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Abstract

Starting from the seminal work of Volpano and Smith, there has been growing evidence that type systems may
be used to enforce confidentiality of programs through non-interference. However, most type systems operate on
high-level languages and calculi, and “low-level languages have not received much attention in studies of secure
information flow” (Sabelfeld and Myers, [Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 2003; 21:5–19]). Therefore, we introduce an information flow type system for a low-
level language featuring jumps and calls, and show that the type system enforces termination-insensitive non-
interference.

Furthermore, information flow type systems for low-level languages should appropriately relate to their coun-
terparts for high-level languages. Therefore, we introduce a compiler from a high-level imperative programming
language to our low-level language, and show that the compiler preserves information flow types.
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1. Introduction

Type systems are popular artefacts to enforce safety properties in programming languages. They are
also increasingly being used in the context of mobile code to enforce security policies. For example, it is
natural to assign to program variables a security level that stipulates its confidentiality status (such as secret
or public), and to guarantee that programs do not leak secret information through execution. The absence
of information leakage can be made precise with non-interference, as defined in the work of Goguen and
Meseguer [2], and can be enforced via information flow type systems [3]. Such information flow type
systems have been thoroughly studied in the literature, see e.g. [1] for a survey. However, most works
focus on high-level calculi, including �-calculus, see e.g. [4], �-calculus, see e.g. [5], and �-calculus [6], or
high-level programming languages, including Java [7,8] and ML [9]. In contrast, relatively little is known
about non-interference for low-level languages, in particular because their lack of structure renders control
flow more intricate; in fact many existing works, among which [10,11], use model-checking and abstract
interpretation techniques to detect illegal information flows, but do not provide proofs of non-interference
for programs that are accepted by their analysis.

The first part of this paper is devoted to the definition of an information flow type system for a low-
level language with jumps and procedure calls, and to a proof that the type system enforces termination-
insensitive non-interference. Informally, the security policy is expressed as a mapping � : X → S that
assigns to each register a security level taken from {H, L}. As usual H denotes confidential data and L
denotes public data, so registers x ∈ X such that �(x)=L correspond to the registers that are observable
by the attacker. Then non-interference is expressed as

� ∼ �′ and P, � ⇓ � and P, �′ ⇓ �′ imply � ∼ �′

where P, � ⇓ � denotes that executing program P with initial memory � yields the final memory �, and
� ∼ �′ denotes that � and �′ coincide on all variables x ∈ X such that �(x) = L.

In order to enforce non-interference of programs, we follow the principles of Java bytecode verification,
see e.g. [12], namely to provide an abstract transition relation between typed states, and to compute types
through a dataflow analysis based on the abstract transition relation. The proof of soundness of the type
system relies on a general method. Informally, we define a notion ∼ of L-equivalence between states; the
idea is that two states are L-equivalent if they cannot be distinguished from one another by an attacker.
Then, writing s�u to denote that performing one-step execution from state s results in a new state u, we
show that:

• if s�s′, and u�u′, and s ∼ s′, and the program counters of s and u coincide, then u ∼ u′; furthermore,
the program counters of s′ and u′ coincide, or the program counters of s′ and u′ belong to the control
dependence region of a branching instruction that performs a test on confidential data;

• if the program counter of s belongs to the control dependence region of a branching instruction that
performs a test on confidential data, and s�u, then s ∼ u, and either the program counter of u remains
in the control dependence region to which s belongs, or the program counter of u is the “exit” of this
region.

By appealing to properties of control dependence regions, and by combining the two results in an ad-
equate way, and appealing to transitivity of L-equivalence, one shows that typable programs are non-
interfering.
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The second part of this paper is devoted to proving that information flow types can be preserved by
compilation. As suggested by Abadi [13], information flow type systems for low-level languages should
appropriately relate to their counterparts for high-level languages, and one would expect that compilation
preserves information flow typing. Indeed, we show for a high-level language and an information flow
type system that closely resemble those of [3] that compilation function preserves typing. The proof that
compilation preserves typing proceeds by induction on the structure of derivations, and can be viewed
as a procedure to compute, from a certificate of well-typing at the source program, another certificate of
well-typing for the compiled program. It is thus very close in spirit to a certifying compiler [14].

Contents. The remaining paper is organized as follows. Section 2 motivates the issue with non-
interference in an assembly language. In Section 3 we define an assembly language that shall serve
as the compiler target, endow it with an information flow type system, and prove that the type system is
decidable and enforces termination-insensitive non-interference. In Section 5, we introduce a high-level
imperative language with procedures and its associated type system. Furthermore, we introduce a com-
piler that we show to preserve information flow typing; we also show how type-preserving compilation
can be used to lift non-interference to the high-level language. We conclude in Section 6, with related
work and directions for further research.

2. Motivating examples

Any sound information flow type system for an assembly language must prevent information leakages
through direct flows, as illustrated in Example 1, and through indirect flows, as illustrated in Examples
2–5.

Example 1 (Direct flows). Consider the following program, where xL is a low variable and yH is a high
variable:

load yH

store xL

return

The first instruction pushes the value held in yH on top of the operand stack, while the second instruction
stores the top of the operand stack in xL. Thus this program fragment stores in the variable xL the value
held in the variable yH , and thus leaks information.

We avoid such information leakages by assigning a security level to each value in the operand stack,
via a so-called stack type, and by rejecting programs that attempt storing a value in a low variable when
the top of the stack type is high. By forcing the top of the stack type to high after executing the load
instruction, the program is thus rejected.

Example 2 (Indirect flows via assignments). As is well-known for high-level languages, assignments
within branching instructions may lead to information leakages. The following example demonstrates
how information may be leaked through assignments within the scope of a branching instruction. Consider
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the following program, where xL is a low variable and yH is a high variable:2

1 load yH

2 if 6
3 prim 0
4 store xL

5 goto 8
6 prim 1
7 store xL

8 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH . Indeed,
the final value of xL is 0 if the initial value of yH is 0, and 1 otherwise. The problem is caused by an
assignment to xL in the scope of an if instruction.

We avoid such information leakages by defining the scope of a branching instruction, and by requiring
that no assignment to a low variable is performed within its scope if the control flow is influenced by a
high variable. Technically, this is achieved by tracking for each program point the security level under
which they execute, via a so-called security environment.

