of this paper are:

https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

1. a novel characterisation of modular handlers as type con-
structors that form a parametric family of Eilenberg-Moore
algebras (Section 3). This captures the essence of a class of
handlers that are completely independent of one another.

2. a comparison of expressiveness of monad transformers
and modular algebraic effects (Section 4), showing that:
a. every algebraic effect signature gives rise to a monad

subclass, and every associated modular effect handler
gives rise to a monad transformer that instantiates the
class, (Section 5) and

b. every monad subclass with only algebraic operations
gives rise to an algebraic effect signature and every
monad transformer instantiating the class gives rise to
a modular effect handler for the signature (Section 6).

These transformations are semantics-preserving.
3. a demonstration that callCC can be reformulated in terms

of algebraic operations (Section 7).
Finally, related work is discussed (Section 8) before conclu-
sions are drawn (Section 9).

2 Monads and Monad Transformers
This section fixes the notation and laws of functors, monads,
and monad transformers, which should be familiar concepts.

2.1 Functors and Monads
A functor is a type f equipped with a function fmap :: (a→
b) → f a→ f b, subject to two laws:

fmap id = id fmap g ◦ fmap f = fmap (g ◦ f)

These laws capture the notion that the contents of a container
can be modified without affecting its shape.

A monad is a type m that is a functor equipped with two
functions return :: a→ m a and join ::m (m a) → m a, that
are subject to three laws:

join ◦ return = id join ◦ fmap return = id

join ◦ join = join ◦ fmap join

Intuitively, return puts a value into a monadic context, and
join collapses a nested monadic context. The first two laws
state that nesting a context with return followed by collaps-
ing with join changes nothing, and the third law ensures
multiple nested contexts can be collapsed in any order.

The bind function, (>>=), is an alternative to join, where:

mx >>= f = join (fmap f mx) and join mmx = mmx >>= id

The meaning of mx >>= f is to feed the result(s) of mx to f .
This can be implemented by applying f within the context
mx, and then collapsing the nested context with join.
Functors and monads are defined using two type classes

(Figure 1), whose instances must respect the laws. For in-
stance, mutable state can be encapsulated by the following:

newtype State s a = State { runState :: s → (a, s) }

instance Monad (State s) where

return x = State (λs → (x, s))
State p >>= k = State (λs → let (x, s′) = p s in

runState (k x) s′)

This monad threads a state of type s around, where it can be
accessed using get or replaced using put. The get operation
returns the state that it is given, leaving the state unchanged,
while put s changes the state to s.

Instead of relying on their specific implementation as a
specification it is better to first consider the properties that
these operations satisfy [12]. For instance, state requires:

get >>= put = id get >> get = get

put s >> put s′ = put s′ put s >> get = put s >> return s

Yet, such operation-specific laws are not the focus of this
work; we focus here only on the operations themselves.
These operations are then incorporated into a typeclass that
embodies stateful computations.

class Monad m⇒ MonadState s m | m→ s where
get ::m s
put :: s → m ()

instance MonadState s (State s) where
get = State (λs → (s, s))
put s′ = State (λ → ((), s′))

Monads often come with run functions that extract values
from monadic computations. One example is the function
runState :: State s a→ s → (s, a) defined above.

2.2 Monad Transformers
Monad transformers allow monads to be extended with ad-
ditional functionality by lifting one into another.

Lifting The Trans type class is the well-known Haskell
interface for monad transformers (Figure 1). This interface
provides the monad homomorphism lift:

lift ◦ return = return lift ◦ join = join ◦ lift ◦ fmap lift

The laws state that lifting preserves the structure of return
and join from one monad to another.

As an example, the transformer StateT adds State-like func-
tionality to an underlying monad.

newtype StateT s m a = StateT { runStateT :: s → m (a, s) }

instance Trans (StateT s) where
lift m = StateT (λs → m >>= λa→ return (a, s))

instance Monad m⇒ Monad (StateT s m) where
return x = StateT (λs → return (x, s))
StateT p >>= k = StateT (λs → do (x, s′) ← p s

runStateT (k x) s′)

Thismirrors its counterpart for State, except that themonadic
effects of m are threaded through the computation.

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

class Functor f where
fmap :: (a→ b) → f a→ f b

class Monad m where
return :: a→ m a
(>>=) ::m a→ (a→ m b) → m b

class Trans t where
lift ::Monad m⇒ m a→ t m a

Figure 1. Classes for functors, monads, and transformers

Operations The Trans type class only partly provides a
transformer’s interface: the transformed monad must supply
the original operations of interest. In the case of StateT s, this
corresponds to the functions get and put fromMonadState s:

instance Monad m⇒ MonadState s (StateT s m) where
get = StateT (λs → return (s, s))
put s′ = StateT (λ → return ((), s′))

Thus, programs like incr can be written to work in different
contexts, such as State s and StateT s m for any monad m:

incr ::MonadState Int m⇒ m ()

incr = get >>= put ◦ succ

This small program gets an integer value from the state, and
puts back a value that is its successor.

More generally, the operations corresponding to an effect
X are captured in a monad subclass MonadX .

class Monad m⇒ MonadX m where
op1 :: . . . → m T1 ; . . . ; opn :: · · · → m Tn

As usual, there may be laws associated with this class but
we do not focus on them in this paper.

Composition Monad transformers compose by embedding
one transformer into another. Given transformers T1 and
T2 with associated effects given by the classes MonadX 1
and MonadX 2, then for any monad m, either T1 (T2 m) or
T2 (T1 m) can be produced depending on the order the effects
should be interpreted.

It is convenient to use the identity monad Id as the monad
at the bottom of the stack of transformers. It allows us, for
instance, to recover State s as StateT s Id.

newtype Id a = Id { runId :: a }
instance Monad Id where
return = Id
Id x >>= f = f x

Here the bind operation is essentially function application.
Instead of directly composing transformers, a specification

of class constraints is a cleaner alternative: a computation
with the type (MonadX 1 m,MonadX 2 m) ⇒ m a could be
satisfied by either T1 (T2 Id), or T2 (T1 Id), thus allowing a
fragment of code to be interpreted differently.

For instance, consider theMonadFail class, which captures
the notion of failing computations.

class Monad m⇒ MonadFail m where
fail ::m a

Only one law is intended to hold, which expresses that no
computation is performed after failure:

fail >>= f = fail

The familiar Maybe type has a lawful instance:

data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
Just x >>= f = f x

instance MonadFail Maybe where
fail = Nothing

This is well-known to be a monad, where Just provides the
backbone for successful computations. The operation for fail
is provided by Nothing, which is a left zero of (>>=).

The corresponding transformer is given byMaybeT , where
failures are pushed into an underlying monad by wrapping
pure values with Maybe.

newtype MaybeT m a =
MaybeT { runMaybeT ::m (Maybe a) }

instance Monad m⇒ Monad (MaybeT m) where
return x = MaybeT (return (Just x))
MaybeT mmx >>= f = MaybeT

(do mx ← mmx; case mx of
Nothing → return Nothing
Just x → runMaybeT (f x))

instance Monad m⇒ MonadFail (MaybeT m) where
fail = MaybeT (return Nothing)

instance Trans MaybeT where
lift mx = MaybeT (fmap Just mx)

To lift a computation, we add Just to successful results within
the monad, and return Nothing in the case of failure.

Having defined both MonadState and MonadFail, Compu-
tations that make use of the two effects are easy to express:

prog :: (MonadFail m,MonadState Int m) ⇒ m ()

prog = incr >> fail >> incr

By keeping the type of this computation abstract, the seman-
tics can be chosen at the point of application. Thus, prog
can be evaluated with type Int → Maybe ((), Int) to return
the state only when there are no exceptions, and Nothing
otherwise. This is achieved by showing how a monadmwith
failure can be promoted through a StateT transformer:

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

instance MonadFail m⇒ MonadFail (StateT s m) where
fail = lift fail

With this machinery in place, prog can be executed with its
type specialised to StateT Int (MaybeT Id) ().

> (runId ◦ runMaybeT ◦ flip runStateT 0) prog
Nothing

Here the only information that is returned is that prog failed.
If we are interested in knowing what the state is even

when an error occurs, then we can change the type of the
program. Our goal is to get a result of type (Maybe (), Int).
To achieve this, we can specialise our program to the type
MaybeT (StateT Int Id) (), and in order to do so, we must
show how a stateful monad can be lifted through MaybeT .

instance MonadState s m⇒
MonadState s (MaybeT m) where
get = lift get
put = lift ◦ put

Now we get a different result:

> (runId ◦ flip runStateT 0 ◦ runMaybeT) prog
(Nothing, 1)

This gives back the state just before the fail occurred.
Notice that the final computation is the result of running

the various transformers one after the other, each interpret-
ing another layer of effects. These functions are an essential
part of the interpretation, and often have the general form
runT ::Monad m⇒ T m A→ m B.
The instances above show a characteristic of the monad

transformer approach: the subclass of operations of the un-
derlying monad has to be lifted to the transformed monad.
For certain transformers, there is a canonical way of lifting
operations [16, 18], but in general there might be many dif-
ferent ways to do this, and the choice is dependent on the
expected semantics. Therefore, a different instance is usually
provided for each combination of monad transformers.

