The INA117 is a precision unity-gain difference amplifier with very high common-mode input voltage range. It is a single monolithic IC consisting of a precision op amp and integrated thin-film resistor network. It can accurately measure small differential voltages in the presence of common-mode signals up to \(\pm 200\) V. The INA117 inputs are protected from momentary common-mode or differential overloads up to \(\pm 500\) V.

In many applications, where galvanic isolation is not essential, the INA117 can replace isolation amplifiers. This can eliminate costly isolated input-side power supplies and their associated ripple, noise and quiescent current. The INA117’s 0.001\% nonlinearity and 200kHz bandwidth are superior to those of conventional isolation amplifiers.

The INA117 is available in 8-pin plastic mini-DIP and SO-8 surface-mount packages, specified for the \(-40^\circ C\) to \(+85^\circ C\) temperature range. The metal TO-99 models are available specified for the \(-40^\circ C\) to \(+85^\circ C\) and \(-55^\circ C\) to \(+125^\circ C\) temperature range.
**SPECIFICATIONS**

At $T_A = +25^\circ C$, $V_S = \pm 15V$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>INA117AM, SM</th>
<th>INA117BM</th>
<th>INA117P, KU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td><strong>GAIN</strong></td>
<td>Initial (1)</td>
<td>1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Error (1)</td>
<td>0.01</td>
<td>0.05</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>vs Temperature (2)</td>
<td>2</td>
<td>10</td>
<td>*</td>
</tr>
<tr>
<td><strong>OUTPUT</strong></td>
<td>Nonlinearity (2)</td>
<td>0.0002</td>
<td>0.001</td>
<td>*</td>
</tr>
<tr>
<td>Rated Voltage (I_O = +20mA, –5mA)</td>
<td>10</td>
<td>12</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rated Current (V_O = 10V)</td>
<td>+20, –5</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Impedance (1)</td>
<td>0.01</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Current Limit (To Common)</td>
<td>+49, –13</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Capacitive Load (Stable Operation)</td>
<td>1000</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td><strong>INPUT</strong></td>
<td>Impedance</td>
<td>800</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>Differential</td>
<td>400</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Common-Mode Rejection (3)</td>
<td>Differential</td>
<td>±10</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Common-Mode, Continuous (3)</td>
<td>±200</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DC</td>
<td>70</td>
<td>80</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>AC, 60Hz</td>
<td>66</td>
<td>80</td>
<td>66</td>
<td>94</td>
</tr>
<tr>
<td>vs Temperature, DC</td>
<td>$T_A = T_{MIN} to T_{MAX}$</td>
<td>66</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>AM, BM, P, KU</td>
<td>60</td>
<td>75</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>SM</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td><strong>OFFSET VOLTAGE</strong></td>
<td>RTO (4)</td>
<td>120</td>
<td>1000</td>
<td>*</td>
</tr>
<tr>
<td>Initial (KU Grade (SO-8 Package))</td>
<td>vs Temperature</td>
<td>$T_A = T_{MIN} to T_{MAX}$</td>
<td>8.5</td>
<td>40</td>
</tr>
<tr>
<td>vs Supply</td>
<td>$V_S = \pm 5V to \pm 18V$</td>
<td>74</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>vs Time</td>
<td>$f_B = 0.01Hz to 10Hz$</td>
<td>200</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$f_B = 10kHz$</td>
<td>$V_O = 10V$</td>
<td>25</td>
<td>550</td>
<td>*</td>
</tr>
<tr>
<td><strong>OUTPUT NOISE VOLTAGE</strong></td>
<td>RTO (5)</td>
<td>25</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$f_B = 0.01Hz to 10Hz$</td>
<td>$V_O = 10V$</td>
<td>25</td>
<td>550</td>
<td>*</td>
</tr>
<tr>
<td>$f_B = 10kHz$</td>
<td>$V_O = 10V$</td>
<td>25</td>
<td>550</td>
<td>*</td>
</tr>
<tr>
<td><strong>DYNAMIC RESPONSE</strong></td>
<td>Gain Bandwidth, –3dB</td>
<td>30</td>
<td>200</td>
<td>*</td>
</tr>
<tr>
<td>Full Power Bandwidth</td>
<td>2</td>
<td>2.6</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>$V_O = 20V/\mu s$</td>
<td>6.5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Settling Time: 0.1%</td>
<td>$V_O = 10V$</td>
<td>10</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0.01%</td>
<td>$V_O = 10V$</td>
<td>4.5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0.01%</td>
<td>$V_{CM} = 10V$</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td><strong>POWER SUPPLY</strong></td>
<td>Rated</td>
<td>±5</td>
<td>±18</td>
<td>*</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>Derated Performance</td>
<td>1.5</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>$V_O = 0V$</td>
<td>1.5</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td><strong>TEMPERATURE RANGE</strong></td>
<td>Specification: AM, BM, P, KU</td>
<td>$-25$</td>
<td>$+85$</td>
<td>*</td>
</tr>
<tr>
<td>SM</td>
<td>$-55$</td>
<td>$+125$</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Operation (SM)</td>
<td>$-55$</td>
<td>$+125$</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Storage</td>
<td>$-65$</td>
<td>$+150$</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*Specification same as for INA117AM.*