Example 3 (Indirect flows via abrupt termination). Abrupt termination in the scope of branching instruc-
tions may also cause information leakage. Consider the following program, where xL is a low variable
and yH is a high variable:

1 prim 0
2 store xL

3 load yH

4 if 6
5 return
6 prim 1
7 store xL

8 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH . Indeed,
the final value of xL is 1 if the initial value of yH is 0, and 0 otherwise. The problem is caused by a return
instruction in the scope of an if instruction.

We avoid such information leakages by constraining the use of return instructions in the scope of
branching statements.

Furthermore, branching instructions may cause information leakage, even if there are no assignments
to low variables or return instructions within their scope.

2 The if n bytecode branches to n if the top of the operand stack is 0, and to the next instruction after if n otherwise.
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Example 4 (Indirect flows via operand stack). Consider the following program, where xL is a low variable
and yH is a high variable:

1 prim 3
2 prim 4
3 load yH

4 if 6
5 store yH

6 store xL

7 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH . Indeed, the
final value of xL is 3 if the initial value of yH is 0, and 4 otherwise. The problem is caused by an instruction
that manipulates the operand stack in the scope of an if instruction (we use a store yH instruction but a
pop instruction would have a similar effect).

We avoid such information leakages by lifting all elements of the stack type to high upon entering a
branching instruction whose control flow is influenced by a high variable. Then the assignment to xL is
not allowed, since the values 3 and 4 are tagged as H by the stack type.

Example 5 (Indirect flows via operand stack). Consider the following program, where xL is a low variable
and yH is a high variable:

1 prim 3
2 load yH

3 if 6
4 prim 1
5 prim +
6 store xL

7 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH . Indeed,
the final value of xL is 3 if the initial value of yH is 0, and 4 otherwise. The problem is caused by an
arithmetic instruction that manipulates the operand stack in the scope of an if instruction.

We avoid such information leakages as in the previous example, i.e. through lifting the operand stack.

3. Assembly language

In this section we introduce a simple assembly language with jumps and procedures that is used in
Section 5 as a target of our compiler.

3.1. Syntax of programs

Program are defined as a set of procedures, each of which consists of an array of instructions. Instructions
are either branching instructions (both conditional and unconditional), arithmetic instructions, instructions
to manipulate registers, or instructions to call and return from a procedure.
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Fig. 1. Instruction set.

Formally, we assume given a finite set X of registers, and a finite set F of procedure names, with a
distinguished procedure main ∈ F. In addition, we define the set V of values to be Z, and assume given a
set AO ⊆ Z×Z → Z of arithmetic operations, and a set BO ⊆ Z×Z → {0, 1} of comparison operators.
Then, we define the set Instr of instructions in Fig. 1, where op ∈ V ∪ AO ∪ BO; f ranges over F, x
ranges over X, and j ranges over N. Finally, we define a program P as an F-indexed set of procedures,
with each procedure defined as an array of instructions. We let Pf be the procedure associated to f, and
Pf [i] be the ith instruction in Pf .

3.2. Semantics

Program semantics are defined in terms of a small-step operational semantics which describes one step
execution of programs. Formally, the operational semantics of programs is given as a transition relation
between states. A state consists of a call string, which captures the current sequence of procedure calls,
an operand stack, and a register map. In order to guarantee decidability of type-checking, we impose an
upper bound both on the size of call strings, and on the size of operand stacks.

Definition 6 (Operational semantics). Let P be a program.

1. The set PP of programs points is the set of pairs 〈f, i〉 with f ∈ F, and i ∈ dom(Pf ).
2. The set CS of call strings is the set of PP-stacks of length less than max.
3. The set RM of register maps is defined as X → V.
4. The set OS of operand stacks is defined as the set of V-stacks of length less than MAX.
5. The set state of states is defined as CS × RM × OS.
6. The operational semantics of the assembly language is given by the rules of Fig. 2; we write ��{x �→

v} to denote the unique function �′ s.t. �′(y) = �(y) if y 
= x and �′(x) = v. We let �� denote the
reflexive-transitive closure of the relation�. Note that all rules implicitly enforce the size requirements
on call strings and operand stacks.

7. We write P, � ⇓ � if 〈〈main, 1〉 :: �, �, �〉��〈�, �, �〉, where � denotes the empty stack.

Observe that procedure calls do not activate a new frame with its own local variables and operand
stacks, as e.g. in the JVM; in fact, procedures are closer to JVM subroutines than they are to JVM method
invocations.
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Fig. 2. Operational semantics of assembly language.

Note that the operational semantics yields a successor relation �→⊆ CS × CS, which is defined by
the clauses:

• if Pf [i] = return then 〈f, i〉 :: 〈f ′, j〉 :: cs′ �→ 〈f ′, j + 1〉 :: cs′ and furthermore 〈f, i〉 :: � �→ �;
• if Pf [i] = call f ′ then 〈f, i〉 :: cs �→ 〈f ′, 1〉 :: 〈f, i〉 :: cs;
• if Pf [i] = goto j then 〈f, i〉 :: cs �→ 〈f, j〉 :: cs;
• if Pf [i] = if j then 〈f, i〉 :: cs �→ 〈f, k〉 :: cs for k ∈ {i + 1, j};
• otherwise, 〈f, i〉 :: cs �→ 〈f, i + 1〉 :: cs.

It is easy to see that cs �→ cs′ for every states 〈cs, �, s〉 and 〈cs′, �′, s′〉 such that 〈cs, �, s〉�〈cs′, �′, s′〉.
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3.3. Control dependence regions

In order to prevent indirect flows, we must identify for every if instruction program points that execute
under its control condition.

