Anonymous Connections and Onion Routing

Michael G. Reed, Paul F. Syverson, and David M. Goldschlag *
Naval Research Laboratory

Abstract

Onion Routing is an infrastructure for private com-
munication over a public network. It provides anony-
mous connections that are strongly resistant to both
eavesdropping and traffic analysis. Onion routing’s
anonymous connections are bidirectional and near real-
time, and can be used anywhere a socket connection
can be used. Any identifying information must be in
the data stream carried over am anonymous connec-
tion. An onion is a data structure that is treated as the
destination address by onion routers; thus, it is used
to establish an anonymous connection. Onions them-
selves appear differently to each onion router as well as
to network observers. The same goes for data carried
over the connections they establish. Proxy aware ap-
plications, such as web browsing and e-mail, require no
modification to use onion routing, and do so through
a series of proxies. A prototype onion routing network
is running between our lab and other sites. This paper
describes anonymous connections and their implemen-
tation using onion routing. This paper also describes
several application proxies for onion routing, as well as
configurations of onion routing networks.

1 Introduction

Is Internet communication private? Most security
concerns focus on preventing eavesdropping [18], i.e.,
outsiders listening in on electronic conversations. But
encrypted messages can still be tracked, revealing who
is talking to whom. This tracking is called traffic analy-
sis and may reveal sensitive information. For example,
the existence of inter-company collaboration may be
confidential. Similarly, e-mail users may not wish to

*Address: (For Reed and Syverson) Naval Research Labo-
ratory, Center For High Assurance Computer Systems, Wash-
ington, D.C. 20375-5337, USA, phone: +1 202.767.2389, fax:
+1 202.404.7942, e-mail: {last-name}@itd.nrl.navy.mil. (For
Goldschlag) Divx, 570 Herndon Parkway, Herndon, VA 20170,
USA, phone: +1 703-708-4028. fax: +1 703-708-4088, e-mail:
david.goldschlag@divx.com

reveal who they are communicating with to the rest of
the world. In certain cases anonymity may be desir-
able also: anonymous e-cash is not very anonymous if
delivered with a return address. Web based shopping
or browsing of public databases should not require re-
vealing one’s identity.

This paper describes how a freely available system,
onion routing, can be used to protect a variety of In-
ternet services against both eavesdropping and traffic
analysis attacks, from both the network and outside ob-
servers. This paper includes a specification sufficient to
guide both re-implementations and new applications of
onion routing. We also discuss configurations of onion
routing networks and applications of onion routing, in-
cluding Virtual Private Networks (VPN), Web brows-
ing, e-mail, remote login, and electronic cash.!

A purpose of traffic analysis is to reveal who is talk-
ing to whom. The anonymous connections described
here are designed to be resistant to traffic analysis, i.e.,
to make it difficult for observers to learn identifying in-
formation from the connection (e.g., by reading packet
headers, tracking encrypted payloads, etc.). Any iden-
tifying information must be passed as data through
the anonymous connections. Our implementation of
anonymous connections, onion routing, provides pro-
tection against eavesdropping as a side effect. Onion
routing provides bidirectional and near real-time com-
munication similar to TCP/IP socket connections or
ATM AALS5 [6]. The anonymous connections can sub-
stitute for sockets in a wide variety of unmodified Inter-
net applications by means of proxies. Data may also be
passed through a privacy filter before being sent over
an anonymous connection. This removes identifying
information from the data stream, to make communi-
cation anonymous too.

Although onion routing may be used for anony-
mous communication, it differs from anonymous re-
mailers [7, 16] in two ways: Communication is real-time
and bidirectional, and the anonymous connections are
application independent. Onion routing’s anonymous

1Preliminary versions of portions of this paper have appeared
in [28, 14, 24].

connections can support anonymous mail as well as
other applications. For example, onion routing may be
used for anonymous Web browsing. A user may wish to
browse public Web sites without revealing his identity
to those Web sites. That requires removing informa-
tion that identifies him from his requests to Web servers
and removing information from the connection itself
that may identify him. Hence, anonymous Web brows-
ing uses anonymized communication over anonymous
connections. The Anonymizer [1] only anonymizes the
data stream, not the connection itself. So it does not
prevent traffic analysis attacks like tracking data as it
moves through the network.

This paper is organized in the following way: Sec-
tion 2 presents an overview of onion routing. Section
3 presents empirical data about our prototype. Sec-
tion 4 defines our threat model. Section 5 describes
onion routing and the application specific proxies in
more detail. Section 6 describes the implementation
choices that were made for security reasons. Section 7
describes how onion routing may be used in a wide va-
riety of Internet applications. Section 8 contrasts onion
routing with related work, and section 9 presents con-
cluding remarks.

2 Onion Routing Overview

In onion routing, instead of making socket connec-
tions directly to a responding machine, initiating ap-
plications make connections through a sequence of ma-
chines called onion routers. The onion routing net-
work allows the connection between the ¢nitiator and
responder to remain anonymous. Anonymous connec-
tions hide who is connected to whom, and for what
purpose, from both outside eavesdroppers and com-
promised onion routers. If the initiator also wants to
remain anonymous to the responder, then all identify-
ing information must be removed from the data stream
before being sent over the anonymous connection.

Onion routers in the network are connected by long-
standing (permanent) socket connections. Anonymous
connections through the network are multiplexed over
the longstanding connections. For any anonymous con-
nection, the sequence of onion routers in a route is
strictly defined at connection setup. However, each
onion router can only identify the previous and next
hops along a route. Data passed along the anonymous
connection appears different at each onion router, so
data cannot be tracked en route, and compromised
onion routers cannot cooperate by correlating the data
stream each sees. We will also see that they cannot
make use of replayed onions or replayed data.

2.1 Operational Overview

The onion routing network is accessed via a series
of prories. An initiating application makes a socket
connection to an application prory. This proxy mas-
sages connection message format (and later data) to a
generic form that can be passed through the onion rout-
ing network. It then connects to an onion prozy, which
defines a route through the onion routing network by
constructing a layered data structure called an onion.
The onion is passed to the entry funnel, which occu-
pies one of the longstanding connections to an onion
router and multiplexes connections to the onion rout-
ing network at that onion router. That onion router
will be the one for whom the outermost layer of the
onion is intended. Each layer of the onion defines the
next hop in a route. An onion router that receives an
onion peels off its layer, identifies the next hop, and
sends the embedded onion to that onion router. The
last onion router forwards data to an exit funnel, whose
job is to pass data between the onion routing network
and the responder.

In addition to carrying next hop information, each
onion layer contains key seed material from which keys
are generated for crypting? data sent forward or back-
ward along the anonymous connection. (We define for-
ward to be the direction in which the onion travels and
backward as the opposite direction.)

Once the anonymous connection is established, it
can carry data. Before sending data over an anony-
mous connection, the onion proxy adds a layer of en-
cryption for each onion router in the route. As data
moves through the anonymous connection, each onion
router removes one layer of encryption, so it arrives at
the responder as plaintext. This layering occurs in the
reverse order for data moving back to the initiator. So
data that has passed backward through the anonymous
connection must be repeatedly post-crypted to obtain
the plaintext.

By layering cryptographic operations in this way,
we gain an advantage over link encryption. As data
moves through the network it appears different to each
onion router. Therefore, an anonymous connection is
as strong as its strongest link, and even one honest node
is enough to maintain the privacy of the route. In link
encrypted systems, compromised nodes can cooperate
to uncover route information.

