
c©Maximiliano Cristiá & Gianfranco Rossi

Translation of TTF Test Specifications into {log}

Maximiliano Cristiá
CIFASIS and UNR
Rosario, Argentina

cristia@cifasis-conicet.gov.ar

Gianfranco Rossi
Università degli studi di Parma

Parma, Italy
gianfranco.rossi@unipr.it

This document describes the translation rules to be applied when a test specification generated by Fastest
must be translated into {log}.

The translation rules are given as follows:

rule name Z notation
{log} language

where the text above the line is some Z term and the text below the line is one or more {log} formulas.

This document assumes the reader is familiar with the mathematics underlying either Z or B and with
general notions and notations of Prolog and {log}.

1. Translation Strategy

1. The translation is applied to each test specification in isolation.
For this reason, translation rules for the schema calculus are unnecessary. Recall that test specifi-
cations do not use schema calculus.

2. Each test specification is translated as a {log} goal (i.e., a conjunction of either positive or negative
atomic predicates).

3. Variable names are translated into the same name but the first letter is written in uppercase.
If the translated name conflicts with another identifier then some algorithm to avoid name clashes
must be applied.

4. Information about the type of a particular variable is seldom given through a type declaration but
mainly by means of the expressions in which that variable participates in the test specification.
For example, if a variable in a test specification is x : T ×U for some types T and U, no type
information will be given for it in {log}. However, if the predicate of that test specification says,
for instance, x,1 > 12 then it will be translated as fst(x)> 12 which will guide {log} in giving an
ordered pair as the value for x.

5. Explicit type information of a variable is given at the {log} level only if it helps or speedups the
tool in finding a solution. A typical case are integer or natural variables.

6. As part of the preprocessing, all subexpressions are replaced for fresh variables and new equal-
ities binding these fresh variables with the corresponding subexpressions, are added to the test
specification. For example, the following predicate:

A∪ (B∩C)⊆ D⊕F

2 Translation of TTF Test Specifications into {log}

is replaced as follows:

G1 = D⊕F
G2 = A∪G3
G3 = B∩D
G2 ⊆ G1

where G1, G2 and G3 are fresh variables within the test specification. Another example is:

x∗ (y+ z)≤ h div (j+ z)

which is rewritten as:

a1 = y+ z
a2 = j+ z
a3 = x∗a1
a4 = h div a2
a3 ≤ a4

where a1, a2, a3 and a4 are all fresh variables.
This preprocessing must be done inside quantified predicates, lambda expressions and set compre-
hensions, taking care of the scope of each subexpression.
Note that the referential transparency property of Z specifications ensures that the modification
shown above preserves the meaning of the test specification.
The equalities introduced by this process, conceptually, will be added to one of two lists. One list,
called set equalities, will contain all these equalities whose left hand side is a set (note that in
this category fall sequences and binary relations); the other one, called arithmetic equalities, will
contain all these equalities whose left hand side is of type Z.
Then, during the translation (i.e. after preprocessing) each equality will be translated as follows:

a) Set equalities. An equality of the form:

A = B�C

where � represents any set operator, must be translated as:

boxplus(B,C,A)

where boxplus is the name of a {log} operator. See the rules given below to find the right rule
for each operator.

b) Arithmetic equalities. An equality of the form:

A = B�C

where � represents any arithmetic operator, must be translated as:

A is B�C

where � is the {log} representation of �. See the rules given below to find the right rule for
each operator.

Maximiliano Cristiá & Gianfranco Rossi 3

7. If a variable declared in the declaration part of a test specification does not appear in its predicate
part, then it will be translated as follows:

unused variables x : T
x in [[T]]

where T is any Z type.

8. Auxiliary variables introduced during the translation. As it will be seen below, some of the trans-
lation rules require the introduction of new (fresh) variables. For example, rules named access to
component, schema type, apply, 6⊆, ∪, ∩, set difference,

⋃
,
⋂

, dom, ran, etc. require the introduc-
tion of a new variable. For each of these variables, the translation rule corresponding to its Z type
must be applied.

For instance, in rule apply we have, as a result of the translation, the introduction of a new variable
y whose Z type is the type of the range of the function which is being applied, say type T . Then,
consider as if there is a declaration y : T and look up if there is a translation rule for that declaration.
If there is one, the apply it; otherwise do nothing.

