
A Unified View of Monadic and Applicative

Non-determinism

Exequiel Rivas, Mauro Jaskelioff

CIFASIS-CONICET

Universidad Nacional de Rosario, Argentina

Tom Schrijvers

KU Leuven, Belgium

Abstract

It is well-known that monads are monoids in the category of endofunctors,
and in fact so are applicative functors. Unfortunately, monoids do not have
enough structure to account for computational effects with non-determinism
operators.

This article recovers a unified view of computational effects with non-
determinism by extending monoids to near-semirings with both additive and
multiplicative structure. This enables us to generically define free construc-
tions as well as a novel double Cayley representation that optimises both
left-nested sums and left-nested products.

Keywords: monoid, near-semiring, monad, monadplus, applicative functor,
alternative, free construction, Cayley representation

1. Introduction

Both monads [21] and applicative functors [20] have been successful in
structuring and modularising programs, and there is a considerable amount
of research on techniques and properties for programming with either of
them. Through a unified view it is possible to leverage the knowledge of one

Email addresses: rivas@cifasis-conicet.gov.ar (Exequiel Rivas),
jaskelioff@cifasis-conicet.gov.ar (Mauro Jaskelioff),
tom.schrijvers@cs.kuleuven.be (Tom Schrijvers)

Preprint submitted to Science of Computer Programming September 20, 2017

structure and apply it to programs for the other. Rivas and Jaskelioff [25]
presented such a unified view of both constructions, as monoids in monoidal
categories, and used it to translate the well-known Cayley representation for
monads (aka codensity transformation) and obtain a novel Cayley represen-
tation for applicatives.

Many computations deal with non-determinism. Non-determinism nat-
urally occurs, for example, in logic programming languages and in parser
combinators. In order to account for non-determinism, the interface of mon-
ads and applicative functors are extended with additional operations, giving
rise to richer structures. As a consequence of this extension, the existing cor-
respondence between the two algebraic structures falls short, since looking at
them as monoids in monoidal categories only tells part of the story. Hence, it
is necessary to extend the abstract model from monoids (which only have a
multiplicative structure) to near-semirings (which have both a multiplicative
and an additive structure).

In this article, we generalise the abstract model that connects monads
and applicative functors from monoids to near-semirings in order to account
for non-determinism. This yields a precise connection between their non-
determinism counterparts, which we exploit in order to analyse, abstract,
and derive constructions.

This article is an extended version of the paper [26] presented at PPDP’15.
This version has an improved and updated presentation, and adds new tech-
nical contributions (marked with F below).

The contributions of the paper are as follows:

• We define the notion of non-determinism monad and non-determinism
applicative functor.

• We present a generalised form of near-semirings, and establish that
both non-determinism monads and non-determinism applicative func-
tors are instances of this generalised notion.

• We construct the free near-semiring and use the generalisation to ob-
tain free constructions for both non-determinism monads and non-
determinism applicative functors.

• We construct the double Cayley representation for generalised near-
semirings and specialise it to obtain representations for non-determinism
monads and non-determinism applicative functors.

2

F We show how to extend any applicative functor to a non-determinism
one, by translating the ListT construction for monads. We contrast this
solution to the solution obtained by composing an applicative functor
with the list applicative functor.

F We show how to extend a monad to a non-determinism monad in
the most general way possible. That is, we construct the free non-
determinism monad over a monad. This construction is different from
the free non-determinism monad on a functor, since we want to recycle
the existing monad structure.

• We demonstrate the use of the constructions on two examples: combi-
natorial search and interleaving parsers.

The rest of the paper is structured as follows. In the next section we
review the connection between monads and applicatives, which serves as
inspiration for the rest of the paper. In Section 3, we present the generali-
sation framework that provides the tools for the remaining sections: gen-
eralised near-semirings. Then, in Section 4, we show some examples of
non-determinism monads and applicatives. In Section 5, we construct the
free near-semiring over an object in different near-semiring categories. After
that, in Section 6, we introduce the double Cayley representation for a near-
semiring. Then, we present two ways of constructing near-semirings from
monoids: first generalising the list monad transformer in Section 7, and then
constructing the free near-semiring over a monad in Section 8. In Section 9,
we give some applications of the developed theory. Finally, we present the
related work and conclusions in Sections 10 and 11.

Haskell Source Code. The Haskell source code presented in this paper, in-
cluding all elided definitions, is available from the second and third authors’
webpages. Several of the Haskell definitions given in this paper can be rather
daunting. However, our intent is not for the reader to interpret them opera-
tionally, but instead to see them as instantiations of a general construction.
After all, the exposure of this generic pattern is the main contribution of this
work. Therefore, it is advisable to focus on the interface and properties of
the different definitions, rather than the details of their implementation.

3

2. Connecting Monads and Applicative Functors

In Haskell, the interfaces of monads and applicative functors are spec-
ified by type classes. The Monad interface provides a basic structure for
computations:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

where the operation return injects values, and >>= sequentially composes com-
putations. The Applicative interface, in contrast, is as follows:

class Applicative m where
pure :: a → m a
(~) :: m (b → a)→ m b → m a

where the pure operation also injects pure values, and ~ provides application
under an effect.

It is well-known that every Monad is an Applicative, and that there are
Applicative instances which are not Monads. It is less well-known that both
constructions can be explained in terms of a single unifying structure.

Revealing Similarities. There are some similarities between the two inter-
faces: Both provide a way of injecting pure values, and both have a form of
composition operator. However, the similarities are more profound. Monads
are monoids in a monoidal category of endofunctors, and so are applicative
functors! (The two monoidal categories are different though.) In order to
better expose the similarities, let us consider this alternative (but equivalent)
presentation of the monad interface:

class Functor m ⇒ Triple m where
etaT :: a → m a
muT :: (m ◦m) a → m a

where ◦ is functor composition (i.e. (f ◦ g) a = f (g a)).
A Triple m is equivalent to a Monad m: we set etaT = return, and we can

define one composition operator in terms of the other. From muT we can
define t >>= f = muT (fmap f t), and from >>= we can define muT t = t >>= id.

4

Let us modify the Triple interface and replace functor composition with
the following datatype which implements the so-called Day convolution [5]:

data (?) f g a = ∀b.Day (f (b → a)) (g b)

where the type b is existentially quantified.1

Replacing functor composition ◦ with Day convolution ? we obtain the
class DayTriple:

class Functor m ⇒ DayTriple m where
etaD :: a → m a
muD :: (m ? m) a → m a

By expanding the definition of ? in muD, we discover that DayTriple is equiv-
alent to the Applicative interface.

Relating Monad and Applicative Laws. The connection between monads and
applicative functors is even deeper as also the laws required by each interface
can be related. The laws for both interfaces are:

Monad laws Applicative laws
return x >>= u = u x pure f ~ u = f 〈$〉 u

u >>= return = u u ~ pure x = ($x) 〈$〉 u
(u >>= v)>>= w = u >>= (λx → v x >>= w) ((◦) 〈$〉 u ~ v)~ w = u ~ (v ~ w)

where ($) :: (a → b)→ a → b is function application, and (〈$〉) ::Functor f ⇒
(a → b) → f a → f b maps a function under a functor (i.e. it is an infix
version of fmap). In the case of applicatives, we also assume that the functor
laws hold.

While one can see some similarities, the exact relation between the two
sets of laws is not obvious. In order to see the connection, some subtleties
must be made evident. We postpone this to the next section, which intro-
duces the abstract formal framework that unifies the two structures.

Non-Deterministic Computations. The notion of non-deterministic compu-
tation we consider in this article involves two additional operations: failure

1The reasoning behind the notation is that the type (∃b.T b) → A is equivalent to
∀b.T b → A.

5

and non-deterministic choice between two computations. In monadic com-
putations, these two additional operations are captured by the MonadPlus
type class:

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

For applicative computations, the non-deterministic interface is provided
by the Alternative type class:

class Applicative f ⇒ Alternative f where
empty :: f a
(〈|〉) :: f a → f a → f a

Instances of the Monad type class are expected to obey certain laws. Like-
wise, a MonadPlus instance is a non-determinism monad when the following
laws hold:

m ‘mplus‘ mzero = m (1)

mzero ‘mplus‘ m = m (2)

m1 ‘mplus‘ (m2 ‘mplus‘m3) = (m1 ‘mplus‘m2) ‘mplus‘m3 (3)

mzero >>= k = mzero (4)

(m1 ‘mplus‘m2)>>= k = (m1 >>= k) ‘mplus‘ (m2 >>= k) (5)

The first three laws say that mplus and mzero form a monoid, and the last
two laws specify the interaction with the Monad structure. These last two
laws are commonly known as left zero and left distribution.

One should not expect every MonadPlus instance to be a non-determinism
monad, as there are uses of the same interface for other purposes that require
different sets of laws.

So what about laws for Alternative? As far as we know, the only three
established laws that every Alternative instance f should obey are those of a
monoid f a, with the operation 〈|〉 acting as multiplication and empty acting
as its unit:

m 〈|〉 empty = m (6)

empty 〈|〉m = m (7)

m1 〈|〉 (m2 〈|〉m3) = (m1 〈|〉m2) 〈|〉m3 (8)

6

However, considering the connection between monads and applicatives,
the laws (4) and (5) of non-determinism monads suggest two further laws:

empty ~ x = empty (9)

(f 〈|〉 g)~ x = (f ~ x) 〈|〉 (g ~ x) (10)

An Alternative instance is a non-determinism applicative functor when
laws (6–10) hold.

The connection between monads and applicative functors allows us to
translate knowledge from one structure to the other. However, in order to
make the connection precise, we need a formal framework.

3. Monoidal and Near-Semiring Categories

In this section we introduce the formal framework which allows us to
establish the connection between monads and applicative functors, and be-
tween non-determinism monads and non-determinism applicative functors.
As a refresher, we start with ordinary monoids and near-semirings over sets.

3.1. Background: Monoids and Near-Semirings

A monoid (M, ×̇, 1̇) is a triple consisting of a set M , together with an
operation ×̇ : M ×M → M and an element 1̇ ∈ M such that the following
axioms hold for all a, b, and c ∈M :

a ×̇ 1̇ = a (11)

1̇ ×̇ a = a (12)

a ×̇ (b ×̇ c) = (a ×̇ b) ×̇ c (13)

The operation ×̇ is called the multiplication of the monoid, while the element
1̇ is called the unit. We usually refer to a monoid (M, ×̇, 1̇) simply by its
carrier set M .

Using type classes, we can describe monoids in Haskell as follows:

class Monoid m where
mempty :: m
mappend :: m → m → m

Here, mempty is the unit element and mappend is the multiplication. In-
stances of this class are required to satisfy the monoid laws. However, these
are not enforced by Haskell, and it is left to the programmer to verify them.

7

When two monoids align in a particular way, they form a near-semiring,
the central structure in this paper. Formally, a near-semiring is defined as
a quintuple (M, ×̇, 1̇, +̇, 0̇) where both (M, ×̇, 1̇) and (M, +̇, 0̇) are monoids
for the same set M ; moreover, the following laws relate both structures:

0̇ ×̇ a = 0̇ (14)

(a +̇ b) ×̇ c = (a ×̇ c) +̇ (b ×̇ c) (15)

Here ×̇ is the multiplication of the near-semiring, +̇ is the addition, 1̇ is the
unit, and 0̇ is the zero.

Remark. In the literature, sometimes the unit is not required: (M, ×̇) is
only expected to be a semigroup. In this article we consider only near-
semirings with unit, and call them simply near-semirings. Also, because only
distribution from the right is required, this structure is sometimes called a
right near-semiring.