Onion routers keep track of received onions until
they expire. Replayed or expired onions are not for-
warded, so they cannot be used to uncover route in-
formation, either by outsiders or compromised onion

2We define the verb crypt to mean the application of a cryp-
tographic operation, be it encryption or decryption.

routers. Note that clock skew between onion routers
can only cause an onion router to reject a fresh onion
or to keep track of processed onions longer than nec-
essary. Also, since data is encrypted using stream ci-
phers, replayed data will look different each time it
passes through a properly operating onion router.

Although we call this system onion routing, the
routing that occurs here does so at the application
layer of the protocol stack and not at the IP layer.
More specifically, we rely upon IP routing to route data
passed through the longstanding socket connections.
An anonymous connection is comprised of portions of
several linked longstanding multiplexed socket connec-
tions. Therefore, although the series of onion routers
in an anonymous connection is fixed for the lifetime
of that anonymous connection, the route that data ac-
tually travels between individual onion routers is de-
termined by the underlying IP network. Thus, onion
routing may be compared to loose source routing.

Onion routing depends upon connection based ser-
vices that deliver data uncorrupted and in-order. This
simplifies the specification of the system. TCP socket
connections, which are layered on top of a connection-
less service like IP, provide these guarantees. Similarly,
onion routing could easily be layered on top of other
connection based services, like ATM AALS.

Our current prototype of onion routing considers the
network topology to be static and does not have mecha-
nisms to automatically distribute or update public keys
or network topology. These issues, though important,
are not the key parts of onion routing and will be ad-
dressed in a later prototype.

2.2 Configurations

As mentioned above neighboring onion routers are
neighbors in virtue of having longstanding socket con-
nections between them, and the network as a whole is
accessed from the outside through a series of proxies.
By adjusting where those proxies reside it is possible to
vary which elements of the system are trusted by users
and in what way. (For some configurations it may be ef-
ficient to combine proxies that reside in the same place,
thus they may be only conceptually distinct.)

2.2.1 Firewall Configuration

In the firewall configuration, an onion router sits on
the firewall of a sensitive site. This onion router serves
as an interface between machines behind the firewall
and the external network. Connections from machines
behind the firewall to the onion router are protected
by other means (e.g., physical security). To complicate

tracking of traffic originating or terminating within the
sensitive site, this onion router should also route data
between other onion routers. This configuration might
represent the system interface from a typical corporate
or government site. Here the application proxies (to-
gether with any privacy filters), and the onion proxies
would typically live at the firewall as well. (Typically,
there might only be one onion proxy.)

There are three important features of this basic con-
figuration:

e Connections between machines behind onion
routers are protected against both eavesdropping
and traffic analysis. Since the data stream never
appears in the clear on the public network, this
data may carry identifying information, but com-
munication is still private. (This feature is used
in section 7.1.)

e The onion router at the originating protected site
knows both the source and destination of a con-
nection. This protects the anonymity of con-
nections from observers outside the firewall but
also simplifies enforcement of and monitoring for
compliance with corporate or governmental usage
policy.

e The use of anonymous connections between two
sensitive sites that both control onion routers
effectively hides their communication from out-
siders. However, if the responder is not in a sen-
sitive site (e.g., the responder is some arbitrary
Web server) the data stream from the sensitive
initiator must also be anonymized. If the con-
nection between the exit funnel and the respond-
ing server is unencrypted, the data stream might
otherwise identify the initiator. For example, an
attacker could simply listen in on the connections
to a Web server and identify initiators of any con-
nection to it.

2.2.2 Remote Proxy Configuration

What happens if an initiator does not control an onion
router? If the initiator can make encrypted connections
to some remote onion router, then he can function as
if he is in the firewall configuration just described, ex-
cept that both observers and the network can tell when
he makes connections to the onion router. However, if
the initiator trusts the onion router to build onions, his
association with the anonymous connection from that
onion router to the responder is hidden from observers
and the network. In a similar way, an encrypted con-
nection from an exit funnel to a responder hides the

association of the responder with the anonymous con-
nection .

Therefore, if an initiator makes an anonymous con-
nection to some responder, and layers end-to-end en-
cryption over that anonymous connection, the initia-
tor and responder can identify themselves to one an-
other, yet hide their communication from the rest of
the world. So we can build virtual private networks
without protected sites.

Notice, however, that the initiator trusts the remote
onion router to conceal that the initiator wants to com-
municate with the responder, and to build an anony-
mous connection through other onion routers. The
next section describes how to shift some of this trust
from the first onion router to the initiator.

2.2.3 The Customer—ISP Configuration

Suppose, for example, an Internet Services Provider
(ISP) runs a funnel that accepts connections from
onion proxies running on subscribers’ machines. In
this configuration, users generate onions specifying a
path through the ISP to the destination. Although the
ISP would know who initiates the connection, the ISP
would not know with whom the customer is communi-
cating, nor would it be able to see data content. So the
customer need not trust the ISP to maintain her pri-
vacy. Furthermore, the ISP becomes a common carrier,
who carries data for its customers. This may relieve the
ISP of responsibility both for whom users are commu-
nicating with and the content of those conversations.
The ISP may or may not be running an onion router as
well. If he is running an onion router, then it is more
difficult to identify connections that terminate with his
customers; however, he is serving as a routing point for
other traffic. On the other hand, if he simply runs a
funnel to an onion router elsewhere, it will be possible
to identify connections terminating with him, but his
overall traffic load will be less. Which of these would be
the case for a given ISP would probably depend on a va-
riety of service, cost, and pricing considerations. Note
that in this configuration the entry funnel must have an
established longstanding connection to an onion router
just like any neighboring onion router. (Cf. section 5.6
for a description of how these are established.) But, in
most other cases, where the funnel resides on the same
machine as the onion router, establishing an encrypted
longstanding connection should not be necessary since
the funnel can be directly incorporated into the onion
router.

3 Empirical Data

We invite readers to experiment with our pro-
totype of onion routing by using it to anony-
mously surf the Web, send anonymous e-mail, and
do remote logins. For instructions please see
http://wuw.itd.nrl.navy.mil/ITD/5540/projects/
onion-routing/.

One should be aware that accessing a remote onion
router does not completely preserve anonymity, be-
cause the connection between a remote machine and
the first onion router is not protected. If that connec-
tion were protected, one would be in the remote proxy
configuration, but there would would still be no rea-
son to trust the remote onion router. If one had a
secured connection to an onion router one trusted, our
onion router could be used as one of several intermedi-
ate routers to further complicate traffic analysis.

We have recently set up a thirteen node distributed
network of government, academic, and private sites.
However, at press time we have not yet gathered per-
formance data for this network. The data we present
are for a network running on a single machine. In our
experimental onion routing network, five onion routers
run on a single Sun Ultra 2 2170. This machine has two
167 MHz processors, and 256MB of memory. Anony-
mous connections are routed through a random se-
quence of five onion routers. Connection setup time
should be comparable to a more distributed topol-
ogy. Data latency, however, is more difficult to judge.
Clearly, data will travel faster over socket connections
between onion routers on the same machine than over
socket connections between different machines. How-
ever, on a single machine the removal or addition of
layers of encryption is not pipelined, so data latency
may be worse.

