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Abstract
It is well-known that monads are monoids in the category of endo-
functors, and in fact so are applicative functors. Unfortunately,
the benefits of this unified view are lost when the additional non-
determinism structure of MonadPlus or Alternative is required.

This article recovers the essence of these two type classes by
extending monoids to near-semirings with both additive and multi-
plicative structure. This unified algebraic view enables us to gener-
ically define the free construction as well as a novel double Cayley
representation that optimises both left-nested sums and left-nested
products.

Keywords monoid, near-semiring, monad, monadplus, applica-
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1. Introduction
The monad interface provides a basic structure for computations:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

where the operations return, for injecting values, and >>=, for se-
quentially composing computations, are subject to the three monad
laws. Study of this structure has led to many insights and applica-
tions. Two of these are especially notable:

1. The free instance of the monad interface, the free monad, has
many applications in defining new monads and extending the
capabilities of existing ones, e.g., in the form of algebraic effect
handlers [16].

data Free f a = Return x | Op (f (Free f a))

instance Functor f ⇒ Monad (Free f ) where
return x = Return x
Return x >>= f = f x
Op op >>= f = Op (fmap (>>=f ) op)
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2. The codensity transformation CodT m provides a continuation-
based representation for a monad m .

newtype CodT m a = CodT (∀x .(a → m x )→ m x )

rep :: Monad m ⇒ m a → CodT m a
rep v = CodT (v>>=)

abs :: Monad m ⇒ CodT m a → m a
abs (CodT c) = c return

Since CodT m is a representation for m , we can lift m-
computations to CodT m , compute in that monad, and when
we are finished go back to m using abs. This change of repre-
sentation is useful because it turns left-nested binds into right-
nested binds [10, 22]. This is very convenient for monads (like
the free monad) where left-nested binds are costly and right-
nested binds are cheap.

instance Monad (CodT m) where
return x = CodT (λk → k x )
CodT c >>= f = CodT (λk → c (λa →

let CodT g = f a in g k))

Both results can be derived by viewing a monad as a monoid in
a monoidal category. The free monad is just the free monoid in
that category and the codensity transformation arises as the Cayley
representation of that monoid [17]. Moreover, useful generality is
gained by this approach, as not only monads are monoids, but also
applicative functors and arrows.

While the monad interface is well understood and comes
with many useful results, it is also very limiting. When dealing
with specific computations, we always require additional opera-
tions. A prominent example is non-determinism that occurs, e.g.,
in logic programming languages and parser combinators. Non-
deterministic computations involve two additional operations: a
failing computation (mzero) and a non-deterministic choice be-
tween two computations (mplus). These additional operations are
captured in Haskell by the MonadPlus type class:

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

This type class comes with five additional laws that govern the
interaction between the operations.

It is not difficult to see that the above two constructions for the
Monad interface do not work for the MonadPlus interface. Firstly,
the free monad has no provision for the two additional operations
of MonadPlus and the five additional laws.



Secondly, the codensity construction does not optimise left-
nested uses of mplus. Consider for instance, the following program
due to Fischer [5]:

anyof :: MonadPlus m ⇒ [a ]→ m a
anyof [ ] = mzero
anyof (x : xs) = anyof xs ‘mplus‘ return x

If we instantiate m with the list monad, whose MonadPlus instance
is defined as follows

instance MonadPlus [ ] where
mzero = [ ]
mplus = (++)

we obtain the naive-reverse program, which has a quadratic running
time.

Let us now consider what happens if we use CodT [ ] instead.
While there is no established CodT instance for MonadPlus, we
can easily provide one1 in terms of the underlying operations:

instance MonadPlus m ⇒ MonadPlus (CodT m) where
mzero = CodT (λk → mzero)
CodT p ‘mplus‘ CodT q = CodT (λk → p k ‘mplus‘ q k)

However, there is no improvement by running the computation
on CodT [ ]. The problem is that CodT [ ] just delegates the
MonadPlus operations to the underlying instance. This obviously
does not improve the running time.

This paper provides a new algebraic understanding of the oper-
ations of the MonadPlus type class, one that enables us to derive
both the free structure and an optimised Cayley-like representation.
As we have argued, the monoid view is insufficient for this pur-
pose; we require a richer algebraic structure that augments monoids
with additional operations. This algebraic structure is that of a near-
semiring.

Specifically, our contributions are as follows:

• We present a generalised form of near-semirings (Section 3),
and provide generic definitions for its free construction and a
novel double Cayley representation.

• We establish that both MonadPlus (Section 4) and Alternative
(Section 5) are instances of this generalised notion, and we
specialise the constructions for both cases.

• We demonstrate the use of the constructions on two examples:
combinatorial search and interleaving parsers (Section 6).

There is quite a bit of related work; this is discussed in Section 7.

2. Monoids and Near-Semirings
In this section we introduce ordinary monoids and near-semirings.
That is, we present monoids and near-semirings over sets.

2.1 Background: Monoids
A monoid (M,⊗, e) is a triple consisting of a set M , together with
an operation ⊗ : M ×M → M and an element e ∈ M such that
the following axioms hold for all a, b, and c ∈M :

a⊗ e = a (1)
e⊗ a = a (2)

a⊗ (b⊗ c) = (a⊗ b)⊗ c (3)

The operation ⊗ is called the multiplication of the monoid, while
the element e is called the unit. We usually refer to a monoid
(M,⊗M , eM ) simply by its carrier set M .

1 The instance is derived using the MonadPlus laws and abs/rep.

Using type classes, we can describe monoids in Haskell as
follows:

class Monoid m where
mempty :: m
mappend :: m → m → m

Here, mempty is the unit element and mappend is the multi-
plication. Instances of this class are required to satisfy the monoid
laws. However, these are not enforced by Haskell, and it is left to
the programmer to verify them.

There are two important constructions that are important for this
paper: free monoids and the Cayley representation for monoids.

Free Monoids The notion of free monoid is defined in terms of
monoid homomorphisms. A monoid homomorphism is a function
from one monoid to another that preserves the monoid structure.

Definition 2.1. A monoid homomorphism from a monoid (M,⊗M ,
eM ) to a monoid (N,⊗N , eN ) is a function f : M → N such that
f(eM ) = eN and f(m⊗M m′) = f(m)⊗N f(m′).

Now we can define the notion of free monoid.

Definition 2.2. The free monoid over a set X is a monoid
(X∗,⊗∗, e∗) together with a function inj : X → X∗ such that
for every monoid (M,⊗M , eM ) and function h : X → M , there
exists a unique monoid homomorphism h : X∗ → M such that
h ◦ inj = h.

A concrete representation for the free monoid over a set X are
lists with elements of that set; concatenation is its multiplication
and the empty list is its unit.

The free monoid construction extends to a functor. That is, for
every function f : X → Y , we define the monoid homomorphism
f∗ : X∗ → Y ∗ as f∗ = inj ◦ f .

For every monoid (M,⊗M , eM ), the monoid morphism

idM : M∗ →M

behaves as an evaluation algebra in the following sense: M∗ rep-
resents the syntax of programs constructed from the monoid opera-
tions and elements of M . The algebra idM simply gives semantics
to these programs by replacing the syntactic operations inM∗ with
the corresponding monoid operations in M .