All the predicates at the {log} level are defined either within the interpreter, or within the standard
library, or within an ad-hoc library, called the TTF library.

Notational conventions

At the Z level, we will use capital letters, such as A, B, X, Y , T , . . . , to denote sets (in particular,
types), while we will use lowercase letters, such as a, b, x, y, p . . . , to denote single elements of any type
(in particular, ci will be used to denote constants).

The recursive application of all the rules given in this document is usually left implicit. However,
when appropriate we will use the notation [[term]] to explicitly indicate the translation of term according
to the rules.

In particular, we assume that Z variables and constants are always implicitly translated to the cor-
responding Prolog variables and constants. For the sake of simplicity, however, in this document we
assume Z variables and constants are simply translated as they are, whereas in the concrete translation
they will be rewritten according to the strategy described in item 3 above.

2. Ground Types

Z Z
int(−2147483648,2147483647)

Integer variable x : Z
x in [[Z]]

N N
int(0,2147483647)

N1
N1

int(1,2147483647)

4 Translation of TTF Test Specifications into {log}

Natural variable x : N
x in [[N]]

Positive variable
x : N1

x in [[N1]]

For convenience, when a test specification is translated and if there are several uses of Z or N, then it
is possible to define, for example:

NAT = int(0,21474836479)
NAT1 = int(1,2147483647)
INT = int(−2147483648,2147483647)

provided these names are not used within the test specification.

given set
[X]

set(X)

enumeration
X ::= c1| . . . |cn

X = {c1, . . . ,cn}
where c1, . . . ,cn are constants.

enumeration variable x : T
x in [[T]]

where T is an enumerated type.

3. Set Extensions

set extension
{y1, . . . ,ym}
{[[y1]], . . . , [[ym]]}

where y1, . . . ,ym are expressions that are in scope within the test specification being translated.

4. Set Comprehensions

Set comprehensions are first preprocessed as follows. Given a set comprehension of the following
form:

{x1 : X1; . . . ; xn : Xn|P(x1, . . . ,xn) • E(x1, . . . ,xn)}
where P and E are a predicate and an expression, respectively.

First, the set comprehension is changed as follows:

{x : X1× . . .×Xn|PF(x,1, . . . ,x.n) • EF(x,1, . . . ,x.n)}
where EF is a flattened version of E (i.e., all the subexpressions are replaced by fresh variables) and PF

is P conjugated with all the equalities used to flatten E.
Once this preprocessing has been done, the following rule must be applied.

compr
{x : X1× . . .×Xn|PF(x,1, . . . ,x.n) • EF(x,1, . . . ,x.n)}

{x : exists([x1, . . . ,xn], [[x1 : X1]] & . . . & [[xn : Xn]] & [[PF(x1, . . . ,xn)]] & x = is [[EF(x1, . . . ,xn)]]}
where = is is either = or is depending on the type of EF (i.e. = is is is if EF is an arithmetic expression
and = otherwise).

Maximiliano Cristiá & Gianfranco Rossi 5

Examples

The Z term:

{x1 : D • x1 +1}

is translated as:

{X : exists([Z], Z in D & X is Z + 1)}

The Z term:

{x1 : D; x2 : D • x1∪ x2}

is translated as:

{X : exists([X1,X2,R], X1 in D & X2 in D & un(X1,X2,X))}

The Z term:

{x1 : D • x1 7→ 0}

is translated as:

{X : exists([X1,X2], X1 in N & X2 in N & X2 is X1 + 1 & X = [X1,X2])}

The Z term:

{x1 : Z|x1 mod 2 = 0 • x1 7→ x1 +1}

is translated as:

{X :

exists([X1,X2],

X1 in N & X2 in N & 0 is X1 mod 2 & X2 is X1 + 1 & X = [X1,X2])}

5. Cross Products

In general, the type expression X× Y will not be translated because if a term belongs to such a
type then it will participate in some expression involving operators of such type. If the term does not
participate in such an expression then its structure is irrelevant for solving the goal. In this case when the
result returned by {log} is translated back to Z it can be replaced by a fixed constant of the type X×Y .