3 Modular Algebraic Effects
3.1 Algebraic Effects
Algebraic Operations The algebraic effects approach re-
stricts itself to so-called algebraic operations as the primi-
tive building blocks of monadic computations. Plotkin and
Power [33] essentially define algebraic operations for amonad
M to be functions op of the form:

op :: ∀a. (M a, ...,M a) → M a

and to satisfy the algebraicity property

op (p1, ..., pn) >>= k = op (p1 >>= k, ..., pn >>= kn) (1)

Conceptually the parameters pi of an algebraic operation are
possible continuations that the operation chooses among.

A Boolean state is modelled by 3 algebraic operations:

putT , putF :: ∀a.M a→ M a getB :: ∀a. (M a,M a) → M a

The putT and putF operations overwrite the implicit state
with True and False respectively; they only have one contin-
uation and thus no real choice on how to proceed. The getB
operation consults the implicit state and chooses the first
continuation if it is True and the second if it is False.
In practice, we typically use equivalent, but more conve-

nient type signatures for algebraic operations. Firstly, we
may bundle related primitive operations with the same num-
ber of continuation parameters into one combined operation
that has an additional parameter to identify the desired prim-
itive operation. For instance, we bundle putT and putF into

putB :: ∀a. Bool → M a→ M a

where the Bool parameter allows us to choose between putT
and putF . Secondly, we represent an n-tuple of continuation
parameters with a function. For instance, for getB we use

getB′ :: ∀a. (Bool → M a) → M a

Combining these two variations, the general form for al-
gebraic operations we use is:

op :: ∀a.A→ (B→ M a) → M a

where parameter type A selects among a number of different
primitive operations and arity type B indicates the number
of possible continuations. More generically, we can say that
an algebraic operation’s signature has to have the form:

op :: ∀a. SIG A B (M a) → M a

where SIG is a signature functor for the operation:

data SIG a b k = OP a (b → k)

instance Functor (SIG a b) where
fmap f (OP i k) = OP i (f ◦ k)

This yields a nicely pointfree formulation of algebraicity:

join ◦ op = op ◦ fmap join (2)

In the following, we define a concrete signature for each
effect using functors like SIG. In this way, a proper name is
given to each operation constructor and isomorphisms can
be used to simplify types: we can omit parameters of type
(), or the trivial continuation ⊥ from an empty arity type.
For instance, the signature for the state effect, parametric

in the state type s, consists of constructors GET and PUT that
denote operations for reading and writing the state.

data STATE s k = GET (s → k) | PUT s (() → k)

Syntax The algebraic effect approach distinguishes between
the syntax and the semantics of a monad defined by a num-
ber of algebraic operations. The syntax tree is is given by the
free monad: a recursive structure that sequentially composes
zero or more operations of the given signature.

data Free sig x = Var a | Op (sig (Free sig x))

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

The leaves of this tree are given by Var of type a, and nodes
are operationsOp that are shaped by sig. The result of return x
is a leaf, and (>>=) grows the tree of operations at its leaves.
instance Functor f ⇒ Monad (Free f) where
return x = Var x
Var x >>= f = f x
Op op >>= f = Op (fmap (>>=f) op)

The last line satisfies algebraicity (2) by construction.
Putting syntax together using these constructs directly can

be cumbersome due to the additional layer of constructors.
This can be alleviated by creating smart constructors:
get ′ :: Free (STATE s) s
get ′ = Op (GET return)

put ′ :: s → Free (STATE s) ()
put ′ s = Op (PUT s return)

Reproducing the program incr at type Free (STATE Int) ()
now requires code that essentially differs only in the type:
incr ′ :: Free (STATE Int) ()
incr ′ = get ′ >>= put ′ ◦ succ

Semantics The syntax in a Free sig datatype is given a
structured interpretation by a fold over the structure. This is
thought of as a handler for the syntax, since the syntax in sig
is removed, or handled away, as a result of this operation.
fold :: Functor sig
⇒ (a→ b) → (sig b → b) → (Free sig a→ b)

fold gen alg (Var x) = gen x
fold gen alg (Op op) = alg (fmap (fold gen alg) op)

The two key parameters to fold are the generator that in-
terprets a values into the carrier b, and the sig-algebra that
explains how to interpret the signature’s operations. We call
the triple ⟨b, gen, alg⟩ a handler for the signature sig.
A handler for Free (STATE s) a terms is ⟨s → a, genS, algS⟩:

genS :: a→ (s → a)
genS x = λs → x

algS :: (STATE s) (s → a) → (s → a)
algS (GET k) = λs → k s s
algS (PUT s k) = λ → k () s

This handler behaves in the expected way, where the follow-
ing program increments and returns the state.
> fold genS algS (incr ′ >> get ′) 5
6

3.2 Modular Algebraic Effects
The modular composition of effects does not follow directly
from the algebraic effects approach. Additional structure is
required to allow signature and handlers to be composed.

3.2.1 Modular Signatures
Signatures compose naturally with the coproduct functor
sig1 + sig2, whose neutral element is VOID:

data (sig1 + sig2) a = Inl (sig1 a) | Inr (sig2 a)
data VOID k

Any signature sig is isomorphic to sig+VOID. This means that
VOID serves as a base case with the handler ⟨a, id,⊥⟩:

runVOID :: Free VOID a→ a
runVOID = fold id ⊥

3.2.2 Traditional Modular Handlers
There are different ways to compose handlers. Firstly, if both
handlers agree on the same carrier type b and the same
generator gen, then the coproduct mediator can be used:

(▽) :: (sig1 b → b) → (sig2 b → b) → ((sig1 + sig2) b → b)
(alg1▽alg2) (Inl op) = alg1 op
(alg1▽alg2) (Inr op) = alg2 op

This mediator applies the appropriate algebra depending on
the operation that is present. However, this coincidence of
carrier type and generator is unusual, and more machinery
is required to build a more general composition scheme.

Composition of Handlers The idea is to run one handler
after the other, first interpreting only the syntax in SIG1 with
an algebra alg1 while forwarding the syntax of SIG2 with
an algebra fwd1 and then interpreting the latter. The basic
scheme for composing handlers looks like:

Free (SIG1 + (SIG2 + VOID)) A1 { fold gen1 (alg1▽fwd1) }
→ Free (SIG2 + VOID) A2 { fold gen2 (alg2▽fwd2) }
→ Free VOID A3

This scheme works if the carrier of every handler is a com-
putation type for the remaining signature. For instance, the
carrier of the first handler should be Free (SIG2+VOID) A2. This
requirement is always implicitly met in existing languages
with native support for algebraic effects and handlers like
Eff [2], but in Haskell and other encodings explicit attention
is required.
Consider a computation of type Free (FAIL + (STATE Int +

VOID)) a where FAIL is the signature of failing computations:

data FAIL k = FAIL

fail′ = Op FAIL

We can handle FAIL first with a handler and generator whose
carrier is Free (STATE Int + VOID) (Maybe a), or CF a for short.

type CF a = Free (STATE Int + VOID) (Maybe a)

genMF :: a→ CF a
genMF x = return (Just x)

algMF :: FAIL (CF a) → (CF a)
algMF FAIL = return Nothing

While handling FAIL the STATE s + VOID operations are un-
touched and forwarded to the resulting computation. Here,
the forwarding algebra that achieves this is simply Op:

fwdMF :: (STATE Int + VOID) (CF a) → (CF a)
fwdMF op = Op op

This is all combined into the handleMF function:

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

handleMF :: Free (FAIL + (STATE Int + VOID)) a
→ Free (STATE Int + VOID) (Maybe a)

handleMF = fold genMF (algMF▽fwd)

Polymorphism for Orthogonal Effects Nothing in the
definition of the FAIL handler depends on the fact that the
remaining signature is STATE s + VOID; the handler is entirely
orthogonal with respect to the remaining effect. We can
expose this by making the generator and algebra signatures
polymorphic in the computation monad.

genMF ::Monad m⇒ a→ m (Maybe a)
genMF x = return (Just x)

algMF ::Monad m⇒ FAIL (m (Maybe a)) → m (Maybe a)
algMF FAIL = return Nothing

Similary, the forwarding algebra depends neither on the
specific signature nor on the particular value type.

fwd :: Functor sig ⇒ sig (Free sig b) → Free sig b
fwd op = Op op

This yields a more reusable handling function:

handleMF :: Functor sig ⇒ Free (FAIL + sig) a
→ Free sig (Maybe a)

handleMF = fold genMF (algMF▽fwd)