3.3.1. Definitions and properties
For the purpose of this paper, control dependence regions are treated axiomatically. That is, we define

for every program P it set of conditional program points:

PPif = {〈f, i〉 ∈ PP | Pf [i] = if j}
and assume given two functions:

reg : PPif → ℘ (PP)

jun : PPif ⇀ PP

that respectively compute the control dependence region of an if, and the junction point of the two branches
of the if. While there exist algorithms to compute such regions in unstructured languages, see e.g. [15], the
soundness of the type system does not hinge on the exact computation of such control dependence regions.
That is, the soundness of the type system does not rely on control dependence regions to be minimal in the
sense that they only contain program points that indeed belong to the branch of the if. On the other hand,
the minimality of control dependence regions and junction points (on compiled programs) is required to
establish that compilation preserves typing, as in Theorem 16. Concretely, we establish soundness of the
type system from the following assumptions:

Region inclusion property RIP. For every 〈f, i〉, 〈f ′, i′〉 ∈ PPif , such that 〈f ′, i′〉 ∈ reg(f, i) we have
reg(f ′, i′) ⊆ reg(f, i);

Safe over approximation property SOAP. For every 〈f, i〉 ∈ PPif and execution path

〈〈f, i〉 :: cs, �, s〉�〈cs1, �1, s1〉� · · ·�〈csn, �n, sn〉
one of the following holds:

• csn = 〈fs, is〉 :: . . . : 〈f1, i1〉 :: cs with 〈fk, ik〉 ∈ reg(f, i) for 1�k�s;
• there exists 1� l�n such that csl = jun(f, i) :: cs;
• there exists 1� l�n such that csl = 〈f, j〉 :: cs and pf [j ] = return.

We shall use the function reg in the type system, and the assumption about execution paths and jun in the
proof of non-interference.

Remark. The assumptions can be simplified to a great extent if we omit procedure calls. On the contrary,
defining regions becomes more complex if JVM subroutines are adopted instead of procedure calls. See
e.g. [16] for a brief discussion on these points.

3.3.2. Implementation and example
We have implemented (in Haskell) a simple algorithm to compute control dependence regions for our

assembly language. The algorithm is based on the notion of dominators, classical in the literature (see
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e.g. [17, p. 379]). Roughly, a program point cs dominates another program point cs′ if everypath from
(main, 1) to cs′ must go through cs. The algorithm to compute the region of a program point cs first
calculates the set Dcs of all the program points that are dominated by cs. Then, it proceeds as follows: let
Succs be the set of all successors of cs, and cs′ ∈ Succs,

• If cs′ dominates all its own successors that are in Dcs , then discard cs′ from Succs and iterate.
• If cs′ does not dominate all its own successors that are in Dcs , then add cs′ to the region of cs and add

all successors of cs′ that are in Dcs to Succs\{cs′}, then iterate.

The program terminates when there are no more elements in Succs. This always happens since the set
of program points of every program is finite, and the same element is not added twice to the set of Succs.

This algorithm for regions satisfies the SOAP property, but does not provide any guarantee w.r.t. the
RIP property since it computes regions one by one. Given the set R of all the regions of a program P
calculated by the algorithm above, it is possible to apply an algorithm to obtain regions for P s.t. its
regions satisfy the RIP property. Such an algorithm should check that any two regions r1(p1) and r2(p2)

in R are related by inclusion, whenever their intersection is not empty. If their intersection is not empty
and one is not included in the other, then take the union of r1(p1) and r2(p2) and make the union the
new region for program points p1 and p2. However, we do not detail such an algorithm that enforces RIP
since the algorithm given above is already sufficient for programs that are compiled with the compiler
described in Section 5.2 (i.e. it enforces RIP for such programs).

Consider the following program:

main= f =
1 prim 0 1 push 2
2 if 5 2 return

3 call f

4 goto 6
5 prim 3
6 return

Using the algorithm to compute regions described above, the region for instruction 2 of procedure main
is: (main, 3), (main, 4), (main, 5), (f, 1) :: (main, 3), (f, 2) :: (main, 3).

Consider the following program with a cycle:

main=
1 load x

2 if 4
3 goto 1
4 return

This program can be thought as a while in a high level language. The region for instruction at 2 is:
(main, 2), (main, 3), (main, 1).
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Consider the following program:

main=
1 if 6
2 load x

3 if 1
4 push v

5 goto 7
6 push v

7 return

Notice that in this program not only there are two branches depending of instruction 1 (as in a standard
if in a high level language) but there is also a cycle produced by instruction 3, so instructions 4 and 5
depend on both instructions 1 and 3.

The region for instruction at 1 includes all program point of the form (main, i) where 2�i�6. In-
struction 3 does not dominate 1, therefore the region for 3 only includes program points (main, 4) and
(main, 5). Thus this program satisfies the RIP property.

4. Non-interference for the assembly language

The purpose of this section is to define an information flow type system that enforces non-interference
for programs of the assembly language. Although different notions of non-interference are applicable to
our setting, we focus on so-called termination insensitive non-interference, which guarantees that two
terminating program executions that start from initial states that are equivalent from the point of view of
an attacker will terminate with final states that are also equivalent from the point of view of an attacker.

4.1. Defining non-interference

Non-interference is defined relative to a security policy � : X → S that assigns to each register a
security level from the set S = {H, L}. As usual, we assume that L�H . Note that we assume that the
security level of a register is fixed throughout execution.

Definition 7 (Non-interfering program). 1. Let k ∈ S. Two values v and v′ are k-equivalent, written
v∼kv

′, iff k = H or v = v′.
2. Two register maps � and �′ are L-equivalent, written � ∼ �′, if (� x)∼(� x)(�

′ x) for every x ∈ X.
3. A program P is non-interfering, written NI�(P ), if for every register maps �, �′, �, �′ : X → V,

�∼��′ and P, � ⇓ � and P, �′ ⇓ �′ imply �∼��′.

There are at least two obvious directions in which the security policy could be generalized: first, by
considering a lattice of security levels instead of the two-point set S, and second, by letting security
levels of registers vary throughout execution. The first generalization would add technicalities without
adding insight, whereas the second generalization is considered in [18].

Note that the programs given in the introduction can easily been shown to be interfering.
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4.2. Abstract transition system

The abstract transition system is given by transfer rules of the

cs = 〈f, i〉 :: cs0 Pf [i] = instruction

�, cs�st, se ⇒ st ′, se′ ,

where � is the security policy, st, st ′ are stack types, i.e. stacks of security levels, and se, se′ are security
environments, i.e. maps that assign a security level to each program point. The transfer rules impose some
typing constraints on cs and its successors: more precisely, st, se determine typing constraints for cs, and
st ′, se′ determine typing constraints for the successors of cs.

Definition 8 (Typed states). 1. The set ST of stack types is defined as the set of S-stacks of length less
than max.

