
Monatron: An Extensible
Monad Transformer Library

Mauro Jaskelioff

Functional Programming Laboratory
University of Nottingham

Abstract. Monads are pervasive in functional programming. In order
to reap the benefits of their abstraction power, combinator libraries for
monads are necessary. Monad transformers provide the basis for such
libraries, and are based on a design that has proved to be successful.
In this article, we show that this design has a number of shortcomings
and provide a new design that builds on the strengths of the traditional
design, but addresses its problems.

1 Introduction

The power of functional languages lies, to a great extent, in their ability to name
and reuse programming idioms [6]. This power is often realised in the form of
combinator libraries, which consist of a collection of idioms commonly found in
the library’s application area. Programmers can reuse these idioms and combine
them to obtain programs which, since they are assembled from correct parts, are
likely to be correct.

Monads [15, 18] are the standard abstraction for modelling programs with
computational effects such as state, exceptions and continuations. These effects
are usually associated with imperative languages but, with the help of monads,
they can be elegantly modelled in a functional language [11]. However, obtaining
a monad which models several combined effects can be difficult. Moreover, since
monads must satisfy certain coherence conditions, the programmer is faced with
the task of verifying these conditions. Obtaining combined effects can be made
much easier with a good combinator library for monads. But, what are the
properties that make a library good?

A good library should be expressive, in the sense that the exposed interface
should be enough to obtain the desired combinations, without the need to look
at the internals of the library. Since new applications might bring additional
requirements, a library should be extensible. The semantics of the combinators
should be predictable and, ideally, with no corner cases. These features help the
programmer to abstract from low-level implementation details, and to think in
terms of high-level idioms. Finally, a library should strive to be efficient and
portable.

Combinator libraries for monads are built from modular components called
monad transformers [14]. Current monad transformer libraries, such as mtl [4],

have been very successful in providing useful combinators for constructing mon-
ads. However, they have a number of shortcomings. Because the lifting of op-
erations through monad transformers is done on a case-by-case basis, there is
no guarantee that the liftings are uniform (Section 3.1) and it makes extending
the library cumbersome (Section 3.2). Moreover, the lifting overloading mech-
anism produces shadowing of operations (Section 3.3), and relies essentially on
non-portable features (Section 3.4).

The main contribution of this paper is the design of Monatron, a monad
transformer library that addresses the issues discussed above (Section 4). Its im-
plementation (Section 5) builds on the strengths of existing monad transformer
libraries and incorporates some new ideas on liftings of operations [9] that are
based on solid theoretical principles. Although these lifting of operations have
been implemented by the author in the library mmtl1, the implementation of
mmtl closely followed the design in existing libraries and, as consequence, still
suffered from some of their problems. The desire to eliminate these problems
motivated the design of the Monatron [8] library.

The organization of the paper is as follows: in Section 2 we explain how to
construct complex monads using monad transformers. In Section 3 we explain
some issues raised by the current design, and in Section 4 we introduce a new
design that addresses these issues. The implementation of the design is carried
out in Section 5 and in Section 6 we conclude.

2 Combining Monads

Monads provide an extremely useful abstraction for computational effects. In
Haskell, monads are given by instances of the following type class:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Intuitively, m is a type constructor of computations, return introduces a trivial
computation, and (>>=) (pronounced bind) sequences computations by taking a
computation returning a value of type a and a function from a into a new com-
putation. Instances of the Monad class are required to satisfy certain coherence
equations that ensure that return and (>>=) are well-behaved.

As an example, in Figure 1 we have defined two monads: Either x is a monad
for exceptions of type x , and the identity monad Id is a monad of pure compu-
tations.