Post-Processing The basic scheme does not capture all
uses of modular handlers. Consider the following encoding
of STATE s where the carrier is m (s → m a) rather than
s → m a, i.e., with an m as the outer part of the carrier type
like implicitly enforced in languages like Eff:

genS1 ::Monad m⇒ a→ m (s → m a)
genS1 x = return (λs → return x)

algS1 ::Monad m⇒ STATE s (m (s → m a)) → m (s → m a)
algS1 (GET k) = return (λs → k s >>= λf → f s)
algS1 (PUT s′ k) = return (λs → k () >>= λf → f s′)

Handling the remaining effects with the basic scheme does
not yield the desired result because it only affects the outer
m in the carrier, and not the inner m. For this reason, ef-
fect and handler languages generally follow a more sophisti-
cated scheme where some post-processing takes place. For
instance, Eff provides a “finally” clause in its handlers in ad-
dition to the generator and the algebra. For state, this finally
clause can be encoded as follows:

finallyS ::Monad m⇒ s → (m (s → m a) → m a)
finallyS s0 = λp → p >>= λf → f s0

This clause runs the outer computation p and applies the
resulting function f to the initial state s0 to run the inner
computation next. This effectively collapses the two levels
of computation into one level that can be handled as before.

This more general scheme can be summarized as:

Free (SIG1 + SIG2 + VOID) A1 { fold gen1 (alg1▽fwd1) }
→ C1 (Free (SIG2 + VOID)) { finally1 }
→ Free (SIG2 + VOID) A2 { fold gen2 (alg2▽fwd2) }
→ C2 (Free VOID) { finally2 }
→ Free VOID A3

3.2.3 Generalized Modular Handlers
In our setting, where there is freedom to break the mould of
effects and handlers, the modular handling scheme can be
generalized further in two ways.

Escape from theMonad Results can escape from theworld
of computations to yield a final carrier type:

→ Free VOID A3 { runVOID }
→ A3

Generalized Carriers The carrier types do not need to be
of the formm Awhith a monadic computation typem on the
outside. We can for instance allow the more apt carrier type
s → m a for STATE s that does not feature the unnecessary
outer m. Of course, as it is defined, the forwarding algebra
is not compatible with this carrier type. Instead, we need to
define a custom forwarding algebra:

fwdS :: Functor sig ⇒ sig (s → Free sig a) → (s → Free sig a)
fwdS op = λs → Op (fmap (λk → k s) op)

More generally, we require that the carrier of a modular
handler is of the form c m where c :: (∗ → ∗) → ∗ is a
type constructor parameterized in the type m of the remain-
ing computation, and that it provides a forwarding algebra.
These is encapsulated in the ModularCarrier type class:

class ModularCarrier c where
fwdMC ::Monad m⇒ m (c m) → c m

The forwarding algebra is formulated as a polymorphic al-
gebra fwdMC for any monad m. We can specialize it to the
free monad and the form we need as follows:

fwdsig :: (ModularCarrier c, Functor sig)
⇒ sig (c (Free sig)) → c (Free sig)

fwdsig op = fwdMC (Op (fmap return op))

We require that fwdMC is an Eilenberg-Moore algebra [8].
This means that it must respect the monad operations:

fwdMC ◦ return = id (3)
fwdMC ◦ join = fwdMC ◦ fmap fwdMC (4)

The first law states that nothing happens when forwarding
return, while the second states that forwarding a sequence of
steps as a batch is the same as forwarding them individually.

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

Summary In summary, we define a modular handler for a
signature S from values of type A to type B as the quadruple1
⟨C, gen, alg,finally⟩ where C :: (∗ → ∗) → ∗ is a modular
carrier, and all three of the generator gen ::Monad m⇒ A→
C m, algebra alg ::Monad m⇒ S (C m) → C m, and finally
function finally ::Monad m⇒ C m→ m B are polymorphic
in the monad m.

The general handling scheme is then of the form:
Free (SIG1 + SIG2 + VOID) A1 { fold gen1 (alg1▽fwdsig) }

→ C1 (Free sig2 + VOID) { finally1 }
→ Free (SIG2 + VOID) A2 { fold gen2 (alg2▽fwdsig) }
→ C2 (Free VOID) { finally2 }
→ Free VOID A3 { runVOID }
→ A3

Example To illustrate the approach, we wrap the STATE s
carrier above it in a newtype constructor:
newtype StateH s a m = StateH { runStateH :: s → m a }

This way we can formulate a ModularCarrier instance:
instance ModularCarrier (StateH s a) where

fwdMC mf = StateH (λs → do f ← mf ; runStateH f s)

Now the semantics of STATE can be given as follows:
genSH ::Monad m⇒ a→ StateH s a m
genSH x = StateH (λs → return x)

algSH ::Monad m⇒ STATE s (StateH s a m) → StateH s a m
algSH (GET k) = StateH (λs → runStateH (k s) s)
algSH (PUT s k) = StateH (λ → runStateH (k ()) s)

With an appropriate finally function we get the modular
STATE Int handler ⟨StateH Int Int, genSH , algSH ,flip runStateH 5⟩:
> (runId ◦ flip runStateH 5 ◦ fold genSH algSH) (incr ′ >> get ′)
6
We can compose this modular StateH s a with other ef-
fects such as failure introduced above. A modular handler is
⟨MaybeH a m, genF , algF , runMaybeH ⟩, where the modular
carrier is wrapped in a newtype for the type class instance:
newtype MaybeH a m =
MaybeH { runMaybeH ::m (Maybe a) }

instance ModularCarrier (MaybeH a) where
fwdMC mf = MaybeH (do f ← mf ; runMaybeH f)

Observe thatMaybeH uses the same representation asMaybeT ,
but has its type parameters swapped; in Section 6.2 we show
that other monad transformers give rise to modular carriers
in a similar manner.

The associated generator and algebra are:
genF ::Monad m⇒ a→ MaybeH a m
genF x = MaybeH (return (Just x))
1We often do not explicitly identify the finally function, in particular when
it is a trivial newtype isomorphism.

algF ::Monad m⇒ FAIL (MaybeH a m) → MaybeH a m
algF FAIL = MaybeH (return Nothing)

Now putting the pieces together, we can work with compo-
sition in whichever way we want.

hdlFS :: s → Free (FAIL + (STATE s + VOID)) a→ Maybe a
hdlFS s = runVOID ◦

flip runStateH s ◦ fold genSH (algSH▽fwdsig) ◦
runMaybeH ◦ fold genF (algF▽fwdsig)

hdlSF :: s → Free (STATE s + (FAIL + VOID)) a→ Maybe a
hdlSF s = runVOID ◦

runMaybeH ◦ fold genF (algF▽fwdsig) ◦
flip runStateH s ◦ fold genSH (algSH▽fwdsig)

While the above two handlers for state and failure are
both polymorphic in the value type a, this is not a neces-
sity for handlers. Consider the following alternative handler
⟨Def m, genD, algD, runDef ⟩ for failure that only works for
Int computations.

newtype Def m = Def { runDef ::m Int }

instance ModularCarrier Def where
fwdMC mf = Def (do f ← mf ; runDef f)

genD ::Monad m⇒ Int → Def m
genD x = Def (return x)

algD ::Monad m⇒ FAIL (Def m) → Def m
algD FAIL = Def (return 0)

This handler does not abort the computation upon failure,
but instead proceeds with the default value 0. Section 5 shows
how to formulate similar monad transformers that can only
be run with computations of a particular value type.

4 Comparing the Two Approaches
The remainder of this paper compares the expressivity of
the two approaches. We start by highlighting some of the
differences between the two.

Overloadable Syntax Both approaches provide a monadic
syntax for effectful computations that can be overloadedwith
different semantics. In the case of monad transformers this
overloadable syntax is captured in terms of a polymorphic
type m that is constrained by monad subclass constraints.
For the state effect we use the type

MonadState s m⇒ m

Note that the constraint polymorphism not only leaves the
semantics open, but also whether other effects can be used
in the computation. In order to specify that multiple effects
are combined, we pile up monad subclass constraints. For
instance, the constraint

(MonadState s m,MonadFail m) ⇒ m

expresses that both the state and failure effects can be used.

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

In the case of algebraic effects, we use the free monad for
the syntax of monadic computations. It is parameterised in
the signature functor of the particular effects that can occur.
Multiple effects are combined using the (functor) coproduct
of the signatures. For instance, the type

Free (STATE s + FAIL)

provides state and failure effects. The type that specifies that
the state effect can occur with other effects is

Functor sig ⇒ Free (STATE s + sig).