2. The set SE of security environments is defined as PP → S.
3. The set tstate of typed states is defined as ST × SE.

As mentioned above, the abstract transition system involves statements of the form �, cs�st, se ⇒
st ′, se′, where cs is a call string, and st, se and st ′, se′ are typed states.

Definition 9 (Typing transfer rules). 1. The abstract transition system is defined by the typing transfer
rules in Fig. 3.

2. The relation ��cs, st, se ⇒ cs′, st ′, se′ is defined as �, cs�st, se ⇒ st ′, se′ and cs �→ cs′. We let
��·, ·, ·⇒�·, ·, · be the transitive closure of ��·, ·, · ⇒ ·, ·, ·.

As with the operational semantics, all rules implicitly enforce the size requirements on call strings and
operand stacks.

We conclude this section by observing that the transfer function rules define a partial function, i.e.
�, cs�st, se ⇒ st1, se1 and �, cs�st, se ⇒ st2, se2 implies st1 = st2 and se1 = se2.

4.3. Typing programs

Following the type systems for polyvariant subroutines in the JVM, see e.g. [19,20,12], our type system
assigns sets of typed states to each program point.

Definition 10 (Typable programs). 1. A security type is a map S : CS → ℘(tstate). Given a security
type S and a call string cs we let Scs denote S(cs).

2. A typing judgment is a triple of the form �, S�P , where � is the security policy under which the
program P must be typed, and S is a security type.

3. The program P has type S (w.r.t. �), written �, S�P , if �, S�P can be derived from the typing
rule:

∀ cs, cs′ ∈ CS. ∀st, se ∈ Scs. cs �→ cs′ implies
∃ st ′, se′ ∈ Scs′ . �, cs�st, se ⇒ st ′, se′

�, S�P

4. The program P is typable (w.r.t. �), written ��P , if �, S�P for some security type S.
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Fig. 3. Transfer rules for instructions.

It is possible to compute the type of a program, by using a dataflow analysis that explores abstract
execution paths. The algorithm computes S as follows:

• initially, the call string 〈main, 1〉 : � is mapped to the typed state 〈�, �p.L〉;
• next, the algorithm repeatedly performs the iterative step, i.e. selects one call string cs, and one typed

state st, se ∈ Scs , then performs its abstract execution, i.e. computes the typed state st ′, se′ such that
�, cs�st, se ⇒ st ′, se′, and adds st ′, se′ to all sets Scs′ where cs �→ cs′. In case the typed state st ′, se′
does not exist, the algorithm returns an error;

• finally, the algorithm terminates when for every call string cs, and typed state st, se ∈ Scs and typed
state st ′, se′ such that �, cs�st, se ⇒ st ′, se′, we have st ′, se′ ∈ Scs′ for every cs ∈ CS such that
cs �→ cs′.

The algorithm terminates because the sets tstate and CS are finite, and because an auxiliary bitmap
indicates on which call strings the algorithm must perform the iterative step. Furthermore, the algorithm
returns an error, or computes a type for the program P.

Proposition 11. It is decidable whether a program P is typable.
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Note that there are a number of variants and optimizations for computing the typing of programs, see
e.g. [12].

4.4. Examples

Before proving the soundness of the type system, we consider some examples of typable programs,
and of non-typable programs. We start with the non-typable programs of Section 2:

• The first example (direct flow) is rejected by our type system. Indeed, the transition of an instruction
store xL is restricted to the case where the type in the top of the stack type is low, whereas the instruction
load yH pushes a H on the stack type.

• The second and third examples (indirect flow) are rejected by our type system. Indeed, the transition
of an instruction if l sets to H the security level of all program points in its control dependence region,
whenever the type on the top of the stack type is H, which is the case after executing the load yH

instruction. Then, the type system rejects low assignments that are performed at program points which
are high w.r.t. the security environments, and return instructions occurring in the main procedure and
moreover at program points which are high w.r.t. the security environments.

• The fourth and fifth examples (indirect flow via operand stack) are rejected by our type system. Indeed,
the transition of an instruction if l sets to H the security level of all elements in the stack, whenever
the type on the top of the stack type is H, which is the case after executing the load yH instruction.
Then, the type system rejects assignments of high values to low registers.

On the positive side, we shall show in Section 5.2 that all high-level programs that are typable w.r.t. some
information flow type system at source code level are compiled into programs that are typable w.r.t. our
type system.

We conclude this section with an example of a program that is non-interfering, but that is not accepted
by our type system. Consider the following program, where xL is a low variable and yH is a high variable:

1 load yH

2 if 5
3 prim 1
4 store xL

5 prim 1
6 store xL

Instruction 4 necessarily belongs to the region of 2. The transfer rule for if lifts to H all instructions in
its region, thus the security environment at program point 4 is H. Hence the store to a low variable at 4
is disallowed by the type system. However, this program terminates with xL = 1 for all initial values of
yH , and hence is non-interfering.

4.5. Soundness

Typable programs are non-interfering.

Theorem 12. If ��P then NI�(P ).
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The idea of the proof is as follows: first, we prove in Lemma 14 that L-equivalence is preserved under
one step of execution, if the program is typable. Second, we prove in Lemma 15 that one step execution
in a high-level environment yields a result state that is L-equivalent to the original one. By combining
these results together, we conclude.

4.5.1. Defining L-equivalence between states
The statements of the main lemmas towards Theorem 12 rely on a notion of L-equivalence between

states. This notion is defined in terms of L-equivalence between register maps, as defined in Definition 7,
and of L-equivalence between operand stacks. In order for the proofs to go through in the case of high-
level environments, the definition of L-equivalence between stacks requires a slight generalization of the
pointwise order on stacks. The intuition is that we require operand stacks to be L-equivalent pointwise
on some common top part, and then to be high in the bottom part on which they may not coincide.

Definition 13 (Operand stack and state L-equivalence). 1. Let st be a stack type. We write high st if st
has length n and st[i] = H for every 1�i�n.

2. Let s be an operand stack and st be a stack type; we write high (s, st) if s and st have the same length
n and st[i] = H for every 1�i�n.