Combinator libraries for monads come equipped with some standard monads
corresponding to different computational effects that provide readily available
building blocks for constructing effectful computations. For example, libraries
usually provide a State s monad for modelling global state of type s, a Cont r
monad for modelling continuations with result type r , a Writer w monad for

1 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/mmtl

data Either x a = Left x | Right a
instance Monad (Either x) where

return a = Right a
Left x >>= f = Left x
Right a >>= f = f a

newtype Id a = Id a

instance Monad Id where
return a = Id a
(Id a)>>= f = f a

Fig. 1. Either and Identity Monad

modelling output of a monoid w , a Reader e monad for modelling environments of
type e, and an Exception x monad for modelling exceptions of type x . To see the
details of their implementation we refer the reader to an introductory article [1].
These monads provide some of the most common computational effects but, by
all means, they are not the only ones. The fact that monad libraries (mostly) only
support this limited set of effects and have not been extended to other effects
can be seen as evidence of the universality of these effects. Less optimistically,
it can be seen as symptomatic of a lack of extensibility (Section 3.2).

In addition to the aforementioned monads, libraries provide the correspond-
ing monad transformer [14] for each effect. A monad transformer is a monad
parameterised by an arbitrary monad. It can be thought of as a monad with a
hole which can be filled by any monad. More formally, a monad transformer is a
type constructor with kind (∗ → ∗)→ (∗ → ∗) which is an instance of the type
class MonadT.

class MonadT t where
lift :: Monad m ⇒ m a → t m a

Each instance T of MonadT is required to map monads to monads (via an in-
stance Monad m ⇒ Monad (T m)), and lift is required to behave well with
respect to return and (>>=).

Using monad transformers, one can easily construct complex monads. For
example, the state monad transformer StateT s applied to some monad m
will yield a monad StateT s m, which combines the effect of state and the
effect(s) modelled by m. One can then stack effects, adding more and more
monad transformer layers, in order to construct complex monads. For exam-
ple, type StExc s x = StateT s (Exception x) is a monad for state of type
s and exceptions of type x . We can further extend this monad and add con-
tinuations simply by applying the continuation monad transformer to obtain
type ContStExc r s x = ContT r (StExc s x).

Since a monad transformer adds an effect to another monad, monads such
as State can be constructed by adding state to the identity monad Id.

State s ≡ StateT s Id

Therefore, in principle, only the transformer version of the monad is needed.
Also, note that for the combined monads there is no need to verify any monad
laws, or define new monad instances. The monad transformers will guarantee

that the obtained type is a monad by construction, realising the idea that correct
constructions are obtained by combining correct components.

Consider now the monad type ExcSt x s = ExcT x (State s), obtained by
applying the exception monad transformer to the state monad. Is this monad
equivalent to StExc s x? After all, both monads model state together with ex-
ceptions. The answer is no, and in general, the order in which the monad trans-
formers are applied is important. To see why, it is necessary to run the effectful
computations.

Monad transformers and their associated monads come equipped with a run
function that allows us to evaluate an effectful computation. For example, the
state monad can be run with runState :: s → State s a → (a, s) that given an
initial state and a stateful computation, returns the value of the computation
together with the final state. The state monad transformer can be run with
runStateT :: Monad m ⇒ s → StateT s m a → m (a, s), which given an initial
state and a computation, returns an m-computation with a value and final state.
The exception monad2 is run with a function runException :: Exception x a →
Either x a, and the exception monad transformer is run with a function runExcT::
Monad m ⇒ ExcT x m a → m (Either x a), that returns an m-computation over
either an exception or a value.

In order to obtain a run function for a combined monad we compose the run
functions of the components:

runStExc :: s → StExc s x a → Either x (a, s)
runStExc s = runException · runStateT s
runExcSt :: s → ExcSt x s a → (Either x a, s)
runExcSt s = runState s · runExcT

Analysing the type of the resulting run functions, we can see that in StExc
when an exception is raised the computation forgets about the state, while in
ExcSt when an exception is raised the computation preserves the state. One can
then choose how exceptions should interact with state by choosing the order in
which the monad transformers are applied. In general, applying monad trans-
formers in different orders gives rise to different interactions among effects [14].

So far, we have discussed the construction of types with monadic structure
for modelling computational effects. In order to write programs that will produce
and manipulate these effects, monads and monad transformers come equipped
with effectful operations. For example, State comes equipped with operations
get :: State s s and put :: s → State s () for getting access to the current state
and for setting the current state, and Exception comes equipped with operations
throw :: x → Exception x a and handle :: Exception x a → (x → Exception x a)→
Exception x a for throwing an exception and handling an exception.