Onion routing’s overhead is mainly due to public
key cryptography and is incurred while setting up an
anonymous connection. On our Ultra 2 running a fast
implementation of RSA [2], a single public key decryp-
tion of a 1024 bit plaintext block using a 1024 bit pri-
vate key and a 1024 bit modulus takes 90 milliseconds.
Encryption is much faster, because the public keys are
only 16 bits long. (This is why RSA signature veri-
fication is cheaper than signing). So, the public key
cryptographic overhead for routes spanning five onion
routers is just under 0.5 seconds. This overhead can
be further reduced, either with specialized hardware,
or even simply on different hardware (a 200 MHz Pen-
tium would be almost twice as fast).

In practice, our connection setup overhead does not
appear to add intolerably to the overhead of typical
socket connections. Still, it can be further reduced.

There is no reason that the same anonymous connec-
tion could not be used to carry the traffic for several
‘real’ socket connections, either sequentially or multi-
plexed. In fact, the specification for HTTP 1.1 defines
pipelined connections to amortize the cost of socket
setup, and pipelined connections would also transpar-
ently amortize the increased cost of anonymous connec-
tion setup. We are currently updating our Web proxy
to be HTTP 1.1 compliant.

4 Threat Model

This section outlines our threat model. It does not
intend to quantify the cost of attacks, but to define
possible attacks. Future work will quantify the threat.
First some vocabulary. A session is the data carried
over a single anonymous connection. Data is carried
in fixed length cells. Since these cells are multiply en-
crypted and change as they move through an anony-
mous connection, tracking cells is equivalent to track-
ing markers that indicate when cells begin. In a marker
attack, the attacker identifies the set of outbound con-
nections that some distinguished marker may have
been forwarded upon. By intersecting these sets for
a series of distinguished markers belonging to the same
session, an attacker may determine, or at least narrow,
the set of possible next hops. In a timing attack, the
attacker records a timing signature for a session that
correlates data rate over time. A session may have a
very similar timing signature wherever it is measured
over a route, so cooperating attackers may determine
if they carry a particular session.

We assume that the network is subject to both pas-
sive and active attacks. Traffic may be monitored and
modified by both external observers and internal net-
work elements, including compromised onion routers.
Attackers may cooperate and share information and in-
ferences. We assume roving attackers that can monitor
part, but not all, of the network at a time.

Our goal is to prevent traffic analysis, not traffic con-
firmation. If an attacker wants to confirm that two end-
points often communicate, and he observes that they
each connect to an anonymous connection at roughly
the same time, more often than is statistically ex-
pected, it is reasonable to infer that the endpoints are
indeed communicating. Notice that this attack is in-
feasible if endpoints live in protected networks behind
trusted onion routers on firewalls.

If the onion routing infrastructure is uniformly busy,
then passive external attacks are ineffective. Specifi-
cally, neither the marker nor timing attacks are feasi-
ble, since external observers cannot assign markers to
sessions. Active attacks are possible since reducing the

load on the system makes the network easier to analyze
(and makes the system not uniformly busy).

Passive internal attacks require at least two com-
promised onion routers. Since onion routers can assign
markers to a session, both the marker and timing at-
tacks are possible. Specifically, timing signatures can
be broadcast, and other compromised onion routers can
attempt to find connections with matching timing sig-
natures.

Another attack that is only feasible as an internal at-
tack is the volume attack. Compromised onion routers
can keep track of the number of cells that have passed
over any given anonymous connection. They can then
simply broadcast totals to other compromised onion
routers. Cell totals that are close to the same amount
at the same time at different onion routers are likely to
belong to the same anonymous connection.?

Active internal attacks amplify these risks, since in-
dividual onion routers can selectively limit traffic on
particular connections. An onion router could, for ex-
ample, force a particular timing signature on a connec-
tion, and advertise that signature.

5 Onion Routing Specifics
5.1 Onion Routing Proxies

A proxy is a transparent service between two appli-
cations that would usually make a direct socket con-
nection to each other but cannot. For example, a fire-
wall might prevent direct socket connections between
internal and external machines. A proxy running on
the firewall may enable such connections. Proxy aware
applications are becoming quite common.

Our goal has been to design an architecture for pri-
vate communication that would interface with unmodi-
fied applications, so we chose to use proxies as the inter-
face between applications and onion routing’s anony-
mous connections. For applications that are designed
to be proxy aware, (e.g., WWW browsers), we sim-
ply design appropriate interface proxies. Surprisingly,
for certain applications that are not proxy aware (e.g.,
RLOGIN), we have also been able to design interface
proxies.

Because it is necessary to bridge between applica-
tions and the onion routing network, proxies must un-
derstand both application protocols and onion routing
protocols. Therefore, we modularize the design into
components: the application proxy, the onion proxy,
and the entry funnel. The application proxy bridges
between a socket connection from an application and

3Thanks to Gene Tsudik for noting this attack and for helpful
discussions.

a socket connection to the onion proxy. It is the obli-
gation of the application proxy to massage the data
stream so the onion proxy, the entry funnel and the exit
funnel can be application independent. Specifically, the
application proxy must prepend to the data stream a
standard structure that identifies the ultimate destina-
tion by either hostname/port or IP address/port. Ad-
ditionally, it must process a one byte return code from
the exit funnel and either continue if no error is re-
ported or report the onion routing error code in some
application specific meaningful way. The application
proxy may also contain an optional privacy filter for
sanitizing the data stream.

Upon receiving a new request, the onion proxy
builds an onion defining the route of an anonymous
connection. (It may use the destination address in
the prepended structure to help define the route.) It
then passes the onion to the funnel, and repeatedly
precrypts the standard structure. Finally, it passes
the precrypted standard structure through the anony-
mous connection to the exit funnel, thus specifying the
ultimate destination. From this point on, the onion
proxy blindly relays data back and forth between the
application proxy and the onion routing network (and
thus the exit funnel at the other end of the anonymous
connection). Of course, it must apply the appropri-
ate keystreams to incoming and outgoing data when
blindly relaying data.

The entry funnel multiplexes connections from onion
proxies to the onion routing network. For the services
we have considered to date, a nearly generic exit funnel
is adequate. Its function is to demultiplex connections
from the last onion router to the outside. When it
reads a data stream from the terminating onion router
the first datum received will be the standard structure
specifying the ultimate destination. The exit funnel
makes a socket connection to that IP address/port, re-
ports a one byte status message back to the onion rout-
ing network (and thus back to the onion proxy which
in turn forwards it back to the application proxy), and
subsequently moves data between the onion routing
network and the new socket. (For certain services,
like RLOGIN, the exit funnel also infers that the new
socket must originate from a trusted port.) Entry and
exit funnels are not application specific but must un-
derstand the onion routing protocol, which defines how
multiplexed connections are handled.

As an example, consider the application proxy for
HTTP. The user configures his browser to use the
onion routing proxy. His browser may send the proxy
a request like
GET http://www.domino.com/showcase/ HTTP/1.0
followed by optional fields.

The application proxy is listening for new requests.
Once it obtains the GET request, it creates the standard
structure and sends it (along a new socket connection)
to the onion proxy, to inform the onion proxy of the
service and destination of the anonymous connection.
The application proxy then modifies the GET request
to GET /showcase/ HTTP/1.0 and sends it directly
(through the anonymous connection) to the HTTP
server www.domino. com, followed by the optional fields.
Notice that the server name and http:// are elimi-
nated from the GET request because the connection is
made directly to the HTTP server.

The application proxy essentially makes a connec-
tion to www.domino.com, and issues a request as if it
were a client. Once this request is transmitted to the
server, all proxies blindly forward data in both direc-
tions between the client and the server until the socket
is broken by either side.