3. Let s, s′ be operand stacks and st, st ′ ∈ ST. Then s∼st,st ′s′ is defined inductively as follows:

high (s, st) high (s′, st ′)
s∼st,st ′s′ ,

s ∼st,st ′ s′ v∼kv
′

v :: s ∼k::st,k::st ′ v′ :: s′

4. Let 	 = 〈cs, �, s〉 and 	′ = 〈cs′, �′, s′〉 be states. Then state L-equivalence between 	 and 	′ w.r.t.
register type � and stack types st and st ′, written 	∼�,st,st ′	′, is defined as s∼st,st ′s′ ∧ �∼��′.

4.5.2. Soundness proof
In the sequel, we use s · cs to denote the call string of a state s.
The first lemma establishes that L-equivalence is preserved under one-step execution. Informally, if

s ∼ s′, and s�u, and s′�u′, then u ∼ u′.

Lemma 14 (One-step non-interference in low-level environments). Suppose �, S�P . Let s1, s2, s
′
1, s

′
2 be

states such that s1 · cs = s2 cs and s1�s′
1, and s2�s′

2. Further let (st1, se), (st2, se) ∈ Ss1 · cs be security
types s.t. s1∼�,st1,st2s2.

Then there exist (st ′1, se′) ∈ Ss′
1 · cs and (st ′2, se′) ∈ Ss′

2· cs s.t. s′
1∼�,st ′1,st ′2s

′
2. Furthermore, one of the

following holds:

• s′
1 · cs = s′

2 · cs;
• s1 · cs = 〈f, i〉 :: cs and s′

1 · cs = 〈f ′, i′〉 :: cs and s′
2 · cs = 〈f ′′, i′′〉 :: cs and (f, i) ∈ PPif with

(f ′, i′), (f ′′, i′′) ∈ reg(f, i), and se(f1, i1)=H for all (f1, i1) ∈ reg(f, i), and high st1 and high st2.

Proof. By a case analysis on the instruction that is executed. �

The second lemma establishes that, in high-level environments, the execution relation is included in
the L-equivalence relation. Informally, if s�u, then s ∼ u.
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Lemma 15 (One-step non-interference in high-level environments). Suppose �, S�P . Let s, s′ be states
such that s�s′ and assume s · cs = 〈f, i〉 :: cs0. Let (st, se) ∈ Ss · cs be a security type s.t. high st . Let
(f0, i0) ∈ PPif s.t. (f, i) ∈ reg(f0, i0) and se(f1, i1) = H for all (f1, i1) ∈ reg(f0, i0). Then there exists
(st ′, se) ∈ Ss′ · cs s.t. high st ′, and s∼�,st,st ′s′, and �, s · cs�(st, se) ⇒ (st ′, se). Furthermore, one of the
following holds:

• s′ · cs = 〈f ′, i′〉 :: cs′
0 with (f ′, i′) ∈ reg(f0, i0);

• s′ · cs = jun(f0, i0) :: cs0.

Proof. By a case analysis on the instruction that is executed. �

Proof of Theorem 12. Consider the two execution paths

s0�s1� . . . �sn1

s′
0�s′

1� . . . �s′
n2

where s0 = 〈〈main, 1〉 :: �, �, �〉, and s′
0 = 〈〈main, 1〉 :: �, �′, �〉, and sn1 · cs = sn2 · cs = �.

By invoking Lemma 14 as long as it applies, we conclude for some maximal q that sq · cs = s′
q · cs, and

that there exists (stq, se), (st
′
q, se) ∈ Ssq · cs such that s′

q∼�,stq ,st ′q s
′
q . Now there are two cases to treat: if

sq · cs = � then n1 = n2 = q and we are done; otherwise, the last instruction executed is an if high.
By the typing rule of the if instruction, we have high stq and high st ′q . We now invoke Lemma 15

repeatedly to conclude that there exists sq1 and s′
q2

and (stq1, se1) ∈ Ssq1 · cs and (st ′q2
, se′

2) ∈ Ss′
q2

· cs
such that sq∼�,stq ,stq1

sq1 and s′
q∼�,st ′q ,st ′q2

s′
q2

. By transitivity, we conclude sq1∼�,stq1 ,st ′q2
s′
q2

. Further, we

can choose q1 and q2 to be the minimal indexes such that sq1 ·cs=jun(f, i) :: cs′ and sq2 ·cs=jun(f, i) :: cs′
respectively. As ��sq · cs, stq, se⇒�sq1 · cs, stq1, se1and ��sq · cs, st ′q, se′⇒�s′

q2
· cs, st ′q2

, se′
2 and only

if statements may modify the security environment, and we assume RIP, we can further conclude that
se1 = se2.

Thus we can apply Lemma 14 again, and repeat the process until reaching the final states of the
reduction sequences. �

5. Security type preserving compilation

In this section, we define a high-level imperative language, endow it with a security type system, and
introduce a compiler from the source language to the assembly language. Then we show that the compiler
preserves security types, and derive as a corollary that the security type system for the source language
enforces non-interference.

5.1. Source language

The source language is a simple imperative language with procedures. A procedure is a declaration of
the form proc f (�x) = c; return where f is a procedure name and c is a command. As with the assembly
language, we assume that a program is a list of procedures with a distinguished, main, procedure without
parameters. Formally, the set Expr of expressions, Comm of commands, and Prog of programs are given
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Fig. 4. Typing rules for high-level language.

by the following syntaxes:

e :: = x | n | e op e

c :: = x := e | f (�e) | c; c | while e do c | if e then c else c

P :: = [proc f (�x) = c; return]�
The operational, big-step semantics of programs is based on judgments of the form 〈c, �〉 ⇓ �′, where
c ∈ Comm and �, �′ : X → V. Rules are standard, see e.g. [21,3], and omitted. We write P, � ⇓ �′ iff
〈cmain, �〉 ⇓ �′, where cmain is the body of the main procedure.

The security type system is based on judgments of the form ��e : 
 and ��c : 
 cmd. A program P is
typable, written ��P , if ��cmain : 
 cmd for some 
. The typing rules are inspired from [21,3], and are
given in Fig. 4; in the last rule, we assume that the procedure f is defined by proc f (�x) = P ; return.

Note that the typing rules exclude mutual and self-recursion; however it is possible to overcome this
limitation at the price of further technicalities.