Consider the exception monad Exception x which supports the operation
throw. If we extend it with a monad transformer such as StateT s and obtain
2 We distinguish between the Either monad and the exception monad as they

might have different implementations. Also, it is precisely when they differ that
runException is interesting.

the monad StateT s (Exception x), we expect this extended monad to not only
support get and put as provided by StateT, but also to support throw as provided
by Exception x . How to make the extended monad to support the operations of
its underlying monad is known as the problem of operation lifting.

3 Some Problems with the Traditional Design

The current design of monad transformers libraries performs the liftings of oper-
ations of an underlying monad to the transformed monad in an ad-hoc fashion,
relying crucially on a type-class trick in order to perform the liftings. The basic
idea is the following: define a class of monads supporting a certain operation.
For example, we define the class of monads supporting the operation callCC, and
show that the continuation monad transformer ContT applied to any monad m
is an instance of this class:

class Monad m ⇒ ContM m where
callCC :: ((a → m b)→ m a)→ m a

instance Monad m ⇒ ContM (ContT m) where
callCC = ...

The final step is to show that, for each monad transformer in the library, if the
underlying monad supports callCC, then the transformed monad also supports
callCC. For example, for the exception monad transformer ExcT:

instance ContM m ⇒ ContM (ExcT x m) where
callCC = ...

This type-class trick has some advantages, such as an overloading of the
operations that is usually convenient, but libraries that rely on it have some
shortcomings which affect the predictability, extensibility, expressive power and
portability of the library. In the following, we explain why this is so.

3.1 Non-uniform liftings

One can replace a computation on the Writer monad by a computation on the
more general State monad, and replace the output operation tell by an output
operation on State. Similarly, one can do the same replacements on their trans-
former versions, for example, replacing the operation tell ::Monad m ⇒ String→
WriterT String m () that outputs a string, with the following definition:

tellS :: Monad m ⇒ String→ StateT String m ()
tellS w = do s ← get

put (s ++ w)

One would expect that replacing WriterT by StateT, replacing tell by tellS ,
and replacing runWriterT by runStateT "", the semantics of a program would be
preserved. However, in the mtl [4], the following two programs, which perform

computations over WriterT String Cont and StateT String Cont respectively, have
different behaviours:

p1 :: (String,String)
p1 = (runCont id · runWriterT)

(callCC (λexit → tell "1">>= λ → exit "Exit"))
p2 :: (String,String)
p2 = (runCont id · runStateT "")

(callCC (λexit → tellS "1">>= λ → exit "Exit"))

While p1 = ("Exit", ""), we have that p2 = ("Exit", "1"). The difference
in behaviour is caused by non-uniform liftings in the mtl. In particular, callCC
is lifted through the StateT monad transformer in a way which is not coherent
with the lifting of callCC through WriterT. Although we can regard this as a bug
and change the implementation of the library, since each operation is lifted on a
case-by-case basis, there is no intrinsic guarantee that the liftings are coherent.
Hence, with no guarantee that the liftings are coherent, the predictability of the
semantics of the library is seriously affected.

3.2 Quadratic number of instances

Suppose a programmer wants to extend the library with a new monad trans-
former which comes equipped with some operations. The programmer must
write a new class corresponding to the added operations and an instance of this
new class for each existing monad transformer, so that the added operations
can be lifted through other monad transformers. Furthermore, the programmer
is required to write instances of each class of existing operations for the new
monad transformer. In other words, assuming one class of operations per monad
transformer, the number of instances increases quadratically with the number of
monad transformers.

Not only the extensibility of the library is affected because of the quadratic
growth of required lines of code, but also because of the lack of separation of
concerns. Extending the library requires understanding the semantics of all the
existing monad transformers.

The quadratic number of instances and lack of separation of concerns is a
major hurdle. It discourages anyone willing to extend the library and it shows
that the traditional design can only work for a library with a very limited number
of monads.