The following Haskell type class models near-semirings, in the same way
the Monoid type class models monoids.

class Nearsemiring a where
(⊗) :: a → a → a
one :: a
(⊕) :: a → a → a
zero :: a

Instances of Nearsemiring must satisfy the near-semiring axioms. Instead
of function names, we use infix operators for denoting multiplication and
addition.

3.2. Background: Monoidal Categories

Monoidal categories generalise the notion of monoids from sets A to cat-
egories C. We remind the reader of the following categorical concepts:

• A bifunctor is a functor from a product category. For example, the
Cartesian product is a bifunctor − × − : Set × Set → Set with action
on arrows (f×g) taking an object (x, y) of the product category to the
set (f x, g y).

8

• A natural transformation τ : F → G is a family of morphisms between
functors F and G, indexed by objects, such that for all objects A and
B, and every morphism f : A→ B the equation Gf ◦τA = τB ◦f holds.
In order to avoid clutter, we sometimes leave the component implicit
and write τ : F A→ GA instead of τA : F A→ GA.

• A natural isomorphism is a natural transformation for which each com-
ponent is an isomorphism.

In order to prepare for the generalisation, we first express both operations
×̇ and 1̇ of ordinary monoids as unary morphisms by modifying the unit to
take a trivial argument from the singleton set {∗}

m : A× A→ A

e : {∗} → A

We generalise from a set A to a category C by making two replacements:

1. The Cartesian product, which is a bifunctor −×− : Set× Set→ Set,
becomes a bifunctor −⊗− : C × C → C called the tensor.

2. The singleton set {∗} becomes an object I ∈ C.

This yields the morphisms:

m : M ⊗M →M

e : I →M

We expect ⊗ and I to work like × and {∗}, in the sense that × is asso-
ciative and {∗} is a unit with respect to it (up to isomorphism). For that, we
require the following natural isomorphisms expressing that ⊗ is associative,
and that I is a left and right unit with respect to ⊗:

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C
λA : I ⊗ A ∼= A

ρA : A⊗ I ∼= A

These natural isomorphisms should interact coherently [19]. The sextuple
(C,⊗, I, α, λ, ρ) is known as a monoidal category.

9

Monoids. A monoid in a monoidal category (C,⊗, I, α, λ, ρ) is an object M ,
together with morphisms m : M ⊗M → M and e : I → M , for which the
following laws hold:

m ◦ (e⊗ id) = λ (16)

m ◦ (id⊗ e) = ρ (17)

m ◦ (id⊗m) = m ◦ (m⊗ id) ◦ α (18)

The laws for monoids in monoidal categories are the corresponding gen-
eralisations of equations (11), (12), and (13). The category Set is a monoidal
category with the Cartesian product as its tensor and the terminal object (a
singleton set) as unit object; monoids in this monoidal category reduce to
ordinary monoids.

Monads are Monoids in the Category of Endofunctors. This article mainly
works in the category Endo of endofunctors on a category C, which consists
of endofunctors as objects and natural transformations as morphisms.

We can give this category monoidal structure by choosing the tensor ⊗
to be ◦, the composition of functors. Formally, composition of functors F
and G is (F ◦ G)(X) = F (G(X)). Functor composition is a bifunctor: let
f : F → H and g : G → K be natural transformations, then the action on
morphisms f ◦ g : (F ◦ G) → (H ◦ K) is defined by f ◦ g = f ◦ Fg (which
by naturality is the same as Hg ◦ f). The object I is the identity functor
Id(X) = X. This monoidal category is strict, which means that the three
natural transformations λ, ρ, and α which complete the monoidal category
are identities.

The monoids in this monoidal category are monads. The two associated
natural transformations are:

e : Id→M

m : M ◦M →M

which correspond to the Triple type class introduced in Section 2.
The three monoid laws (16), (17), and (18) are the usual monad laws

found in category theory textbooks and, when expressed in terms of >>=, are
equivalent to the laws for monads described in Section 2.

The Cartesian structure is not the only monoidal structure on Set, dis-
joint union being another. Analogously, functor composition is not the only

10

monoidal structure on the category of endofunctors. As a consequence, mon-
ads are not the only monoids in the category of endofunctors. Another
important class are applicative functors, introduced by McBride and Pater-
son [20] as a way to capture certain effectful computations that do not fit
well in the monadic framework.

Applicative Functors are Monoids in the Category of Endofunctors. Applica-
tive functors are based on a category of endofunctors, but with different
tensor than monads: the Day convolution [5]. There are different presenta-
tions for the Day convolution in Haskell [25]. The presentation we chose in
Section 2 with the datatype ? directly results in the Applicative type class.

data (?) f g a = ∀b.Day (f (b → a)) (g b)

instance (Functor f ,Functor g)⇒ Functor (f ? g) where
fmap h (Day ff gx) = Day ((λf → h ◦ f) 〈$〉 ff) gx

Just like for composition of functors − ◦ −, the I object for Day convo-
lution is the identity functor. However, in this case the monoidal category is
not strict. The natural isomorphisms λ, ρ, and α for this monoidal category
are as follows.

λ :: Functor f ⇒ (Identity ? f) a → f a
λ (Day (Identity f) x) = f 〈$〉 x

ρ :: Functor f ⇒ (f ? Identity) a → f a
ρ (Day f (Identity b)) = ($b) 〈$〉 f

α :: (Functor f ,Functor g)⇒ (f ? (g ? h)) a → ((f ? g) ? h) a
α (Day f (Day g z)) = Day (Day ((◦) 〈$〉 f) g) z

A monoid m in this monoidal category has as operations natural trans-
formations m ? m → m and Identity → m. Expanding the definition of Day
convolution and identity functor leads to the well-known operations of the
Applicative type class:

class Functor m ⇒ Applicative m where
pure :: a → m a
(~) :: m (a → b)→ m a → m b

The laws for applicatives introduced in Section 2 are obtained by instan-
tiating the three laws (16), (17), and (18) to this monoidal category. The

11

differences between the laws for monads and the laws for applicatives that
we were not able to explain before, can now be attributed to the fact the
monads are monoids in a strict monoidal category, where the morphisms λ,
ρ, and α are identities, and thus play no role.

3.3. Near-Semiring Categories

A near-semiring is a combination of a multiplicative monoid and an ad-
ditive monoid. Consequently, near-semiring categories extend monoidal cat-
egories to add support for two monoids. This requires a category C that
is monoidal in two ways. A near-semiring category is a category with a
multiplicative monoidal structure (C,⊗, I⊗, α⊗, λ⊗, ρ⊗), an additive monoidal
structure (C,⊕, I⊕, α⊕, λ⊕, ρ⊕), and two additional natural transformations,
κ (for cancellation) and δ (for distribution) that connect the multiplicative
and additive structure

κ : I⊕ ⊗M → I⊕

δ : (M1 ⊕M2)⊗M3 → (M1 ⊗M3)⊕ (M2 ⊗M3)

As happens with monoidal categories, all these transformations must in-
teract coherently. Yet, note that δ and κ are not required be natural isomor-
phisms. There is only a lax distributivity of the multiplicative structure over
the additive structure.

A near-semiring in a near-semiring category consists of an object M and
four morphisms:

m : M ⊗M →M a : M ⊕M →M
e : I⊗ →M z : I⊕ →M

which form the multiplicative monoid and the additive monoid, such that
the following interaction laws hold:

m ◦ (a⊗ id) = a ◦ (m⊕m) ◦ δ
m ◦ (z ⊗ id) = z ◦ κ

In particular, we recover the ordinary near-semirings presented in Section 3.1
by setting C = Set, ⊗ = ⊕ = ×, and I⊗ = I⊕ = {∗}.

12

Cartesian Structure as Additive Structure. In the remainder of this article we
will assume we work with Cartesian categories, i.e. categories with (finite)
products and terminal object. Moreover, we will fix the additive structure ⊕
and I⊕ to be the bifunctor × and the terminal object 1 respectively. That
is, we will consider the additive structure of near-semiring categories to be
Cartesian. The following definitions are easily generalised to an arbitrary
bifunctor ⊕, if desired. As usual with the Cartesian structure, the three nat-
ural isomorphisms α⊕, λ⊕, and ρ⊕ are named assoc, π1, and π2, respectively.
Moreover, given a monoidal structure (C,⊗, I), a distribution morphism δ
can be defined as δ = 〈π1⊗ id, π2⊗ id〉 and a cancellation morphism κ can be
defined as κ = !1⊗M where !X : X → 1 is the family of unique homomorphisms
associated with the terminal object 1. This construction is summarized in
the following theorem:

Theorem 3.1. If (C,⊗, I⊗, α⊗, λ⊗, ρ⊗) is a monoidal category where C is
Cartesian, then C is a near-semiring category with multiplicative structure
(C,⊗, I⊗, α⊗, λ⊗, ρ⊗), additive structure (C,×, 1, assoc, π1, π2) and the natural
transformations δ and κ as defined above.

Having fixed the additive structure to be Cartesian, there is no ambiguity
and hence we omit the subscripts from the multiplicative structure, e.g. we
write I instead of I⊗.

Near-semiring Category of Endofunctors. We assume that the endofunctors
in Endo are over a Cartesian category C, and therefore Endo is also Cartesian:
given two C-endofunctors F and G, their product is defined point-wise as

(F ×G)(X) = F (X)×G(X)

The terminal endofunctor 1 is simply the constant endofunctor K1 which
maps every object to the terminal object 1 of C, and every morphism to id1.
As a corollary of Theorem 3.1, any monoidal category of endofunctors over a
Cartesian category is a near-semiring category. In particular, this means that
both the monoidal category supporting monads and the monoidal category
supporting applicative functors are near-semiring categories.

Non-Determinism Monads are Near-Semirings in the Category of Endofunc-
tors. A monad is a monoid in a monoidal category of endofunctors (with
functor composition as bifunctor). By Theorem 3.1 we obtain that this

13

monoidal category is a near-semiring category, and we can consider near-
semirings in it. A near-semiring in this category consists of a monad M and
two additional natural transformations:

a : M ×M →M

z : K1 →M

In Haskell, we write their types as a ::∀b.m b → m b → m b and z ::∀b.m b,
and aptly call them mplus and mzero after MonadPlus’s methods.

The first three laws (1)–(3) for non-determinism monads described in
Section 2 directly correspond to the laws for near-semirings that we obtain for
this particular category. The remaining two laws for this particular category
are superficially different:

muT mzero = mzero (19)

muT (m1 ‘mplus‘m2) = (muT m1) ‘mplus‘ muT m2 (20)

Yet, given the correspondence between muT and (>>=) and the naturality of
mzero and mplus, it is easy to derive laws (4) and (5) from these ones and
vice versa.

Non-determinism Applicatives are Near-Semirings in a Category of Endo-
functors. An applicative functor is a monoid in a monoidal category of end-
ofunctors (with Day convolution as bifunctor). As before, by Theorem 3.1
we know this monoidal category is a near-semiring category, and we may
study near-semirings in it. A near-semiring in this category consists of an
applicative functor, and two additional natural transformations:

a : M ×M →M

z : K1 →M

In Haskell, we write their types as a :: ∀b. f b → f b → f b and z :: ∀b. f b,
and aptly call them 〈|〉 and empty after the corresponding methods of the
Alternative type class.

The laws that we obtain for near-semirings in this particular near-semiring
category are the ones for Alternative described in Section 2.

14

4. Examples of Non-determinism Structures

In this section we present several examples of non-determinism monads
and non-determinism applicatives. As discussed before, these are instances
of MonadPlus and Alternative, respectively, for which the corresponding near-
semiring laws hold. We also discuss some instances that do not satisfy all
the laws.