Because the monad transformer approach uses type-class
constraints to overload syntax, the order in which they are
written does notmatter. E.g., (MonadState s m,MonadFail m)
is the same constraint as (MonadFail m,MonadState s m).
On the other hand, the algebraic-effects approach seems less
flexible, since the coproduct fixes an order on signatures.
However, this is not an essential shortcoming, as there are
implementation techniques that abstract away the exact or-
der of the coproduct [23, 40].

Expressivity of effect manipulating functions In the
monad transformers approach, effects are manipulated by
member functions of a monad subclass. In principle, there
are no limitations on what a member function can be, but
this freedom is a double-edged sword: the functions have no
structure and therefore it is difficult to solve the problem of
lifting a function of a monad to the transformed monad. An
important contribution of Liang et al. [27] was to show how
this is possible for a range of important effects.
In the algebraic effects approach, effects are introduced

with algebraic operations as determined by a signature. Al-
gebraic operations for a signature functor SIG correspond to
functions∀a. SIG a→ M a. This restriction on the type of the
operations providesmore structure, but leaves out operations
which work over a scope, such as the exception-handling
operation catch. The problem of expressing scoping opera-
tions led Plotkin and Pretnar [34] to introduce the notion
of handlers. However, Wu et al. [44] showed that treating
scoping operations as handlers causes modularity problems,
since these operations tie together syntax and semantics,
and therefore some semantics cannot be expressed without
changing the original program (see discussion below).

Algebraic operations can be easily lifted through a monad
transformer by post-composing with lift. An advantage of
the modular algebraic approach is that handlers only need to
deal with the topmost effect, whereas monad transformers
would require a special lifting function. Therefore, there
seems to be a trade-off: either liftings for scoped operations
such as catch are provided, or some modularity is lost.

Effect Semantics Both approaches provide a way to assign
different semantics to the same syntax.
In the case of monad transformers, the semantics are as-

signed by instantiating the polymorphic type variablemwith

a stack of transformers that satisfies all the type class con-
straints. The variation in semantics is possible because there
are different stacks that satisfy the same set of constraints.

Firstly, transformers can be reordered, which gives rise to
different interactions between the effects. For instance, both
StateT s (MaybeT Id) and MaybeT (StateT s Id) satisfy the
constraints (MonadState s m,MonadFail m), but give rise to
different interactions between state and failure handling.

Secondly, multiple transformers can satisfy the same con-
straint. For instance, the logging state transformer also satis-
fies MonadState s m and records the intermediate states.
newtype LogStateT s m a =

LST { runLST :: s → m (a, s, [s]) }
instance Trans (LogStateT s) where

lift m = LST (λs → do x ← m; return (x, s, []))
instance Monad m⇒ Monad (LogStateT s m) where

return x = LST (λs → return (x, s, []))
m >>= f = LST (λs → do (x, s′, h1) ← runLST m s

(y, s′′, h2) ← runLST (f x) s′

return (y, s′′, h1 ++ h2))

instance Monad m⇒ MonadState s (LogStateT s m) where
get = LST (λs → return (s, s, []))
put s = LST (λs′ → return ((), s, [s′]))

The instance that is used is decided by specifically stating
the desired concrete type.

In the algebraic-effect approach, the handlers are in charge
of assigning semantics by folding the syntax tree into a par-
ticular carrier by means of a particular algebra. By using
different handlers to interpret the same effect, we obtain
flexibility in the interpretation. For instance, the following
handler logs state operations:
newtype LogStateH s a m
= LS { runLSH :: s → [s]→ m (a, [s]) }

genLS ::Monad m⇒ a→ LogStateH s a m
genLS x = LS (λs h→ return (x, reverse h))

algLS :: STATE s (LogStateH s a m) → LogStateH s a m
algLS (GET k) = LS (λs h→ runLSH (k s) s h)
algLS (PUT s k) = LS (λs′ h→ runLSH (k ()) s (s′ : h))
Similar to the transformer approach, we may also control
the effect interaction by running the handlers in different
orders. (In our crude implementation, we would also need to
re-arrange the order of the coproduct of signatures to match
the order of handlers.) However, there is a catch: since effect
manipulating functions such as catch are handlers, a program
may have handlers interspersed with algebraic operations.
Consequently, the ordering of effects may be determined by
the structure of the program, and some interpretations may
be impossible to achieve for such a program [44].

Despite these differences, monad transformers and effect
handlers have much in common. In the remainder of this

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

paper we formalise these similarities by showing a class of
transformers that correspond to effect handlers, and vice
versa. This establishes that there is a significant common
ground between the two approaches.

5 Algebraic Effects as Monad Transformers
This section establishes that the algebraic effects approach
is definitely not more expressive than the transformers ap-
proach by embedding the former in the latter. In particular,
we show how to generically derive a monad transformer
from an algebraic effect.

5.1 From Signature to Monad Subclass
Whereas in the algebraic effects approach operations are
characterised by a signature functor, monad transformers
provide operations via a monad subclass. A monad subclass
is defined in terms of a given signature functor:

class (Monad m, Functor sig) ⇒ MonadEff sig m | m→ sig
where eff :: sig x → m x

This class declaration is generic in the signature and pro-
vides exactly one algebraic operation eff that distinguishes
between an effect’s different operations by taking the syntax
of the desired operation as a parameter.
Here we have not used the type sig (m a) → m x for

operations introduced in Section 3.1. Instead, we have used
an alternative representation that enforces algebraicity (2)
by the type system alone rather than with an additional law.
The correspondence between the two presentations of

algebraic operations is as follows:

algEff ::MonadEff sig m⇒ sig (m x) → m x
algEff = join ◦ eff

fromAlg :: (Functor sig,Monad m)

⇒ (∀x . sig (m x) → m x) → (sig x → m x)
fromAlg op = op ◦ fmap return

This isomorphism can be shown by proving one way that
fromAlg algEff = eff , and the other way, assuming that
eff = fromAlg op and that op is algebraic, then algEff = op.
There is a trivial instance of MonadEff which interprets

any signature in the corresponding free monad.

instance Functor sig ⇒ MonadEff sig (Free sig) where
eff op = Op (fmap return op)

This places a return at every continuation.

Alternative Signatures Neither the form sig x → m x
nor sig (m x) → m x is always the most convenient for op-
erations. We can often provide more convenient operations,
by using so-called generic effects [33].

Using the functor SIG a b (Section 3.1) gives the following
equivalence [19]. For all functors m, and types a and b,

a→ m b � ∀x . SIG a b x → m x (5)

The components of the isomorphism are as follows:

toSig :: Functor m⇒ (a→ m b) → (∀x . SIG a b x → m x)
toSig f (OP a g) = fmap g (f a)

fromSig :: Functor m⇒
(∀x . SIG a b x → m x) → (a→ m b)

fromSig op a = op (OP a id)

When a signature functor is isomorphic to SIG A B for some
A and B, then we can use the equivalence above and obtain a
generic effect. (This is an application of the Yoneda lemma.)

For example, for the state effect, the MonadState interface
of Section 2.2 can be recovered; STATE s is isomorphic to
SIG () s+SIG s (), and so equivalence (5) gives two operations:

get ::MonadEff (STATE s) m⇒ () → m s
get () = eff (GET id)

put ::MonadEff (STATE s) m⇒ s → m ()

put s = eff (PUT s id)

Note that, if we specialize these definitions to the free monad,
we get the smart constructors in Section 3.1.

Lifting eff of the basemonad through amonad transformer
T is simply post-composition with lift:

instance MonadEff sig m⇒ MonadEff sig (T m) where
eff op = lift ◦ eff

Therefore, the lifting of algebraic operations through any
monad transformer is completely unproblematic and an im-
plementation could provide it automatically.

5.2 From Handler to Monad Transformer
Now that we have a suitable monad subclass, we can provide
a monad transformer that instantiates this subclass in terms
of a given handler. In fact, we give two ways to do so below.