Monoid Representation A representation for a given monoid
(M,⊗M , eM ) is a monoid (R(M),⊗R(M), eR(M)), together with
functions rep : M → R(M) and abs : R(M)→ M such that the
following diagram commutes.

M∗
rep∗ //

idM

��

R(M)∗

idR(M)

��
M R(M)

abs
oo

Intuitively, the diagram states that running a monoid program on
M is the same as first interpreting it as a monoid program on the
representation R(M), running it there, and then abstracting the
result back into M .

Cayley Representation The Cayley representation of a monoid
is an efficient representation of that monoid with a constant time
multiplication.

The monoid of endomorphisms over a set X is (X → X, ◦, id),
where ◦ is function composition and id is the identity function. Ev-
ery monoid has an embedding into the monoid of endomorphisms
over its carrier set, a result usually known as Cayley’s theorem for
monoids [17].



Theorem 2.3 (Cayley for (Set) monoids). Every monoid (M,⊗, e)
embeds into the monoid of endomorphisms over the set M , namely
(M →M, ◦, id). The embedding is given by the monoid morphism
rep : M → (M →M) and function abs : (M →M)→M

rep(a) = λb. a⊗ b
abs(f) = f(e)

with the property that abs ◦ rep = id.

A simple consequence of this theorem is the following

Corollary 2.4. The monoid of endomorphisms (M →M, ◦, id) is
a representation of the monoid (M,⊗, e), with rep and abs as in
the theorem above.

Proof. Because rep is a monoid homomorphism the following dia-
gram commutes.

M∗
rep∗ //

idM

��

(M →M)∗

idM→M

��
M

rep
// M →M

Since abs ◦ rep = id, we conclude that M → M is a monoid
representation for M .

2.2 Near-Semirings
When two monoids align in a particular way, they form a near-
semiring, the central structure in this paper. Formally, a near-
semiring is defined as a quintuple2 (M,⊗, e,⊕, z) where both
(M,⊗, e) and (M,⊕, z) are monoids for the same set M ; more-
over, the following laws relate both structures:

z⊗ a = z (4)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) (5)

Here⊗ is the multiplication of the near-semiring,⊕ is the addition,
e is the unit, and z is the zero.

The following Haskell type class models near-semirings, in the
same way as the Monoid type class models monoids.

class Nearsemiring a where
(⊗) :: a → a → a
one :: a
(⊕) :: a → a → a
zero :: a

Every instance of Nearsemiring is expected to satisfy the near-
semiring axioms.

In Section 2.1, we presented two constructions for monoids:
the free monoid and the Cayley representation of a monoid. It is
natural to ask whether these two constructions carry over to near-
semirings. The answer is yes!

Free Construction We define near-semiring homomorphisms in
the same way as monoid homomorphisms.

Definition 2.5. A near-semiring homomorphism from a given
near-semiring (M,⊗M , eM ,⊕M , zM ) to some near-semiring

2 In the literature, sometimes the unit is not required: (M,⊗) is expected
only to be a semigroup. In this article we consider only near-semirings with
unit, and call them simply near-semirings.

(N,⊗N , eN ,⊕N , zN ) is a function f : M → N such that:

f(m⊗M n) = f(m)⊗N f(n)

f(eM ) = eN

f(m⊕M n) = f(m)⊕N f(n)

f(zM ) = zN

Now we can define the free near-semiring over a set A.

Definition 2.6. The free near-semiring over a set A is a near-
semiring A∗ together with a map inj : A → A∗ satisfying that
for every near-semiring (N,⊕, e,⊗, z) and function h : A → N ,
there exists a unique near-semiring homomorphism h : A∗ → N
such that h ◦ inj = h.

Diagrammatically, we have the following commuting diagram:

A
inj //

h   

A∗

h

��
N

Just like lists are a concrete representation for free monoids,
forests are a concrete representation for free near-semirings.

data Forest a = Forest [Tree a ]
data Tree a = Leaf | Node a (Forest a)

instance Nearsemiring (Forest a) where
zero = Forest [ ]
one = Forest [Leaf ]
(Forest xs)⊕ (Forest ys) = Forest (xs ++ ys)
(Forest xs)⊗ (Forest ys) = Forest (concatMap g xs)

where g Leaf = ys
g (Node a n) =

[Node a (n ⊗ (Forest ys))]

The addition⊕ combines the trees of two forests and has the empty
forest as neutral element. The multiplication ⊗ substitutes all the
leaves in one forest by the other forest; its neutral element is a forest
that consists of a single leaf.

The inclusion of generators inj and the universal morphism univ
are defined as follows:

inj :: a → Forest a
inj a = Forest [Node a one]

univ :: Nearsemiring n ⇒ (a → n)→ Forest a → n
univ h (Forest xs) = foldr (⊕) zero (map univT xs)

where univT Leaf = one
univT (Node a ts) = h a ⊗ univ h ts

Just like the free monoid, the free near-semiring also extends to
a functor: given a function f : X → Y we define the near-semiring
homomorphism f∗ : X∗ → Y ∗ as f∗ = inj ◦ f . Also analogous
to the monoid case, we have an evaluation algebra idN : N∗ → N
for every near-semiring N .

Near-semiring Representation We define a representation of a
near-semiring N as a near-semiring R(N), together with functions
rep : N → R(N) and abs : R(N) → N such that the following
diagram commutes.

N∗
rep∗ //

idN

��

R(N)∗

idR(N)

��
N R(N)

abs
oo



Intuitively, the diagram states that running a near-semiring program
on N is the same as first interpreting it as a near-semiring program
on the representation R(N), running it there, and then abstracting
the result back into N .

Double Cayley Representation The double Cayley representa-
tion is obtained by applying the Cayley representation for monoids
twice, first for the additive monoid structure and then for the mul-
tiplicative monoid structure. However, if we do this naively, we do
not get a good representation: we want to represent a near-semiring,
and therefore the whole near-semiring structure must be taken into
account and not just one chosen monoid structure.

If we take a near-semiring (N,⊗, e,⊕, z) and apply Cayley for
monoids on the monoid (N,⊕, z), we obtain the monoid (N →
N, ◦, id) with representation and abstraction functions

rep⊕(x) = λy. x⊕ y
abs⊕(f) = f z

where abs⊕ ◦ rep⊕ = id holds.
However, it is not clear how to extend this monoid to a near-

semiring. For instance, using a point-wise product does not yield a
near-semiring.

A solution to this problem is to restrict the representation to
the image of rep⊕, where the representation is exact. That is, N is
isomorphic to the image of rep⊕, as it is not difficult to see that if
x = rep⊕(a) for some a ∈ N , then

rep⊕(abs⊕(x)) = rep⊕(abs⊕(rep⊕(a))) = rep⊕(a) = x

We define the set N •→ N as the functions in the image of rep⊕.
That is, the set N •→N is the set of functions h such that

h y = abs⊕(h)⊕ y = h z⊕ y.
It is easy to extend the monoid (N •→N, ◦, id) to a near-semiring
because we can use the isomorphism between N •→ N and N in
order to reuse the multiplicative structure ofN . We obtain the near-
semiring (N •→N,⊗′, e′, ◦, id) where

e′ = rep⊕(e) = λy. e⊕ y
f ⊗′ g = rep⊕(abs⊕(f)⊗ abs⊕(g)) = λy. f z⊗ g z⊕ y
Now rep⊕ is a near-semiring homomorphism, and therefore we

have a representation that accounts for the additive structure while
preserving the multiplicative structure.