4.1. Non-Determinism Applicatives From Non-Determinism Monads

It is well known that every monad determines an applicative functor.
One just defines pure = return, and (x ~ y) = x >>= λh → y >>= λa →
return (h a). Likewise, every MonadPlus instance determines an Alternative
instance: empty = mzero, and (〈|〉) = mplus.

If a MonadPlus is a non-determinism monad, i.e. the near-semiring laws
for monads hold, then the near-semirings laws for applicatives hold. The
applicative laws hold because every monad determines an applicative functor,
the monoid laws for 〈|〉 and empty hold because they hold for mplus and mzero,
and the two remaining laws are proved as follows:

empty ~ x = mzero >>= λh → x >>= λa → return (h a)

= mzero

= empty

(f 〈|〉 g)~ x = (f ‘mplus‘ g)>>= λh → x >>= λa → return (h a)

= (f >>= λh → x >>= λa → return (h a))

‘mplus‘ (g >>= λh → x >>= λa → return (h a))

= (f ~ x) ‘mplus‘ (g ~ x)

= (f ~ x) 〈|〉 (g ~ x)

4.2. Non-Determinism From Lists

In formal semantics, non-determinism is often represented with a power-
set monad, with union of sets as addition and the empty set as zero. How-
ever, when writing code, lists provide the most common example of a non-
determinism monad.

instance Monad [] where
return x = [x]

15

[] >>= f = []
(x : xs)>>= f = f x ++ (xs >>= f)

instance MonadPlus [] where
mzero = []
mplus = (++)

As described in Section 4.1, this non-determinism monad determines a
non-determinism applicative. However, it is not the only non-determinism
applicative for lists.

Ziplists. Additionally to the instance derived from monads, lists have another
instance of Applicative. This is a typical example of an applicative functor
that is not derived from a Monad instance.2

newtype ZipList a = ZL [a]

instance Applicative ZipList where
pure x = ZL (repeat x)
ZL fs ~ ZL xs = ZL (zipWith ($) fs xs)

Perhaps surprisingly, ZipLists have an Alternative instance which obeys
the near-semiring laws, making ZipLists a non-determinism applicative.

instance Alternative ZipList where
empty = ZL []
ZL [] 〈|〉 ZL ys = ZL ys
ZL xs 〈|〉 ZL [] = ZL xs
ZL (x : xs) 〈|〉 ZL (y : ys) = ZL (x : rs)
where ZL rs = ZL xs 〈|〉 ZL ys

The instance has a left bias: at each position in the resulting list, it chooses
the corresponding element from the first argument, and only returns an ele-
ment from the second argument if there are no elements at that position in
the first argument.

4.3. The Case of Maybe

The datatype Maybe is a well-known monad. Moreover, the standard
library of Haskell provides a MonadPlus instance for it.

2Remember that zipWith truncates to the length of the shorter list argument.

16

instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x

instance MonadPlus Maybe where
mempty = Nothing
mplus Nothing y = y
mplus (Just v) y = Just v

However, one of the five near-semiring axioms fails to hold. Indeed, left
distribution does not hold for Maybe, as can be verified by instantiating
m1 = Just Nothing and m2 = Just (Just False) in equation (5).

The monad Maybe belongs to an interesting class of instances of MonadPlus
that satisfy the left catch law3 rather than left distribution:

return a ‘mplus‘ b = return a (21)

A difference between the left distribution and left catch laws is that the first
relates mplus with join, while the latter relates mplus with return. Left catch
is related to an algebraic structure called dioids [7, 24], but in this article we
only study near-semiring structures.

Maybe is a Non-Determinism Applicative. Although Maybe is not a non-
determinism monad, it is a non-determinism applicative:

instance Applicative Maybe where
pure x = Just x
Just f ~ Just x = Just (f x)

~ = Nothing

instance Alternative Maybe where
empty = Nothing
Nothing 〈|〉 y = y
(Just v) 〈|〉 = Just v

The Applicative instance captures a conjunction-semantics: two computations
are successfully combined iff both computations are successful. In contrast,
the instance of Alternative reflects a left-biased disjunction-semantics.

3The MonadPlus Reform Proposal suggests that such instances belong in a separate
MonadOr typeclass. See https://wiki.haskell.org/MonadPlus_reform_proposal

17

https://wiki.haskell.org/MonadPlus_reform_proposal

This example shows an applicative derived from a monad, which extends
to a non-determinism applicative but, interestingly, it does not extend to a
non-determinism monad.

4.4. Parsers

Parsers usually encompass a form of non-determinism to account for the
multiple ways in which a given string can be parsed.

newtype Parser m a = Parser {unParser :: String→ m (a, String)}

The m parameter accounts for the non-determinism effect. Thus, a Parser m a
takes an input string and effectfully returns an answer consisting of a pair of
a parsed a, obtained by consuming some prefix of the input, and the rest of
the input which was not consumed.

A Parser m is a Monad whenever m is a Monad, and is a MonadPlus
whenever m is a MonadPlus.

instance Monad m ⇒ Monad (Parser m) where
return x = Parser (λs → return (x , s))
x >>= f = Parser (λs → unParser x s >>= λ(y , s ′)→ unParser (f y) s ′)

instance MonadPlus m ⇒ MonadPlus (Parser m) where
mzero = Parser (λs → mzero)
x ‘mplus‘ y = Parser (λs → unParser x s ‘mplus‘ unParser y s)

Moreover, a Parser m is a non-determinism monad whenever m is a non-
determinism monad. In particular, if we instantiate m to lists, we obtain
Hutton & Meijer’s monadic parsers [12]. As lists are a non-determinism
monad, we conclude that Hutton & Meijer’s parsers are a non-determinism
monad.

Non-Example: Maybe Parsers [29]. If we consider instead Parser Maybe, we
do not obtain a non-determinism monad. This is expected as Maybe is not a
non-determinism monad. Surprisingly, although Maybe is a non-determinism
applicative, Parser Maybe is not a non-determinism applicative. In order to
show that this is the case, consider the following parser char for characters,
and the parsers p1 and p2:

char :: Char→ Parser Maybe ()
char d = Parser (λs → case s of

18

"" → Nothing
(c : s ′)→ if c ≡ d then Just ((), s ′)

else Nothing)

p1 = (char ’a’ 〈|〉 pure ()) ∗ char ’a’

p2 = (char ’a’ ∗ char ’a’) 〈|〉 (pure () ∗ char ’a’)

where ∗ is a variant of ~ that ignores the computed values.

(∗) :: Applicative p ⇒ p a → p b → p ()
p ∗ q = pure (λx y → ())~ p ~ q

According to the distributive law, p1 and p2 should be equivalent. However,
they are in fact distinct.

> unParser p1 "a"

Nothing
> unParser p2 "a"

Just ((), "")

Therefore Parser Maybe is not a non-determinism applicative. In the first
parser, the left branch succeeds consuming the entire input. Because the left
branch succeeds, the right branch is discarded. Because the entire input is
consumed, the subsequent char ’a’ fails and, as there are no more alterna-
tives to try, the overall parser fails. In the second parser, the left branch does
not succeed and there is still a second branch that does.

4.5. Composition of Alternative and Applicative

Composition of applicative functors is an applicative functor. Therefore,
if f and g are applicative their composition f ◦ g is also applicative.

newtype (f ◦ g) x = Comp (f (g x))

instance (Applicative f ,Applicative g)⇒ Applicative (f ◦ g) where
pure x = Comp (pure (pure x))
Comp fs ~ Comp xs = Comp (pure (~)~ fs ~ xs)

If additionally f is an Alternative then the composition is also an Alternative.

instance (Alternative f ,Applicative g)⇒ Alternative (f ◦ g) where
empty = Comp empty
Comp xs 〈|〉 Comp ys = Comp (xs 〈|〉 ys)

19

Note that g is only required to be an Applicative. Moreover, if f is
a non-determinism applicative and g an applicative, then f ◦ g is also a
non-determinism applicative. For example, one can extend an arbitrary ap-
plicative functor f by composing it with the list functor and obtain a non-
determinism applicative ([] ◦ f). Sections 7 and 8 provide other ways to
extend an applicative to an alternative.

The opposite case, where g is a non-determinism applicative, but f is not,
does not necessarily yields a non-determinism applicative. In particular, for
the following broken instance

instance (Applicative f ,Alternative g)⇒ Alternative (f ◦ g) where
empty = Comp (pure empty)
Comp xs 〈|〉 Comp ys = (〈|〉) 〈$〉 xs ~ ys

we have that empty 〈|〉 y = const empty 〈$〉 y which is generally distinct from
empty, and therefore law (7) does not hold.

5. Free Constructions

Free constructions are interesting from a programming point of view since
they yield a concrete representation of the programs that can be written when
only the interface of the algebraic structure is known.

In this chapter we analyse how to construct the free near-semiring over a
given object of a near-semiring category. In order to foster the intuition be-
hind the construction, we start explaining the simpler cases of free monoids
and free near-semirings over a set. That is, we first study the particular
case of the near-semiring category Set. Then, we study the general case and
obtain a general formula for the free near-semiring. This allows us to instan-
tiate the general formula to the near-semiring categories yielding monads and
applicatives, and obtain expressions for the free non-determinism monad and
the free non-determinism applicative.

5.1. Free Monoids

The notion of free monoid is defined in terms of monoid homomorphisms.
A monoid homomorphism is a function from one monoid to another that
preserves the monoid structure.

Definition 5.1. A monoid homomorphism from a monoid (M,⊗M , eM) to
a monoid (N,⊗N , eN) is a function f : M → N such that f(eM) = eN and
f(m⊗M m′) = f(m)⊗N f(m′).

20

Now we can define the notion of free monoid.

Definition 5.2. The free monoid over a set X is a monoid (X∗,⊗∗, e∗) to-
gether with a function inj : X → X∗ such that for every monoid (M,⊗M , eM)
and function h : X → M , there exists a unique monoid homomorphism
univ(h) : X∗ →M such that univ(h) ◦ inj = h.

A concrete representation for the free monoid over a set X are lists of
elements of that set; concatenation is its multiplication and the empty list is
its unit. The function inj constructs a singleton list and univ(h) reduces the
list after mapping h over it.

The free monoid construction extends to a functor. That is, for every
function h : X → Y , we define the monoid homomorphism h∗ : X∗ → Y ∗ as
h∗ = univ(inj ◦ h).

For every monoid (M,⊗M , eM), the monoid morphism

univ(idM) : M∗ →M

behaves as an evaluation algebra in the following sense: the free monoid M∗

represents the syntax of programs constructed from the monoid operations
and elements of M . The algebra univ(idM) gives semantics to these programs
by replacing the syntactic operations in M∗ with the corresponding monoid
operations in M .

5.2. Free Near-Semirings

We define near-semiring homomorphisms in the same way as monoid ho-
momorphisms.

Definition 5.3. A near-semiring homomorphism from a given near-semiring
(M,⊗M , eM ,⊕M , zM) to a near-semiring (N,⊗N , eN ,⊕N , zN) is a function
f : M → N such that:

f(m⊗M n) = f(m)⊗N f(n)

f(eM) = eN

f(m⊕M n) = f(m)⊕N f(n)

f(zM) = zN

Now we can define the free near-semiring over a set A.

21

Definition 5.4. The free near-semiring over a set A is a near-semiring A∗

together with a map inj : A → A∗ satisfying that for every near-semiring
(N,⊕, e,⊗, z) and function h : A → N , there exists a unique near-semiring
homomorphism univ(h) : A∗ → N such that univ(h) ◦ inj = h.