**NOTES:** (1) Connected as difference amplifier (see Figure 1). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) With zero source impedance (see discussion of common-mode rejection in Application Information section). (4) Includes effects of amplifier’s input bias and offset currents. (5) Includes effects of amplifier’s input current noise and thermal noise contribution of resistor network.
ABSOLUTE MAXIMUM RATINGS

Supply Voltage .................................................... ±22V
Input Voltage Range, Continuous ................................ ±200V
Common-Mode and Differential, 10s .................... ±500V
Operating Temperature
M Metal TO-99 ........................................... −55 to +125°C
P Plastic DIP and U SO-8 .............................. −40 to +85°C
Storage Temperature
M Package .................................................... −65 to +150°C
P Plastic DIP and U SO-8 .............................. −55 to +125°C
Lead Temperature (soldering, 10s) .................... +300°C
Output Short Circuit to Common ..................... Continuous

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>PACKAGE DRAWING NUMBER</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>PACKAGE MARKING</th>
<th>ORDERING NUMBER(1)</th>
<th>TRANSPORT MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA117P</td>
<td>DIP-8</td>
<td>006</td>
<td>−40°C to +85°C</td>
<td>INA117P</td>
<td>INA117P</td>
<td>Rails</td>
</tr>
<tr>
<td>INA117KU</td>
<td>SO-8 Surface-Mount</td>
<td>182</td>
<td>&quot;</td>
<td>INA117KU</td>
<td>INA117KU</td>
<td>Rails</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
</tr>
<tr>
<td>INA117AM</td>
<td>TO-99 Metal</td>
<td>001</td>
<td>−25°C to +85°C</td>
<td>INA117AM</td>
<td>INA117AM</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>INA117BM</td>
<td>&quot;</td>
<td>&quot;</td>
<td>&quot;</td>
<td>INA117BM</td>
<td>INA117BM</td>
<td>Rails</td>
</tr>
<tr>
<td>INA117SM</td>
<td>&quot;</td>
<td>&quot;</td>
<td>−55°C to +125°C</td>
<td>INA117SM</td>
<td>INA117SM</td>
<td>Rails</td>
</tr>
</tbody>
</table>

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of “INA117KU/2K5” will get a single 2500-piece Tape and Reel.
TYPICAL PERFORMANCE CURVES

At $T_A = +25\,^\circ C$, $V_S = \pm 15\,V$, unless otherwise noted.

**COMMON-MODE REJECTION vs FREQUENCY**

**POWER-SUPPLY REJECTION vs FREQUENCY**

**POSITIVE COMMON-MODE VOLTAGE RANGE vs POSITIVE POWER-SUPPLY VOLTAGE**

**NEGATIVE COMMON-MODE VOLTAGE RANGE vs NEGATIVE POWER-SUPPLY VOLTAGE**

**POWER-SUPPLY REJECTION vs FREQUENCY**

**COMMON-MODE REJECTION vs FREQUENCY**

**POSITIVE COMMON-MODE RANGE vs POSITIVE POWER-SUPPLY VOLTAGE**

**NEGATIVE COMMON-MODE RANGE vs NEGATIVE POWER-SUPPLY VOLTAGE**

Max Rating = 200V

$T_A = -55\,^\circ C$

$T_A = +25\,^\circ C$

$T_A = +125\,^\circ C$

$V_S = -5V$ to $-20V$

$V_S = +5V$ to $+20V$
TYPICAL PERFORMANCE CURVES (Cont.)

At $T_A = \pm 25^\circ C$, $V_S = \pm 15V$, unless otherwise noted.

**SMALL SIGNAL STEP RESPONSE**
- $C_L = 0$
- $C_L = 1000\, \text{pF}$

**LARGE SIGNAL STEP RESPONSE**
APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation. Applications with noisy or high-impedance power-supply lines may require decoupling capacitors close to the device pins.

The output voltage is equal to the differential input voltage between pins 2 and 3. The common mode input voltage is rejected.