For the anonymizing onion routing HT'TP proxy, the
application proxy proceeds as outlined above with one
change: it is now necessary to sanitize the optional
fields that follow the GET command because they may
contain identity information. Furthermore, the data
stream during a connection must be monitored, to san-
itize additional headers that might occur during the
connection. For our current anonymizing HTTP proxy,
operations that store cookies on the user’s browser (to
track a user, for example) are removed. This reduces
function, so applications that depend upon cookies
(like online shopping baskets) may not work properly.

5.2 Implementation

This section presents the interface specification be-
tween the components in an onion routing system. To
provide some structure to this specification, we will
discuss components in the order that data would move
from an initiating client to a responding server.

There are four phases in an onion routing sys-
tem: network setup, which establishes the longstanding
connections between onion routers; connection setup,
which establishes anonymous connections through the
onion router network; data movement over an anony-
mous connection; and the destruction and cleanup of
anonymous connections. We will commingle the dis-
cussion of these below.

5.3 Application Proxy

The interface between an application and the ap-
plication proxy is application specific. The interface
between the application proxy and the onion proxy is
defined as follows. For each new proxy request, the

application proxy first determines if it will handle or
deny the request. If rejected, it reports an application
specific error message and then closes the socket and
waits for the next request. If accepted, it creates a
socket to the onion proxy’s well known port. The ap-
plication proxy then sends a standard structure to the
onion proxy of the form:

0 1 2 3
01234567890123456789012345678901

Version is currently defined to be 1. Protocol is
either 1 for RLOGIN, 2 for HTTP, or 3 for SMTP.
Retry Count specifies how many times the exit funnel
should attempt to retry connecting to the ultimate des-
tination. Finally, the Addr Format field specifies the
form of the ultimate destination address: 1 for a NULL
terminated ASCII string with the hostname or IP ad-
dress (in ASCII form) immediately followed by another
NULL terminated ASCII string with the destination
port number, and all others currently undefined. The
ultimate destination address is sent after this standard
structure, and the application proxy waits for a one
byte error code before sending data.

5.4 Onion Proxy

Upon receiving the standard structure, the onion
proxy can decide whether to accept or reject the re-
quest based on the protocol, destination host, desti-
nation port, or the identity of the application proxy.
If rejected, it sends an appropriate error code back to
the application proxy, closes the socket, and waits for
the next request. If accepted, it proceeds to build the
onion and connects to the entry funnel of the first onion
router, through the network, and to the exit funnel of
the last. It next sends the standard structure to the
exit funnel over the anonymous connection, and then
passes all future data to and from the application proxy
and anonymous connection. The repeated pre and post
cryptions and packaging of the standard structure and
subsequent data is discussed later in section 5.6.

5.5 Onions

To build the anonymous connection to the exit fun-
nel, the onion proxy creates an onion. An onion is
a multi-layered data structure that encapsulates the
route of the anonymous connection starting from the
onion router for that exit funnel and working backward
to the onion router at the entry funnel.

Each layer has the following structure:

0 1 2 3
01234567890123456789012345678901

|Back F|Forw F|

10| Version Destination Port

| Destination Address |

| Expiration Time (GMT) |

Key Seed Material

—+ — + — 4+ —
—+ — + — 4+ —

As we will see below, the first bit must be zero for
RSA public key cryptography to succeed. Following
the zero bit is the Version Number of the onion routing
system, currently defined to be 1.

The Back F field denotes the cryptographic function
to be applied to data moving in the backward direction
(defined as data moving in the direction opposite that
which the onion traveled, usually toward the initiator’s
end of the anonymous socket connection) using keys
defined below. The Forw F field denotes the crypto-
graphic function to be applied to data moving in the
forward direction (defined as data moving in the same
direction as that which the onion traveled, usually to-
ward the responder’s end of the anonymous socket con-
nection) using keys defined below. Currently defined
cryptographic functions are: 0 for Identity (no encryp-
tion), 1 for DES OFB (output feedback mode) (56 bit
key), and 2 for RC4 (128 bit key). The Destination
Address and Destination Port indicate the next onion
router in network order and are both 0 for the exit fun-
nel. The Ezpiration Time is given in network order in
seconds relative to 00:00:00 UTC January 1, 1970 (i.e.,
standard UNIX time(2) format) and specifies how long
the onion router at this hop in the anonymous connec-
tion must track the onion against replays before it ex-
pires. Key Seed Material is 128 bits long and is hashed
three times with SHA to produce three cryptographic
keys (key:, keys, and keys) of 128-bits each (the first
eight bytes of each SHA output are used for DES and
the first 16 bytes for RC4 keys).*

Since we use RSA public key cryptography with a
modulus size of 1024-bits, the plaintext block size is
1024 bits and must be strictly less than the modulus
numerically. To avoid problems, we force this relation
by putting the most-significant bit first and setting it
to 0 (the leading 0 above). Furthermore, the inner-
most layer of the onion is padded on the end with an
additional 100 bytes prior to RSA encryption being

4Details on the cryptographic operations used in this paper
can be found in [20, 26].

performed.

In version 1, an onion has five layers, but routes can
be shorter. An onion is formed iteratively, innermost
layer first. At each iteration, the first 128 bytes of the
onion are encrypted with the public key of the onion
router that is intended to decrypt that layer. The re-
mainder of the onion is encrypted, using DES OFB
with an IV (initialization vector) of 0 and key; (de-
rived from Key Seed Material in that layer as defined
above).’

Before discussing how onions and data are sent be-
tween onion routers, we will define onion router inter-
connection.

5.6 Onion Router Interconnection

During onion network setup (not to be confused
with anonymous connection setup), longstanding con-
nections between neighboring onion routers are estab-
lished and keyed. The network topology is predefined
and each onion router knows its neighbors.

To remain connected to each of its neighbors, onion
routers must both listen for connections from neigh-
bors and attempt to initiate connections to neighbors.
To avoid deadlock and collision issues between pairs of
neighbors, an onion router listens for connections from
neighbors with “higher” IP/port addresses and initi-
ates connections to neighbors with “lower” IP /port ad-
dresses. “Higher” and “Lower” are defined with respect
to network byte ordering. (This was an expedient way
to break symmetry. Ultimately we will want a more
flexible solution. For example, when an onion router
goes down, it should contact its neighbors upon com-
ing back up. Requiring the neighbors to try to contact
the down router until it responds is less efficient. This
is not difficult to implement and we will do so in the
future.)

The protocol has two phases: connection setup and
keying. The initiating onion router opens a socket to
a well known port of its neighboring onion router, and
sends its IP address and well known port (the port is
included to allow multiple onion routers to run on a
single machine) in network order to identify itself. The
keying phase ensues, using STS [9] which will gener-
ate two DES 56-bit keys. The link encryption over the
longstanding connections is done by DES OFB with
IVs of 0 and these two keys (one for data in each di-
rection).