5.2. Compilation

The compilation function Cp is defined in the usual way from a compilation function on expressions
Ce : Expr → Instr�, and a compilation function on commands Cc : Comm → Instr�. Their formal
definitions are given in Fig. 5. In order to enhance readability, we use :: both for concatenating an element
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Fig. 5. Compilation of expressions and commands.

to a list and concatenating two lists, and #l to denote the length of the list l. Furthermore we omit details
of calculating pc in the clauses for while and if expressions.

5.3. Preservation of security types

In this section, we assume that regions used by the type system of the assembly language are min-
imal in the sense that the region of the compilation of an if instruction compiled from a command
if e then c1 else c2, includes exactly those program points belonging to the compilation of c1 and c2.
Similarly, the region of the compilation of an if instruction compiled from a command while e do c in-
cludes exactly those program points belonging to the compilation of c. We need these minimal regions
to show that compilation preserves typing.

Theorem 16. If ��P then ��Cp(P ).

The proof proceeds in two steps. First, we show how to compute from an expression in the source
language and its type, the type of the corresponding compiled code produced by the function Ce. By
abuse of notation, we write se = 
 if se(f, j) = 
 for every 〈f, j〉 ∈ PP.

Lemma 17. Assume e is an expression in P and ��e : 
, andCp(P )f [i . . . j ]=Ce(e). For every cs0 ∈ CS

and st, se ∈ ST s.t. se = 
, there exists Se
cs0,st,se

: {〈f, k〉 :: cs0 | i�k�j + 1} → ST—by abuse of
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notation, we often write Se—s.t.:

1. for every cs, cs′ ∈ dom(Se), if cs �→ cs′ then �, cs�Se(cs) ⇒ Se(cs′);
2. Se(〈f, j + 1〉 :: cs0) = 
 :: st, se.

Proof. By structural induction on instructions. �

Second, we extend the result to commands.

Lemma 18. Assume c is a command in P, and ��c : 
 cmd, and Cp(P )f [i . . . j ] = Cc(c). For every
cs0 ∈ CS and st0, se0 ∈ ST s.t. se0 = 
, there exists Sc

cs0,st0,se0
: CS ⇀ ℘(ST)—by abuse of

notation, we often write Sc—s.t.:

1. for every cs, cs′ ∈ dom(Sc) and st, se ∈ Sc(cs) s.t. cs �→ cs′, there exists st ′, se′ ∈ Sc(cs′) s.t.
�, cs�st, se ⇒ st ′, se′;

2. there exists st ′ s.t. st ′ = st0 or st ′ = liftH st0, and for every cs ∈ dom(Sc), cs′ /∈ dom(Sc) and
st, se ∈ Sc(cs) s.t. cs �→ cs′, �, cs�st, se ⇒ st ′, se′ for se′ = liftH(se0, reg(f, i)) for some f, i or
se′ = se0. We write �c

cs0,st0,se0
for st ′ and �c

cs0,st0,se0
for se′.

Proof. By structural induction on instructions. �

Proof of Theorem 16. Set se0 = 
 where � �cmain · 
cmd By construction, the function S
cmain〈main,1〉:�,�,se0

is
defined for all cs s.t. 〈main, 1〉 : ��→�cs. It is then immediate to conclude. �

5.4. Recovering non-interference for the source language

One can also prove that compilation preserves operational semantics.

Proposition 19 (Preservation of semantics). For every program P and memories �, �, if P, � ⇓ � then
Cp(P ), � ⇓ �.

Proof. Routine and omitted. �

By combining Proposition 19 and Theorem 16 we are able to recover the non-interference result for
typable source programs.

Corollary 20 (Non-interference for source language). Let P be a program, let � : X → S and assume
that ��P . Then P is non-interfering w.r.t. � in the sense that for every �, �′, �, �′ : X → V such that
�∼��′ and P, � ⇓ �, and P, �′ ⇓ �′, we have �∼��′.

Proof. By Proposition 19, Cp(P ), � ⇓ � and Cp(P ), �′ ⇓ �′. Furthermore ��Cp(P ) by Theorem 16.
Hence Cp(P ) is non-interfering w.r.t. � by Theorem 12, and thus �∼��′ by definition of non-interference.

�

Example 21. In this example the typing is done at source code for a program P level using the type
system in Fig. 4.
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The compilation using Cp in Fig. 5 is shown, as well as computation of its type, using the typing
transfer rules of Fig. 3 and the typing rule of Definition 10.

The source code is [proc main = c; return] where c is

if yH = 0 then yH := xL else yH := 1 ; xL := 3;

In order to type this program, we need to define the environment �, classifying variables in the program
as low (L) or high (H). Let �(xL)=L and �(yH )=H . The type for program P is L cmd (i.e. ��Smain :
L cmd), meaning that low variables are possibly modified in this program. In fact, variable xL is modified.
The derivation tree for c is

�(yH ) = H

� � yH : H � � 0 : H

� � yH = 0 : H

�(xL) = L

� � xL : L

� � xL : H �(yH ) = H

� � yH := xL : H cmd

� � 1 : H �(yH ) = H

� � yH := 1 : H cmd

� � if yH = 0 then yH = xL else yH := 1 : H cmd

� � if yH = 0 then yH = xL else yH : =1 : L cmd

� � 3 : L �(xL) = L

� � xL := 3 : L cmd

� � if yH = 0 then yH := xL else yH := 1 ; xL := 3 : L cmd

The compilation Cp(P ) is [main := c′] where c′ is the code shown below, together with the security
type according to the typing rule in Definition 10.

c′ State Types for c′
1 load yH {�, seL}
2 prim 0 {H · �, seL}
3 prim = {L · H, seL}
4 if 8 {H · �, seL}
5 load xL {�, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
6 store yH {H · �, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
7 goto 10 {�, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
8 prim 1 {�, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
9 store yH {H · �, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
10 prim 3 {�, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
11 store xL {L · �, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}
12 return {�, seL�{main, 5 �→ H, main, 6 �→ H, main, 7 �→ H, main, 8 �→ H, main, 9 �→ H }}

It is left to the reader to check that the type obtained by using the type system for the assembly language
is the same type obtained using the implicit algorithm in the proof of Theorem 16.

6. Conclusion

We have shown how type systems can be used to enforce non-interference in a low-level language with
procedures, and that one can define a security types preserving compiler from a high-level imperative
language to such a low-level language.