Internal circuitry connected to the compensation pin 8 cancels the parasitic distributed capacitance between the feedback resistor, $R_2$, and the IC substrate. For specified dynamic performance, pin 8 should be grounded or connected through a 0.1µF capacitor to an AC ground such as $V_+$. 

![Figure 1. Basic Power and Signal Connections.](image)

COMMON-MODE REJECTION

Common-mode rejection (CMR) of the INA117 is dependent on the input resistor network, which is laser-trimmed for accurate ratio matching. To maintain high CMR, it is important to have low source impedances driving the two inputs. A 75Ω resistance in series with pin 2 or 3 will decrease CMR from 86dB to 72dB.

Resistance in series with the reference pins will also degrade CMR. A 4Ω resistance in series with pin 1 or 5 will decrease CMRR from 86dB to 72dB.

Most applications do not require trimming. Figures 2 and 3 show optional circuits that may be used for trimming offset voltage and common-mode rejection.

TRANSFER FUNCTION

Most applications use the INA117 as a simple unity-gain difference amplifier. The transfer function is:

$$v_o = v_3 - v_2$$

$V_3$ and $V_2$ are the voltages at pins 3 and 2.

![Figure 2. Offset Voltage Trim Circuits.](image)

Some applications, however, apply voltages to the reference terminals (pins 1 and 5). A more complete transfer function is:

$$v_o = v_3 - v_2 + 19 \cdot v_5 - 18 \cdot v_1$$

$V_5$ and $V_1$ are the voltages at pins 5 and 1.
MEASURING CURRENT

The INA117 can be used to measure a current by sensing the voltage drop across a series resistor, $R_S$. Figure 4 shows the INA117 used to measure the supply currents of a device under test. The circuit in Figure 5 measures the output current of a power supply. If the power supply has a sense connection, it can be connected to the output side of $R_S$ to eliminate the voltage-drop error. Another common application is current-to-voltage conversion, as shown in Figure 6.

FIGURE 3. CMR Trim Circuit.


FIGURE 5. Measuring Power Supply Output Current.

*If offset adjust is also required, connect to offset circuit, Figure 2.

*Not needed if $R_S$ is less than 20Ω — see text.

*RC = $R_S$ not needed if $R_S$ is less than 20Ω — see text.
FIGURE 6. Current to Voltage Converter.

(a) $V_S$ (±200V max)

(b) $V_S$ (±200V max)

(c) $V_S$ (±200V max)

(d) $V_S$ (±200V max)

*Not needed if $R_S$ is less than 20Ω—see text.
In all cases, the sense resistor imbalances the input resistor matching of the INA117, degrading its CMR. Also, the input impedance of the INA117 loads $R_s$, causing gain error in the voltage-to-current conversion. Both of these errors can be easily corrected.

The CMR error can be corrected with the addition of a compensation resistor, $R_C$, equal in value to $R_s$ as shown in Figures 4, 5, and 6. If $R_s$ is less than 20Ω, the degradation in CMR is negligible and $R_C$ can be omitted. If $R_s$ is larger than approximately 2kΩ, trimming $R_C$ may be required to achieve greater than 86dB CMR. This is because the actual INA117 input impedances have 1% typical mismatch.

If $R_s$ is more than approximately 100Ω, the gain error will be greater than the 0.02% specification of the INA117. This gain error can be corrected by slightly increasing the value of $R_s$. The corrected value, $R_s'$, can be calculated by:

$$R_s' = \frac{R_s \cdot 380k\Omega}{380k\Omega - R_s}$$

Example: For a 1V/mA transfer function, the nominal, uncorrected value for $R_s$ would be 1kΩ. A slightly larger value, $R_s' = 1002.6$ Ω, compensates for the gain error due to loading.

The 380kΩ term in the equation for $R_s'$ has a tolerance of ±25%, so sense resistors above approximately 400Ω may require trimming to achieve gain accuracy better than 0.02%.

Of course, if a buffer amplifier is added as shown in Figure 7, both inputs see a low source impedance, and the sense resistor is not loaded. As a result, there is no gain error or CMR degradation. The buffer amplifier can operate as a unity gain buffer or as an amplifier with non-inverting gain. Gain added ahead of the INA117 improves both CMR and signal-to-noise. Added gain also allows a lower voltage drop across the sense resistor. The OPA1013 is a good choice for the buffer amplifier since both its input and output can swing close to its negative power supply.

[Diagram of current sensing with input buffer]

FIGURE 7. Current Sensing with Input Buffer.
Figure 8 shows very high input impedance buffer used to measure low leakage currents. Here, the buffer op amp is powered with an isolated, split-voltage power supply. Using an isolated power supply allows full ±200V common-mode input range.