The Free Transformer The free monad transformer over
a given signature sig is a generic monad transformer that
instantiates MonadEff .

newtype FreeT sig m a = FreeT { runF ::m (FreeF sig m a) }

data FreeF sig m a = ReturnF a | OpF (sig (FreeT sig m a))

Its monad instance is analogous to the free monad, except
that it interleaves operations with the transformed monad.

instance (Monad m, Functor sig)
⇒ Monad (FreeT sig m) where
return x = FreeT (return (ReturnF x))
(FreeT t) >>= f = FreeT (t >>= go) where
go (ReturnF a) = runF (f a)
go (OpF op) = return (OpF (fmap (>>=f) op))

The transformed monad FreeT sig1 m implements both the
operations from the signature sig1 and the algebraic opera-
tions of the monadm. Thus, we obtain the following instance:

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

instance (Functor sig1,MonadEff sig2 m)

⇒ MonadEff (sig1 + sig2) (FreeT sig1 m) where
eff (Inl op) = FreeT (return (OpF (fmap return op)))
eff (Inr op) = lift (eff op)

This definition clearly does not rely on the handler at all. All
the work to actually interpret the syntax and recover the
handler’s semantics is in the corresponding fold function.

foldFreeT :: (Monad m, Functor sig,ModularCarrier c)
⇒ (a→ c m) → (sig (c m) → c m)

→ FreeT sig m a→ c m
foldFreeT gen alg = goM where

goM = fwdMC ◦ fmap goSig ◦ runF
goSig (ReturnF x) = gen x
goSig (OpF op) = alg (fmap goM op)

For all signatures sig1 and sig2, it is the case that Free (sig1 +
sig2) is isomorphic to FreeT sig1 (Free sig2). The isomor-
phism is given as follows:

toFreeT :: (Functor sig1, Functor sig2)
⇒ Free (sig1 + sig2) a→ FreeT sig1 (Free sig2) a

toFreeT = fold return (join ◦ eff)

fromFreeT :: (Functor sig1, Functor sig2)
⇒ FreeT sig1 (Free sig2) a→ Free (sig1 + sig2) a

fromFreeT =
join ◦ fold return (join ◦ eff ◦ Inr) ◦ fmap fromFreeF ◦ runF
where fromFreeF (ReturnF a) = return a

fromFreeF (OpF op) =

join (eff (Inl (fmap fromFreeT op)))

The functions above are mutual inverses, but they are also
monad morphisms. (A category-theory inclined reader will
recognise this as a consequence of Hyland et al.’s [15] charac-
terisation of FreeT sig m as a coproduct of m and Free sig in
the category of monads and monad morphisms.) Moreover,
the respective folds correspond:

fold gen (liftAlg alg) = foldFreeT gen alg ◦ toFreeT

Finally, FreeT ’s run function puts everything together:

runFreeT :: (Monad m, Functor sig,ModularCarrier c)
⇒ (a→ c m) → (sig (c m) → c m) → (c m→ m b)
→ FreeT sig m a→ m b

runFreeT gen alg finally = finally ◦ foldFreeT gen alg

The Non-Free Transformer The above definition is not
entirely satisfactory because it relies on FreeT as an inter-
mediate data structure. Instead, we may want a transformer
that captures the intended denotation c in its carrier type.
We obtain this with a instance of the continuation monad.

newtype Cont r x = Cont { runCont :: (x → r) → r }

We specialiseCont so that the return type is amodular carrier,
and the monad instance for ContC is essentially the same as
the well-established one for Cont.

newtype ContC c (m :: ∗ → ∗) a =
ContC {unContC :: (a→ c m) → c m }

instance Monad (ContC c m) where
return x = ContC (λk → k x)
m >>= k =
ContC (λc → unContC m (λx → unContC (k x) c))

For any modular carrier c, ContC c is a monad transformer.

instance ModularCarrier c ⇒ Trans (ContC c) where
lift m = ContC (λk → fwdMC (fmap k m))

For any fixed signature SigC, modular carrier C, and algebra
algC :: SigC (C m) → C m, we may define ContC C m to be
a signature monad, using the following generic function:

effContC :: (Functor sig)
⇒ (sig (c m) → c m) → sig x → ContC c m x

effContC alg s = ContC (λk → alg (fmap k s))

instance (MonadEff sig2 m)

⇒ MonadEff (SigC + sig2) (ContC C m) where
eff (Inl op) = effContC algC op
eff (Inr op) = lift (eff op)

We embed syntax in ContC c using toContC alg. Unlike
the transformation into the free monad transformer, the
application of toContC alg is effectively giving semantics to
the syntax, and therefore there is no way back.

toContC :: (Functor sig1, Functor sig2,ModularCarrier c)
⇒ (∀m.Monad m⇒ sig1 (c m) → c m)

→ Free (sig1 + sig2) a→ ContC c (Free sig2) a
toContC alg =

fold return ((join ◦ effContC alg)▽(join ◦ lift ◦ eff))

The correctness of this embedding lies in the fact that for all
algebras alg, the function toContC alg is a monad morphism,
and that any handler fold gen (liftAlg alg) can be recovered
as the following composition:

fold gen (liftAlg alg) = unContC gen ◦ toContC alg

Again, the run function puts everything together:

runContC :: (Monad m, Functor sig,ModularCarrier c)
⇒ (a→ c m) → (c m→ m b)
→ ContC c m a→ m b

runContC gen finally = finally ◦ unContC gen

Example Let us illustrate the second approach on the Def
handler from Section 3.2.3 and derive a transformer DefT .
Specializing the definitions makes its code more palatable.

newtype DefT m a =
DefT {unDefT :: (a→ m Int) → m Int }

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

The specialised MonadEff instance is a MonadFail instance:

instance Monad m⇒ MonadFail (DefT m) where
fail = DefT (λk → return 0)

The run function is rather atypical for monad transformers in
that it only applies to computations that yield an Int, rather
than computations of any type.

runDefT ::Monad m⇒ DefT m Int → m Int
runDefT (DefT p) = p return

This specificity is not unusual for handlers, and our construc-
tion shows that it carries over easily to transformers.

6 Monad Transformers as Algebraic Effects
Given a monad subclass MonadX and corresponding trans-
former T that implements the operations of MonadX , we
need to distinguish between the algebraic operations, and
the non-algebraic ones.
The lack of structure in the type signatures of member

functions of the monad sub-classes greatly complicates a sys-
tematic translation from monad transformers into the more
structured approach of modular algebraic effects. Neverthe-
less, it is often possible to systematically identify algebraic
operations using the equivalences shown in Section 5.1.

6.1 Transformer Signature
As discussed in Section 5.1, algebraic operations come in
many different guises. However, in the monad-transformer
approach, they are usually presented as a generic effect:

op :: A→ m B

where A and B are types that do not contain the type variable
m. Using equivalence (5), we obtain that the signature functor
for such an operation must be SIG A B. For instance, this way
we can derive the standard STATE signature (Section 3.1) from
the MonadState class.
Any type variables that are universally quantified and

occur only in the return type of a generic effect can be inter-
preted as a nullary operation. For instance, this happens to
the type variable a of the mzero method in MonadPlus:

class Monad m⇒ MonadPlus m where
mzero ::m a
mplus ::m a→ m a→ m a

The type of mzero is, explicitly, ∀a.Monad m ⇒ m a. The
universal quantification implies that an a value is never pro-
duced, and therefore it can be replaced by an empty type:

data Void

which has the property that for every type r there is ex-
actly one inhabitant of type Void → r . Changing the type
∀a.Monad m ⇒ m a to Monad m ⇒ m Void, and adding a
unit input gives the following equivalent type for mzero:

mzero :: () → m Void

The type of mzero gives rise to its signature functor:

data NONDET k = MZERO () (Void → k) | ...

Since both the unit type () and the type (Void → r) are trivial
they can be removed.

data NONDET k = MZERO | ...

In contrast, the signature of mplus :: m a → m a →
m a is not that of a generic effect. It is directly given as an
operation with two continuation parameters. To be algebraic,
it must of course also satisfy the algebraicity property. This is
indeed the case formost of the usual instances [36], except for
Maybe. With this restriction, the operationmplus is algebraic
with signature SIG () Bool, or, in specialised form,

data CHOOSE k = CHOOSE (Bool → k)

It is equivalent to a generic effect choose :: () → m Bool
that returns one of two possibilities.

Incorporating this into NONDET by renaming the construc-
tor, results in a signature functor for MonadPlus:

data NONDET k = MZERO | MPLUS (Bool → k)

This is, of course, isomorphic to FAIL+CHOOSE, we can give it
a semantics with the handler ⟨MPlusH m a, genMP , algMP⟩:

newtype NonDetH a m = NonDetH { runNonDetH ::m [a] }
instance ModularCarrier (NonDetH a) where

fwdMC = NonDetH ◦ join ◦ fmap runNonDetH

genNonDetH ::Monad m⇒ a→ NonDetH a m
genNonDetH x = NonDetH (return [x])
algNonDetH ::Monad m⇒
NONDET (NonDetH a m) → NonDetH a m

algNonDetH (MPLUS k) =
NonDetH (do xs ← runNonDetH (k True)

ys ← runNonDetH (k False)
return (xs ++ ys))

algNonDetH (MZERO) = NonDetH (return [])

As fwdMC is just join, MPlusH a is clearly a modular carrier.