6.1. Related work

As emphasized in the introduction, static enforcement of non-interference through type systems is a
well-researched topic, see e.g. [1] for a survey. We only comment on some of the most relevant literature.
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Low-level languages. Lanet et al., see e.g. [11], develop a method to detect illicit flows for a sequential
fragment of the JVM. In a nutshell, they proceed by specifying in the SMV model checker a symbolic
transition semantics of the JVM that manipulates security levels, and by verifying that an invariant that
captures the absence of illicit flows is maintained throughout the (abstract) program execution. Their
analysis is more flexible than ours, in that it accepts programs such as yL := xH ; yL := 0. However, they
do not provide a proof of non-interference. The approach of Lanet et al. has been refined by Bernarde-
schi and De Francesco, see e.g. [10], for a subset of the JVM that includes jumps, subroutines but no
exceptions. More recently, Bonelli, Compagnoni and Medel [22] have considered non-interference for a
simple assembly language, using linear continuations for computing control dependence regions.
Their proof technique is similar to ours. Using abstract interpretation techniques, Genaim and Spoto
[23] have also developed a sound information flow analysis for a fragment of Java bytecode. Finally,
the first and third author [16] have developed a sound information flow type system for a large fragment
of the JVM.

Type preserving compilation. Type preserving compilation has been thoroughly studied in the context
of typed intermediate languages, most notably for ML and Java, see e.g. [24]. Information flow types
preserving compilation has been studied by Zdancewic and Myers in the context of �-calculus and CPS
translation [25]. Also, Honda and Yoshida [5] consider type-preserving interpretations of higher-order
imperative calculi with security types to �-calculus with security types.

Proof carrying code and typed assembly languages. Recent work on Proof Carrying Code [14,26]
advocates the use of certifying compilation, which is closely related to type preserving compilation in
the sense that a certifying compiler aims at producing, from a certificate (i.e. a proof object) that a source
program adheres to a property, a certificate that the compiled program adheres to a corresponding property.

Recent work on typed assembly languages [27] aims at endowing assembly languages with a typing
system which guarantees such properties as memory safety of programs.

6.2. Future work

Our work constitutes a preliminary investigation in the realm of certifying compilation for security
properties, and may be extended in several directions.

• Language expressiveness: we would like to extend the results of this paper to more powerful languages
that include objects and/or higher-order functions. We are particularly interested in scaling up our
results to the sequential fragment of Java and of the JVM, building up on [7] for the former and on
[16] for the latter.

• Integrity: it should be possible, and of practical interest, to adapt our results to integrity. Indeed, weak
forms of integrity guarantee that high variables may not be modified by a low writer, and are dual to
confidentiality.

• Machine-checked proofs: we would like to machine-check the proof of soundness of the information
flow type system of Section 4 and of [16]. Using earlier work on verified bytecode verifiers [28] in
Coq [29] (see [30] for similar earlier work in Isabelle [31]), it should be possible to derive a certified
bytecode verifier that guarantees secure information flow for a representative (sequential) fragment of
the JVM.
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Appendix A. Proof of Lemmas 14 and 15

In the sequel, we use hd and tl to denote the head and tail functions.

Proof of Lemma 14. By a case analysis on the instruction that is executed. We assume that s1 =
〈cs, �1, os1〉 and s2 = 〈cs, �2, os2〉. Further we always choose st ′1, se′

1 and st ′2, se′
2 such that �, s ·

cs�st1, se1 ⇒ st ′1, se′
1 and such that �, s · cs�st2, se2 ⇒ st ′2, se′

2.
Case: Pf [i] = load x. By the typing transfer rule,

st ′1 = (�(x) � se(f, i)) :: st1,

st ′2 = (�(x) � se(f, i)) :: st2.

By the operational semantics,

s′
1 = 〈〈f, i + 1〉 :: cs1, �1, �1(x) :: os1〉,

s′
2 = 〈〈f, i + 1〉 :: cs2, �2, �2(x) :: os2〉.

To see s′
1∼�,st ′1,st ′2s

′
2, we have to check that �1(x)∼�(x)�se(f,i)�2(x). There are two cases to treat:

• if se(f, i)��(x) then �(x) � se(f, i) = �(x) and we are done by hypothesis.
• if se(f, i) > �(x) then �(x) � se(f, i) = H and �1(x)∼H �2(x) holds by definition.

Case: Pf [i] = store x. By the typing transfer rule,

st ′1 = tl st1,

st ′2 = tl st2.

By the operational semantics,

s′
1 = 〈〈f, i + 1〉 :: cs, �1�{x �→ hd os1}, tl os1〉,

s′
2 = 〈〈f, i + 1〉 :: cs, �2�{x �→ hd os2}, tl os2〉.

We must prove:

• tl os1∼st ′1,st ′2tl os2, which follows directly from os1∼st1,st2os2 and the definition of ∼;
• hd os1∼�(x)hd os2: if �(x) = H then we are done by definition so assume that �(x) = L. From the

typing transfer rule, we know that �(x)�hd st1 and �(x)�hd st2, hence hd st1 = hd st2 = L. As
s1∼st1,st2s2, it follows that hd os1 = hd os2, and we are done.

Case: Pf [i] = if j . By the typing transfer rule,

st ′1 = lift(hd st1)(tl st1),

st ′2 = lift(hd st2)(tl st2).
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By the operational semantics,

s′
1 = 〈〈f, j1〉 :: cs, �1, tl os1〉,

s′
2 = 〈〈f, j2〉 :: cs, �2, tl os2〉.

We must prove:

• tl os1∼st ′1,st ′2tl os2, which follows from the fact that for every values v, v′ and security levels l, l′ s.t.
l� l′, v∼lv

′ implies v∼l′v′;
• se = se′

1 = se′
2 and j1 = j2, or hd st1 = hd st2 = H . Assume that the second disjunct does not

holds, i.e. hd st1 
= H or hd st2 
= H . Necessarily hd st1 = hd st2 = L, by definition of ∼, and
because hd os1 = hd os2. The result follows.