**NOISE PERFORMANCE**

The noise performance of the INA117 is dominated by the internal resistor network. The thermal or Johnson noise of these resistors produces approximately 550nV/√Hz noise. The internal op amp contributes virtually no excess noise at frequencies above 100Hz.

Many applications may be satisfied with less than the full 200kHz bandwidth of the INA117. In these cases, the noise can be reduced with a low-pass filter on the output. The two-pole filter shown in Figure 9 limits bandwidth to 1kHz and reduces noise by more than 15:1. Since the INA117 has a 1/f noise corner frequency of approximately 100Hz, a cutoff frequency below 100Hz will not further reduce noise.

**FIGURE 8. Leakage Current Measurement Circuit.**

**FIGURE 9. Output Filter for Noise Reduction.**

<table>
<thead>
<tr>
<th>GAIN (V/V)</th>
<th>$R_7$ (kΩ)</th>
<th>$R_6$ (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1.05</td>
<td>20</td>
</tr>
<tr>
<td>1/4</td>
<td>3.16</td>
<td>20</td>
</tr>
<tr>
<td>1/5</td>
<td>4.22</td>
<td>20</td>
</tr>
</tbody>
</table>

Refer to Application Bulletin AB-001 for details.

FIGURE 11. Summing $V_X$ in Output.

Refer to Application Bulletin AB-010 for details.

FIGURE 15. Measuring Amplifier Load Current.

FIGURE 16. AC-Coupled INA117.
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/ Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Samples (Requires Login)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA117AM</td>
<td>NRND</td>
<td>TO-99</td>
<td>LMC</td>
<td>8</td>
<td>20</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>AU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>INA117AM4</td>
<td>OBSOLETE</td>
<td>TO-100</td>
<td>LME</td>
<td>10</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>INA117BM</td>
<td>NRND</td>
<td>TO-99</td>
<td>LMC</td>
<td>8</td>
<td>20</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>AU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>INA117BM-22</td>
<td>OBSOLETE</td>
<td>TO-100</td>
<td>LME</td>
<td>10</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>INA117BM-3</td>
<td>OBSOLETE</td>
<td>ZZ (BB)</td>
<td>ZZ001</td>
<td>8</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>INA117BM-33</td>
<td>OBSOLETE</td>
<td>TO-100</td>
<td>LME</td>
<td>10</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>INA117BM1</td>
<td>OBSOLETE</td>
<td>TO-100</td>
<td>LME</td>
<td>10</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>INA117KU</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
</tr>
<tr>
<td>INA117KU/2K5</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
</tr>
<tr>
<td>INA117KU/2K5G4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
</tr>
<tr>
<td>INA117KUG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
</tr>
<tr>
<td>INA117P</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>INA117P-BI</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>INA117PG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>INA117SM</td>
<td>NRND</td>
<td>TO-99</td>
<td>LMC</td>
<td>8</td>
<td>20</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>AU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>INA117SMQ</td>
<td>NRND</td>
<td>TO-99</td>
<td>LMC</td>
<td>8</td>
<td>20</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>AU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

---

Addendum-Page 1
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check [http://www.ti.com/productcontent](http://www.ti.com/productcontent) for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

**MSL, Peak Temp.** -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
### TAPE AND REEL INFORMATION

#### Device: INA17KU/2K5

#### Package: SOIC

#### Drawer: D

#### Pins: 8

#### SPQ: 2500

#### Reel Diameter (mm): 330.0

#### Reel Width (W1)(mm): 12.4

#### A0 (mm): 6.4

#### B0 (mm): 5.2

#### K0 (mm): 2.1

#### P1 (mm): 8.0

#### W (mm): 12.0

#### Pin1 Quadrant: Q1

**Note:** All dimensions are nominal.

---

**TAPE DIMENSIONS**

- **A0:** Dimension designed to accommodate the component width
- **B0:** Dimension designed to accommodate the component length
- **K0:** Dimension designed to accommodate the component thickness
- **W:** Overall width of the carrier tape
- **P1:** Pitch between successive cavity centers

---

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**

- **Sprocket Holes**
- **User Direction of Feed**
- **Pocket Quadrants**
## TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal*

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA117KU/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>346.0</td>
<td>346.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are not authorized for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

**Products**
- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Mobile Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

**Applications**
- Automotive and Transportation: www.ti.com/automotive
- Communications and Telecom: www.ti.com/communications
- Computers and Peripherals: www.ti.com/computers
- Consumer Electronics: www.ti.com/consumer-apps
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Security: www.ti.com/security
- Space, Avionics and Defense: www.ti.com/space-avionics-defense
- Video and Imaging: www.ti.com/video

**TI E2E Community Home Page** e2e.ti.com