Diagrammatically, we have the following commuting diagram:

A
inj //

h
''

A∗

univ(h)
��

N

Just like lists are a concrete representation for free monoids, forests are a
concrete representation for free near-semirings.

data Forest a = Forest [Tree a]
data Tree a = Leaf | Node a (Forest a)

instance Nearsemiring (Forest a) where
zero = Forest []
one = Forest [Leaf]
(Forest xs)⊕ (Forest ys) = Forest (xs ++ ys)
(Forest xs)⊗ (Forest ys) = Forest (concatMap g xs)

where g Leaf = ys
g (Node a n) = [Node a (n ⊗ (Forest ys))]

The addition ⊕ combines the trees of two forests and has the empty forest as
neutral element. The multiplication ⊗ substitutes all the leaves in one forest
by the other forest; its neutral element is a forest that consists of a single
leaf.

The inclusion of generators inj and the universal morphism univ are de-
fined as follows:

inj :: a → Forest a
inj a = Forest [Node a one]

univ :: Nearsemiring n ⇒ (a → n)→ Forest a → n
univ h (Forest xs) = foldr (⊕) zero (map univT xs)
where univT Leaf = one

univT (Node a ts) = (h a)⊗ (univ h ts)

22

Just like the free monoid, the free near-semiring also extends to a functor:
given a function h : X → Y we define the near-semiring homomorphism
h∗ : X∗ → Y ∗ as h∗ = univ(inj ◦ h). Also analogous to the monoid case, we
have an evaluation algebra univ(idN) : N∗ → N for every near-semiring N .

5.3. Free Near-semiring on a Near-semiring Category

In order to construct the generalised free near-semiring, we require the
underlying category to have coproducts − + − : C × C → C, and also that
both −×− and −⊗− are closed.

Closed Bifunctors. A bifunctor − � − is closed if there exists a bifunctor

− �⇒ − : Cop × C → C together with an isomorphism:

b·c� : C(A�B,C) ∼= C(A,B �⇒ C) : d·e�

natural in A and in C. Here b·c� and d·e� are the bijections between the
hom-sets. The evaluation morphism ev� is defined as:

ev� =
⌈

id
B
�⇒C

⌉
�

: (B
�⇒ C)�B → C

In a sense, this is a generalisation of the bijection witnessed by curry and
uncurry between types (a, b) → c and a → (b → c). When an operator is
closed, then a distributive law with respect to the coproduct is available:

∆� : (A+B)� C → A� C +B � C
∆� =

⌈ [
binlc� , binrc�

] ⌉
�

where [,] is case analysis on a coproduct. The distributive law is built by
using the isomorphism to get rid of the bifunctor in the domain, acting on
the result, and then using the isomorphism again to reinstate the bifunctor.
This is a common use of closure, and more generally, of adjunctions.

In particular, for the case of ⊗ being a closed bifunctor, we have the
following distributions:

∆⊗ : (A+B)⊗ C → A⊗ C +B ⊗ C
κ : 1⊗ A→ 1

δ : (A×B)⊗ C → (A⊗ C)× (B ⊗ C)

23

That is, in a setting where the additive structure is Cartesian and where the
multiplicative bifunctor is closed, such a bifunctor distributes with respect
to the coproduct, unit and product.

Lists are defined as List(A) = µX. 1 + A × X, where the initial algebra
is [nil, cons], and the universal morphism for the initial algebra is given by
foldr : (1 + A × X → X) → List(A) → X. Lists are essentially sums of
products, and therefore we obtain a distributivity of ⊗ over lists:

distList : List(A)⊗X → List(A⊗X)

distList =
⌈

foldr(bkc⊗)
⌉
⊗

where k : (1 + A× (X
⊗⇒ List(A⊗X)))⊗X → List(A⊗X)

k = (nil ◦ κ+ cons ◦ (id× ev⊗) ◦ δ) ◦∆⊗

A Formula for the Free Near-semiring. Given an object A, if the initial alge-
bra for the endofunctor 1+(I+A⊗−)×− exists, then the free near-semiring
over A has the following carrier:

A∗ ∼= µX. 1 + (I + A⊗X)×X ∼= µX. List (I + A⊗X)

The near-semiring operations for the generalised free near-semiring are
similar in essence to those defined for the ordinary free near-semiring, but
slightly more complex due to their abstract nature.

The initial algebra is given by

List(I + A⊗ A∗)
in

++∼= A∗
out

kk

The additive structure is given by:

a : A∗ × A∗ → A∗

a = in ◦ append ◦ (out× out)

z : 1→ A∗

z = in ◦ nil

where append : List(X)× List(X)→ List(X) appends one list to another.
The multiplicative structure is more involved. The unit is simple enough:

e : I⊗ → A∗

e = in ◦ wrap ◦ inl

24

where wrap : X → List(X) creates a singleton list.
The multiplication is defined as follows:

m : A∗ ⊗ A∗ → A∗

m = in ◦ flatten ◦ List(f) ◦ distList ◦ (out⊗ id)

where f : (I + A⊗ A∗)⊗ A∗ → List(I + A⊗ A∗)
f = [out ◦ λ,wrap ◦ inr ◦ (id⊗m) ◦ α−1] ◦∆⊗

and flatten : List(List(X))→ List(X) flattens a lists of lists.
The near-semiring we have just defined is indeed the free one. The uni-

versal property for the free near-semiring states that given a near-semiring
N and morphism h : A→ N , there is a unique univ that makes the universal
diagram commute:

A
inj //

h
''

A∗

univ(h)
��
N

Let inj = in ◦ wrap ◦ inr ◦ (id⊗ e) ◦ ρ−1⊗ . The induced universal morphism
univ(h) : A∗ → N is defined by structural recursion:

univ(h) = A∗ ∼= List(I + A⊗ A∗)List([e,m◦(h⊗univ(h))])//List(N)
foldr([z,a]) //N

These definitions are highly abstract; the following subsections provide
concrete instances of this general construction.

5.4. The Free Non-Determinism Monad

While the generalisation of the free near-semirings asks × and ◦ to be
closed, the closures are not explicitly used in the free construction. Hence
we postpone their introduction until we construct the double Cayley repre-
sentation, where closures will be explicitly needed.

The following datatype constructs the free near-semiring. We introduce
it as two mutually recursive datatypes, one representing the free construction
over the Cartesian product, and the other over the composition of functors.

data Free◦ f x = Free◦ {unFree◦ :: [FFree◦ f x]}
data FFree◦ f x = Pure◦ x | Con◦ (f (Free◦ f x))

The implementation of the operations follows directly from the types; it is
analogous to the free construction for ordinary near-semirings.

25

instance Functor f ⇒ Monad (Free◦ f) where
return x = Free◦ [Pure◦ x]
Free◦ xs >>= f = Free◦ (concatMap g xs)
where g (Pure◦ x) = unFree◦ (f x)

g (Con◦ x) = [Con◦ (fmap (>>=f) x)]

instance Functor f ⇒ MonadPlus (Free◦ f) where
mzero = Free◦ []
Free◦ xs ‘mplus‘ Free◦ ys = Free◦ (xs ++ ys)

The function inj that embeds values of the original functor in the free
structure and the universal morphism univ h that uniquely maps the free
structure onto another near-semiring are obtained by direct instantiation
of the corresponding general constructions in the particular near-semiring
category we are currently considering.

inj :: Functor f ⇒ f a → Free◦ f a
inj x = Free◦ [Con◦ (fmap return x)]

univ :: (MonadPlus m,Functor f)⇒ (∀x . f x → m x)→ Free◦ f x → m x
univ h (Free◦ l) = foldr mplus mzero (map univT l)

where univT (Pure◦ x) = return x
univT (Con◦ op) = h op >>= univ h

5.5. The Free Non-determinism Applicative Functor

For obtaining the free non-determinism applicative functor we now work
in the near-semiring category of endofunctors with Day convolution as mul-
tiplicative structure. Based on the generic recipe we obtain the following
datatype:

data Free? f a = Free? {unFree? :: [FFree? f a]}
data FFree? f a = Pure? a | ∀b.Con? (f (b → a)) (Free? f b)

The supporting definitions of the operations are as follows:

instance Functor f ⇒ Applicative (Free? f) where
pure x = Free? [Pure? x]
Free? xs ~ v = Free? (concatMap g xs)
where g (Pure? f) = unFree? (fmap f v)

g (Con? f c) = [Con? (fmap uncurry f) (pure (,)~ c ~ v)]

26

instance Functor f ⇒ Alternative (Free? f) where
empty = Free? []
Free? xs 〈|〉 Free? ys = Free? (xs ++ ys)

The injection and the family of unique homomorphisms are:

inj :: Functor f ⇒ f a → Free? f a
inj x = Free? [Con? (fmap (λz ()→ z) x) (pure ())]

univ :: Alternative g ⇒ (∀x . f x → g x)→ Free? f x → g x
univ h (Free? l) = foldr (〈|〉) empty (map univT l)

where univT (Pure? x) = pure x
univT (Con? q c) = h q ~ univ h c

6. Cayley Representations

6.1. Cayley Representation of a monoid

A representation for a given monoid (M,⊗M , eM) is another monoid
(R(M),⊗R(M), eR(M)), together with two functions rep : M → R(M) and
abs : R(M)→M such that the following diagram commutes.

M∗ rep∗ //

univ(idM)

��

R(M)∗

univ(idR(M))

��
M R(M)

abs
oo

Intuitively, the diagram states that running a monoid program on M is the
same as first interpreting it as a monoid program on the representation R(M),
running the program there, and then abstracting the result back into M .

The change of representation that Cayley provides can result in more
efficient implementations [11].

The monoid of endomorphisms over a set X is (X → X, ◦, id), where ◦
is function composition and id is the identity function. Every monoid has an
embedding into the monoid of endomorphisms over its carrier set, a result
usually known as Cayley’s theorem for monoids [25].

Theorem 6.1 (Cayley for (Set) monoids). Every monoid (M,⊗, e) embeds
into the monoid of endomorphisms over the set M , namely (M → M, ◦, id).

27

The embedding is given by the monoid morphism rep : M → (M → M) and
function abs : (M →M)→M

rep(a) = λb. a⊗ b
abs(f) = f(e)

with the property that abs ◦ rep = id.

A simple consequence of this theorem is the following

Corollary 6.2. The monoid of endomorphisms (M → M, ◦, id) is a repre-
sentation of the monoid (M,⊗, e), with rep and abs as in the theorem above.

Proof. Because rep is a monoid homomorphism the following diagram com-
mutes.

M∗ rep∗ //

univ(idM)
��

(M →M)∗

univ(idM→M)
��

M rep
//M →M

Since abs ◦ rep = id, we conclude that M → M is a monoid representation
for M .

6.2. Cayley Representation of Near-semirings

We define a representation of a near-semiring N as a near-semiring R(N),
together with functions rep : N → R(N) and abs : R(N)→ N such that the
following diagram commutes.

N∗
rep∗ //

univ(idN)

��

R(N)∗

univ(idR(N))

��
N R(N)

abs
oo

Intuitively, the diagram states that running a near-semiring program on N
is the same as first interpreting it as a near-semiring program on the repre-
sentation R(N), running the program there, and then abstracting the result
back into N .

28

Double Cayley Representation. The double Cayley representation is obtained
by applying the Cayley representation for monoids twice, first for the additive
monoid structure and then for the multiplicative monoid structure. However,
if we do this naively, we do not get a good representation: we want to
represent a near-semiring, and therefore the whole near-semiring structure
must be taken into account and not just one chosen monoid structure.

If we take a near-semiring (N,⊗, e,⊕, z) and apply Cayley for monoids
on the monoid (N,⊕, z), we obtain the monoid (N → N, ◦, id) with repre-
sentation and abstraction functions

rep⊕(x) = λy. x⊕ y
abs⊕(f) = f z

where abs⊕ ◦ rep⊕ = id holds.
However, it is not clear how to extend this monoid to a near-semiring.