Cases for prim op and prim n are similar to the case of load and do not present further difficulties. Cases
for goto j , call f and return are straightforward since states do not change. �

Proof of Lemma 15. Case: Pf [i] = load x. Assume s = 〈〈f, i〉 :: cs, �, os〉. By the typing transfer rule,
the operational semantics and the hypothesis se(f, i) = H ,

st ′ = H :: st,

s′ = 〈〈f, i + 1〉 :: cs, �, �(x) :: os〉.
As high st , it follows that high st ′ and os∼�,st,st ′�(x) :: os. The register map remains unchanged, hence
s∼�,st,st ′s′.

Case: Pf [i]=store x.Assume s=〈〈f, i〉 :: cs, �, v :: os〉. By the typing transfer rule and the operational
semantics

�(x) = H,

st ′ = tl st,

s′ = 〈〈f, i + 1〉 :: cs, ��{x �→ v}, os〉.
As high st , it follows that high st ′ and v :: os∼st,st ′os. Furthermore, �∼���{x �→ v} since �(x) = H ,
hence we are done.

Case: Pf [i] = if j . Assume s = 〈〈f, i〉 : cs, �, os〉. By the typing transfer rule and the operational
semantics

st = k :: st0,

st ′ = liftk(st0),

se′ = liftk(se, reg(f, i)),

s′ = 〈〈f, l〉 :: cs, �, os〉,
where l ∈ {i + 1, j}. Clearly s∼�,st,st ′s′ and high st ′, as we assume that either high st or k = H .

The remaining instructions are similar or straightforward. �

Appendix B. Proof of Theorem 16

Throughout this section, we assume given a fixed program P ∈ P and a fixed register type � : X → S.

Proof of Lemma 17. By structural induction on instructions.
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Case: e ≡ x. By definition, we have that Ce(e) = load x and i = j . Define Se such that Se(〈f, i〉 ::
cs0) = st, se and such that Se(〈f, i + 1〉 :: cs0) is equal to (�(x) � se(f, i)) :: st, se. Properties 1 and 2
hold by the transfer rule of load, and because �(x) � se(f, i) = 
 as se(f, i) = 
 and �(x)�
 as ��e : 
.

Case: e ≡ n. By definition, Ce(e) = prim n and i = j . Define Se such that, Se(〈f, i〉 :: cs0) = st, se

and Se(〈f, i + 1〉 :: cs0) = se(f, i) :: st, se. Properties 1 and 2 hold by the rule of prim, and because
se(f, i) = 
.

Case: e ≡ e1 op e2. By definition, Ce(e)=Ce(e1) :: Ce(e2) :: prim op. Now assume that Pf [i . . . i1]=
Ce(e1) and assume that Pf [i1 + 1 . . . i2]=Ce(e2) and Pf [i2 + 1]= prim op. By induction hypothesis we
can construct Se1 for the security type st, se and Se2 for the security type 
 :: st, se. Define

Se(〈f, k〉 :: cs0) =
{

Se1(〈f, k〉 :: cs0) if i�k�i1,

Se2(〈f, k〉 :: cs0) if i1 + 1�k�i2,


 � se(f, i2) :: st, se if k = i2 + 1.

Properties 1 and 2 are derived from the induction hypothesis on Se1 and Se2 . �

In the sequel, we use ∪ to denote the union of two partial maps that coincide on the intersection of their
domains. By abuse of notation, we write Se

cs0,st,se
for the function �x ∈ dom(Se

cs0,st,se
). {Se

cs0,st,se
(x)}.

Proof of Lemma 18. Let � be the smallest transitive relation containing the subterm relation and the
relation �0 defined by the clause

[proc f �x := c; return] is a declaration in P

c�0f �e .

The relation is well-founded, as the type system excludes mutual or self-recursion, so we proceed by
well-founded induction on �.

Case: c ≡ x := e. By definition, Cc(c) = Ce(e) :: store x. Set Sc = Se
cs0,st0,se0

, where Se
cs0,st0,se0

is
defined using Lemma 17 (which can be applied because the command in the source language is typable).
As Se

cs0,st0,se0
satisfies both properties 1 and 2 of Lemma 17, we can conclude.

Case: c ≡ c1; c2. By definition, Cc(c) = Cc(c1) :: Cc(c2). Set Sc
cs0,st0,se0

= S
c1
cs0,st0,se0

∪ S
c2
cs0,st

′
0,se0

,

where Sc1 and Sc2 are defined by induction hypothesis, and st ′0 = �c1
cs0,st0,se0

. The properties follow by
induction hypothesis (and by elementary reasoning on the successors in a compiled program).

Case: c ≡ if e then c1 else c2. By definition,

Cc(c) = Ce(e) :: if (i′ + 2) :: Cc(c1) :: goto (j + 1) :: Cc(c2),

Pf [i . . . j ′] = Ce(e),

Pf [j ′ + 2 . . . i′] = Cc(c1),

Pf [i′ + 2 . . . j ] = Cc(c2).

Set

Sc
cs0,st0,se0

= Se
cs0,st0,se0

∪ S
c1
cs0,lift
(st0),se0

∪ S
c2
cs0,lift
(st0),se0

∪ {〈f, i′ + 1〉 :: cs0 ⇀ lift
(st0), se0}.
The only subtlety is to prove that Sc1 and Sc2 coincide on 〈f, j + 1〉 :: cs0, which follows by induction
hypothesis.
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Case: c ≡ while e do c1. By definition,

Cc(c) = goto (i′ + 1) :: Cc(c1) :: Ce(e) :: if (i + 1),

Pf [i + 1 . . . i′] = Cc(c1),

Pf [i′ + 1 . . . j ′] = Ce(e).

Set Sc
cs0,st0,se0

= Se
cs0,st0,se0

∪ S
c1
cs0,lift
(st0),se0

∪ {〈f, i〉 :: cs0 ⇀ st0, se0}. The properties follow by
induction hypothesis.

Case: c ≡ f ′(e) (for simplicity, we assume that f ′ only has one parameter). By definition Cc(c) =
Ce(e) :: call f ′ with Pf [i . . . j ]=Ce(e). Further assume that f ′ is defined in P by proc f ′(x)=c′; return.
Set

Sc
cs0,st0,se0

= Se
cs0,st0,se0

∪ Sc′
〈f,j+1〉::cs,
::st0,se0

.

The only subtlety is to notice that Sc
cs0,st0,se0

(〈f, j + 1〉 :: cs0) is equal to {
 :: st0, se0}, which follows
from Lemma 17.
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