3.3 Shadowing of operations

We have seen in Section 2 how StExc and ExcST give rise to different interactions
between exceptions and state. With the former, state changes are lost when an
exception is raised, while with the latter state changes are preserved. Suppose
that we need both types of exception. We can easily construct such a monad as
follows:

type ExcStExc x1 s x2 = ExcT x1 (StExc s x2)
runExcStExc :: s → ExcStExc x1 s x2 a → Either x2 (Either x1 a, s)
runExcStExc s = runStExc s · runExcT

We now have two different types of exceptions with two different exception
objects (x1 and x2). Let us assume that both objects are of the same type, say
Int. Since there is no type that will distinguish instances, the function handle
will refer to the instance of the outermost monad. We have no way of handling
the other type of exceptions, as there is no way of saying “What I mean is the
handle operation corresponding to the monad under two monad transformers”.
The inner handle operation is shadowed by the outer one.

One way to deal with this problem is to define different types of exceptions,
but this usually means inserting unnecessary constructors and destructors which
clutter the program and make it more difficult to understand. We see shadowing
as revealing a limitation in the expressive power of the library.

3.4 Portability

The implementation of the type-class trick requires several extensions to the
Haskell 98 standard [12], such as functional dependencies and multi-parameter
classes. Although many of these extensions have been around for a while and their
semantics are quite stable, they certainly affect the portability of the library.
This is particularly so because the whole implementation of the library revolves
around this type-class trick. We would like to have the choice of paying the price
and using the operation overloading provided by the type-class implementation
when it is convenient without being forced to do so.

4 A New Approach

We now present the new ideas behind our monad transformer library. Specifically,
we present an improved lifting mechanism with explicit lifting of functions which
addresses the significant shortcomings discussed in the previous section.

The main idea of this approach is to pair each operation to a type of its im-
plementations. For example, implementations of handle for exceptions of type x
and a monad m are given by elements of the type Handle x m. Once a type of im-
plementations is given, we define functions parameterised by an implementation.
In the exceptions handling example, this means that we will define a function
handleX that given an implementation Handle x m performs the handling of an
exception.

handleX :: Monad m ⇒ Handle x m → m a → (x → m a)→ m a
handleX = ...

Additionally, we define a function liftHandle that, given an implementation
of the operations for a monad m, produces an implementation of the operation
for the monad t m, where t is an arbitrary monad transformer (as indicated by
the class constraint MonadT t).

liftHandle :: (Monad m,MonadT t)⇒ Handle x m → Handle x (t m)
liftHandle = ...

We expect every operation to have a type for its implementations, and a func-
tion parameterised by this type which allows programmers to use the operation
and a lifting function.

Concrete monads and monad transformers provide their own implementation
of the operations:

handleExcT :: Monad m ⇒ Handle x (ExcT x m)
handleExcT = ...

It is now possible, when using an operation, to state explicitly and precisely
which implementation is meant and through how many monad transformers
this implementation should be lifted. For example, handleX handleExcT is the
operation handle as implemented by handleExcT. Its lifting through two monad
transformers is given by handleX (liftHandle (liftHandle handleExcT)).

The approach has several advantages:

Uniform-liftings: operations are lifted uniformly through monad transformers
by construction. This means that the semantics of the lifted operations is
predictable.

Modularity: operations need to be defined only once for each monad/monad
transformer that supports them, effectively taking the quadratic order of
instances to linear.

Expressivity: One has the ability to exactly state which operation one is refer-
ring to, as it is done in the example above. In fact, if desired, one can have
more that one implementation of an operation for a given monad.

The main difference between the traditional approach and ours is that instead
of defining a type class for each class of operations, we define a type. This
removes the dependency from type classes, but opens the question of what is an
appropriate type for the implementation of operations. We answer this question
in Section 5.

The implementation that follows the ideas above constitutes the core of our li-
brary Monatron. This core only needs Haskell 98 extended with rank-2 types [10]
and is fully-functional. However, the overloading of operations provided by type-
classes is often convenient. When there is no possible confusion, and using addi-
tional language extensions is not a problem, one can let the compiler infer which
implementation one is referring to.