Next, we apply Cayley again, but this time over the multiplica-
tive structure: we take the near-semiring (N •→ N,⊗′, e′, ◦, id),
apply Cayley for monoids on the monoid (N •→N,⊗′, e′), and ob-
tain the monoid ((N •→N)→ (N •→N), ◦, id) with representation
and abstraction functions

rep⊗(f) = λg. f ⊗′ g = λg y. f z⊗ g z⊕ y
abs⊗(f) = f e′ = f (λy. e⊕ y)

where abs⊗ ◦ rep⊗ = id holds. The extension of the obtained
monoid to a near-semiring is simple in this case as the sum and
zero can be defined point-wise. We arrive at the near-semiring
((N •→N)→ (N •→N), ◦, id,⊕′, z′) where

z′ = λx. id

f ⊕′ g = λx. f x ◦ g x
and the representation and abstraction functions are:

rep(x) = rep⊗(rep⊕(x)) = λh y. x⊗ h(z)⊕ y
abs(f) = abs⊗(abs⊕(f)) = f (λx. e⊕ x)(z)

Unfortunately, the type (N •→ N) → (N •→ N) is not usu-
ally available in programming languages due to the side condi-
tions on the type constructor •→. One has to compromise and use

the type DC(N) = (N → N) → (N → N), for which
we obtain the semiring of endomorphisms over endomorphisms
(DC(N), ◦, id,⊕′, z′) as in the following Haskell implementation:

type DC n = (n → n)→ (n → n)

instance Monoid n ⇒ Nearsemiring (DC n) where
f ⊗ g = f ◦ g
one = id
f ⊕ g = λh → f h ◦ g h
zero = const id

Note that rep is not a near-semiring homomorphism from N into
DC(N) as it does not preserve the unit:

rep(e) = λh y. h(z)⊕ y 6= λh y. h(y) = e.

Nevertheless, the semiring of endomorphisms over endomorphisms
is a valid representation for N as shown by the following theorem.

Theorem 2.7. Let (N,⊗, e,⊕, z) be a near-semiring. Then the
near-semiring (DC(N), ◦, id,⊕′, z′) is a representation of N .
That is, the following diagram commutes.

N∗
rep∗ //

idN

��

DC(N)∗

idDC(N)

��
N DC(N)

abs
oo

Proof. By definition of free near-semiring, id is the unique near-
semiring homomorphism such that id ◦ inj = id. Doing some
calculations, it can be shown that abs ◦ id ◦ rep∗ is a near-semiring
homomorphism and it also satisfies the property:

abs ◦ id ◦ rep∗ ◦ inj = abs ◦ id ◦ inj ◦ rep ◦ inj

= abs ◦ id ◦ inj ◦ rep

= abs ◦ id ◦ rep

= abs ◦ rep

= id

Therefore, id = abs ◦ id ◦ rep∗.

Hence, the semantics of a computation over a near-semiring will
be preserved if we lift values to the representation, do the near-
semiring computation there, and then go back to the original near-
semiring.

3. Generalisation
In this section we generalise the notion of monoid and near-
semiring over sets to monoidal categories. The next sections show
that these generalised notions enable us to identify monads and
applicative functors with a near-semiring structure.

3.1 Background: Monoidal Categories
Monoidal categories generalise the notion of monoids from sets A
to categories C. In order to prepare for the generalisation, we first
express both operations ⊗ and e of as unary morphisms3:

m : A×A→ A

e : {∗} → A

Observe that we have introduced an argument from the singleton
set {∗} to the unit.

Now we can generalise to a category C by making two replace-
ments:

3 m is short for multiply, as a for add and z for zero.



1. The Cartesian product, which is a bifunctor on sets − × − :
Set× Set→ Set, becomes a bifunctor −⊗− : C × C → C.

2. The singleton set {∗} becomes an object I ∈ C.

This yields the morphisms:

m : M ⊗M →M

e : I →M

We expect ⊗ and I to work like × and {∗}, in the sense that ×
is associative and {∗} behaves as its unit (up to isomorphism). For
that, we require the following natural isomorphisms

α : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C
λ : I ⊗A ∼= A

ρ : A⊗ I ∼= A

which are expected to interact coherently. A category C with such
structure is known as a monoidal category, and a monoid in it is
an object M , together with operations m and e as above, for which
the following laws hold:

λ = m ◦ (e⊗ id)

ρ = m ◦ (id⊗ e)
m ◦ (m⊗ id) ◦ α = m ◦ (id⊗m)

Rivas and Jaskelioff [17] show that the free and Cayley con-
structions carry over from monoids to generalised monoids. Here
we investigate whether the same is true for generalised near-
semirings.

3.2 Generalised Near-Semirings
Just like a near-semiring combines two monoids, a generalised
near-semiring combines two generalised monoids. This requires a
category C that is monoidal in two ways. Hence, it is equipped with
four families of morphisms:

m : M ⊗M →M a : M ⊕M →M
e : I⊗ →M z : I⊕ →M

with M, I⊗, I⊕ objects of C, and − ⊗ − : C × C → C and
− ⊕ − : C × C → C bifunctors. In addition, there are the six
natural isomorphisms of the two monoidal categories: α⊗, λ⊗, ρ⊗
and α⊕, λ⊕, ρ⊕.

A near-semiring category requires two additional natural iso-
morphisms that connect the multiplicative and additive structure:

κ : I⊕ ⊗M → I⊕

δ : (M1 ⊕M2)⊗M3 → (M1 ⊗M3)⊕ (M2 ⊗M3)

We define a generalised near-semiring in a near-semiring cate-
gory C as an object M in C which is a monoid in both monoidal
structures, and for which the following interaction laws hold:

a ◦ (m⊕m) ◦ δ = m ◦ (a⊗ id)

z ◦ κ = m ◦ (z ⊗ id)

In particular, we recover ordinary near-semirings by setting
C = Set, ⊗ = ⊕ = × and I⊗ = I⊕ = {∗}.

Cartesian Structure Because the additive structure of all the in-
stances in the remainder of this paper is Cartesian, we only consider
this case from now on.4 This means that ⊕ is the Cartesian bifunc-
tor × and I⊕ is the terminal object 1. As usual with the Carte-
sian structure, the three natural isomorphisms α⊕, λ⊕, and ρ⊕ are
named assoc, π1, and π2. Moreover, the distribution law δ can now
be defined as δ = 〈π1 ⊗ id, π2 ⊗ id〉 and the annihilation law κ

4 If desired, the following definitions are easily generalised again.

For each object X there are morphisms

nil : 1→ List(X)

cons : X × List(X)→ List(X)

concat : List(X)× List(X)→ List(X)

wrap : X → List(X)

representing, the empty list, consing an element to a list, list con-
catenation, and the singleton list, respectively.

Figure 1. List operations

can be defined as κ = ! where ! : M → 1 is the family of unique
homomorphisms associated with the terminal object 1.