6.2 Transformer Handler
It is easy to write a modular handler for a monad transformer
T : the carrier type of the handler is the transformer type
itself, as long as we fix the return type:

newtype WrapT a m = WrapT {unWrapT :: T m a }

The monadic structure readily provides implementations for
the operations and for the generator. In detail, if T imple-
ments a signature SIGT via a function effT :: Monad m ⇒
SIGT a→ T m a, an algebra and generator are defined as:

algT :: (Monad m) ⇒ SIGT (WrapT a m) → WrapT a m
algT = WrapT ◦ join ◦ effT ◦ fmap unWrapT
genT ::Monad m⇒ a→ WrapT a m
genT = WrapT ◦ return

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

The transformer T also makes for a modular carrier:

instance ModularCarrier (WrapT a) where
fwdMC = WrapT ◦ join ◦ lift ◦ fmap unWrapT

With this, we define the following handler:

hdlT :: Free (SIGT + sig) a→ WrapT a (Free sig)
hdlT = WrapT ◦ fold genT (liftAlg algT)

This embedding is correct because unWrapT hdlT is a monad
morphism that respects the effT function in the sense that

effT▽eff = unWrapT ◦ hdlT ◦ eff

where eff in the left-hand side of the equation comes from the
MonadEff instance of the Free sig type, eff in the right-hand
side comes from the instance for Free (SIGT + sig). The fact
above follows from the universal property of free monads.
It states that for all signatures (functors) S, monads M , and
polymorphic functions (natural transformations) f :: S a→
M a, it is the case that fold return f is a monad morphism,
and the following holds for all monad morphisms m, where
eff comes from the MonadEff instance of the Free S type.

m = fold return f ⇐⇒ m ◦ eff = f

Finally, given runT :: Monad ⇒ T m A → m B, an ap-
propriate finally function for the handler can be derived:

finally ::Monad m⇒ WrapT A m→ m B
finally = runT ◦ unWrapT
Thus it is possible to systematically obtain algebraic opera-
tions and a handler from a monad transformer restricted to
its algebraic operations. Unfortunately, for the non-algebraic
operations of a transformer it needs to be evaluated on a case-
by-case basis whether they have algebraic counterparts. This
is explored with an example of callCC in the next section.

7 Case Study: Call/CC
This section investigates how to express the well-known
call-with-current-continuation operation callCC with both
monad transformers and effect handlers.

7.1 Established Implementation
The MTL monad transformers library features an established
interface of callCC in the form of the MonadCont type class:

class Monad m⇒ MonadCont m where
callCC :: ((a→ m b) → m a) → m a

which is implemented by the continuation monad Cont r :

instance MonadCont (Cont r) where
callCC f = Cont (λk →

runCont (f (λx → Cont (const (k x)))) k)

This implementation has been generalised to a monad trans-
former in a straightforward way:

newtype ContT r m a = CT { runCT :: (a→ m r) → m r }

instance Monad m⇒ MonadCont (ContT r m) where
callCC f = CT (λk →

runCT (f (λx → CT (const (k x)))) k)

At first sight, it would seem that an operation could not
be further from algebraic than callCC. The main difficulty
is that the parameter a appears in both positive and nega-
tive position: it occurs both in the domain and codomain
of functions. This makes callCC rather unsuitable for the
effect handlers approach: at first glance it seems that monad
transformers are more expressive on this account.

7.2 Reformulation
Nevertheless, following Thielecke [41] and Fiore and Staton
[10], we can decompose callCC into two algebraic operations,
given by the following MonadJump type class:

class Monad m⇒ MonadJump ref m | m→ ref where
jump :: ref a→ a→ m b
sub :: (ref a→ m b) → (a→ m b) → m b

Here ref a is the type of a reference to a computation that
takes a value of type a as input. The jump operation abandons
the current continuation and instead runs the referenced
computation with the given input. The computation sub p q
constructs a reference out of the alternative computation q
and then runs the main computation p with this reference.
This characterisation is captured in the following four laws,

sub (λr → jump r x) k ≡ k x

sub (λ → p) k ≡ p

sub p (jump r ′) ≡ p r ′

sub (λr1 → sub (λr2 → p r1 r2) (k2 r1)) k1 ≡

sub (λr2 → sub (λr1 → p r1 r2) k1) (sub k2 k1)

in addition to the already informally stated requirement that
jump and sub are algebraic:

jump r x >>= k ≡ jump r x

sub p q >>= k ≡ sub (p >=> k) (q >=> k)

The former expresses that a jump abandons the current con-
tinuation k. The latter expresses that both the main compu-
tation and the alternative computation share the common
continuation k.

Encoding callCC We can express callCC in terms of jump
and sub as follows.

callCC f = sub (λref → f (jump ref)) return

Here the exit mechanism is made explicit by jump, which
jumps to return >=> k ≡ k, with the current continuation k.

Encoding jump and sub Vice versa, we can also express
jump and sub in terms of callCC.

newtype Ref m a = ∀r . R {unRef :: a→ m r }

jump (R exit) x = exit x >> return ⊥

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

sub k1 k2 = callCC (λexit → k1 (R (k2 >=> exit)))

Here we represent a reference to an alternative computation
by an actual computation that performs this jump, wrapped
in the newtype Ref . Hence, jumping consists of unwrapping
the newtype and running the computation, followed by an
unreachable return ⊥ to obtain an arbitrary return type. The
sub operation grabs the current continuation exit by means
of callCC, prefixes it with the alternative k2, wraps it in the
newtype and hands it off to the main computation k1.

The two encodings are mutual inverses. One direction of
this property is established with straightforward equational
reasoning, assuming a standard callCC property [5],

callCC f = callCC (λexit → f (λx → exit x >>= k))

which states that exit never returns.
The other direction of the proof is more involved and

requires the techniques developed by Thielecke [41] and by
Fiore and Staton [10].

7.3 Alternative Handler for callCC
The algebraic operations jump and sub have the signature:

data SUBST ref k = ∀a. JMP (ref a) a
| ∀a. SUB (ref a→ k) (a→ k)

for which we can easily derive a modular handler from the
ContC monad transformer definition following the recipe
of Section 6. However, we can also provide a more direct
alternative implementation that does not require an existing
implementation of callCC. The carrier of this direct handler
is the trivial identity carrier IdH .

newtype IdH a m = IdH { runIdH ::m a }

The key idea of the handler is to represent references of type
ref a as functions a → IdH r m. We want the type ref a
to be functorial in the type a, but in Haskell functoriality
is always in the last argument of a parameterized type. To
work around this limitation, we represent a → IdH r m by
the newtype alias IdH r m :← a, where a has been exposed
as the last parameter.

newtype b :← a = Switch { ($) :: a→ b }

The constructor Switch :: (a→ b) → (b :← a) switches the
direction of a function, and the deconstructor ($) :: (b :←
a) → a→ b is reminiscent of Haskell’s function application
($) :: (a→ b) → a→ b.
With this choice of representation, the handler’s algebra

and generator are trivial.

genSB ::Monad m⇒ r → IdH r m
genSB x = IdH (return x)

algSB ::Monad m⇒
SUBST ((:←) (IdH r m)) (IdH r m) → IdH r m

algSB (JMP ref x) = ref $x
algSB (SUB k1 k2) = k1 (Switch k2)

Note that in the type of the algebra, neither the value type
r nor the monad type m is orthogonal with respect to the
functor’s type SUBST ((:←) (IdH r m)). Hence, when we use
the free monad transformer recipe of Section 6, this non-
orthogonality carries over to the run function:

runSubstT ::Monad m
⇒ FreeT (SUBST ((:←) (IdH r m))) m r → IdH r m

runSubstT = foldFreeT genSB algSB

We can however institute orthogonality with respect to the
value type by means of an additional continuation argument.

runSubstT ′ ::Monad m
⇒ FreeT (SUBST ((:←) (IdH r m))) m a
→ ((a→ m r) → IdH r m)

runSubstT ′ p k = runSubstT (p >>= lift ◦ k)

This brings us essentially back to the continuation monad
transformer as ((a→ m r) → IdH m r) � ContT r m a.

8 Related Work
8.1 Algebraic Effects and Handlers
Plotkin and Power [32] were the first to explore effect opera-
tions, and gave an algebraic account of effects [33] and their
combination [15]. Subsequently, Plotkin and Pretnar [35]
have added the concept of handlers to deal with exceptions.
This theoretical development has led to many language and
library implementations. Unlike our work, these implemen-
tations generally restrict themselves to a call-by-push-value
setting [26] where handler clauses yield computations.

Eff Perhaps the most prominent language is Eff [2], an
OCaml-like language with native support for algebraic ef-
fects and handlers. An implementation that embeds Eff di-
rectly into OCaml with delimited continuations has also
been developed [24]. Eff does not feature an explicit free
monad datatype, but distinguishes between syntactic sorts
for (possibly effectful) computations and pure values. Eff
only supports handler carrier types of the form (using our
terminology) Free F A; carriers of the form S → Free F B are
encoded as Free F (S → Free F B). A special case are han-
dlers that introduce new effects in the program, i.e., of type
Free (F +G) A→ Free (H +G) B. We can model their modu-
lar carrier as FreeT H since FreeT H (Free G) � Free (H +G).
While Eff implicitly forwards operations that are not ex-

plicitly handled, its subtyping-based type system [1] does
not allow the characterisation of modular carriers. Never-
theless many of its example handlers fall in this class. Eff
also allows a class of semi-modular handlers that rely on
the presence of another effect, which can be expressed as
relaxing (Monad m) ⇒ m to (MonadEff F m) ⇒ m.