4.1 Overloading of operations

It is simple to add overloading on top of the core functionality. We define the
class of monads m with implementations Handle x m, and define the operation
handle for this class of monads:

class Monad m ⇒ HandleM x m | m → x where
handleM :: Handle x m

handle :: HandleM x m ⇒ m a → (x → m a)→ m a
handle = handleX handleM

Note that in the definition of handle, we are replacing the explicit parameter
Handle z m in handleX by an implicit parameter given by the type class.

Finally, we provide instances for the concrete monads that implement the
operations: the monad ExcT x m, and any monad transformer applied to a
monad of class HandleM.

instance Monad m ⇒ HandleM x (ExcT x m) where
handleM = handleExcT

instance (HandleM x m,MonadT t)⇒ HandleM x (t m) where
handleM = liftHandle handleM

Of course, implementing this overloading of operations will require the use of
many extensions to Haskell 98, as it was the case with the traditional design of
monad transformer libraries. However, in this case, the core functionality does
not rely on the extensions and one has the choice of using the extensions when
they are available and overloading is convenient, as opposed to being forced to
always do so.

5 Implementation of Monatron

The key idea of the design is to obtain a suitable representation of the imple-
mentations of the operations. Such a representation should allow programmers
to both perform the operations and lift them through monad transformers.

5.1 Types for operation implementation

Let us consider first the simple case of the operations get and put. A monad m
implements these operations for a parameter s with a pair of a computation m s
and a function s → m (). Hence, our representation for the operations is a pair as
shown in the type GetPut below. The projections give rise to the parameterised
operations getX and putX, and lifting an implementation is just post-composing
lift.

type GetPut s m = (m s, s → m ())
getX :: GetPut s m → m s
getX (g ,) = g
putX :: GetPut s m → s → m ()
putX (, p) s = p s
liftGetPut :: (Monad m,MonadT t)⇒ GetPut s m → GetPut s (t m)
liftGetPut (g , p) = (lift g , lift · p)

newtype Cod f a = Cod {unCod :: ∀b. (a → f b)→ f b}
runCod :: Monad m ⇒ Cod m a → m a
runCod c = unCod c return

instance MonadT Cod where
lift m = Cod (m>>=)
tmap f m = Cod (λk → f (unCod m (f · k)))

instance Monad m ⇒ Monad (Cod m) where
return = lift · return
c >>= f = Cod (λk → unCod c (λa → unCod (f a) k))

Fig. 2. Codensity monad transformer

The function liftGetPut is simple because in the type of the operations of
GetPut the monad only occurs in the result. In general, operations of the form
∀ a. S a → M a, where S is an instance of Functor, can be lifted simply by
applying lift after the operation. Operations of the form above are in one-to-one
correspondence with operations ∀x . S (M a)→ M a that respect the bind of the
monad (i.e. operations such that it is the same to bind any function a → M b
before performing the operation or after performing the operation). Because of
this correspondence we will say that such operations are S-algebraic.

What happens when the operation in question is not S-algebraic? For ex-
ample, the operation for handling exceptions of type x has type ∀a. M a →
(x → M a) → M a, for a monad M which supports exceptions. Although it is
equivalent to an operation ∀a. S (M a)→ M a for S a = (a, x → a), it is not S-
algebraic, since it doesn’t respect the bind of the monad (handling an exception
before binding and after binding an arbitrary function a → M b does not yield
the same result).

However, it can be shown that every operation op :: ∀a. S (M a) → M a
is in one-to-one correspondence with an operation op :: ∀a. S a → Cod M a.
Here, Cod M a is the codensity monad transformer [13, 9] defined in Fig. 2.
Categorically, the codensity monad transformer takes a functor to the right Kan
extension of the functor along itself. The correspondence between op and op
shows how an operation which is not S-algebraic for a given monad can be S-
algebraic for a different (more powerful) monad.

As with any monad transformer, we can lift a computation (m a) into
(Cod m a) with lift, but also we can use runCod to run a computation (Cod m a)
and obtain a computation (m a) in the original monad. A routine calculation
shows that runCod · lift = id.