Having fixed the additive structure to be the Cartesian structure,
there is no ambiguity and hence we omit the subscripts from the
multiplicative structure, e.g. we write I instead of I⊗.

3.3 Generalised Free Near-semiring
To construct the free general near-semiring, we need the category
to have coproducts −+− : C × C → C, and also that both −×−
and − ⊗ − are closed. A monoidal structure − � − is closed if
there exists a bifunctor − �⇒ − together with an isomorphism:

b·c� : C(A�B,C) ∼= C(A,B �⇒ C) : d·e�
natural in A, B, and C. Here b·c� and d·e� are the bijections
between the hom-sets. The evaluation morphism ev� is defined as:

ev� = did
B
�⇒C
e� : (B

�⇒ C)�B → C

In some sense, this is a generalisation of the bijection between
types (a, b) → c and a → b → c, witnessed by curry and
uncurry. When an operator is closed, then a distributive law with
respect to the coproduct is available:

∆� : (A+B)� C → A� C +B � C
∆� = d[binlc�, binrc�]e�

where [ , ] is case analysis on a coproduct.
Given an object A, if the initial algebra for the endofunctor

1 + (I + A ⊗ −) × − exists, then the free near-semiring over
A has the following carrier:

µX. 1 + (I +A⊗X)×X ∼= µX. List (I +A⊗X)

where List : C → C is the list endofunctor (see Figure 1).
The near-semiring operations for the free near-semiring are

similar to those defined for the ordinary free near-semiring and
are given in Figure 2. These definitions are highly abstract; the
following sections provide more accessible concrete instances of
this general construction.

3.4 Generalised Double Cayley Representation
A generalised version of the double Cayley representation shown
in Section 2.2 is constructed as follows. If A is an object, then

(A
×⇒ A)

⊗⇒ (A
×⇒ A)

has a generalised near-semiring structure. Notice that both− ×⇒ −
and − ⊗⇒ − are used. This was hidden in the case of sets, as the
multiplicative structure was also the Cartesian product.

The definition of the generalised double Cayley representation
is given in Figure 3.

4. Non-Determinism Monads
We now instantiate the generalisation presented in the previous
section to monads in order to obtain MonadPlus.



List(I +A⊗A∗)
in

++∼= A∗

out

kk

a : A∗ ×A∗ → A∗

a = in ◦ concat ◦ (out× out)

z : 1→ A∗

z = in ◦ nil

m : A∗ ⊗A∗ → A∗

m = dLL[bnil ◦ κc⊗, brc⊗]MMe⊗
where r = concat ◦ ([λ,wrap ◦ inr] ◦∆⊗)× id ◦ δ

e : I⊗ → A∗

e = in ◦ wrap ◦ inl

f : A∗ → N

f = LL[z, [a ◦ (e× id), a ◦ ((m ◦ (f ⊗ id))× id)] ◦∆×]MM
where f : A→ N and N is a near-semiring

Figure 2. Operations of the free near-semiring

Near-semiring operations:

z = bbπ2c× ◦ !c⊗
a = bbev× ◦ (id× ev×) ◦ α−1c× ◦ (ev⊗ × ev⊗) ◦ δc⊗
e = bλc⊗
m = bev⊗ ◦ (id⊗ ev⊗) ◦ α−1c⊗

Representation and abstraction functions:

rep = b bac× ◦m ◦ (id⊗ (ev× ◦ 〈id, z ◦ !)〉) c⊗
abs = ev× ◦ 〈id, z ◦ !〉 ◦ ev⊗ ◦ (id⊗ ba ◦ (e× id)c×) ◦ ρ−1

Figure 3. Double Cayley Representation

Monads are Monoids in the Category of Endofunctors Our
starting point is the category End of endofunctors on a category
C, which consists of endofunctors as objects and natural transfor-
mations as morphisms.

The monoids in this category are monads if we choose the tensor
⊗ to be ◦, the composition of endofunctors. Formally, composition
of functors F and G is (F ◦ G)(X) = F (G(X)). The unit of the
monoid is the identity functor Id(X) = X . This structure is strict,
which means that the three of λ◦, ρ◦ and α◦ are identities.

The two associated natural transformations are:

m : M ◦M →M

e : Id→M

The following Haskell type class captures these natural transforma-
tions in idiomatic Haskell code:

class Functor m ⇒ Triple m where
return :: a → m a
join :: m (m a)→ m a

where m corresponds to join and e to return.
The three generalised monoid laws are the usual monad laws

found in category theory textbooks. This presentation of mon-
ads contrasts with their standard presentation in programming lan-
guages, where an operation (>>=) is used instead of join. While

both presentations are in fact equivalent, we prefer the presentation
in terms of join here, as its easier to see how it fits in the monoidal
framework.

Non-Determinism Monads are Near-Semirings in the Category
of Endofunctors In order to obtain a near-semiring, we need to
complement the above monoidal structure with a Cartesian one. If
we assume that the underlying category C of End has a Cartesian
structure, then such a structure exists for End as well: If F and
G are two endofunctors on C, then their binary product is defined
point-wisely as

(F ×G)(X) = F (X)×G(X)

The terminal endofunctor 1 is simply the constant endofunctor K1

which maps every object to the terminal object 1 of C, and every
morphism to id1.

From the Cartesian structure we get two additional natural trans-
formations:

a : M ×M →M

z : K1 →M

In Haskell, we write their types as a ::∀a.m a → m a → m a
and z :: ∀a.m a , and aptly call them mplus and mzero after
MonadPlus’s methods. This additional information is presented by
extending the Triple type class.

class Triple m ⇒ TriplePlus m where
mzero :: m a
mplus :: m a → m a → m a

With this type class, the next three laws of near-semirings,
which talk about mplus and mzero forming a monoid for the
Cartesian structure, read as:

m ‘mplus‘ mzero = m (6)
mzero ‘mplus‘ m = m (7)

m1 ‘mplus‘ (m2 ‘mplus‘m3) = (m1 ‘mplus‘m2) ‘mplus‘m3

(8)

The final two laws relate the two monoidal structures as follows.

join mzero = mzero (9)
join (m1 ‘mplus‘m2) = join m1 ‘mplus‘ join m2 (10)

In order to compare this structure with MonadPlus, we translate
these axioms to the more common Monad presentation. Equations
6-8 remain the same in the MonadPlus type class, as they do not
involve (>>=). The last two laws, 9 and 10, translate to:

mzero>>= k = mzero (11)
(m1 ‘mplus‘m2)>>= k = (m1 >>= k) ‘mplus‘ (m2 >>= k) (12)

These two axioms are commonly known as left zero and left distri-
bution. A MonadPlus instance satisfying equations 6, 7, 8, 11, and
12 is an instance of a generalised near-semiring, and we call it a
non-determinism monad.

Examples A familiar example of a non-determinism monad is the
list monad, with its MonadPlus instance defined in the introduc-
tion. Another example is the power-set monad, with union of sets
as mplus, and the empty set as mzero. These two monads are usu-
ally used to represent non-determinism, where mplus collects the
possible answers.