Once keyed, communication between onion routers
is packaged into fixed sized cells, which allows for

5We use DES to encrypt the onion, and for link encryption
between onion routers, because it has no licensing fees and can be
used as a pseudorandom number generator. However, we would
be happy to use a stronger pseudorandom number generator.

the multiplexing of both anonymous connections and
control information over the longstanding connections.
(Cell size was chosen to be compliant with ATM.) In
version 1 of the onion routing system, there are four
types of cells: PADDING (0), CREATE (1), DATA
(2), and DESTROY (3).
Cells have the following structure:
0 1 2 3
01234567890123456789012345678901

The ACI (anonymous connection identifier) and
Command fields are always encrypted using the link
encryption between neighboring nodes. Additionally,
the Length and Payload fields are encrypted using the
link encryption between neighboring nodes if the com-
mand is either PADDING (0) or DESTROY (3). For
CREATE (1) commands, the length is link encrypted,
but the payload is already encrypted because it car-
ries the onion. For DATA (2) commands, the length
and entire payload are encrypted using the anonymous
connection’s forward or backward cryptographic oper-
ations.

Each anonymous connection is assigned an ACI at
each onion router, which labels an anonymous connec-
tion when it is multiplexed over the longstanding con-
nection to the next onion router. ACIs must be unique
on their longstanding connection but need not be glob-
ally unique.

To move an onion through the system, an onion
router peels off the outermost layer, identifying the
next hop. It checks the freshness (not expired and
not replayed) of the onion, computes the necessary
cryptographic keys, initializes the forward and back-
ward cryptographic engines, chooses a new ACI for
the next hop in the new connection, and then builds a
data structure associated with that connection which
maps incoming to outgoing ACIs and the cryptographic
engines associated with forward and backward data.
Since neighboring onion routers choose ACIs for each
other on the thick pipe that they share, each is assigned
half of the naming space. The neighboring onion router
with a “higher address” chooses ACIs in the top half
of that space, while its neighbor with the lower address
chooses ACIs from the bottom half of that space. After
the outermost layer of onion is peeled off, the rest of the
onion is padded randomly to its original length, placed
into CREATE cells, and then sent out in order to the
appropriate neighbor. The payload of the last cell is
padded with random bits to fill the cell if necessary (to

avoid traceability).

Data moves through an anonymous connection in
DATA cells. At each onion router both the length and
payload fields of a cell are crypted using the appro-
priate cryptographic engine. The new cell is sent out
to the appropriate neighbor. The onion proxy must
repeatedly crypt data to either add the appropriate
layers of cryption on outgoing data, or remove layers
of cryption from incoming data. When constructing
a DATA cell from a plaintext data stream, the cell is
(partially) filled, its true length is set, and all 45 bytes
of the length and payload fields are repeatedly crypted
using the stream ciphers defined by the onion. There-
fore, when the cell arrives at the exit funnel, the length
field reflects the length of the actual data carried in the
payload.

If a connection is broken, a DESTROY command
is sent to clean up state information. The ACI field
of the DESTROY command carries the ACI of the
broken connection. The length and payload must be
random. Upon receipt of a DESTROY command, it
is the responsibility of an onion router to forward the
DESTROY appropriately and to acknowledge receipt
by sending another DESTROY command back to the
previous sender. After sending a DESTROY command
about a particular ACI, an onion router may not send
any more cells along that anonymous connection. Once
an acknowledgment DESTROY message is received, an
onion routing node considers the anonymous connec-
tion destroyed and the ACI can be used as a label for
a new anonymous connection.

The PADDING command is used to inject data into
alongstanding socket to further confuse traffic analysis.
PADDING cells are discarded upon receipt.

Each onion router also reorders cells moving through
it. All cells that arrive at an onion router within a fixed
interval of time on any connection are mixed pseudo-
randomly, except that the order of cells in each anony-
mous connection is preserved.

5.7 Exit Funnel

When a routing node receives an onion with Des-
tination Address and Destination Port of 0, it knows
it is the terminal onion router for the connection and
passes the connection not to another onion router but
to its own exit funnel. The funnel proceeds to read the
standard structure that will be the first data across the
anonymous socket connection, establishes a connection
to the ultimate destination as indicated, and returns
the status code. After this, it will blindly forward data
between the anonymous connection and the connection
to the responder’s machine.

6 Implementation Vulnerabilities

An implementation of a secure design can be inse-
cure. In this section, we describe several implementa-
tion decisions that were made for security considera-
tions.

Onions are packaged in a sequence of cells that must
be processed together. This onion processing involves a
public key decryption operation which is relatively ex-
pensive. Therefore, it is possible to imagine an imple-
mentation that clears outgoing queues while an onion
is being processed, and then outputs the onion. There-
fore, any period of inactivity on the out-bound queues
is likely to be followed by a sequence of onion cells be-
ing output on a single queue. Such an implementation
makes tracking easier and should be avoided.

After processing at each onion router, onions are
padded at the end to compensate for the removed layer.
This padding must be random, since onions are not
link encrypted between onion routers. Similarly, the
length and payload of a DESTROY command must be
new random content at each onion router; otherwise,
compromised onion routers could track that payload.

In a multi-threaded implementation, there is a sig-
nificant lure to rely upon apparent randomness in
scheduling to reorder events. If reordering is impor-
tant to the secure operation of the system, deliberate
reordering is crucial, since low level system randomness
may in fact be predictable.

There are two vulnerabilities for which we do not
have good solutions. If part of the onion routing net-
work is taken down, traffic analysis may be simplified.
Also, if a longstanding connection between two onion
routers is broken, it will result in many DESTROY
messages, one for each anonymous connection that was
routed through that longstanding connection. There-
fore, a compromised onion router may infer from near
simultaneous DESTROY messages that the associated
anonymous connections had some common route. De-
laying DESTROY messages hurts performance, since
we require that a DESTROY message propagate to the
endpoints to take down the connection that is visible
to the user. Carrying the DESTROY message through
the anonymous connection and garbage collecting dor-
mant anonymous connections later would be ideal, but
we do not know how to efficiently insert control infor-
mation into a raw data channel, especially consider-
ing our layered encryption. One possibility is for the
onion router on the initiator side of a break to send
some large predetermined number of one bits back to
the initiator followed by a message that the connec-
tion is destroyed. The onion proxy could then check
for such a signal after it strips off each layer of each

packet, and notify the application proxy if it receives
the signal. The initiator can contact the responder out
of band, presumably through another anonymous con-
nection, authenticate itself by some means as the initia-
tor of the broken connection, and notify the responder
of the break. Onion routers can either be notified di-
rectly by the onion proxy after some random delay or
possibly garbage collect least recently used ACIs. We
will continue to explore the feasibility of this and other
possibilities.®

7 Applications

We first describe how to use anonymous connection
in VPNs, anonymous chatting services, and anonymous
cash. We then describe onion routing proxies for three
Internet services: Web browsing, e-mail, and remote
logins. These three onion routing proxies have been
implemented. Anonymizing versions of these proxies
that remove the identifying information that may be
present in the headers of these services’ data streams
have been implemented as well.

7.1 Virtual Private Networks

If two sites wanted to collaborate, they could estab-
lish one or more long term tunnels that would multiplex
many socket connections, or even raw IP packets, over
a single anonymous connection. This would effectively
hide who is collaborating with whom and what they
are working on, without requiring the construction of
an individual anonymous connection for each connec-
tion made. Such long term anonymous connections be-
tween enclaves provide the analog of a leased line over
a public network. Note that the protection provided a
VPN by onion routing is broader than that provided by
encrypting firewalls. Basic encrypting firewalls encrypt
payloads only. Thus, they protect confidentiality, but
do nothing to protect against traffic analysis. IPSEC
will protect traffic for individual connections by encap-
sulating packets in encrypted packets from the firewall,
but this will not protect against institutional level traf-
fic analysis. Communication between two such firewalls
will still indicate a collaboration between the sites be-
hind them. Constant padding may be added, but this
is very expensive. And, unless many unrelated sites
agree to do it, it still does not hide the existence of
the VPN established between those sites that are so
padding.