The obtained operation op can be easily lifted to a monad transformer T by
post-composition with lift. However, this does not yield a lifting of op yet. In
order to obtain a proper lifting, we need to ‘correct’ the result of the operation
(lift · op), by applying (lift · runCod) to every occurrence of the monad inside the
transformer T. Hence, we extend the class for monad transformers with an extra
member:

type Handle x m = (∀a. a → (x → a)→ m a,∀a.m a → m a)

handleX :: Monad m ⇒ Handle x m → m a → (x → m a)→ m a
handleX (h,n) m = n · join · h m

liftHandle :: (Monad m,MonadT t)⇒ Handle x m → Handle x (t m)
liftHandle (h,n) = (λm → lift · h m, tmap n)

Fig. 3. Type and functions for implementations of handle.

type Throw x m = (∀a. x → m a)

throwX :: Throw x m → x → m a
throwX t x = t x

liftThrow :: (Monad m,MonadT t)⇒ Throw x m → Throw x (t m)
liftThrow t = lift · t

Fig. 4. Type and functions for implementations of throw.

class MonadT t where
lift :: Monad m ⇒ m a → t m a
tmap :: (Monad m,MonadT t)⇒ (∀x .m x → m x)→ t m a → t m a

The addition of tmap is essential for lifting the correction function, not only
for the case of handle, but also for any other operation which is not S-algebraic.

If we lift an operation through two transformers the correction function is
no longer (lift · runCod) :: M a → M a, but tmap (lift · runCod) :: T M a → T M a.
Consequently, the correction function will change according to the depth of the
lifting. This motivates the following definition of the implementation of handle.

Implementations of handle consist of pairs of an S-algebraic operation and
a correction function (see Figure 3). The parameterised operation handleX con-
structs from these components the usual operation exception handling. The func-
tion liftHandle lifts the components with lift and tmap respectively.

As a final example, in Figure 4 we provide the type and functions for imple-
mentations of throw. Since throw is an S-algebraic operation, its implementations
are simply functions of type ∀a. x → m a.

5.2 Implementing Transformers and Operations

So far, we have defined functions that deal with generic implementations of cer-
tain operations. For example, handleX and liftHandle deal with implementations
Handle x m. We now define concrete monad transformers and show that they
provide an implementation of operations. In particular, we will define the state
monad transformer and its implementation of get and put, and the exception
monad transformer and its implementation of throw and handle.

State Monad Transformer We start with the state monad transformer (see
Figure 5). Our implementation of the state monad transformer is essentially the
traditional one [14].

newtype StateT s m a = S {unS :: s → m (a, s)}
stateT :: (s → m (a, s))→ StateT s m a
stateT = S

runStateT :: s → StateT s m a → m (a, s)
runStateT s m = unS m s

instance MonadT (StateT s) where
lift m = S (λs → m >>= λa → return (a, s))
tmap f (S m) = S (f ·m)

instance Monad m ⇒ Monad (StateT s m) where
return = lift · return
m >>= k = S (λs → unS m s >>= λ(a, s ′)→ unS (k a) s ′)

Fig. 5. State monad transformer

Note that we give a different name for the constructor and destructor. This
is because we only want to export an interface consisting of a type and some
operations, leaving room for potential optimizations.

The monad transformer StateT provides an implementation of GetPut, which
is simply a pair of functions.

getPutStateT :: Monad m ⇒ GetPut s (StateT s m)
getPutStateT = (get, put)

where get = S (λs → return (s, s))
put s = S (λ → return ((), s))

Once we have defined the implementation of GetPut, we can use it via getX
and putX, and lift it with liftGetPut. Importantly, there is a separation of the
notion of implementation of operations (as provided by getPutStateT) and the
use of that type of operation (as provided by the functions getX, putX, and
liftGetPut).

Exception Monad Transformer Let us review the traditional definition of
the exception monad transformer, which can be found in Figure 6, together with
the functions throwi and handlei. A computation of type Xi x m a is an m-
computation whose value is either an exception of type x or a pure value of type
a. The operation throwi throws an exception, and handlei takes a computation
and a handler, and if the computation throws an exception then it applies the
handler.

This monad transformer can provide an implementation Throw x (Xi x m),
but it is not powerful enough to provide an implementation Handle x (Xi x m),
as we would have no way of providing a lifting function for it.