Another popular example is Hutton & Meijer’s monadic parsers
using lists [11]. In this case, the non-determinism accounts for the
parser collecting the multiple ways of parsing a given string.

newtype Parser[] a =
Parser[] {unParser[] :: String→ [(a,String)]}



instance Functor f ⇒ Monad (Free◦ f ) where
return x = Free◦ [Pure◦ x ]
Free◦ xs >>= f = Free◦ (concatMap g xs)
where g (Pure◦ x ) = unFree◦ (f x )

g (Con◦ x ) = [Con◦ (fmap (>>=f ) x )]

instance Functor f ⇒ Functor (Free◦ f ) where
fmap f x = x >>= return ◦ f

instance Functor f ⇒ MonadPlus (Free◦ f ) where
mzero = Free◦ [ ]
Free◦ xs ‘mplus‘ Free◦ ys = Free◦ (xs ++ ys)

Figure 4. Instances for the free non-determinism monad

instance Monad Parser[] where
return x = Parser[] (λs → return (x , s))
x >>= f = Parser[] (λs → unParser[] x s >>=

λ(y , s ′)→ unParser[] (f y) s ′)

instance MonadPlus Parser[] where
mzero = Parser[] (λs → mzero)
x ‘mplus‘ y = Parser[] (λs →

unParser[] x s ‘mplus‘ unParser[] y s)

But not every MonadPlus instance satisfies the five near-
semiring axioms. An interesting class of such instances is that
of those MonadPlus instances that satisfy the left catch law rather
than left distribution:5

return a ‘mplus‘ b = return a (13)

An example of this kind is Maybe. A counter-example to left
distribution is obtained by instantiating m1 = Just Nothing and
m2 = Just (Just False) in eq. 10.

A difference between left distribution and left catch laws is
that the first relates mplus with join, while the latter relates mplus
with return. Left catch is related to an algebraic structure called
dioids [6], but in this article we only study near-semiring structures.

The MonadPlus instance for Parser[] is based on the instance
of MonadPlus for lists. With the same definitions, similar parser
combinators can be constructed using Maybe instead of lists, but
these parsers do not form a non-determinism monad.

4.1 The Free Non-Determinism Monad
While the generalisation of the free near-semirings asks× and ◦ to
be closed, the closures are not explicitly used in the free construc-
tion. Hence we postpone their introduction until we construct the
double Cayley representation.

The following datatype constructs the free near-semiring. We
introduce it as two mutually recursive datatypes, one representing
the free construction over the Cartesian product, and the other over
the composition of functors.

data Free◦ f x = Free◦ {unFree◦ :: [FFree◦ f x ]}
data FFree◦ f x = Pure◦ x | Con◦ (f (Free◦ f x ))

The implementation of the operations, listed in Figure 4, follows
directly from the types; it is analogous to the free construction for
ordinary near-semirings.

5 The MonadPlus Reform Proposal suggests that such instances belong
in a separate MonadOr typeclass. See https://wiki.haskell.org/
MonadPlus_reform_proposal

instance Functor (g
◦⇒ h) where

fmap f m = Ran (λk → unRan m (k ◦ f ))

b·c◦ :: (Functor f ,Functor g ,Functor h)⇒
(∀x .f (g x )→ h x )→ (∀x .f x → (g

◦⇒ h) x )
bf c◦ = λgx → Ran (λk → f (fmap k gx ))

d·e◦ :: (Functor f ,Functor g ,Functor h)⇒
(∀x .f x → (g

◦⇒ h) x )→ (∀x .f (g x )→ h x )
df e◦ = λfgx → unRan (f fgx ) id

instance Functor (f
×⇒ g) where

fmap f m = Exp (λk → unExp m (k ◦ f ))

b·c× :: (Functor f ,Functor g ,Functor h)⇒
(∀x .(f x , g x )→ h x )→ (∀x .f x → (g

×⇒ h) x )
bf c× = λfx → Exp (λt → λgy → f (fmap t fx , gy))

d·e× :: (Functor f ,Functor g ,Functor h)⇒
(∀x .f x → (g

×⇒ h) x )→ (∀x .(f x , g x )→ h x )
df e× = λfgx → unExp (f (fst fgx )) id (snd fgx )

Figure 5. Right Kan extension and exponential

The universal property for the free near-semirings is given by
the following functions that make the universal diagram commute:

f
inj //

h

((

Free◦ f

univ h

��
m

inj embeds values of the original functor in the free structure and
univ h uniquely maps the free structure onto another near-semiring.

inj :: Functor f ⇒ f a → Free◦ f a
inj x = Free◦ [Con◦ (fmap return x )]

univ :: (MonadPlus m,Functor f )⇒
(∀x .f x → m x )→ Free◦ f x → m x

univ h (Free◦ l) = foldr mplus mzero (map univT l)
where univT (Pure◦ x ) = return x

univT (Con◦ op) = h op >>= univ h

4.2 The Double Cayley Representation
We now define the closures of the two bifunctors and construct the
double Cayley representation from them.

Closures The first Cayley representation uses the codensity
monad, which is the exponential with respect to the composition of
functors:

newtype (
◦⇒) f g x = Ran {unRan :: ∀y .(x → f y)→ g y }

The second Cayley representation uses the following exponential
of the Cartesian product:

newtype (
×⇒) f g x =

Exp {unExp :: ∀y .(x → y)→ (f y → g y)}
The corresponding isomorphisms for both exponentials are given
in Figure 5.

Double Cayley Representation Given a non-determinism monad
m , we can embed it in the data-type (m

×⇒ m)
◦⇒ (m

×⇒ m),
obtaining the following construction:

newtype DC f x = DC {unDC :: ((f
×⇒ f )

◦⇒ (f
×⇒ f )) x }



instance Monad (DC f ) where
return x = DC (Ran (λf → f x ))
DC (Ran m)>>= f = DC (Ran (λg → m (λa →

unRan (unDC (f a)) g)))

instance MonadPlus (DC f ) where
mzero = DC (Ran (λk → Exp (λc x → x )))
mplus m n = DC (Ran (λsk →

Exp (λf fk → unExp (a sk) f (unExp (b sk) f fk))))
where DC (Ran a) = m

DC (Ran b) = n

Figure 6. Operations of the double Cayley representation

Figure 6 defines the associated near-semiring operations.
The values of any non-determinism monad m can be embedded

in the double Cayley construction DC m with the function rep.
After performing computation in DC m , the m value can be
recovered using abs.

rep :: Monad m ⇒ m a → DC m a
rep x = DC (Ran (λg → Exp

(λh m → (x >>= λa → unExp (g a) h m))))

abs :: MonadPlus m ⇒ DC m a → m a
abs m = unExp (f (λx → Exp

(λh m → return (h x ) ‘mplus‘ m)))
id mzero

where DC (Ran f ) = m

Example Now we can solve the anyof performance problem pre-
sented in the introduction. First, we rewrite anyof for a general
MonadPlus instance:

anyof :: MonadPlus m ⇒ [a ]→ m a
anyof [ ] = mzero
anyof (x : xs) = anyof xs ‘mplus‘ return x

Then, instead of running it directly over lists, we run it first on
DC [ ], and then we flatten back the result to lists:

anyof′ :: [a ]→ [a ]
anyof′ xs = abs (anyof xs)

Here abs forces the type m in anyof such that the double
Cayley representation over lists is used. The complexity of the new
implementation is linear in the length of the input list, while the
direct implementation was quadratic.