SThanks to Gene Tsudik for some of the fundamental ele-
ments of this proposal.

10

7.2 Anonymous Chatting

Anonymous connections can be used in a service
similar to IRC, where many parties meet to chat at
some central server. The chat server may mate sev-
eral anonymous connections carrying matching tokens.
Each party defines the part of the connection lead-
ing back to itself, so no party has to trust the other
to maintain its privacy. If the communicating parties
layer end-to-end encryption over the mated anonymous
connections, they also prevent the central server from
listening in on the conversation.

7.3 Anonymous Cash

Certain forms of e-cash are designed to be anony-
mous and untraceable, unless they are double spent
or otherwise misused. However, if a customer can-
not contact a vendor without identifying himself, the
anonymity of e-cash is undermined. For transactions
where both payment and product can be conveyed elec-
tronically, anonymous connections can be used to hide
the identities of the parties from one another [27].

How can the customer be prevented from taking his
purchase without paying for it (e.g., by closing the con-
nection early) or the vendor be prevented from taking
the customer’s e-cash without completing the transac-
tion? This is a hard problem [12, 4]. In the case of
a well known vendor, a practical solution is to require
customers to pay first. The vendor is unlikely to delib-
erately cheat its customers since it may be caught in
an audit.

7.4 Remote Login

We proxy remote login requests by taking advan-
tage of the option -1 username to rlogin. The usual
rlogin command is of the form:

rlogin -1 username server

To use rlogin through an onion routing proxy, one
would type

rlogin -1 username@server prory

where prozy refers to the onion routing proxy to be
used and both username and server are the same as
specified above. A normal rlogin request is transmitted
from a privileged port on the client to the well known
port for rlogin (513) on the server as:

\0 username on client \0 username on server \0 terminal type \O
where username on client is the username of the in-

dividual invoking the command on the client machine,
username on server is either the -1 field (if specified) or

the username of the individual invoking the command
on the client machine (if no -1 is specified), and the
terminal type is a standard termcap/linespeed specifi-
cation. The server responds with a single zero byte if
it will accept the connection or breaks the socket con-
nection if an error has occurred or the connection is
rejected. Our normal rlogin proxy therefore receives
the initial request:

\0 username on client \0 username@server \0O terminal type \0

The proxy creates an anonymous connection to the
RLOGIN port on the server machine and proceeds to
send it a massaged request of the form:

\0 username \0 username \O terminal type \0

Once this request is transmitted to the server, the
proxy blindly forwards data in both directions between
the client and server until the socket is broken by either
side.

Notice that the onion router does not send the server
the client’s username on the client, so communication
is anonymous, unless the data-stream subsequently re-
veals more information.

7.5 Web Browsing

Proxying HTTP requests follows the IETF HTTP
V1.0 Specification [3]. An HTTP request from a client
through an HTTP proxy is of the form:

GET http://www.server.com/file.html HTTP/1.0

followed by optional fields. Notice that an HTTP
request from a client to a server is of the form:

GET file.html HTTP/1.0

also followed by optional fields. The server name and
protocol scheme are missing, because the connection is
made directly to the server.

As an example, a complete request from Netscape
Navigator to an onion router HTTP proxy may look
like this:

GET http://www.server.com/file.html HTTP/1.0
Referer: http://www.server.com/index.html
Proxy-Connection: Keep-Alive

User-Agent: Mozilla/3.0 (X11; I; Sun0S 5.4 sun4m)
Host: www.server.com

Accept: image/gif, image/x-xbitmap, image/jpeg

The proxy must create an anonymous connection to
www.server.com, and issue a request as if it were a

client. Therefore, the request must be massaged to
remove the server name and scheme, and transmit-
ted to www.server.com over the anonymous connec-
tion. Once this request is transmitted to the server,
the proxy blindly forwards data in both directions be-
tween the client and server until the socket is broken
by either side.

For privacy filtering of HTTP, the proxy proceeds
as outlined above with one change. It is now neces-
sary to sanitize the optional fields that follow the GET
command because they may contain identity informa-
tion. Furthermore, the data stream during a connec-
tion must be monitored, to sanitize additional headers
that might occur during the connection.

The Anonymizer [1] also provides anonymous Web
browsing. Users can connect to servers through the
Anonymizer and it strips off identifying headers. This
is essentially what our filtering HTTP proxy does.
But packets can still be tracked and monitored. The
Anonymizer could be used as a front end to the onion
routing network to provide effective protection against
traffic analysis. We discuss this further in section 8.

7.6 Electronic Mail

Electronic mail is proxied by utilizing the
user/host@proxy form of e-mail address instead of the
normal user@host form. This form should work with
most current and older mail systems. Under this form,
the client contacts the proxy server’s well known SMTP
port (25). Instead of the normal mail daemon listening
to that port, the proxy listens and interprets what it re-
ceives following a strict state machine: wait for a valid
HELO command, wait for a valid MAIL From: command,
and then wait for a valid RCPT To: command. Each
command argument is temporarily buffered. Once the
RCPT To: command has been received, the proxy pro-
ceeds to create an anonymous connection to the des-
tination server and relays the HELO and MAIL From:
commands exactly as received. The RCPT To: com-
mand is massaged and forwarded. Any subsequent
RCPT To: commands are rejected. Once the DATA
request is transmitted to the server, the proxy for-
wards data in both directions from the client and
server. An example of e-mail from joe@sender.com
on the machine sender.com to mary@recipient.com
via the onion.com onion router is given below. Joe
types mail maryYrecipient.com@onion.com. First
the communications from the client on sender. com to
the onion router SMTP proxy on onion.com is given,
followed by the communications from the exit funnel
to recipient.com:

220 onion.com SMTP Onion Routing Network.

HELO sender.com

250-onion.com -- Connection from

250 sender.com (2.0.0.1).

MAIL From: joe@sender.com

250 Sender is joe@sender.com.

RCPT To: mary’recipient.com@onion.com

The proxy massages the RCPT To: line to make the
address mary@recipient.com and makes an anony-
mous connection to recipient.com. It then replays
the massaged protocol to recipient.com:

220-recipient.com Sendmail 4.1/SMI-4.1 ready
220 at Wed, 28 Aug 96 15:15:00 EDT

HELO Onion.Routing.Network

250-recipient.com Hello Onion.Routing.Network
250 [2.0.0.5], pleased to meet you

MAIL From: joe@sender.com

250 joe@sender.com... Sender ok

RCPT To: maryQrecipient.com

250 mary@recipient.com... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

At this point, the proxy forwards data in both di-
rections, until a line containing only a period is sent
from the sender to the recipient:

This is a note

The proxy forwards the line containing only a period
to the recipient, and forwards the recipient’s response
to the sender. At that point, the proxy sends QUIT to
the recipient, reads the response and closes the con-
nection to the recipient. The proxy then waits for a
command from the sender; if that command is QUIT,
the proxy sends a response and closes its connection to
the sender:

250 Mail accepted
QUIT

221 onion.com Service closing transmission channel.

If the command is not QUIT, then it is MAIL, and
the protocol repeats. Anything else prompts an error
response, and the proxy waits for the next correct com-
mand.