For instance, using a point-wise product does not yield a near-semiring.
A solution to this problem is to restrict the representation to the image

of rep⊕, in order to make the representation exact. That is, N is isomorphic
to the image of rep⊕, as it is not difficult to see that if x = rep⊕(a) for some
a ∈ N , then

rep⊕(abs⊕(x)) = rep⊕(abs⊕(rep⊕(a))) = rep⊕(a) = x

We define the set N •→N as the functions in the image of rep⊕. That is, the
set N •→N is the set of functions h such that

h y = abs⊕(h)⊕ y = h z⊕ y.

It is easy to extend the monoid (N •→N, ◦, id) to a near-semiring because we
can use the isomorphism between N •→N and N in order to reuse the mul-
tiplicative structure of N . We obtain the near-semiring (N •→N,⊗′, e′, ◦, id)
where

e′ = rep⊕(e) = λy. e⊕ y
f ⊗′ g = rep⊕(abs⊕(f)⊗ abs⊕(g)) = λy. (f z⊗ g z)⊕ y

Now rep⊕ is a near-semiring homomorphism, and therefore we have a
representation that accounts for the additive structure while preserving the
multiplicative structure.

29

Next, we apply Cayley again, but this time over the multiplicative struc-
ture: we take the near-semiring (N •→N,⊗′, e′, ◦, id), apply Cayley for monoids
on the monoid (N •→N,⊗′, e′), and obtain the monoid ((N •→N) → (N •→
N), ◦, id) with representation and abstraction functions

rep⊗(f) = λg. f ⊗′ g = λg y. (f z⊗ g z)⊕ y
abs⊗(f) = f e′ = f (λy. e⊕ y)

where abs⊗ ◦ rep⊗ = id holds. The extension of the obtained monoid to a
near-semiring is simple in this case as the sum and zero can be defined point-
wise. We arrive at the near-semiring ((N •→ N) → (N •→ N), ◦, id,⊕′, z′)
where

z′ = λx. id

f ⊕′ g = λx. f x ◦ g x

and the representation and abstraction functions are:

rep(x) = rep⊗(rep⊕(x)) = λh y. (x⊗ h z)⊕ y
abs(f) = abs⊗(abs⊕(f)) = f (λx. e⊕ x) (z)

Unfortunately, the type (N •→N) → (N •→N) is not usually available in
programming languages due to the side conditions on the type constructor •→.
One has to compromise and use the type DC(N) = (N → N)→ (N → N),
for which we obtain the semiring of endomorphisms over endomorphisms
(DC(N), ◦, id,⊕′, z′) as in the following pseudo-Haskell implementation:4

type DC n = (n → n)→ (n → n)

instance Monoid n ⇒ Nearsemiring (DC n) where
f ⊗ g = f ◦ g
one = id
f ⊕ g = λh → f h ◦ g h
zero = const id

Note that rep is not a near-semiring homomorphism from N into DC(N) as
it does not preserve the unit:

rep(e) = λh y. h(z)⊕ y 6= λh y. h(y) = e.

4Actual Haskell code requires DC to be defined as a newtype and involves additional
clutter due to explicit newtype wrapping and unwrapping.

30

Nevertheless, the semiring of endomorphisms over endomorphisms is a valid
representation for N as shown by the following theorem.

Theorem 6.3. Let (N,⊗, e,⊕, z) be a near-semiring. Then the near-semiring
(DC(N), ◦, id,⊕′, z′) is a representation of N . That is, the following diagram
commutes.

N∗
rep∗ //

univ(idN)

��

DC(N)∗

univ(idDC(N))

��
N DC(N)

abs
oo

Proof. By definition of free near-semiring, univ(id) is the unique near-semiring
homomorphism such that univ(id) ◦ inj = id. Doing some calculations, it can
be shown that abs ◦ univ(id) ◦ rep∗ is a near-semiring homomorphism and it
also satisfies the property:

abs ◦ univ(id) ◦ rep∗ ◦ inj = abs ◦ univ(id) ◦ univ(inj ◦ rep) ◦ inj

= abs ◦ univ(id) ◦ inj ◦ rep

= abs ◦ id ◦ rep

= abs ◦ rep

= id

Therefore, univ(id) = abs ◦ univ(id) ◦ rep∗.

Hence, the semantics of a computation over a near-semiring will be pre-
served if we lift values to the representation, do the near-semiring computa-
tion there, and then go back to the original near-semiring.

6.3. Double Cayley Representation in a Near-semiring Category
A generalised version of the double Cayley representation is constructed

as follows. If A is an object, then

(A
×⇒ A)

⊗⇒ (A
×⇒ A)

has a generalised near-semiring structure. Notice that both − ×⇒ − and

− ⊗⇒ − are used. This was hidden in the case of sets, as the multiplicative
structure was also the Cartesian product.

The definition of the generalised double Cayley representation is given
in Figure 1. When specialised to the case of the near-semiring category Set
with Cartesian products as multiplicative and additive structure, we recover
the double Cayley representation of Section 6.2.

31

Near-semiring operations:

z =
⌊
bπ2c× ◦ !

⌋
⊗

a =
⌊⌊

ev× ◦ (id× ev×) ◦ α−1
⌋
× ◦ (ev⊗ × ev⊗) ◦ δ

⌋
⊗

e = bλc⊗
m =

⌊
ev⊗ ◦ (id⊗ ev⊗) ◦ α−1

⌋
⊗

Representation and abstraction functions:

rep =
⌊
bac× ◦m ◦ (id⊗ (ev× ◦ 〈id, z ◦ !)〉)

⌋
⊗

abs = ev× ◦ 〈id, z ◦ !〉 ◦ ev⊗ ◦ (id⊗ ba ◦ (e× id)c×) ◦ ρ−1

Figure 1: Double Cayley Representation

6.4. Double Cayley Representation for Monads

We now instantiate the generalised definition of the double Cayley repre-
sentation for monads. First, though, we need to define the closures for the
two bifunctors involved.

Closures. The multiplicative bifunctor is the composition of functors. Its
closure is given by the so-called right Kan extension:

newtype (
◦⇒) f g x = Ran {unRan :: ∀y . (x → f y)→ g y }

The additive bifunctor is the Cartesian product of functors and its closure is
as follows:

newtype (
×⇒) f g x = Exp {unExp :: ∀y . (x → y)→ (f y → g y)}

The corresponding isomorphisms for the closures are given in Figure 2 and
Figure 3, respectively.

Instantiated Double Cayley Representation. Given a non-determinism monad

m, we can embed it in the data-type (m
×⇒ m)

◦⇒ (m
×⇒ m), obtaining the

following construction:

newtype DC f x = DC {unDC :: ((f
×⇒ f)

◦⇒ (f
×⇒ f)) x }

32

instance Functor (g
◦⇒ h) where

fmap f m = Ran (λk → unRan m (k ◦ f))

b·c◦ :: (Functor f ,Functor g ,Functor h)⇒
(∀x . f (g x)→ h x)→ (∀x . f x → (g

◦⇒ h) x)
bf c◦ = λgx → Ran (λk → f (fmap k gx))

d·e◦ :: (Functor f ,Functor g ,Functor h)⇒
(∀x . f x → (g

◦⇒ h) x)→ (∀x . f (g x)→ h x)
df e◦ = λfgx → unRan (f fgx) id

Figure 2: Closure of functor composition

instance Functor (f
×⇒ g) where

fmap f m = Exp (λk → unExp m (k ◦ f))

b·c× :: (Functor f ,Functor g ,Functor h)⇒
(∀x . (f x , g x)→ h x)→ (∀x . f x → (g

×⇒ h) x)
bf c× = λfx → Exp (λt → λgy → f (fmap t fx , gy))

d·e× :: (Functor f ,Functor g ,Functor h)⇒
(∀x . f x → (g

×⇒ h) x)→ (∀x . (f x , g x)→ h x)
df e× = λfgx → unExp (f (fst fgx)) id (snd fgx)

Figure 3: Closure of product of functors

proj (DC (Ran a)) = a

instance Monad (DC f) where
return x = DC (Ran (λf → f x))
DC (Ran m)>>= f = DC (Ran (λg → m (λa → proj (f a) g)))

instance MonadPlus (DC f) where
mzero = DC (Ran (λk → Exp (λc x → x)))
mplus m n = DC (Ran (λsk →

Exp (λf fk → unExp (proj m sk) f (unExp (proj n sk) f fk))))

Figure 4: Operations of the double Cayley Monad

33

Figure 4 defines the associated near-semiring operations.
The values of any non-determinism monad m can be embedded in the

double Cayley construction DC m with the function rep. After performing a
computation in DC m, the m value can be recovered using abs.

rep :: Monad m ⇒ m a → DC m a
rep x = DC (Ran (λg → Exp (λh m → x >>= λa → unExp (g a) h m)))

abs :: MonadPlus m ⇒ DC m a → m a
abs (DC (Ran f)) = unExp (f (λx → Exp (λh m →

return (h x) ‘mplus‘ m)))
id mzero

Example. Consider the anyof function which non-deterministically chooses
an element from the given list.

anyof :: MonadPlus m ⇒ [a]→ m a
anyof [] = mzero
anyof (x : xs) = anyof xs ‘mplus‘ return x

When m is the list monad, anyof essentially reverses the given list. Due to
the left-nested recursion, it has a quadratic time complexity.

Instead of running anyof directly over lists, we can run it first on DC [],
and then we flatten back the result to lists:

anyof ′ :: [a]→ [a]
anyof ′ xs = abs (anyof xs)

Here, abs forces the type m in anyof to be the double Cayley represen-
tation over lists. The complexity of the new implementation is linear in the
length of the input list.

6.5. The Double Cayley Representation for Applicatives

We can similarly instantiate the general double Cayley representation

for applicative functors. We have already covered the closed structure (
×⇒)

for the Cartesian functor in the previous section. The closure of the Day
convolution is:

data (
?⇒) f g x = ED {unED :: ∀y . f y → g (x , y)}

34

instance Functor g ⇒ Functor (f
?⇒ g) where

fmap f (ED g) = ED (λy → fmap (λ(a, b)→ (f a, b)) (g y))

b·c? :: (Functor f ,Functor g ,Functor h)⇒
(∀x . (f ? g) x → h x)→ (∀x . f x → (g

?⇒ h) x)
bf c? = λfx → ED (λgy → f (Day (fmap (,) fx) gy))

d·e? :: (Functor f ,Functor g ,Functor h)⇒
(∀x . f x → (g

?⇒ h) x)→ (∀x . (f ? g) x → h x)
df e? = λ(Day ff gy)→ fmap (uncurry ($)) (unED (f ff) gy)

Figure 5: Closure of the Day convolution

The corresponding isomorphism is shown in Figure 5.
Having established the closure of the Day convolution, we define the dou-

ble Cayley representation:

newtype DC f x = DC {unDC :: ((f
×⇒ f)

?⇒ (f
×⇒ f)) x }

See Figure 6 for the supporting code.
The functions rep and abs convert between the double Cayley represen-

tation and the original applicative functor.

rep :: Alternative f ⇒ f a → DC f a
rep x = DC (ED (λg → Exp (λf fx →

unExp g (flip (curry f)) empty ~ x 〈|〉 fx)))

abs :: Alternative f ⇒ DC f a → f a
abs (DC (ED f)) = unExp (f (Exp (λg i → pure (g ()) 〈|〉 i))) fst empty

7. Constructing Near-semirings from Monoids

If an object already has a monoid structure, we may want to reuse it
and add only the missing near-semiring structure. This is not what the free
near-semiring construction of Section 5 does, as it starts from any object and
entirely ignores any associated algebraic structure.

However, there is a well-known approach for monads that accomplishes
the task. This section investigates and generalises that approach.