Consider now a context [•] >>= k that binds a function k :: a → Xi x m b.
Given such a context, it is possible to define an exception handling operation
which instead of checking if its first argument throws an exception, it checks
whether an exception is thrown after binding k :

newtype Xi x m a = Xi {unXi :: m (Either x a)}
instance MonadT (Xi x) where lift m = Xi (fmap Right m)

tmap f = Xi · f · unXi

instance Monad m ⇒ Monad (Xi x m) where
return = lift · return

(Xi m)>>= f = Xi (do a ← m; case a of Left x → return (Left x)

Right b → unXi (f b))

throwi :: Monad m ⇒ x → Xi x m a

throwi x = Xi (return (Left x))

handlei :: Monad m ⇒ Xi x m a → (x → Xi x m a)→ Xi x m a

handlei m h = Xi (unXi m >>= λexa → case exa of

Left x → unXi (h x)
Right a → return (Right a))

Fig. 6. Traditional exception monad transformer

newtype ExcT x m a = X {unX :: Cod (Xi x m) a }
instance MonadT (ExcT x) where

lift = X · lift · lift
tmap f = X · tmap (tmap f) · unX

instance Monad m ⇒ Monad (ExcT x m) where
return = lift · return
m >>= f = X (unX m >>= unX · f)

Fig. 7. Exception monad transformer

h = handlei (k a) (k · h) :: a → (x → a)→ Xi x m a

Analyzing computations in the context of a bind operation is possible if
we transform Xi x m with the codensity monad transformer. Intuitively, the
codensity monad transformer adds to a monad the possibility of analysing a
computation in the context of a bind.

The proposed correction function (lift · runCod) has the effect of closing the
context. In order to illustrate this idea, consider the computation handle m h>>=
λ → throw (). We do not expect the throw after the bind to affect the result
of the handle operation. This means that, even though we are considering com-
putations in a context, at some point we want to “close” the context, perform
a computation, and only then consider the result in a resulting context. This is
exactly what (lift · runCod) does.

We can define the exception monad transformer as the transformation of
the traditional exception monad with the codensity monad transformer. The
complete implementation of the obtained monad transformer for exceptions is
shown in Figure 7.

We remark that, despite the relative complexity of the obtained monad,
the interface for it does not need to be changed. It is still possible to con-
struct elements of the exception monad transformer ExcT x m a from an ele-
ment of m (Either x a), and running the exception monad still yields the type
m (Either x a), as shown below:

excT :: Monad m ⇒ m (Either x a)→ ExcT x m a
excT = X · lift · Xi

runExcT :: Monad m ⇒ ExcT x m a → m (Either x a)
runExcT = unXi · runCod · unX

This means that the complexity of the implementation is actually hidden
from the programmer, who can use the library without needing to understand
the details of the implementation.

Going to the trouble of defining the exception monad transformer in this
manner now pays off. We can now define the implementation of the operations
throw and handle as provided by ExcT. Note that the correction function in the
implementation of handle is essentially (lift · runCod).

throwExcT :: Monad m ⇒ Throw x (ExcT x m)
throwExcT x = X (lift (throwi x))
handleExcT :: Monad m ⇒ Handle x (ExcT x m)
handleExcT = (k , excT · runExcT)

where k a h = X (Cod (λc → handlei (c a) (c · h)))

The given semantics for handleExcT is the expected one, as a routine calcu-
lation shows that, in essence, it is equivalent to handlei:

handleX handleExcT ≡ handleEi

where handleEi is given by:

handleEi :: (Monad m)⇒ ExcT x m a → (x → ExcT x m a)→ ExcT x m a
handleEi m h = xe (handlei (ex m) (ex · h))

where xe :: Monad m ⇒ Xi x m a → ExcT x m a
xe = X · lift
ex :: Monad m ⇒ ExcT x m a → Xi x m a
ex = runCod · unX

Once that the implementation of the operations is defined, we are done. Using
and lifting the operations can be done by the functions that act on arbitrary
implementations of the operations (such as those in Figure 3).