Handlers in Action Handlers in Action [21] builds on
a formalisation similar to Eff’s with carrier types essen-
tially of the form Free F A and a simple type system. It

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

comes with an implementation in Haskell, among other func-
tional languages, whose Template Haskell front-end syntax
supports open (i.e., essentially modular) handlers and ex-
ploits Haskell’s polymorphism to encode them. In addition
to Free F A, this implementation also supports carrier types
of the form S → Free F A. They also introduce shallow
handlers that only handle the first operation. We can model
these as folds with tupling [14].
The implementation employs a final encoding [4] of the

free monad syntax where a conjunction of type class con-
straints implements the coproduct construction and provides
various ways to express handlers, either as explicit folds and
builds or in fused form. An explanation of fusion for free
monads can be found in the work of Wu and Schrijvers [43].

Extensible Effects The Extensible Effects library [23] has
arrived at essentially the same functionality, but does not
attribute the algebraic effects and handlers theory as its orig-
inal inspiration. This work puts much emphasis on efficient
representation of the free monad and the functor co-product.
More recently Kiselyov and Ishii [22] used an inlined co-
Yoneda construction and a queue datatype [31] in order to
improve efficiency. The library provides modular fold recur-
sion schemes for Free F A and S → Free F A. Moreover,
it replicates much of the functionality of the MTL monad
transformers library in terms of modular handlers.

Other Implementations Idris provides an effect handlers
library [3] based on the indexed free monad with built-in
co-Yoneda construction which represents the signature co-
product as a type-level list. Every handler has a carrier of
the form ∀a. Si → M a and their composition yields a carrier
∀a. (S1, ..., Sn) → M a. Moreover, the handlers must share a
common generator (S1, ..., Sn) → A→ M B.
Multicore OCaml comes equipped with algebraic effects

and handlers intended to implement thread schedulers [7].
These handlers are similar to Eff’s, but lack a type system.

The Frank language [28] shows many similarities with
Eff, but allows arbitrary recursion patterns for handlers and
even matching on multiple computations at the same time.
There has also been a flurry of activity in showing the

relationship between row types and algebraic effects, which
has seen implementations in both Links [13] and Koka [25].

8.2 Monad Transformers
Moggi [29] used monads to model side-effects while working
on computational models. Independently, Spivey [38] used
monads while working on a theory of exceptions. Wadler
[42] popularized monads in the context of Haskell, and oth-
ers [e.g., 20, 39] have sought to modularize them.
Monad transformers emerged [6, 27] from this process,

and in later years various alternative implementation designs,
facilitating monad (transformer) implementations, have been
proposed, such as Filinksi’s layered monads [9] and Jaske-
lioff’s Monatron [17]. The Monatron library has a more

structured notion of operation associated to a transformer
in order to facilitate the lifting of operations [16, 18], and
distinguishes algebraic operations from others.

The administrative transformations on signature coprod-
ucts (Section 4) have also been studied for monad transform-
ers by Schrijvers and Oliveira [37].

8.3 Comparison
The only existing work that directly compares effect handlers
and monads is that of Forster et al. [11]. They investigate
whether the two are interexpressible. However, they do not
consider modular handlers that forward unhandled opera-
tions. Also they use Filinski’s layered monads rather than
monad transformers for monadic effect composition and
do not provide an abstraction mechanism to separate the
monad’s interface from its implementation.

9 Conclusion
This paper has studied the use of transformers and algebraic
effects to model a variety of modular effects. Monad trans-
formers use monad subclass constraints to allow modular
syntax, and the semantics is given by a monad homomor-
phism. Modular algebraic effects provide signature functors
whose semantics are given by folds over syntax trees. Our
key contribution has been to identify modular carriers that
correspond to transformers so that each approach can be
given in terms of the other.
Modular effect handlers can be expressed in terms of

monad transformers by working with the free monad trans-
former. Monad transformers for algebraic operations can be
expressed in terms of effect handlers.

Finally, we have shown a limitation of the algebraic effects
approach: while transformers are able to cope with scoped
effects, the situation is not as clear with algebraic effects.
This was first observed by Wu et al. [44], and a categorical
approach to the syntax and semantics of operations with
scope has since been formalised [30].

Acknowledgments
We are grateful to Koen Claessen for pointing out relevant
related work, and to the anonymous reviewers for their feed-
back. This work has been supported by EPSRC grant number
EP/S028129/1 on “Scoped Contextual Operations and Effects”.
Mauro Jaskelioff was supported by Agencia Nacional de Pro-
moción Científica y Tecnológica (PICT 2016-0464). Maciej
Piróg was supported by the National Science Centre, Poland
under POLONEZ 3 grant “Algebraic Effects and Continua-
tions" no. 2016/23/P/ST6/02217. This project has received
funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-
Curie grant agreement No 665778.

Monad Transformers and Modular Algebraic Effects Haskell ’19, August 22–23, 2019, Berlin, Germany

References
[1] Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic

Effects and Handlers. Logical Methods in Computer Science 10, 4 (2014).
https://doi.org/10.2168/LMCS-10(4:9)2014

[2] Andrej Bauer and Matija Pretnar. 2015. Programming with Algebraic
Effects and Handlers. Journal of Logical and Algebraic Methods in
Programming 84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.
2014.02.001

[3] Edwin Brady. 2013. Programming and reasoning with algebraic
effects and dependent types. In Proceedings of the 18th ACM SIG-
PLAN International Conference on Functional programming (ICFP 2013),
Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 133–144. https:
//doi.org/10.1145/2500365.2500581

[4] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler
Typed Languages. Journal of Functional Programming 19, 5 (2009),
509–543. https://doi.org/10.1017/S0956796809007205

[5] Magnus Carlsson. 2003. Value Recursion in the Continuation Monad.
(Jan. 2003). Unpublished note. http://www.carlssonia.org/ogi/mdo-
callcc.pdf.

[6] Pietro Cenciarelli and Eugenio Moggi. 1993. A Syntactic Approach to
Modularity in Denotational Semantics. In CCTCS ’93: Proceedings of
the Conference on Category Theory and Computer Science.

[7] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and
Anil Madhavapeddy. 2015. Effective Concurrency through Algebraic
Effects. (2015). OCaml Users and Developers Workshop, September
2015, Vancouver, Canada. http://kcsrk.info/papers/effects_ocaml15.
pdf.

[8] Samuel Eilenberg and John C. Moore. 1965. Adjoint Functors and
Triples. Illinois Journal of Mathematics 9, 3 (1965), 381–398. https:
//projecteuclid.org:443/euclid.ijm/1256068141

[9] Andrzej Filinski. 1999. Representing Layered Monads. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL ’99), Andrew W. Appel and Alex Aiken
(Eds.). 175–188. https://doi.org/10.1145/292540.292557

[10] Marcelo P. Fiore and Sam Staton. 2014. Substitution, Jumps, and
Algebraic Effects. In Annual IEEE Symposium on Logic in Computer
Science (LICS 2014), Thomas A. Henzinger and Dale Miller (Eds.). IEEE
Computer Society Press, 41:1–41:10. https://doi.org/10.1145/2603088.
2603163

[11] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017.
On the Expressive Power of User-Defined Effects: Effect Handlers,
Monadic Reflection, Delimited Control. Proceedings of the ACM on
Programming Languages 1, ICFP (2017), 13:1–13:29. https://doi.org/10.
1145/3110257

[12] Jeremy Gibbons and Ralf Hinze. 2011. Just do It: Simple Monadic
Equational Reasoning. In Proceeding of the 16th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP 2011), Manuel
M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). 2–14.
https://doi.org/10.1145/2034773.2034777

[13] D. Hillerström, S. Lindley, and K. Sivaramakrishnan. 2016. Compiling
Links Effect Handlers to the OCaml Backend. In OCaml Workshop.