35

instance Functor f ⇒ Functor (DC f) where
fmap f (DC z) = DC (ED (λfx →

fmap (λ(x , y)→ (f x , y)) (unED z fx)))

instance Functor f ⇒ Applicative (DC f) where
pure v = DC (ED (λf → fmap (λy → (v , y)) f))
(DC (ED h))~ (DC (ED v)) = fmap (uncurry ($))

(DC (ED (λf → fmap (λ(b, (a, y))→ ((a, b), y)) (v (h f)))))

instance Functor f ⇒ Alternative (DC f) where
empty = DC (ED (const (Exp (λh x → x))))
DC f 〈|〉 DC g = DC (ED (λh →

Exp (λj i → unExp (unED f h) j (unExp (unED g h) j i))))

Figure 6: Supporting code for the double Cayley Alternative

7.1. The ListT Monad Transformer

The ListT monad transformer [14] is a construction5 that extends any
monad M to a MonadPlus instance. It can be defined in Haskell as the
following datatype [23, 15, 22]:6

newtype ListT m a = ListT {unListT :: m (Maybe (a, ListT m a))}

If m is a monad, then so is ListT m.

instance Monad m ⇒ Monad (ListT m) where
return x = ListT (return (Just (x ,mzero)))
p >>= k = ListT (do r ← unListT p

case r of
Nothing → return Nothing
Just (x , p ′)→ unListT (mplus (k x) (p ′ >>= k)))

Moreover, we can lift any computation from m to ListT m

instance Trans ListT where
lift p = ListT (p >>= λx → return (Just (x ,mzero)))

5Not to be confused with the type M ◦ [], which is not a proper monad transformer.
6Hinze [8] and Kiselyov et al. [16] present CPS-based variants of this definition.

36

in a way that preserves the monad structure, i.e., lift is a monad morphism
and hence satisfies:

lift (return x) = return x

lift (p >>= k) = lift p >>= lift ◦ k

Finally, the whole point of ListT is to extend the monad m with non-
determinism.

instance Monad m ⇒ MonadPlus (ListT m) where
mzero = ListT (return Nothing)
mplus p q = ListT (do r ← unListT p

case r of
Nothing → unListT q
Just (x , p ′)→ return (Just (x ,mplus p ′ q)))

The transformer comes equipped with a runListT function that sequentialises
all the computations in the underlying monad and returns the list of all
solutions.

runListT :: Monad m ⇒ ListT m a → m [a]
runListT p = do r ← unListT p

case r of
Nothing→ return []
Just (x , p ′)→ runListT p ′ >>= return ◦ (x :)

Generalising ListT. It is not difficult to see that ListT can be written in terms
of the near-semiring building blocks:

ListTM = µX.M ◦ (1 + (Id×X)) (22)

This formula can be used for generalising the list monoid transformer to
other near-semiring instances. We next consider the instance for applicative
functors.

7.2. The ListA Applicative Transformer

Just like we extended monads above to MonadPlus instances, we can ex-
tend applicative functors to Alternative instances by replacing functor com-
position for Day convolution in formula (22): ListA F = µX. F ? (1 + Id×X).

37

This yields an applicative transformer ListA, which in Haskell can be imple-
mented as:

data ListA f a = ∀b. f (b → a)�Maybe (b, ListA f b)

This type turns any applicative functor f into a new applicative functor
ListA f ,

instance Applicative f ⇒ Applicative (ListA f) where
pure x = pure (const x)� Just ((), empty)
(opx �Nothing) ~ ys = fmap uncurry opx �Nothing
(opx � Just (x , xs))~ ys@(opy � ry) = op� r
where

op = ((λf g → either (f x ◦ g) (uncurry f)) 〈$〉 opx)~ opy

r = fmap (λ(y , ys ′)→ (Left y , fmap Left ys ′ 〈|〉
((curry Right 〈$〉 xs)~ ys))) ry

in such a way that the underlying Applicative structure is preserved. Indeed,
if we formulate a new type class ATrans for applicative transformers,

class ATrans t where
alift :: Applicative f ⇒ f a → t f a

such that alift is an Applicative homomorphism, i.e.,

alift (pure x) = pure x

alift (f ~ x) = alift f ~ alift x

then ListA is an instance as follows:

instance ATrans ListA where
alift p = fmap const p� Just ((), empty)

Of course, ListA f is also a non-determinism applicative functor.

instance Applicative f ⇒ Alternative (ListA f) where
empty = pure id�Nothing
(op�Nothing) 〈|〉 (op ′� r) = ((λx y → y) 〈$〉 op ~ op ′)� r
(op� Just (x , xs)) 〈|〉 ys =

fmap (flip either id) op� Just (Left x , fmap Left xs 〈|〉 fmap Right ys)

38

Just like for monads, we can provide a runListA function to interpret the
ListA f structure into f and collect all the solutions in a list.

runListA :: Applicative f ⇒ ListA f a → f [a]
runListA (op�Nothing) = const [] 〈$〉 op
runListA (op� Just (x , xs)) =

(λf xs → map f (x : xs)) 〈$〉 op ~ runListA xs

Note that just like with ListT, ListA does not allow us to skip any preceding
effects before obtaining the ith solution.7

Comparison with the List Alternative. As we saw earlier in Section 4.5, com-
position with the list functor is another way in which we can add non-
determinism to an applicative functor. Moreover, we can also inject f a
values into ([] ◦ f) a in a way that preserves the applicative structure.

instance ATrans ((◦) []) where
alift p = Comp [p]

In addition, we can also run the extended computation to collect all the
results in the underlying applicative functor f .

runL :: Applicative f ⇒ ([] ◦ f) a → f [a]
runL (Comp ps) = foldr (λx xs → ((:) 〈$〉 x)~ xs) (pure []) ps

In a sense this representation offers more flexibility than ListA as we can
skip some solutions without incurring their effects.

dropL :: Applicative f ⇒ Int→ ([] ◦ f) a → f [a]
dropL n (Comp ps) = runL (Comp (drop n ps))

However this flexibility comes at the cost of sometimes repeating earlier ef-
fects. The following example illustrates this behaviour.

> runListA (alift (Const [1])~ (alift (Const [2]) 〈|〉 alift (Const [3])))
Const [1, 2, 3]

7However, unlike ListT, ListA curiously allows us to skip preceding effects when select-
ing the ith effect.

39

> runL (alift (Const [1])~ (alift (Const [2]) 〈|〉 alift (Const [3])))
Const [1, 2, 1, 3]

The latter result is explained by the fact that ~ distributes over 〈|〉 on both
sides for [] ◦ f . Another difference is that empty not only is a left zero, but
also is a right zero of ~; this means that some effects are discarded by [] ◦ f .

> runListA (alift (Const [1])~ empty)
Const [1]
> runL (alift (Const [1])~ empty)
Const []

In summary, neither [] ◦ f nor ListA f is more general than the other, and
the choice of one or the other depends on which behaviour we would like
to obtain. This naturally leads to the question: what is the most general
(i.e., free) construction that transforms a monoid into a near-semiring while
preserving the monoidal structure? We provide an answer in the next section.

8. Near-semirings from Unital Monoids

This section explores another way to construct a near-semiring from a
monoid: the free near-semiring on a monoid. Instead of working in full gener-
ality, we only present the specific construction for monads, as the inspiration
for this work arose from prior work on the coproduct of monads.

Coproduct of Monads. The coproduct of two monads is the most general
monad that supports the operations of both monads. Unfortunately, this
coproduct cannot be defined constructively for all monads, and, even when it
can be, this construction might be difficult to implement in a programming
language. Yet, Uustalu and Ghani [6] have shown how to construct and
implement the coproduct of two monads, if those monads are in the restricted
class of ideal monads. An ideal monad is a monad with a distinguished unit,
which Uustalu and Ghani formalise as a monad (M,µ, η) for which M can
be decomposed as Id + M0 for some functor M0, and µ = [id, inr ◦ µ0] for
some natural transformation µ0 : M0 ◦ (Id + M0) → M0. In this article, we
use a generalisation, which we call unital monads, that allows cancellation
of effects.

40

8.1. Unital Monads

Conceptually, a unital monad is a monad in which it is possible to deter-
mine whether a given element is in the image of return. We characterise a
unital monad (Id+M0, inl, µ) in terms of its M0 endofunctor and a morphism
µ0 : M0 ◦ (Id +M0)→ Id +M0, which makes the following diagram commute.

M0 ◦M0 ◦ (Id +M0)

id◦µ0

��

id◦inr◦id //M0 ◦ (Id +M0) ◦ (Id +M0)

µ0◦id
��

(Id +M0) ◦ (Id +M0)

µ

��
M0 ◦ (Id +M0) µ0

// Id +M0

M0 ◦ Id

id◦inl

OO

M0

inr

OO

where µ = [id, µ0] is the multiplication of the monad induced by M0.
In Haskell, we capture the type Id +M0 in the UM datatype

data UM m0 a = Pure a | Impure (m0 a)

and the µ0 morphism in the Unital type class

class Functor m0 ⇒ Unital m0 where
join0 :: m0 (UM m0 a)→ UM m0 a

These induce a Monad instance.

instance Unital m0 ⇒ Monad (UM m0) where
return x = Pure x
Pure x >>= k = k x
Impure op >>= k = join0 (fmap k op)

Example: The List Monad. The list monad is an example of a unital monad.
This is not immediate in its well-known form [a], but it is exposed in the
isomorphic UM List02 a representation where List02 captures non-singleton
lists, i.e., the non-unit values.

41

data List02 a = Cons0 | Cons2 a a [a]

The isomorphism between UM List02 a and [a] is witnessed by the fol-
lowing two functions.

fromL :: [a]→ UM List02 a
fromL [] = Impure Cons0
fromL [x] = Pure x
fromL (x : y : xs) = Impure (Cons2 x y xs)

toL :: UM List02 a → [a]
toL (Pure x) = [x]
toL (Impure Cons0) = []
toL (Impure (Cons2 x y xs)) = x : y : xs

The Unital instance for List02 is based on the concat operation for lists. We
implement it by using the isomorphism presented.

instance Unital List02 where
join0 Cons0 = fromL []
join0 (Cons2 x y xs) = fromL (concat (toL x : toL y : map toL xs))

The proof that join0 satisfies the necessary laws is routine.

Coproducts of Unital Monads. It is not difficult to see that our notion of
unital monad is a generalisation of the notion of ideal monad introduced by
Uustalu and Ghani [6], and that their coproduct construction can be used
for unital monads. In particular, if R = Id + R0 and S = Id + S0 are two
unital monads, then the carrier of their coproduct is

T = Id + T1 + T2 (23)

where T1 and T2 are defined as the least fixed point of the following equations

T1 ∼= R0 ◦ (Id + T2) T2 ∼= S0 ◦ (Id + T1)

8.2. The Free Near-Semiring

Let us construct a near-semiring over a monad M. In order to equip M
with the MonadPlus operations mplus and mzero, we simply build its coprod-
uct with a monad that provides these operations. Since we want to construct
the smallest such near-semiring, we use the list monad, which, as the free

42

monoid, has no extra operations. Moreover, because we use the coproduct
construction, M has to be unital.

If we take R0 = m0 and S0 = List02, formula (23) explains how to imple-
ment the coproduct of the two unital monads. Its carrier functor is defined
as follows:

data UMForest m0 a = InId a | InT1 (T1 m0 a) | InT2 (T2 m0 a)
data T1 m0 a = T1 (m0 (Either a (T2 m0 a)))
data T2 m0 a = T2 (List02 (Either a (T1 m0 a)))

Because it is constucted as a coproduct of monads, UMForest is a monad;
its implementation can be found in Figure 7. In what follows, we focus on
the MonadPlus instance, which provides the new operations to the monad
UM m0.