6 Conclusion

Combinator libraries for monads are essential for facilitating the construction of
complex monads that naturally appear in applications that go from basic parser

libraries [7] to end-user applications [16]. We have shown that the current design
of monad transformer libraries has a number of shortcomings that hinder the
extensibility, predictability, portability, and expressive power of the library.

By restructuring the design and incorporating uniform liftings of operations
we have managed to address all of these issues, except for portability for which,
at least, some alternative is given. This new design guided the implementation
of the Monatron library [8]. The design requires a deeper understanding from
the monad transformer writer, as operations need to be defined in such a way
that they can be lifted through arbitrary monad transformers. One way to obtain
these liftings is formally explained using system Fω in [9]. The user of the library
sees none of this complexity, and benefits from a more expressive interface that
works uniformly on all operations.

The complexities of the design lead us to hide the internal implementation
in order to maintain a simple interface. This was unnecessary before, as the im-
plementation was very close to the interface. This change may prove to be useful
for improving the efficiency of the library, as hidden implementations allow for
optimizations that preserve the interface. For example, the list monad is often
used for modelling non-determinism, but its merge operation (concatenation) is
rather inefficient. Using a different internal structure, but preserving the inter-
face, we can provide an efficient merge operation. We leave as future work a
further departure from the traditional implementation of monads in search for
better performance.

6.1 Related Work

The mtl [4] is the most well-known monad transformer library. It is inspired by
the paper of Liang et al. [14], and for many years it has been distributed together
with the Haskell compiler GHC. More recently, a new library called MonadLib [3]
has been introduced. This library is an improvement over the mtl, but it still
suffers from the problems described in Section 3. The library presented in this
article owes a lot to the excellent work done by the authors of these two libraries.

The codensity monad transformer has appeared in a number of functional
programming papers. For example, it has been derived as a monad transformer
for backtracking [5], it has been calculated in a search for efficient parsers [2],
and it has been used to optimize substitution in the free monad [17]. In our case,
however, we were motivated by its mathematical properties [9].

Acknowledgements. I would like to thank Graham Hutton and the anonymous
referees for their comments and suggestions and all the people in the Functional
Programming Lab for their support.

References

1. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In International Summer
School On Applied Semantics APPSEM2000, pages 42–122. Springer-Verlag, 2000.

2. K. Claessen. Parallel parsing processes. Journal of Functional Programming,
14(6):741–757, 2004.

3. Iavor Diatchki. Monadlib. http://www.galois.com/~diatchki/monadLib/.
4. A. Gill. Monad transformer library. http://hackage.haskell.org/cgi-bin/

hackage-scripts/package/mtl-1.1.0.2.
5. R. Hinze. Deriving backtracking monad transformers. In ICFP, pages 186–197,

2000.
6. J. Hughes. The Design of a Pretty-printing Library. In J. Jeuring and E. Meijer,

editors, AFP, pages 53–96. Springer Verlag, LNCS 925, 1995.
7. G. Hutton and E. Meijer. Monadic Parsing in Haskell. Journal of Functional

Programming, 8(4):437–444, July 1998.
8. M. Jaskelioff. Monatron. http://www.cs.nott.ac.uk/~mjj/monatron.
9. M. Jaskelioff. Modular monad transformers. In ESOP, 2009. Accepted for publi-

cation.
10. M. P. Jones. First-class polymorphism with type inference. In POPL, pages 483–

496. ACM Press, 1997.
11. S. L. Peyton Jones and P. Wadler. Imperative functional programming. In POPL,

pages 71–84, 1993.
12. S. Peyton Jones, editor. Haskell 98 Language and Libraries: the Revised Report.

Cambridge University Press, 2003.
13. S. Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer-Verlag, 1971. Second edition, 1998.
14. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.

In POPL, pages 333–343, 1995.
15. E. Moggi. Notions of computation and monads. Information and Computation,

93(1):55–92, 1991.
16. D. Stewart and S. Sjanssen. Xmonad. In Haskell Workshop, pages 119–119, New

York, NY, USA, 2007. ACM.
17. J. Voigtländer. Asymptotic improvement of computations over free monads. In

MPC, pages 388–403, 2008.
18. P. Wadler. The essence of functional programming. In POPL, pages 1–14, 1992.