Furthermore, if a variable is declared as p : X×Y and the test specification includes only a predicate
like p,1 ∈ A, then {log} will be able to determine only a value for the first component of p. The second
component will remain a variable. For example, the result returned by {log} can be [a|G] where a is a
constant that belongs to the set resulting from translating A and G is a list. In this case, when the results is
translated back to Z, Fastest will replace G by any constant, y, of type Y and the net result will be a 7→ y.
This is sound because if p,2 does not appear in the test specification means that it is irrelevant for finding
a test case, so any value will serve as input data.

The only cases where type information must be considered for translation are the following ones. Let
t be an expression of type X1× . . .×Xi× . . .×Xn, and let the test specification contain an expression of

6 Translation of TTF Test Specifications into {log}

the form t.i. If Xi is either Z, or N, or an enumerated type, or a binary relation, or a partial function, or a
total function, then the corresponding translation rule must be applied to t.i. More formally,

cross product π
t : X1× . . .×Xi× . . .×Xn t.i

apply rule π to [[t.i]]

where π is any of the following translation rules, depending on Xi: rule Z if Xi is Z, rule N if Xi is N,
rule “enumeration variable” if Xi is an enumerated type, rule↔ if Xi is a binary relation, rule 7→ if Xi is
a partial function, rule→ if Xi is a total function.

Ordered pairs are represented as lists of two elements.

Ordered pair
x 7→ y

[[[x]], [[y]]]

Therefore, access to components must be translated as follows:

access to component
x : X1× . . .×Xn x.i

nth1(i, [[x]],y)

where y must be a new variable.

6. Power Sets

If a variable is declared as A : PX for some type X it is not necessary, in general, to translate this
information to {log} because it will deduce that type from the expressions where A appears.

The only cases where type information must be considered for translation are the following ones.
Let t be an expression of type PX, and let the test specification contain an expression r of type X. If X
is either Z, or N, or a binary relation, or a partial function, or a total function, then the corresponding
translation rule must be applied to r. More formally,

power set π
t : PX r

apply rule π to [[r]]

where r ∈ t, and π is any of the following translation rules, depending on X: rule Z if X is Z, rule N if X
is N, rule↔ if X is a binary relation, rule 7→ if X is a partial function, rule→ if X is a total function.

If X is an enumerated type then apply the following rule:

power set enumeration
t : PX

subset([[t]], [[X]])

7. Schema Types

As with power sets and cross products it is not necessary to translate the type information of a variable
whose type is a schema type. However, the operators that work on schema types must be translated. In
particular, we consider the dot operator:

schema type
x : [a1 : T1; . . . ; an : Tn] x.ai

nth1(i, [[x]],ai)

Maximiliano Cristiá & Gianfranco Rossi 7

where the components of the schema type are ordered alphabetically and nth1(i,x,ai) is true if x is a list
and the i-th element of x unifies with ai. Hence, schema types are translated as lists. At the {log} level,
ai means a variable whose name is composed of the translation of a and i. Since lists in Prolog and {log}
are untyped, each of its elements can be of a different type.

The only cases where type information must be considered for translation are the following ones.
Let x be an expression of type [a1 : T1, . . . ,ai : Ti, . . . ,an : Tn]), and let the test specification contain an
expression of the form x.ai. If Ti is either Z, or N, or an enumerated type, or a binary relation, or a
partial function, or a total function, then the corresponding translation rule must be applied to x.ai. More
formally,

schema type π
[a1 : T1, . . . ,ai : Ti, . . . ,an : Tn] x.ai

apply rule π to [[x.ai]]

where π is any of the following translation rules, depending on Ti: rule Z if Ti is Z, rule N if Ti is N,
rule “enumeration variable” if Ti is an enumerated type, rule↔ if Ti is a binary relation, rule 7→ if Ti is
a partial function, rule→ if Ti is a total function.

θ expressions are not translated because Fastest does not support them for the moment.

8. Binary Relations

If a set is a binary relation then the following rule must be applied:

↔ R : X↔ Y
is rel(R)

Note that the domain and range of the relation are irrelevant for the translation. These will be deduced
from the expressions where the relation appears.

9. Partial Functions

If a set is a partial function then the following rule must be applied:

7→
f : X 7→ Y
is pfun(f)

Note that the domain and range of the function are irrelevant for the translation. These will be de-
duced from the expression where the relation appears.

Given that in {log} all sets are finite, 7 7→ is translated as 7→.