The coproduct injection functions let us embed values from two monads
into their coproduct:

liftLeft :: Unital m0 ⇒ UM m0 a → UMForest m0 a
liftLeft (Pure x) = InId x
liftLeft (Impure m0) = InT1 (T1 (fmap Left m0))

liftRight :: Unital m0 ⇒ UM List02 a → UMForest m0 a
liftRight (Pure x) = InId x
liftRight (Impure m0) = InT2 (T2 (fmap Left m0))

With the aid of these functions, we can lift operations from the underlying
monads to the coproduct. In particular, the MonadPlus instance is imple-
mented by lifting the mzero and mplus operations from the list monad:

instance Unital m0 ⇒ MonadPlus (UMForest m0) where
mzero = join (liftRight mzero)
x ‘mplus‘ y = join (liftRight (return x ‘mplus‘ return y))

The UMForest construction is more general than ListT. While the latter
sequentialises all alternatives: we need to perform the effects of the i first
alternatives to reach the ith result, this is not the case for UMForest, which
allows us to skip orthogonal branches and their effects. In fact, UMForest is
the most general construction:

Theorem 8.1 (Free Near-Semiring over a Monad). If UM m0 is a unital
monad, then UMForest m0 is the free near-semiring over UM m0.

43

instance Unital m0 ⇒ Monad (UMForest m0) where
return x = InId x
InId v >>= f = f v
InT1 (T1 v)>>= f = reB1 (join0 (fmap unB1 (fmap p1 v)))
where p1 (Left a) = f a

p1 (Right w) = InT2 w >>= f
unB1 (InId a) = Pure (Left a)
unB1 (InT2 v) = Pure (Right v)
unB1 (InT1 (T1 v)) = Impure v
reB1 (Pure (Left a)) = InId a
reB1 (Pure (Right v)) = InT2 v
reB1 (Impure v) = InT1 (T1 v)

InT2 (T2 v)>>= f = reB2 (join0 (fmap unB2 (fmap p2 v)))
where p2 (Left a) = f a

p2 (Right w) = InT1 w >>= f
unB2 (InId a) = Pure (Left a)
unB2 (InT1 v) = Pure (Right v)
unB2 (InT2 (T2 v)) = Impure v
reB2 (Pure (Left a)) = InId a
reB2 (Pure (Right v)) = InT1 v
reB2 (Impure v) = InT2 (T2 v)

Figure 7: Coproduct of a unital monad and the list monad

44

9. Applications

We illustrate the constructions presented in the previous sections on a
number of examples. The free structure is a highly convenient way to extend
arbitrary semi-rings with additional capabilities. We show this on two exam-
ples: combinatorial search and parsers. The double Cayley representation is
complementary: it makes building the free structure efficient.

9.1. Advanced Combinatorial Search

Bunches. Spivey proposed an algebraic structure, called a bunch, for express-
ing combinatorial search strategies such as depth-first (DFS) and breadth-
first (BFS) search [28]. Bunches are in fact a non-determinism monad with
one additional operation:

class MonadPlus m ⇒ Bunch m where
wrap :: m a → m a

In addition to the axioms of a non-determinism monad, bunches also satisfy
the following axiom relating (>>=) and wrap:

wrap m >>= k = wrap (m >>= k)

This requirement is automatically fulfilled if we instead require an oper-
ation wrap′ :: a → m a, and define wrap m = wrap′ m >>= id.

Spivey introduces the initial Bunch algebra in the form of the Forest
datatype:

type Forest a = [Tree a]
data Tree a = Leaf a | Fork (Forest a)

This is nothing more than the free non-determinism monad on the identity
functor, i.e. Forest a is isomorphic to Free◦ Identity a where the identity
functor is

newtype Identity a = Id {runId :: a }

The wrap operator for this type is expressed as follows.

wrap :: Forest a → Forest a
wrap xf = [Fork xf]

45

In terms of Free◦ Identity this operator is expressed as:

wrap :: Free◦ Identity a → Free◦ Identity a
wrap xf = Free◦ [Con◦ (Id xf)]

The unique morphism from Forest a to any other Bunch, such as DFS or
BFS, is given as follows.

search :: Bunch m ⇒ Forest a → m a
search ts = msum (map go ts)
where go (Leaf x) = return x

go (Fork ts) = wrap (search ts)

Equivalently, using the representation in terms of the free non-determinism
monad we can define search as:

search :: Bunch m ⇒ Free◦ Identity a → m a
search = univ (wrap ◦ return ◦ runId)

Heuristic Search. The free structure is a great way to generically extend
existing search strategies with pruning search heuristics. Such heuristics are
commonly used in the case of large search spaces whose entire exploration is
either infeasible or impractical. They remove parts of the search space that
are less likely to yield (interesting) solutions and where otherwise the search
would dwell too long.

One of the best known heuristics is depth-bounded search which bounds
the search tree to a certain depth, pruning everything underneath.

dbs :: Functor f ⇒ Int→ Forest a → Forest a
dbs 0 = mzero
dbs n ts = map go ts
where go (Leaf a) = Leaf a

go (Fork f) = Fork (dbs (n − 1) f)

By means of search ◦ dbs n we can combine this heuristic with any search
strategy.

46

Double Cayley Speed-Up. In order to evaluate the impact of the double Cay-
ley representation, we consider the following extreme benchmark.

bench :: Int→ Int
bench n = solutionCount (forest n)

forest :: Int→ Forest ()
forest 0 = return ()
forest n = (forest (n − 1)>>= wrap′) ‘mplus‘ wrap′ ()

solutionCount :: Forest ()→ Int
solutionCount f = sum (map go f)
where go (Leaf) = 1

go (Fork f) = solutionCount f

Note that forest generates the ideal situation for the double Cayley represen-
tation: alternating left-nested occurrences of >>= and mplus.

We ran the benchmark for different problem sizes using Forest both di-
rectly and indirectly through the double Cayley representation. All runs took
place in the Criterion benchmarking harness using GHC 7.8.2 on a 3 GHz
Intel Core i3 processor, 16 GB RAM and Ubuntu 14.04. All values are in
milliseconds.

Size Forest DC Forest

64 2 1

128 38 7

256 480 35

512 5,491 150

1,024 51,590 572

2,048 T/O 2,580

The double Cayley representation clearly provides a tremendous improve-
ment over the basic free construction in terms of absolute runtimes. More-
over, the former seems to exhibit a cubic time complexity, while the latter
seems to have the expected quadratic complexity that corresponds to the size
of the generated forest.

47

9.2. Interleaving Alternative Parsers

Swierstra and Dijkstra [31] show how to extend Alternative parser combi-
nators with a new combinator (〈||〉) to interleave two given parsers. For ex-
ample, suppose we have a parser digits for digit sequences and another parser
letters for letter sequences. Then the interleaved parser (digits 〈||〉 letters)
accepts strings like "a1b45cda19" and produces the result ("abcda", 14519).

Instead of defining the new combinator directly for the given Alternative
parser type P, Swierstra and Dijkstra define it for a new parser type Gram P.
This type Gram P is almost, but not quite the free non-determinism applica-
tive functor. In particular, it does not respect the left distributive law set
out in this paper. Moreover, while Swierstra and Dijkstra manage to avoid
duplicating results, their approach does drop results. For instance,

(pure ’a’ 〈|〉 pure ’b’) 〈||〉 pure 1

only yields the result (’a’, 1) and drops the result (’b’, 1).
Our free non-determinism applicative functor provides a cleaner slate for

interleaved parsers. As a consequence, our solution neither duplicates nor
drops results. Moreover, we obtain a solution that is not parser-specific, but
works for any Alternative instance.

The interleaving operator 〈||〉 is defined as follows:

(〈||〉) :: Functor f ⇒ Free? f a → Free? f b → Free? f (a, b)
ga 〈||〉 gb = Free? [fa ‘fwdby‘ gb | fa ← fas]

〈|〉 (swap 〈$〉 Free? [fb ‘fwdby‘ ga | fb ← fbs])
〈|〉 Free? [Pure? (a, b) | a ← as , b ← bs]

where swap (a, b) = (b, a)
(as , fas) = split ga
(bs , fbs) = split gb

At the sequential FFree?-level, it considers three different scenarios:

1. Computation ga goes first, i.e. performs its first primitive action, and
then the remainder is interleaved recursively.

2. Dually, computation gb goes first.

3. Finally, in the base case both computations have no more action to
perform and terminate with a result.

48

These three scenarios are lifted to the non-deterministic Free?-level in the
obvious way, and the auxiliary function split separates the base cases from
the recursive cases.

split :: Free? f a → ([a], [FFree? f a])
split (Free? l) = ([a | Pure? a ← l], [f | f @(Con? p r)← l])

The key to the first two scenarios is to decompose a computation into its
first primitive action p and the remainder r . This decomposition comes for
free in the Con? p r constructor of the free Alternative.

fwdby :: Functor f ⇒ FFree? f a → Free? f b → FFree? f (a, b)
(Con? pa ra) ‘fwdby‘ fbs = Con? (fmap first pa) (ra 〈||〉 fbs)

where first f (c, b) = (f c, b)

Finally, using the injection inj::Parser[] a → Free? Parser[] a, we can embed
Parser[] into the free construction, and afterwards recover it with the help of
univ id :: Free? Parser[] a → Parser[] a.

10. Related Work

10.1. Codensity Monad and Cayley Representation

Cayley representations appear under different guises in the literature.
Hughes uses it to optimise list concatenation [11] and Voigtländer [33] uses
the codensity monad transformer to optimise monadic computations. Rivas
and Jaskelioff [25] show that these two optimisations are instances of the
Cayley representation for monoids in a generalised setting, and extend it to
applicative functors. Our work extends this representation to include the
additional operators present in non-deterministic computations by moving
from generalised monoids to generalised near-semirings.

10.2. Representation of Near-semirings

Statman [30] provides a connection between lambda calculus and the
algebra of near-semirings. He introduces a generalisation of Hoogewijs’ rep-
resentation [9] on which we base our double Cayley representation. Krishna
and Chatterjee [17] study the representation of near-semirings in categories,
but they only consider Cartesian structures and thus exclude monads and
applicative functors.

49

10.3. Backtracking Monad Transformers

Hinze [8] is the first to derive a (continuation-passing) implementation
of the backtracking monad transformer, which is equivalent to the ListT
transformer we have mentioned.

Pirog [22] characterises backtracking monad transformers by extending
the Eilenberg-Moore algebras of a monad with a monoid structure. This is
akin to our taking the monad coproduct with lists.

Uustalu [32] considers different notions of non-determinism by extending
the algebras of a monad with different algebraic structures. In the case
where one extends them with monoids one obtains the notion of near-semiring
category that we use in this article. Uustalu does not study the constructions
that we provide in this article except for initiality, which is a particular case
of our free construction.

Van der Ploeg and Kiselyov [23] provide a technique for improving theo-
retical running times of different constructions that handle reflection, includ-
ing the backtracking monad transformer. While theoretically good, their
implementation has big constant factors, and our optimisation achieves bet-
ter running times (as long as reflection is only needed at the end of the
computation).

Jaskelioff and Rivas [15] present a simple technique for obtaining efficient
implementations of non-determinism monads and non-determinism applica-
tive functors. The technique provides an alternative to the Double-Cayley
representation and has the advantage of allowing reflection, but the near-
semiring laws only hold observationally.

10.4. Free Alternatives

Capriotti and Kaposi [4] study the free Applicative construction, but do
not present an approach for the free Alternative.