5. Alternative Applicatives
Monads are not the only monoids in the category of endofunctors.
Another important class are applicative functors, introduced by
McBride and Patterson [14] as a way to capture certain effectful
computations that do not fit well in the monadic framework.

Multiplicative Structure Applicative functors are based on a dif-
ferent multiplicative structure than monads: the Day convolution.
As first indicated by Day [4] and later by Rivas and Jaskelioff [17],
there are different equivalent representations of the Day convolu-
tion. We pick here the one that directly determines the familiar
Applicative type class.

data (?) f g a = ∀b.Day (f (b → a)) (g b)

instance (Functor f ,Functor g)⇒ Functor (f ? g) where
fmap h (Day ff gx ) = Day (fmap (λf → h ◦ f ) ff ) gx

Just like for − ◦ −, the unit for Day convolution is the identity
functor. The isomorphisms λ?, ρ? and α? are defined as follows.

λ :: Functor f ⇒ f a → (Identity ? f ) a
λ fa = Day (Identity id) fa

ρ :: Functor f ⇒ f a → (f ? Identity) a
ρ fa = Day (fmap const fa) (Identity ())

α :: (Functor f ,Functor g ,Functor h)⇒
((f ? g) ? h) a → (f ? (g ? h)) a

α (Day (Day ff gx ) hy) =
Day (fmap uncurry ff ) (Day (fmap (, ) gx ) hy)

The monoidal operations directly lead to the well-known oper-
ations of the Applicative type class:

class Functor m ⇒ Applicative m where
pure :: a → m a
(~) :: m (a → b)→ m a → m b

Additive Structure The additive structure is the same as for mon-
ads: the Cartesian product of endofunctors. Hence, we obtain a
near-semiring structure by adding to applicative functors two op-
erations, one of type ∀a.f a → f a → f a and other of type
∀a.f a . The established Haskell type class for applicative functors
with these two operations is Alternative:

class Applicative f ⇒ Alternative f where
empty :: f a
(〈|〉) :: f a → f a → f a

As far as we know, the only three established laws that every
Alternative instance should obey are those of a monoid f a with
operation 〈|〉 as multiplication, and empty as the identity element.

Instantiating the near-semiring laws proposed, we obtain two
additional laws:

empty ~ x = empty

(f 〈|〉 g) ~ x = (f ~ x ) 〈|〉 (g ~ x )

5.1 Examples
Maybe It is well-known that every monad is also an applicative
functor. This transformation taking monads to applicative functors
can be extended such that every MonadPlus is an Alternative.

The converse is not true: there are Alternative instances that do
not arise from a non-determinism monad. In the previous section
we saw that Maybe is not a MonadPlus as the left-distribution law
fails. However, when restricted to the applicative interface, Maybe
does satisfy the Alternative laws:

instance Applicative Maybe where
pure x = Just x
Just f ~ Just x = Just (f x )

~ = Nothing

instance Alternative Maybe where
empty = Nothing
Nothing 〈|〉 y = y
(Just v) 〈|〉 = Just v

The Applicative instance captures a conjunction-semantics: two
computations are successfully combined iff both computations are
successful. In contrast, the instance of Alternative reflects a left-
biased disjunction-semantics (rather than non-determinism).

Non-Example: Maybe Parsers Even though Maybe satisfies the
Alternative laws, the following Maybe-based parser datatype does
not.

newtype ParserMaybe a = P (String→ Maybe (a, String))



instance Functor ParserMaybe where
fmap f (P p) = P (λs → case p s of

Nothing → Nothing
Just (v , s ′)→ Just (f v , s ′))

instance Applicative ParserMaybe where
pure x = P (λs → Just (x , s))
(P f ) ~ (P v) = P (λs → case f s of

Nothing → Nothing
Just (g , s ′)→ case v s ′ of

Nothing → Nothing
Just (w , s ′′)→ Just (g w , s ′′))

instance Alternative ParserMaybe where
empty = P (λs → Nothing)
(P p) 〈|〉 (P q) = P (λs → case p s of

Nothing → q s
Just (v , s)→ Just (v , s))

char :: Char→ ParserMaybe ()
char d = P (λs → case s of
"" → Nothing
(c : s ′)→ if c ≡ d then Just ((), s ′)

else Nothing)

Figure 7. Invalid Applicative instance: Maybe-based parsers

Figure 7 provides the instances for Functor, Applicative and
Alternative. However, this last one is invalid. Consider for instance
these two parsers:

p1 = (char ’a’ 〈|〉 pure ()) ∗ char ’a’

p2 = (char ’a’ ∗ char ’a’) 〈|〉 (pure () ∗ char ’a’)

where ∗ is a variant of ~ that ignores the computed values.

(∗) :: Applicative p ⇒ p a → p b → p ()
p1 ∗ p2 = pure (λx y → ()) ~ p1 ~ p2

According to the distributive law, p1 and p2 should be equivalent.
However, they are in fact distinct and hence ParserMaybe is not a
valid Alternative instance.

> runParser p1 "a"

Nothing
> runParser p2 "a"

Just ((), "")

In the first parser, the left branch succeeds consuming the entire in-
put. Because the left branch succeeds, the right branch is discarded.
Because the entire input is consumed, the subsequent char ’a’ fails
and, as there are no more alternatives to try, the overall parser fails.
In the second parser, the left branch does not succeed and there is
still a second branch that does.

Composition of Alternative and Applicative Composition of ap-
plicative functors is an applicative functor. Therefore, if f and g are
applicative their composition f ◦ g is going to be applicative.

newtype (f ◦ g) x = Comp (f (g x ))

instance (Applicative f ,Applicative g)⇒
Applicative (f ◦ g) where

pure x = Comp (pure (pure x ))
Comp fs ~ Comp xs = Comp (pure (~) ~ fs ~ xs)

If additionally f is an Alternative, then the composition is also
an Alternative.

instance Functor f ⇒ Functor (FFree? f ) where
fmap f (Pure? a) = Pure? (f a)
fmap f (Con? g x ) = Con? (fmap (f ◦) g) x

instance Functor f ⇒ Functor (Free? f ) where
fmap f (Free? xs) = Free? (fmap (fmap f ) xs)

instance Functor f ⇒ Applicative (Free? f ) where
pure x = Free? [Pure? x ]
Free? xs ~ v = Free? (concatMap g xs)

where g (Pure? f ) = unFree? (fmap f v)
g (Con? f c) =

[Con? (fmap uncurry f ) (pure (, ) ~ c ~ v)]

instance Functor f ⇒ Alternative (Free? f ) where
empty = Free? [ ]
Free? xs 〈|〉 Free? ys = Free? (xs ++ ys)

inj :: Functor f ⇒ f a → Free? f a
inj x = Free? [Con? (fmap (λz ()→ z ) x ) (pure ())]

univ :: Alternative g ⇒
(∀x .f x → g x )→ Free? f x → g x

univ h (Free? [ ]) = empty
univ h (Free? ((Pure? x ) : xs)) =

pure x 〈|〉 univ h (Free? xs)
univ h (Free? ((Con? q c) : xs)) =

(h q ~ univ h c) 〈|〉 univ h (Free? xs)

Figure 8. Supporting code for the free Alternative

instance (Alternative f ,Applicative g)⇒
Alternative (f ◦ g) where

empty = Comp empty
Comp xs 〈|〉 Comp ys = Comp (xs 〈|〉 ys)

For example, one can extend an arbitrary applicative functor f
to an Alternative, by composing it with the list functor.