[14] Graham Hutton. 1999. A Tutorial on the Universality and Expressive-
ness of Fold. Journal of Functional Programming 9, 4 (1999), 355–372.
https://doi.org/10.1017/S0956796899003500

[15] Martin Hyland, Gordon Plotkin, and John Power. 2006. Combining
Effects: Sum and Tensor. Theoretical Computer Science 357, 1-3 (2006),
70–99. https://doi.org/10.1016/j.tcs.2006.03.013

[16] Mauro Jaskelioff. 2009. Modular Monad Transformers. In Programming
Languages and Systems, 18th European Symposium on Programming
(ESOP 2009), Giuseppe Castagna (Ed.). 64–79. https://doi.org/10.1007/
978-3-642-00590-9_6

[17] Mauro Jaskelioff. 2011. Monatron: An Extensible Monad Transformer
Library. In Implementation and Application of Functional Languages

(LNCS), Vol. 5836. Springer, 233–248. https://doi.org/10.1007/978-3-
642-24452-0_13

[18] Mauro Jaskelioff and Eugenio Moggi. 2010. Monad Transformers as
Monoid Transformers. Theoretical Computer Science 411, 51-52 (2010),
4441 – 4466. https://doi.org/10.1016/j.tcs.2010.09.011

[19] Mauro Jaskelioff and Russell O’Connor. 2015. A Representation Theo-
rem for Second-Order Functionals. Journal of Functional Programming
25 (2015). https://doi.org/10.1017/S0956796815000088

[20] Mark P. Jones and Luc Duponcheel. 1993. ComposingMonads. Research
Report YALEU/DCS/RR-1004. Yale University, New Haven, Connecti-
cut, USA. http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

[21] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in
Action. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Functional programming (ICFP 2013), Greg Morrisett and
Tarmo Uustalu (Eds.). ACM, 145–158. https://doi.org/10.1145/2500365.
2500590

[22] Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible
Effects. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell
(Haskell 2015), Ben Lippmeier (Ed.). ACM, 94–105. https://doi.org/10.
1145/2804302.2804319

[23] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible
Effects: An Alternative to Monad Transformers. In Proceedings of the
2013 ACM SIGPLAN Symposium on Haskell (Haskell 2013). ACM, 59–70.
https://doi.org/10.1145/2503778.2503791

[24] Oleg Kiselyov and K. Sivaramakrishnan. 2016. Eff Directly in OCaml.
In OCaml Workshop.

[25] Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic
Effects. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL 2017), Giuseppe Castagna and
Andrew D. Gordon (Eds.). ACM, 486–499. http://dl.acm.org/citation.
cfm?id=3009872

[26] Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm.
In Typed Lambda Calculi and Applications, Jean-Yves Girard (Ed.).
Springer Berlin Heidelberg, 228–243. https://doi.org/10.1007/3-540-
48959-2

[27] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers
and Modular Interpreters. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’95). ACM, 333–343. https:
//doi.org/10.1145/199448.199528

[28] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be
Do Be Do. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2017). ACM, 500–514.
https://doi.org/10.1145/3009837.3009897

[29] Eugenio Moggi. 1989. An Abstract View of Programming Languages.
Technical Report ECS-LFCS-90-113. EdinburghUniversity, Department
of Computer Science.

[30] Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018.
Syntax and Semantics for Operations with Scopes. In Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2018). ACM, 809–818. https://doi.org/10.1145/3209108.3209166

[31] Atze van der Ploeg and Oleg Kiselyov. 2014. Reflection Without Re-
morse: Revealing a Hidden Sequence to Speed Up Monadic Reflec-
tion. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell
(Haskell 2014), Wouter Swierstra (Ed.). ACM, New York, NY, USA,
133–144. https://doi.org/10.1145/2633357.2633360

[32] Gordon Plotkin and John Power. 2002. Notions of Computation
Determine Monads. In Foundations of Software Science and Compu-
tation Structures, 5th International Conference (FOSSACS 2002), Mo-
gens Nielsen and Uffe Engberg (Eds.). Springer, 342–356. https:
//doi.org/10.1007/3-540-45931-6_24

[33] Gordon Plotkin and John Power. 2003. Algebraic Operations and
Generic Effects. Applied Categorical Structures 11, 1 (2003), 69–94.
https://doi.org/10.1023/A:1023064908962

https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1017/S0956796809007205
http://www.carlssonia.org/ogi/mdo-callcc.pdf
http://www.carlssonia.org/ogi/mdo-callcc.pdf
http://kcsrk.info/papers/effects_ocaml15.pdf
http://kcsrk.info/papers/effects_ocaml15.pdf
https://projecteuclid.org:443/euclid.ijm/1256068141
https://projecteuclid.org:443/euclid.ijm/1256068141
https://doi.org/10.1145/292540.292557
https://doi.org/10.1145/2603088.2603163
https://doi.org/10.1145/2603088.2603163
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1007/978-3-642-00590-9_6
https://doi.org/10.1007/978-3-642-00590-9_6
https://doi.org/10.1007/978-3-642-24452-0_13
https://doi.org/10.1007/978-3-642-24452-0_13
https://doi.org/10.1016/j.tcs.2010.09.011
https://doi.org/10.1017/S0956796815000088
http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2503778.2503791
http://dl.acm.org/citation.cfm?id=3009872
http://dl.acm.org/citation.cfm?id=3009872
https://doi.org/10.1007/3-540-48959-2
https://doi.org/10.1007/3-540-48959-2
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1145/2633357.2633360
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962

Haskell ’19, August 22–23, 2019, Berlin, Germany Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff

[34] Gordon Plotkin andMatija Pretnar. 2009. Handlers of Algebraic Effects.
In Programming Languages and Systems, 18th European Symposium on
Programming (ESOP 2009), Giuseppe Castagna (Ed.). Springer, 80–94.
https://doi.org/10.1007/978-3-642-00590-9_7

[35] Gordon Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects.
Logical Methods in Computer Science 9, 4 (2013). https://doi.org/10.
2168/LMCS-9(4:23)2013

[36] Exequiel Rivas, Mauro Jaskelioff, and Tom Schrijvers. 2015. From
Monoids to Near-Semirings: The Essence of MonadPlus and Alterna-
tive. In International Symposium on Principles and Practice of Declarative
Programming (PPDP 2015), Moreno Falaschi and Elvira Albert (Eds.).
ACM, 196–207. https://doi.org/10.1145/2790449.2790514

[37] Tom Schrijvers and Bruno C. d. S. Oliveira. 2011. Monads, Zippers and
Views: Virtualizing the Monad Stack. In Proceeding of the 16th ACM
SIGPLAN international conference on Functional Programming (ICFP
2011), Olivier Danvy (Ed.). https://doi.org/10.1145/2034773.2034781

[38] M. Spivey. 1990. A Functional Theory of Exceptions. Science of Com-
puter Programming 14, 1 (May 1990), 25–42. https://doi.org/10.1016/
0167-6423(90)90056-J

[39] Guy L. Steele, Jr. 1994. Building Interpreters by Composing Monads. In
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles

of programming languages (POPL ’94), Hans-Juergen Boehm, Bernard
Lang, and Daniel M. Yellin (Eds.). ACM, 472–492. https://doi.org/10.
1145/174675.178068

[40] Wouter Swierstra. 2008. Data Types à La Carte. Journal of Func-
tional Programming 18, 4 (July 2008), 423–436. https://doi.org/10.1017/
S0956796808006758

[41] Hayo Thielecke. 1997. Categorical Structure of Continuation Passing
Style. Ph.D. Dissertation. University of Edinburgh. Also available as
technical report ECS-LFCS-97-376.

[42] Philip Wadler. 1990. Comprehending Monads. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming (LFP ’90).
ACM, 61–78. https://doi.org/10.1145/91556.91592

[43] Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free - Efficient
Algebraic Effect Handlers. In Mathematics of Program Construction
(LNCS), Ralf Hinze and Janis Voigtländer (Eds.), Vol. 9129. Springer,
302–322. https://doi.org/10.1007/978-3-319-19797-5

[44] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in
Scope. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell
(Haskell 2014), Wouter Swierstra (Ed.). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2633357.2633358

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/2790449.2790514
https://doi.org/10.1145/2034773.2034781
https://doi.org/10.1016/0167-6423(90)90056-J
https://doi.org/10.1016/0167-6423(90)90056-J
https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/174675.178068
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/91556.91592
https://doi.org/10.1007/978-3-319-19797-5
https://doi.org/10.1145/2633357.2633358

	Abstract
	1 Introduction
	2 Monads and Monad Transformers
	2.1 Functors and Monads
	2.2 Monad Transformers

	3 Modular Algebraic Effects
	3.1 Algebraic Effects
	3.2 Modular Algebraic Effects

	4 Comparing the Two Approaches
	5 Algebraic Effects as Monad Transformers
	5.1 From Signature to Monad Subclass
	5.2 From Handler to Monad Transformer

	6 Monad Transformers as Algebraic Effects
	6.1 Transformer Signature
	6.2 Transformer Handler

	7 Case Study: Call/CC
	7.1 Established Implementation
	7.2 Reformulation
	7.3 Alternative Handler for callCC

	8 Related Work
	8.1 Algebraic Effects and Handlers
	8.2 Monad Transformers
	8.3 Comparison

	9 Conclusion
	Acknowledgments
	References