10. Total Functions

If a set is a total function then the following rule must be applied:

→
f : X→ Y

is pfun(f) & dom(f ,X)

8 Translation of TTF Test Specifications into {log}

11. Function Application

Function application is translated as follows:

apply
f : X(7→ | →)Y f x

apply(f , [[x]],y)

where apply(f ,x,y) is true if y is the image of x in f and y must be a new variable.

12. Sequences

seq
s : seqX
list(s)

seq1
s : seq1 X

list(s) & s neq []

explicit sequence
〈x1, . . . ,xn〉

[[[x1]], . . . , [[xn]]]

13. Equality

=
x = y

[[x]] = [[y]]

6=
x 6= y

[[x]] neq [[y]]

14. Set Expressions

∈ x ∈ A
[[x]] in A

/∈ ¬ x ∈ A
[[x]] nin A

/0 /0
{}

⊆
A⊆ B

dsubset(A,B)

6⊆
¬ A⊆ B

dnsubset(A,B)

⊂ A⊂ B
dssubset(A,B)

Maximiliano Cristiá & Gianfranco Rossi 9

6⊂ ¬ A⊂ B
dinters(A,B,C) & C 6= A

∪ A∪B
dun(A,B,C)

where C is a fresh variable generated, along with the equality C = A∪B, as a result of the preprocessing
of the subexpression A∪B.

∩ A∩B
dinters(A,B,C)

set difference
A\B

diff (A,B,C)

⋃ ⋃
A

bun(A,S)

⋂ ⋂
A

bdinters(A,S)

15. Relational Expressions

dom R : X↔ Y domR
dom(R,D)

ran R : X↔ Y ranR
ran(R,D)

o
9

Q : X↔ Y R : Y↔ Z Q o
9 R

comp(Q,R,S)

◦
Q : X↔ Y R : Y↔ Z Q◦R

comp(R,Q,S)

C
R : X↔ Y A : PX ACR

dres(A,R,S)

B
R : X↔ Y A : PY RBA

rres(A,R,S)

−C
R : X↔ Y A : PX A−CR

ndres(A,R,S)

−B
R : X↔ Y A : PY R−BA

nrres(A,R,S)

∼ R∼

inv(Q,R)

(||)
R : X↔ Y A : PX R(|A|)

rimg(R,A,B)

⊕ R⊕G
oplus(R,G,S)

10 Translation of TTF Test Specifications into {log}

16. Sequence Expressions

Although in Z sequences are just special sets, for reasons of efficiency we treat them as Prolog lists
and whenever necessary we convert them to {log} sets by the following rule:

list to rel
s : seqX

list to rel(s,x)

This rule must be applied every time a sequence participates in a set expression. However, if it
participates in a purely sequence expression then it must be treated as a sequence.

Also for reasons of efficiency we have defined special predicates for the domain, range and applica-
tion of a sequence.

sequence domain
s : seqX doms
dom list(s,dom)

sequence range
s : seqX rans

list to set(s,ran)

sequence apply
s : seqX s i

nth1(i,s,y)

a sa t
append(s, t,u)

reversal rev s
reverse(s,rev)

head head s
nth1(1,s,head)

last last s
last(s, last)

tail tail s
drop(1,s, tail)

front
front s

length(s,n) & take(n−1,s, front)

�
s : seqX A : PZ A � s

extract(A,s, t)

�
s : seqX A : PX s �A

filter(s,A, t)

squash
s : N1 7 7→ X squash s

squash(s, t)

prefix
s prefix t

append(s, , t)

suffix s suffix t
append(,s, t)

in
s in t

sublist(s, t)

Maximiliano Cristiá & Gianfranco Rossi 11

17. Arithmetic Expressions

+
a+b
a+b

-
a−b
a−b

* a∗b
a∗b

div a div b
div(a,b)

mod a mod b
mod(a,b)

>
a < b
a < b

>
a > b
a > b

≤
a≤ b

a =< b

≥
a≥ b

a >= b

ranges a . .b
int(a,b)

#
A : FX #A

size(A,N)

min min A
min(A,Min)

max max A
max(A,Max)

12 Translation of TTF Test Specifications into {log}

18. Translation from {log} to Z

A Z test specification is translated through the translation rules to a {log} goal. Executing this goal
by means of the {log} interpreter will produce as its output a sequence of equalities X1 = v1, . . . ,Xn = vn,
where X1, . . . ,Xn are variables and v1, . . . ,vn are either variables or constants, along with a (possibly
empty) sequence of irreducible {log} constraints of some specific forms. Variables occurring in the
{log} output can be either Z variables, that is variables that correspond to a variable declared in the
test specification, or auxiliary variables, that is variables that appear in the {log} output but are not Z
variables. Constants occurring in the {log} output can be either atomic values, e.g. integer numbers, or
they can denote structured values, such as set or list expressions.