Kmett’s free8 package does contain a definition of the free Alternative
construction that is, implicitly, based on the right-biased definition of the
Day convolution:

data (?′) f g a = ∀b.Day′ (f b) (g (b → a))

Postan, Rivas, and Jaskelioff [24] study a variant of non-determinism
based on dioids, where left catch is required to hold, instead of the left

8http://hackage.haskell.org/package/free

50

http://hackage.haskell.org/package/free

distribution of near-semirings. They construct the free alternative for this
particular notion of non-determinism.

10.5. Coproducts of Monad

We have used coproduct of monads to construct the free near-semiring
over a monad. Lüth and Ghani [18] show how to form the coproduct of two
layered monads (i.e., monads for which η has a partial left inverse), although
their data-type representation is not exact. Uustalu and Ghani [6] improve
this result with an exact formula for the restricted class of ideal monads.
Recently, Adámek et al. [1] have used this formula to form the coproduct of
consistent monads (Set monads for which ηX is injective). However, their
result depends on set theoretical arguments, which restricts its applicability
to Set functors. Our unital monads are more general than ideal monads,
and work for any category. However, when working in Set, they are a strict
subclass of consistent monads.

10.6. Applications

Search Heuristics. Schrijvers et al. [27] construct a free monad transformer
for the non-deterministic choice operator in order to expose the search tree
structure and apply pruning heuristics. After pruning, the resulting search
tree is reflected back into the underlying non-determinism monad. Their
work differs from ours in that they do not enforce any of the non-determinism
axioms, in fact, they deliberately wish to observe the original syntactic struc-
ture.

Interleaved Parsers. Swierstra and Dijkstra [31] have proposed their inter-
leaving combinator as a generalisation of earlier combinators for permuta-
tions [2] and merged lists. Brown [3] provides a transformer for interleaving
Alternatives that are also Monads. His approach provides both more features
(e.g., early termination) and fewer (e.g., the transformed Alternative is only
Applicative).

11. Conclusions

This paper has introduced a generalised notion of near-semirings, and de-
fined the free near-semiring and the novel double Cayley construction gener-
ically. By imposing a near-semiring structure on the instances of MonadPlus

51

and Alternative, we have then obtained these useful constructions by instan-
tiation of the general definition.

We have taken advantage of the unified view and translated the well-
known ListT monad transformer, to obtain an applicative functor trans-
former, and shown that this transformer is useful even though applicative
functors are closed under composition and hence one can obtain another
transformer by composing with the list applicative functor. Moreover, we
have characterised the most general way in which one can extend a unital
monad to a non-determinism monad, by constructing the free non-determinism
monad over a monad.

We have shown how the free construction provides a clean slate for ap-
plying search heuristics to non-determinism monads and for interleaving ap-
plicative parsers. Moreover, our experimental evaluation witnesses the time
complexity improvement brought by the double Cayley construction.

Not all MonadPlus and Alternative instances proposed in the literature or
found “in the wild” are near-semirings. It would be interesting to investigate
what algebraic structures underpin them. In particular, MonadPlus instances
satisfying the left-catch axiom could be related to dioids, and their categorical
generalisation [7].

This article shows some of the advantages of a unified view of monads and
applicative functors as monoids, and of non-determinism monads and non-
determinism applicative functors as near-semirings. Arrows [10] can also be
seen as monoids [13, 25], so it is natural to ask if one can also obtain a non-
determinism arrow by adding some equations to ArrowPlus. This seems to
be the case, but obtaining the corresponding free construction and double-
Cayley representation requires care as the closure of the corresponding tensor
is not obvious.

Acknowledgements

This work has been partially funded by the Flemish Fund for Scientific
Research (FWO) and the KU Leuven Latin America Fund.

References

[1] Adámek, J., Milius, S., Bowler, N., Levy, P. B., 2012. Coproducts of
Monads on Set. In: Proceedings of the 2012 27th Annual IEEE/ACM
Symposium on Logic in Computer Science. LICS ’12. IEEE Computer
Society, Washington, DC, USA, pp. 45–54.

52

[2] Baars, A. I., Löh, A., Swierstra, S. D., Nov. 2004. Parsing permutation
phrases. J. Funct. Program. 14 (6), 635–646.

[3] Brown, N., Jan. 2011. The InterleaveT Abstraction: Alternative with
Flexible Ordering. The Monad.Reader 17, 13–33.

[4] Capriotti, P., Kaposi, A., 2014. Free applicative functors. In: Proceed-
ings 5th Workshop on Mathematically Structured Functional Program-
ming. MSFP 2014, Grenoble, France, 12 April 2014. pp. 2–30.

[5] Day, B., Feb. 1973. Note on monoidal localisation. Bulletin of the Aus-
tralian Mathematical Society 8, 1–16.

[6] Ghani, N., Uustalu, T., Oct. 2004. Coproducts of Ideal Monads. Theoret.
Informatics Appl. 38 (4), 321–342.

[7] Grandis, M., 1993. Cubical monads and their symmetries. Rendiconti
dell’Istituto di Matematica dell’Universitá di Trieste 25, 223–261.

[8] Hinze, R., Sep. 2000. Deriving Backtracking Monad Transformers. SIG-
PLAN Not. 35 (9), 186–197.

[9] Hoogewijs, A., 1970. Semi-Nearring Embeddings. Mededelingen van de
Koninklijke Academie voor Wetenschappen, Letteren en Schone Kun-
sten van België, Klasse der Wetenschappen. Paleis der Academiën.

[10] Hughes, J., 5 2000. Generalising monads to arrows. Science of Computer
Programming 37 (1-3), 67–111.

[11] Hughes, R. J. M., Mar. 1986. A novel representation of lists and its
application to the function “reverse”. Inf. Process. Lett. 22 (3), 141–
144.

[12] Hutton, G., Meijer, E., Jul. 1998. Monadic parsing in haskell. J. Funct.
Program. 8 (4), 437–444.

[13] Jacobs, B., Heunen, C., Hasuo, I., 2009. Categorical semantics for ar-
rows. J. Funct. Program. 19 (3-4), 403–438.

[14] Jaskelioff, M., 2009. Lifting of operations in modular monadic semantics.
Ph.D. thesis, University of Nottingham.

53

[15] Jaskelioff, M., Rivas, E., 2015. Functional pearl: A smart view on
datatypes. In: Fisher, K., Reppy, J. H. (Eds.), Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming.
ICFP ’15. pp. 355–361.

[16] Kiselyov, O., Shan, C.-c., Friedman, D. P., Sabry, A., 2005. Back-
tracking, interleaving, and terminating monad transformers: (functional
pearl). In: Proceedings of the Tenth ACM SIGPLAN International Con-
ference on Functional Programming. ICFP ’05. ACM, New York, NY,
USA, pp. 192–203.

[17] Krishna, K. V., Chatterjee, N., Sep. 2007. Representation of near-
semirings and approximation of their categories. Southeast Asian Bul-
letin of Mathematics 31, 903 – 914.

[18] Lüth, C., Ghani, N., 2002. Composing monads using coproducts. In:
Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming. ICFP ’02. ACM, New York, NY, USA, pp.
133–144.

[19] Mac Lane, S., 1971. Categories for the Working Mathematician. No. 5 in
Graduate Texts in Mathematics. Springer-Verlag, second edition, 1998.

[20] McBride, C., Paterson, R., Jan. 2008. Applicative programming with
effects. J. Funct. Program. 18 (1), 1–13.

[21] Moggi, E., Jul. 1991. Notions of computation and monads. Inf. Comput.
93 (1), 55–92.

[22] Piróg, M., 2016. Eilenberg-Moore Monoids and Backtracking Monad
Transformers. In: Atkey, R., Krishnaswami, N. (Eds.), Proceedings
6th Workshop on Mathematically Structured Functional Programming,
Eindhoven, Netherlands, 8th April 2016. Vol. 207 of Electronic Proceed-
ings in Theoretical Computer Science. Open Publishing Association, pp.
23–56.

[23] Ploeg, A. v. d., Kiselyov, O., 2014. Reflection without remorse: Reveal-
ing a hidden sequence to speed up monadic reflection. In: Proceedings
of the 2014 ACM SIGPLAN Symposium on Haskell. Haskell ’14. ACM,
New York, NY, USA, pp. 133–144.

54

[24] Postan, E., Rivas, E., Jaskelioff, M., 2017. Dioids for computational
effects. In: Proceedings of Simposio Latinoamericano de Teoŕıa Com-
putacional, Conferencia Latinoamericana de Informática (XLIII CLEI),
Córdoba, Argentina, September 2017.

[25] Rivas, E., Jaskelioff, M., 2017. Notions of Computation as Monoids. J.
Funct. Program. Accepted for publication.

[26] Rivas, E., Jaskelioff, M., Schrijvers, T., 2015. From monoids to near-
semirings: The essence of MonadPlus and Alternative. In: Falaschi, M.,
Albert, E. (Eds.), Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming. PPDP’15. ACM,
pp. 196–207.

[27] Schrijvers, T., Wu, N., Desouter, B., Demoen, B., 2014. Heuristics En-
twined with Handlers Combined: From Functional Specification to Logic
Programming Implementation. In: Proceedings of the 16th International
Symposium on Principles and Practice of Declarative Programming.
PPDP ’14. ACM, New York, NY, USA, pp. 259–270.

[28] Spivey, J. M., Jul. 2009. Algebras for combinatorial search. J. Funct.
Program. 19 (3-4), 469–487.

[29] Spivey, M., Nov. 2012. When Maybe is not good enough. J. Funct.
Program. 22 (6), 747–756.

[30] Statman, R., 2014. Near Semi-rings and Lambda Calculus. In: Dowek,
G. (Ed.), Rewriting and Typed Lambda Calculi. Vol. 8560 of LNCS.
Springer International Publishing, pp. 410–424.

[31] Swierstra, D., Dijkstra, A., 2013. Parse Your Options. In: Achten, P.,
Koopman, P. (Eds.), The Beauty of Functional Code. Vol. 8106 of LNCS.
Springer Berlin Heidelberg, pp. 234–249.

[32] Uustalu, T., Aug. 2016. A divertimento on MonadPlus and nondeter-
minism. J. of Log. and Algebr. Methods in Program 85 (5, Part 2),
1086–1094, articles dedicated to Prof. J. N. Oliveira on the occasion of
his 60th birthday.

[33] Voigtländer, J., 2008. Asymptotic improvement of computations over
free monads. In: Proceedings of the 9th International Conference

55

on Mathematics of Program Construction. MPC ’08. Springer-Verlag,
Berlin, Heidelberg, pp. 388–403.

56

	Introduction
	Connecting Monads and Applicative Functors
	Monoidal and Near-Semiring Categories
	Background: Monoids and Near-Semirings
	Background: Monoidal Categories
	Near-Semiring Categories

	Examples of Non-determinism Structures
	Non-Determinism Applicatives From Non-Determinism Monads
	Non-Determinism From Lists
	The Case of Maybe
	Parsers
	Composition of Alternative and Applicative

	Free Constructions
	Free Monoids
	Free Near-Semirings
	Free Near-semiring on a Near-semiring Category
	The Free Non-Determinism Monad
	The Free Non-determinism Applicative Functor

	Cayley Representations
	Cayley Representation of a monoid
	Cayley Representation of Near-semirings
	Double Cayley Representation in a Near-semiring Category
	Double Cayley Representation for Monads
	The Double Cayley Representation for Applicatives

	Constructing Near-semirings from Monoids
	The ListT Monad Transformer
	The ListA Applicative Transformer

	Near-semirings from Unital Monoids
	Unital Monads
	The Free Near-Semiring

	Applications
	Advanced Combinatorial Search
	Interleaving Alternative Parsers

	Related Work
	Codensity Monad and Cayley Representation
	Representation of Near-semirings
	Backtracking Monad Transformers
	Free Alternatives
	Coproducts of Monad
	Applications

	Conclusions