Ziplists Additionally to the usual instance, lists have another in-
stance of Applicative. This is a typical example of an applicative
functor that is not derived from a Monad instance.

newtype ZipList a = ZL [a ]

instance Applicative ZipList where
pure x = ZL (repeat x )
ZL fs ~ ZL xs = ZL (zipWith ($) fs xs)

Perhaps surprisingly, ZipLists have an Alternative instance.
Like the Alternative instance for Maybe, the one for ZipList has
a left bias.

instance Alternative ZipList where
empty = ZL [ ]
ZL xs 〈|〉 ZL ys = ZL (xs ++ drop (length xs) ys)

5.2 The Free Alternative
Based on the generic recipe we obtain the following definition for
the free Alternative.

data Free? f a = Free? {unFree? :: [FFree? f a ]}
data FFree? f a = Pure? a

| ∀b.Con? (f (b → a)) (Free? f b)

The supporting definitions of the operations, the injection and the
family of unique homomorphisms can all be found in Figure 8.



instance Functor g ⇒ Functor (f
?⇒ g) where

fmap f (ED g) =
ED (λy → fmap (λ(a, b)→ (f a, b)) (g y))

b·c? :: (Functor f ,Functor g ,Functor h)⇒
(∀x .(f ? g) x → h x )→ (∀x .f x → (g

?⇒ h) x )
bf c? = λfx → ED (λgy → f (Day (fmap (, ) fx ) gy))

d·e? :: (Functor f ,Functor g ,Functor h)⇒
(∀x .f x → (g

?⇒ h) x )→ (∀x .(f ? g) x → h x )
df e? = λ(Day ff gy)→ fmap (uncurry ($))

(unED (f ff ) gy)

instance Functor f ⇒ Functor (DC f ) where
fmap f (DC z ) = DC (ED (λfx →

fmap (λ(x , y)→ (f x , y)) (unED z fx )))

instance Functor f ⇒ Applicative (DC f ) where
pure v = DC (ED (λf → fmap (λy → (v , y)) f ))
(DC (ED h)) ~ (DC (ED v)) = fmap (uncurry ($))

(DC (ED (λf →
fmap (λ(b, (a, y))→ ((a, b), y)) (v (h f )))))

instance Functor f ⇒ Alternative (DC f ) where
empty = DC (ED (const (Exp (λh x → x ))))
DC f 〈|〉 DC g = DC (ED (λh →

Exp (λj i →
unExp (unED f h) j (unExp (unED g h) j i))))

Figure 9. Supporting code for the double Cayley Alternative

5.3 The Double Cayley Representation
We now instantiate the general double Cayley representation. We
have already covered the closed structure (×⇒) for the Cartesian
functor in the previous section. The following datatype is the clo-
sure of the Day convolution:

data (
?⇒) f g x = ED {unED :: ∀y .f y → g (x , y)}

With this definition the double Cayley representation instanti-
ates to the following functor:

newtype DC f x = DC {unDC :: ((f
×⇒ f )

?⇒ (f
×⇒ f )) x }

See Figure 9 for the supporting code.
The functions rep and abs convert between the double Cayley

representation and the original applicative functor.

rep :: Alternative f ⇒ f a → DC f a
rep x = DC (ED (λg → Exp (λf fx →

unExp g (flip (curry f )) empty ~ x
〈|〉 fx )))

abs :: Alternative f ⇒ DC f a → f a
abs (DC (ED f )) = unExp (f (Exp (λg i →

pure (g ()) 〈|〉 i))) fst empty

6. Applications
We illustrate the constructions presented in the previous sections
on a number of examples. The free structure is a highly convenient
way to extend arbitrary semi-rings with additional capabilities. We
show this on two examples: combinatorial search and parsers. The
double Cayley representation is complementary: it makes building
the free structure efficient.

6.1 Advanced Combinatorial Search
Bunches Spivey proposed an algebraic structure, called a bunch,
for expressing combinatorial search strategies such as depth-first
(DFS) and breadth-first (BFS) search [19]. A bunch is in fact a
non-determinism monad with one additional operation:

class MonadPlus m ⇒ Bunch m where
wrap :: m a → m a

In addition to the axioms of a non-determinism monad, a bunch
also satisfies the following axiom relating (>>=) and wrap:

wrap m >>= k = wrap (m >>= k)

This requirement is automatically fulfilled if we instead require
an operation wrap′ :: a → m a , and define wrap x = x >>= wrap′.

Spivey introduces the initial Bunch algebra in the form of the
Forest datatype:

type Forest a = [Tree a ]
data Tree a = Leaf a | Fork (Forest a)

This is nothing more than the free non-determinism monad on the
identity functor, i.e. Forest a is isomorphic to Free◦ Identity a
where the identity functor is

newtype Identity a = Id {runId :: a }

The wrap operator for this type is expressed as follows.

wrap :: Forest a → Forest a
wrap xf = [Fork xf ]

In terms of Free◦ Identity this operator is expressed as:

wrap :: Free◦ Identity a → Free◦ Identity a
wrap xf = Free◦ [Id xf ]

The unique morphism from Forest a to any other Bunch, such
as DFS or BFS, is given as follows.

search :: Bunch m ⇒ Forest a → m a
search ts = msum (map go ts)

where go (Leaf x ) = return x
go (Fork ts) = wrap (search ts)

Equivalently, using the representation in terms of the free non-
determinism monad we can define search as:

search :: Bunch m ⇒ Free◦ Identity a → m a
search = univ (wrap ◦ return ◦ runId)

Heuristic Search The free structure is a great way to generically
extend existing search strategies with pruning search heuristics.
Such heuristics are commonly used in the case of large search
spaces whose entire exploration is either infeasible or impractical.
They remove parts of the search space that are less likely to yield
(interesting) solutions and where otherwise the search would dwell
too long.

One of the best known heuristics is depth-bounded search which
bounds the search tree to a certain depth, pruning everything under-
neath.

dbs :: Functor f ⇒ Int→ Forest a → Forest a
dbs 0 = mzero
dbs n ts = map go ts

where go (Leaf a) = Leaf a
go (Fork f ) = Fork (dbs (n − 1) f )

By means of search ◦ dbs n we can combine this heuristic with
any search strategy.



Double Cayley Speed-Up In order to evaluate the impact of the
double Cayley representation, we consider the following extreme
benchmark.

bench :: Int→ Int
bench n = solutionCount (forest n)

forest :: Int→ Forest ()
forest 0 = return ()
forest n = (forest (n − 1)>>= wrap′) ‘mplus‘ wrap′ ()

solutionCount :: Forest ()→ Int
solutionCount f = sum (map go f )
where go (Leaf ) = 1

go (Fork f ) = solutionCount f

Note that forest generates the ideal situation for the double Cay-
ley representation: alternated left-nested occurrences of >>= and
mplus.

We ran the benchmark for different problem sizes both using
Forest directly and indirectly through the double Cayley represen-
tation. All runs took place in the Criterion benchmarking harness
using GHC 7.8.2 on a MacBook Pro with a 2 GHz Intel Core i7
processor, 8 GB RAM and Mac OS 10.10.1. All values are in mil-
liseconds.