The translation rules from {log} to Z are as follows:

1. Each constant returned by {log} is a constant that comes from the translation from Z into {log}.
Hence, the translation of a constant is simply its Z name.

2. Each Z variable must be translated into its Z name. If M is a variable at the {log} level then [[M]]
denotes its translation into Z.

3. If M is an auxiliary variable, then it must be treated as a constant of the corresponding Z type. For
example, if at the Z level we have

[ACCNUM,UID]

along with a variable in a test specification such as owners : UID↔ ACCNUM, and {log} returns
as part of its output the equality:

Owners = {[U,N]},

where U and N are not variables of the test specification, then U and N must be considered as
constants of type UID and ACCNUM, respectively.
In doing so we must consider the following cases:

The type of M at the Z level1 is a basic type called T . Then the translation of M is the string
TM.
The type of M at the Z level is Z or N. Then the translation of M is any natural number.
The type of M at the Z level is an enumerated type. Then the translation of M is one of the
constants of the type.
The type of M at the Z level is any other type. In this case build the translation of M by
recursively applying the other rules.
Note: if the type of M at the Z level is a schema type, then a constant of this type at the Z
level is represented as follows:

〈|x1 == c1; . . . ; xn == cn|〉

where x1, . . . ,xn are the components of the schema type and c1, . . . ,cn are the constants gen-
erated during the translation2.

1Note that although M is not a Z variable, its Z type can be deduced from the expression where it appears in the {log}
output.

2The right way of writing 〈| in LATEX is \lblot and |〉 is \rblot.

Maximiliano Cristiá & Gianfranco Rossi 13

This is true, in particular, for variables of the form Gnumber which are automatically generated
by {log} (for instance, G251).

However, if M participates in an irreducible constraint of the form M 6= t where t is either a variable
or a constant, then see rule 4.

4. If M is a variable and it is never at the left hand side of one of the equalities returned by {log},
then its value is given by a set of zero or more so-called irreducible constraints. These variables
must be translated before all the other Z variables. This is so because the variables not appearing
at the left hand side can be part of the value of the other variables.

In this case the following translation rules apply:

Zero irreducible constraint is given. In this case apply rule 3.

list(M). Translate it as [[M]] = 〈〉, only if M is a Z variable.

set(M). Translate it as [[M]] = /0, only if M is a Z variable.

integer(M). Translate it as [[M]] = 0, only if M is a Z variable.

6=. Assume the variable we are interested in is M. Therefore, in this case, there is a sequence
of inequalities of the form M 6= Bi where Bi are either variables or constants, for all i in some
set I. In turn, these other terms Bi can participate in other inequalities where M does not
participate. This set of inequalities is trivially solved if all the variables (M, all the Bi, and
all the other variables participating in inequalities where a Bi also participates) are assigned
different constants. Thus, the point is to provide translation rules as to generate different
constants for each variable involved in an inequality.
The translation rules are as follows. Let A be a variable or a component of a cross product or
a schema type3 participating in an inequality and let KA be the set of all constants occurring
in all inequalities which are directly or indirectly connected with A. For example, if we have
the following sequence of inequalities M 6= a,M 6= b,M 6= Z,Z 6= c,W 6= Z,W 6= d,N 6= e,
then the set KM for the variable M is {a,b,c,d}.

a) If the type of A at the Z level is a basic type apply the first case of rule in 3.
b) If the type of A at the Z level is Z or N, then assign to it a natural number n such that

n 6∈ KA.
c) If the type of A at the Z level is an enumerated type, then assign to it a constant c of the

enumerated type such that c 6∈ KA.
d) If the type of A at the Z level is a structured type (i.e. one obtained by applying a type

constructor), then proceed as follows:

I) If the type is PX, FX or seqX, then assign to A a set or a sequence s such that #s 6= #r
for each r ∈ KA of the same Z type as s.