For the privacy filtered proxying of electronic mail,
the proxy proceeds as outlined above with a few
changes. It is now necessary to sanitize both the
MAIL From: command and the header portion of the
actual message body. Sanitization of the MAIL From:
command is trivial with a simple substitution of
anonymous for joe@sender.com. For the header san-
itization, we have taken the conservative approach of
deleting all headers, but this may be modified in the
future to only remove identifying information and leave
the remaining header information intact.

12

8 Comparisons with Related Work

Chaum [5] defines a layered object that routes data
through intermediate nodes, called mizes. These in-
termediate nodes may reorder, delay, and pad traffic to
complicate traffic analysis. In mixes, the assumption is
that a single perfect mix adequately complicates traffic
analysis, but a sequence of multiple mixes is typically
used because real mixes are not ideal. Because of this,
mix applications can use mixes in fixed order, and of-
ten do. Onion routers differ from mixes in at least two
ways: onion routers are more limited in the extent to
which they delay traffic at each node because of the
real-time expectations that the applications demand
of socket connections. Also, in a typical onion routing
configuration, onion routers are also entry points to the
onion routing network, and traffic entering or exiting
at those nodes may not be visible. This makes it hard
to track packets, because they may drop out of the net-
work at any node, and new packets may be introduced
at each node. While onion routing cannot delay traf-
fic to the extent that mixes can, traffic between onion
routers is multiplexed over a single channel and is link
encrypted with a stream cipher. This makes it hard to
parse the stream.

Anonymous remailers like Penet [17] strip headers
from received mail and forward it to the intended re-
cipient. They may also replace the sender’s address
with some alias, permitting replies. These sorts of re-
mailers store sensitive state: the mapping between the
alias and the true return address. Also, mail forwarded
through a chain of remailers may be tracked because it
appears the same to each remailer.

Mix based remailers like [7, 16] use mixes to provide
anonymous e-mail services. Essentially, the mail mes-
sage is carried in the innermost layer of the onion data
structure. Another onion type structure, used for a re-
turn address, can be contained in the message. This
makes the return path self contained, and the remailer
essentially stateless. Onion routing shares many struc-
tures with Babel [16] but it uses them to build (possibly
long lived) application independent connections. This
makes anonymous connections accessible to a wide va-
riety of applications. For application to e-mail it has
both advantages and disadvantages. Onion routing’s
service makes an anonymous connection directly to the
recipient’s sendmail daemon. A disadvantage is that,
since the connection is made in real-time, there is less
freedom in mixing, which therefore might not be done
as well. An advantage is that the anonymous connec-
tion is separated from the application, so anonymous
e-mail systems are considerably simplified because the
application specific part does not have to move data

through the network. Furthermore, because the onion
routing network can carry many types of data, it has
the potential to be more heavily utilized than a net-
work that is devoted only to e-mail. Heavy utilization
is the key to anonymity.

In [10], a structure similar to an onion is used to
forward individual IP packets through a network. By
maintaining tracking information at each router, ICMP
error messages can be moved back along the hidden
route. Essentially, a connection is built for each packet
in a connectionless service. Although a followup paper
[11] suggests that performance will be good, especially
with hardware based public key cryptography, our ex-
perience suggests that both the cryptographic overhead
of building onions and the tracking of onions against
replay is not efficiently done on a packet-by-packet ba-
sis. However, it is easy to imagine an onion routing
proxy that collects IP packets and forwards them over
some anonymous connection. In this way, communi-
cation is anonymous at the IP layer, but connections
need not be built for each IP packet. This anonymous
IP communication may be more robust than our cur-
rent architecture: it could survive a broken anonymous
connection, since IP does not expect reliable delivery.

In [22], mixes are used to provide untraceable com-
munication in an ISDN network. Here is a summary
of that paper. In a phone system, each telephone line
is assigned to a particular local switch (i.e., local ex-
change), and switches are interconnected by a (long
distance) network. Anonymous calls in ISDN rely upon
an anonymous connection between the caller and the
long distance network. These connections are made
anonymous by routing calls through a predefined se-
ries of mixes within each switch. The long distance
endpoints of the connection are then mated to com-
plete the call. (Notice that observers can tell which
local switches are connected.) Also, since each phone
line has a control circuit connection to the switch, the
switch can broadcast messages to each line using these
control circuits. So, within a switch a truly anonymous
connection can be established: A phone line makes an
anonymous connection to some mix. That mix broad-
casts a token identifying itself and the connection. A
recipient of that token can make another anonymous
connection to the specified mix, which mates the two
connections to complete the call.

Our goal of anonymous connections over the Inter-
net differs from anonymous remailers and anonymous
ISDN. The data is different, with real-time constraints
more severe than mail, but somewhat looser than voice.
Both HTTP and ISDN connections are bidirectional,
but, unlike ISDN, HTTP connections are likely to be
small requests followed by short bursts of returned

13

data. Most importantly, the network topology of the
Internet is more akin to the network topology of the
long distance network between switches, where capac-
ity is a shared resource. In anonymous ISDN, the mixes
hide communication within the local switch, but con-
nections between switches are not hidden. This implies
that all calls between two businesses, each large enough
to use an entire switch, reveal which businesses are
communicating. In onion routing, mixing is dispersed
throughout the Internet, which improves hiding.

Pipe-net [8] is a proposal similar to onion routing. It
has not been implemented, however. Pipe-net’s threat
model is more paranoid than onion routing’s: it at-
tempts to resist active attacks by global observers. For
example, Pipe-net’s connections carry constant traf-
fic (to resist timing signature attacks) and disruptions
to any connection are propagated throughout the net-
work.

The Anonymizer is a Web proxy that filters the
HTTP data stream to remove a user’s identifying in-
formation, essentially as our filtering HTTP proxy
does. For example, the Anonymizer will “strip out
all references to your e-mail address, computer type,
and previous page visited before forwarding your re-
quest” [1]. This makes Web browsing private in the
absence of any eavesdropping or traffic analysis. The
Anonymizer is vulnerable in three ways: First, it must
be trusted. Second, traffic between a browser and the
Anonymizer is sent in the clear, so that traffic identi-
fies the true destination of a query, and includes the
identifying information that the Anonymizer would fil-
ter. Third, even if traffic between the browser and the
Anonymizer were encrypted, passive external observers
could mount the volume attack mentioned in section 4.
The Anonymizer, however, is now readily available to
everyone on the Web.

NetAngels [21] is similar to the Anonymizer, ex-
cept that it builds personal profiles of its subscribers
and targets advertisements to match the profile. How-
ever, the profile is not released to the advertiser and
is deleted when a subscription is canceled. Subscribers
must trust NetAngels, and connections to the service
are subject to the same attacks as the Anonymizer.

LPWA [19, 13] (formerly known as Janus) is a
“proxy server that generates consistent untraceable
aliases for you that enable you to browse the Web,
register at web sites and open accounts, and be ‘recog-
nized’ upon returning to your accounts, all while still
preserving your privacy.” Like the previous two, the
LPWA proxy is at a server that is remote from the
user application. It is thus subject to the same trust
and vulnerability limitations.

It is possible, however, to shift trusted elements to

the user’s machine (or to a machine on the boundary
between his trusted LAN and the Internet). Shifting
trust in this way can improve the security of other
privacy services like the Anonymizer, NetAngels, and
LPWA. Currently, those are centralized to provide an
intermediary that masks the true source of a connec-
tion. If anonymous connections are used to hide the
source address instead, the other functions of these ser-
vices may run as a local proxy on the user’s desktop.
Security is improved because privacy filtering and other
services are done on a trusted machine and because
communication is resistant to traffic analysis. Also,
there is no central point of failure.