Size Forest DC Forest

50 2 0
100 26 1
250 569 8
500 5,472 36

1,000 60,070 172
2,500 T/O 1,484

The double Cayley representation clearly provides a tremen-
dous improvement over the basic free construction in terms of abso-
lute runtimes. Moreover, the former seems to exhibit a cubic time
complexity, while the latter seems to have the expected quadratic
complexity that corresponds to the size of the generated forest.

6.2 Interleaving Alternative Parsers
Swierstra and Dijkstra [21] show how to extend Alternative parser
combinators with a new combinator (〈||〉) to interleave two given
parsers. For example, suppose we have a parser digits for digit
sequences and another parser letters for letter sequences. Then
the interleaved parser (digits 〈||〉 letters) accepts strings like
"a1b45cda19" and produces the result ("abcda", 14519).

Instead of defining the new combinator directly for the given
Alternative parser type P, Swierstra and Dijkstra define it for a new
parser type Gram P. This type Gram P is almost, but not quite the
free Alternative construction. In particular, it does not respect the
left distributive law set out in this paper. Moreover, while Swierstra
and Dijkstra manage to avoid duplicating results, their approach
does drop results. For instance,

(pure ’a’ 〈|〉 pure ’b’) 〈||〉 pure 1

only yields the result (’a’, 1) and drops the result (’b’, 1).
Our free Alternative construction provides a cleaner slate for

interleaved parsers. As a consequence, our solution respects all the
Alternative laws and neither duplicates nor drops results. More-
over, we obtain a solution that is not parser-specific, but works for
any Alternative instance.

The interleaving operator 〈||〉 is defined as follows:

(〈||〉) :: Functor f ⇒ Free? f a → Free? f b → Free? f (a, b)
ga 〈||〉 gb =

Free? [fa ‘fwdby‘ gb | fa ← fas ]
〈|〉 (swap 〈$〉 Free? [fb ‘fwdby‘ ga | fb ← fbs ])
〈|〉 Free? [Pure? (a, b) | a ← as, b ← bs ]

where
swap (a, b) = (b, a)
(as, fas) = split ga
(bs, fbs) = split gb

At the sequential FFree?-level, it considers three different scenar-
ios:

1. Computation ga goes first, i.e. performs its first primitive ac-
tion, and then the remainder is interleaved recursively.

2. Dually, computation gb goes first.

3. Finally, in the base case both computations have no more action
to perform and terminate with a result.

These three scenarios are lifted to the non-deterministic Free?-level
in the obvious way, and the auxiliary function split separates the
base cases from the recursive cases.

split :: Free? f a → ([a ], [FFree? f a ])
split (Free? l) = ([a | Pure? a ← l ]

, [f | f @(Con? p r)← l ])

The key to the first two scenarios is to decompose a computa-
tion into its first primitive action p and the remainder r . This de-
composition comes for free in the Con? p r constructor of the free
Alternative.

fwdby :: Functor f ⇒
FFree? f a → Free? f b → FFree? f (a, b)

(Con? pa ra) ‘fwdby‘ fbs = Con? (fmap first pa) (ra 〈||〉 fbs)
where first f (c, b) = (f c, b)

Finally, using the injection inj :: Parser[] a → Free? Parser[] a ,
we can embed Parser[] in the free construction, and afterwards
recover it with the help of univ id ::Free? Parser[] a → Parser[] a .

7. Related Work
7.1 Codensity Monad and Cayley Representation
Cayley representations appear under different guises in the lit-
erature. Hughes uses it to optimise list concatenation [9] and
Voigtländer [22] uses the codensity monad transformer to opti-
mise monadic computations. Rivas and Jaskelioff [17] show that
these two optimisations are instances of the Cayley representation
for monoids in a generalised setting, and extend it to applicative
functors. Our work extends this representation to include the ad-
ditional operators present in non-deterministic computations by
moving from generalised monoids to generalised near-semirings.

7.2 Representation of Near-semirings
Statman [20] provides a connection between lambda calculus and
the algebra of near-semirings. He introduces a generalisation of
Hoogewijs’ representation [8] on which we base our double Cay-
ley representation. Krishna and Chatterjee [13] study the represen-
tation of near-semirings in categories, but they only consider Carte-
sian structures and thus exclude monads and applicative functors.

7.3 Backtracking Monad Transformers
Hinze [7] introduces the backtracking monad transformer, a monad
transformer that augments any monad with backtracking capabili-
ties (mplus and mzero):

As opposed to our approach Hinze provides a transformer, i.e. a
construction that adds a capability (backtracking). Our construction
is a change of representation that can be applied to a monad which



already has this capability. In our approach one can use a simple
transformer to obtain the backtracking capability and then change
the representation to speed up such computations. The advantage
of our approach is that, at the end, when one goes back to original
transformer, the results are easier to analyse (for example, if one
wants to obtain the first n results).

Van der Ploeg and Kiselyov [15] provide a technique for im-
proving theoretical running times of different constructions that
handle reflection, including the backtracking monad transformer.
While theoretically good, their implementation has big constant
factors, and our optimisation achieves better running times (as long
as reflection is only needed at the end of the computation).

Jaskelioff and Rivas [12] present a simple technique for obtain-
ing efficient implementations of non-determinism monads and al-
ternative applicative functors.

7.4 Free Alternatives
Capriotti and Kaposi [3] study the free Applicative construction,
but admittedly have no approach for the free Alternative.

Kmett’s free6 package does contain a definition of the free
Alternative construction that is, implicitly, based on the right-based
definition of the Day convolution:

data (?′) f g a = ∀b.Day′ (f b) (g (b → a))

7.5 Applications
Search Heuristics Schrijvers et al. [18] construct a free monad
transformer for the non-deterministic choice operator in order to
expose the search tree structure and apply pruning heuristics. After
pruning, the resulting search tree is reflected back into the underly-
ing non-determinism monad. Their work differs from ours in that
they do not enforce any of the non-determinism axioms, in fact,
they pertinently wish to observe the original syntactic structure.

Interleaved Parsers Swierstra and Dijkstra [21] have proposed
their interleaving combinator as a generalisation of earlier combi-
nators for permutations [1] and merged lists. Brown [2] provides a
transformer for interleaving Alternatives that are also Monads. His
approach provides both more features (e.g., early termination) and
fewer (e.g., the transformed Alternative is only Applicative).

8. Conclusions
This paper has introduced the generalised notion of near-semirings,
and defined the free and novel double Cayley construction gener-
ically. By exposing the fact that the instances of MonadPlus and
Alternative are near-semirings in the category of endofunctors, we
have then obtained these useful constructions for free.

We have shown how the free construction provides a clean
slate for applying search heuristics to non-determinism monads and
for interleaving applicative parsers. Moreover, our experimental
evaluation witnesses the time complexity improvement brought by
the double Cayley construction.

Not all MonadPlus and Alternative instances proposed in the
literature or found “in the wild” are near-semirings. It would be
interesting to investigate what algebraic structures underpin them.
In particular, MonadPlus instances satisfying the left-catch axiom
could be related to dioids, and their categorical generalisation [6].
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