II) If the type is X× Y or a schema type, then consider one of the components, say
Xi (preferentially one of type Z or N), and the relevant set KXi , and assign to it a
constant c such that c 6= d for each d ∈ KXi of the same Z type as c. Assign to the
remaining components a fixed constant by applying the corresponding rule given in
3.

3If A is a component then we mean the same component of the same type. For example, if we have x : X×Y and y : X×Z
and we take A as x.1 then we do not talk about y.1 although they have the same type. That is, consider components as named
variables.

14 Translation of TTF Test Specifications into {log}

Consider the following examples. If at the Z level we have:

[X]

and a test condition as:

A : P(PX)
#A > 2

then {log} will return:

A = {_G2676,_G2661,_G2646},

N = 3

Constraint: _G2676 neq _G2661, _G2676 neq _G2646, _G2661 neq _G2646

Then the test case at the Z level will be:

A = { /0,{X1},{X1,X2}}

where X1 and X2 are assumed to be two elements of X.

As another example say we have the same test condition but X now is as follows:

X
x : N
y : seqZ

then, since the translation of the test specification will be the same, the answer returned by {log}
will be the same, too. However, in this case the translation from {log} to Z will yield:

A = {〈|x : {0}; y : {〈〉}|〉,〈|x : {1}; y : {〈〉}|〉,〈|x : {2}; y : {〈〉}|〉}

because the type of A at the Z level is different in the two examples.

5. If M is a Z variable at the left hand side of one of the equalities returned by {log} whose type is a
cross product or a schema type, then consider the following cases:

a) The type of M is X1× . . .×Xn. At the right hand side of the equality there will be a {log} list
of the form [G1, . . . ,Gm] with m≤ n. Then the translation must be as follows:

[[M]] = ([[G1]], . . . , [[Gm]],cm+1, . . . ,cn)

where cm+1, . . . ,cn are constants whose types are, respectively, Xm+1, . . . ,Xn. These constants
must be built as indicated in rule 3. Note that G1, . . . ,Gm may be auxiliary variables so rules
3 and 4 may apply to them.
If n = 2 the translation can be [[G1]] 7→ [[G2]], that is mapplet is used in place of parenthesis.

Maximiliano Cristiá & Gianfranco Rossi 15

b) The type of M is [a1 : T1; . . . ; an : Tn]. At the right hand side of the equality there will be a
{log} list of the form [G1, . . . ,Gm] with m≤ n. Then the translation must be as follows:

[[M]] = 〈|a1 : {[[G1]]}; . . . ; am : {[[Gm]]}; am+1 : {cm+1}; . . . ; an : {cn}|〉

where cm+1, . . . ,cn are constants whose types are, respectively, Tm+1, . . . ,Tn. These constants
must be built as indicated in rule 3. Note that G1, . . . ,Gm may be auxiliary variables so rules
3 and 4 may apply to them.

6. Sequences of equalities of the form:

M1 = M2, . . . ,Mn−1 = Mn,Mn = c

where M1, . . . ,Mn are n variables and c is a constant, are going to be translated as follows:

[[M1]] = [[c]]
[[M2]] = [[c]]
. . .
[[Mn]] = [[c]]

7. Set extensions of the form {c1, . . . ,cn} are translated as {[[c1]], . . . , [[cn]]}. If n = 0 and thus the set
is empty, the translation can be {} or /0.

8. List expressions of the form [c1, . . . ,cn] are translated as 〈[[c1]], . . . , [[cn]]〉, if they are not used to
represent cross products or schema types (in which case rule 5must be applied). If n = 0 and thus
the list is empty, the translation is 〈〉.

9. Integer numbers are translated as they are.

10. The translation of set expressions of the form {c1, . . . ,cn\S} is [[{c1, . . . ,cn}]] (i.e. S is ignored).

11. The translation of list expressions of the form [c1, . . . ,cn | S] is [[[c1, . . . ,cn]]] (i.e. S is ignored).

	Translation Strategy
	Ground Types
	Set Extensions
	Set Comprehensions
	Cross Products
	Power Sets
	Schema Types
	Binary Relations
	Partial Functions
	Total Functions
	Function Application
	Sequences
	Equality
	Set Expressions
	Relational Expressions
	Sequence Expressions
	Arithmetic Expressions
	Translation from {log} to Z