Another approach to anonymous Web connections
is Crowds [25]. Crowds is essentially a distributed
and chained Anonymizer, with encrypted links between
crowd members. Web traffic is forwarded to a crowd
member, who flips a weighted coin and, depending on
the result, forwards it either to some other crowd mem-
ber or to the destination. This makes communication
resistant to local observers.

9 Conclusion

This paper describes anonymous connections, their
realization in onion routing, and some of their appli-
cations. Anonymous connections are resistant to both
eavesdropping and traffic analysis. They separate the
anonymity of the connection from the anonymity of
communication over that connection. For example,
two parties controlling onion routers can identify them-
selves to each other without revealing the existence of
a connection between them. This paper demonstrates
the versatility of anonymous connections by exploring
their use in a variety of Internet applications. These ap-
plications include standard Internet services like Web
browsing, remote login, and electronic mail. Anony-
mous connections can also be used to support virtual
private networks with connections that are resistant to
traffic analysis and that can carry connectionless traf-
fic.

Anonymous connections may be used as a new prim-
itive that enables novel applications in addition to facil-
itating secure versions of existing services [24]. Besides
exploring other novel applications, future work includes
a system redesign to improve throughput and an im-
plementation of reply onions [15, 23]. Reply onions
are basically reply addresses that enable connections
to be established back to an anonymous party. We will
be implementing other mechanisms for responding to
anonymous connections as well. We are also beginning
a detailed analysis of onion routing to enable a quan-
titative assessment of resistance to traffic analysis.

14

The onion routing network supporting anonymous
connections can be configured in several ways, includ-
ing a firewall configuration and a customer-ISP configu-
ration, which moves privacy to the user’s computer and
may relieve the carrier of responsibility for the user’s
connections.

Onion routing moves the anonymous communica-
tions infrastructure below the application level, prop-
erly separating communication and applications. Since
the efficacy of mixes depends upon sufficient network
traffic, allowing different applications to share the same
communications infrastructure increases the ability of
the network to resist traffic analysis.

Acknowledgments

We have had helpful comments from and discussion
with people too numerous to mention. We note espe-
cially the help of Birgit Pfitzmann, Gene Tsudik, and
James Washington. We also thank the anonymous ref-
erees, the Levien family for hosting the onion dinner,
and the Isaac Newton Institute for hosting one of the
authors while some of this work was done. The fast
UltraSparc implementation of RSA was done by Tolga
Acar and Cetin Kaya Ko¢. This work was supported
by ONR and DARPA.

References

[1] The Anonymizer. http://www.anonymizer.com

[2] T. Acar, B. S. Kaliski, Jr., and C. Ko¢. “Analyzing
and Comparing Montgomery Multiplication Algo-
rithms”, IEEE Micro, 16(3):26-33, June 1996.

T. Berners-Lee, R. Fielding, and H. Frystyk. Hy-
pertext Transfer Protocol - HTTP/1.0,
ftp://ds.internic.net/rfc/rfc1945.txt

[4] L. J. Camp, M. Harkavey, B. Yee, J. D. Ty-
gar, “Anonymous Atomic Transactions”, Sec-
ond USENIX Workshop on Electronic Commerce,
1996.

[5] D. Chaum. “Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms”, Communi-
cations of the ACM, v. 24, n. 2, Feb. 1981, pp.
84-88.

D. E. Comer. Internetworking with TCP/IP,
Volume 1: Principles, Protocols, and Architec-
ture, Prentice—Hall, Engelwood Cliffs, New Jersey,
1995.

[7] L. Cottrell. Mizmaster and Remailer Attacks,
http://obscura.obscura.com/ loki/remailer
/remailer-essay.html

[8] W. Dai. Pipe-net, February 1995, post to the
cypherpunks mailing list.

[9] Whitfield Diffie, Paul C. van Qorschot, and
Michael J. Wiener. “Authentication and Authenti-
cated Key Exchanges”. Designs, Codes, and Cryp-
tography, 2:107-125, 1992.

[10] A. Fasbender, D. Kesdogan, O. Kubitz. “Vari-
able and Scalable Security: Protection of Loca-
tion Information in Mobile IP”, 46" IEEE Ve-
hicular Technology Society Conference, Atlanta,
March 1996.

[11] A. Fasbender, D. Kesdogan, O. Kubitz. “Analysis
of Security and Privacy in Mobile IP”, 4t* Interna-

tional Conference on Telecommunication Systems
Modeling and Analysis, Nashville, March 1996.

[12] M. Franklin and M. Reiter, “Fair Exchange with a
Semi-Trusted Third Party”, Fourth ACM Confer-

ence on Computer and Communications Security,
Zurich, April 1997.

[13] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer.
“How to Make Personalized Web Browsing Simple,
Secure, and Anonymous”, Financial Cryptography
’97, February 1997, final proceedings to appear.

[14] D. Goldschlag, M. Reed, and P. Syverson. “Pri-
vacy on the Internet”, INET ’97, Kuala Lumpur,
June 1997.

[15] D. Goldschlag, M. Reed, P. Syverson. “Hiding
Routing Information”, in Information Hiding, R.
Anderson, ed., LNCS vol. 1174, Springer-Verlag,
1996, pp. 137-150.

[16] C. Giilcii and G. Tsudik. “Mixing Email with Ba-
bel”, 1996 Symposium on Network and Distributed
System Security, San Diego, February 1996.

[17] J. Helsingius. www.penet.fi.

[18] Internet Engineering Task Force.
http://wuw.ietf.org/

[19] http://lpwa.com:8000/

[20] A. Menezes, P. van Oorschot, and S. Vanstone.
Handbook of Applied Cryptography, CRC Press,
1997.

[21] http://www.netangels.com

15

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Pfitzmann, B. Pfitzmann, and M. Waidner.
“ISDN-Mixes: Untraceable Communication with
Very Small Bandwidth Overhead”, GI/ITG Con-
ference: Communication in Distributed Systems,
Mannheim Feb, 1991, Informatik-Fachberichte
267, Springer-Verlag, Heidelberg 1991, pp. 451-
463.

M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
“Proxies for Anonymous Routing”, Proc. 12t" An-
nual Computer Security Applications Conference,
San Diego, CA, IEEE CS Press, December, 1996,
pp- 95-104.

M. Reed, P. Syverson, and D. Goldschlag. “Proto-
cols using Anonymous Connections: Mobile Ap-
plications”, 1997 Security Protocols Workshop,
Paris, April 1997, final proceedings to appear.

M. Reiter and A. Rubin. Crowds: Anonymity for
Web Transactions (preliminary announcement),
DIMACS Technical Reports 97-15, April 1997.

B. Schneier. Applied Cryptography: Protocols, Al-
gorithms and Source Code in C, John Wiley and
Sons, 1994.

D. Simon, “Anonymous Communication and
Anonymous Cash”, in Advances in Cryptology—
CRYPTO96, N. Koblitz, ed., LNCS vol. 1109,
Springer-Verlag, 1996, pp. 61-73.

P. Syverson, D. Goldschlag, and M. Reed.
“Anonymous Connections and Onion Routing”,
Proceedings of the 1997 IEEE Symposium on Se-
curity and Privacy, Oakland, CA, IEEE CS Press,
May 1997, pp. 44-54.

