
Guarded Recursion and Mathematical
Operational Semantics

Mauro Jaskelioff and Neil Ghani

University of Nottingham

Operational semantics gives meaning to terms in a programming language
by defining a transition relation which represents execution steps. In structural
operational semantics (SOS) this transition relation is given by a set of rules
defined on the structure of the terms of the language. But, when is a collec-
tion of rules satisfactory, in the sense that it defines a well-behaved operational
semantics?

Before the introduction of Mathematical Operational Semantics by Turi [2],
there were many attempts to conceive a theory of operational semantics in the
form of syntactic rule formats. These results were specific to a particular type of
transition relation, strongly syntactic, and therefore difficult to generalize and
adapt to other settings. Turi stripped operational semantics to its bare bones,
ignoring concrete syntax to focus on its structure and, as a result, giving us
a clean categorical reformulation of SOS. Under this interpretation, the SOS
of a language is given by a distributive law of syntax over behaviour. If the
operations in the language are given by a signature functor Σ and the behaviour
of the system by a behaviour functor B, the distributive law can be constructed
from abstract operational rules, that is, natural transformations:

Σ(Id×B)→ BTΣ

where TΣ is the free monad over Σ.
Apart from the elegant and language-independent formulation of SOS in this

setting, Turi’s approach has the benefit of automatically ensuring properties such
as the congruence of bisimulation.

In SOS, recursive programs are usually described via a recursive specification,
i.e. a system of equations:

x1 = t1
...

xn = tn

where each ti is a term consisting of operations in a previously defined language
and variables xi.

In order to ensure that there exists a solution to such a system of equations,
and that the solution is unique, these equations are required to be guarded. For
process algebras like ACP [1], an equation is said to be guarded if each ti is



equivalent to a term of the form a1.p1 + . . . + an.pn + b1 + . . . + bm, where xi

may occur freely in pj , and aj , bk are atomic actions.
Turi gave an abstract solution to guarded equations, constructing a coalgebra

TΣX → BTΣX where X is the set of recursively defined identifiers [3]. However,
in this solution, no distributive law is obtained, so it is not clear how this solution
fits with the rest of the framework. Here, we take a different approach and regard
the recursive definitions as additional operations of the language. Instead of a
set of identifiers, we will have a signature functor Ω for the operations defined by
recursive equations. The advantage of this approach is that now we can obtain
a distributive law for the complete language –ensuring that all the properties of
the theory of mathematical operational semantics are still valid– and also, we
can consider parameter-passing recursive programs.

Given a system of equations e:Ω → BTΣ+Ω and the semantics of the non-
recursive part of the language ρΣ :Σ(Id×B)→ BTΣ , we obtain the semantics of
the combined language as a new operational rule involving the operations from
both signatures:

Σ(Id×B) inl //

ρΣ

��

(Σ + Ω)(Id×B)

��

Ω(Id×B)inroo

π1

��
BTΣ

� � // BTΣ+Ω Ωe
oo

We considered recursive specifications Ω → BTΣ+Ω motivated by the usual
concrete representation of guarded equations, but we could have considered more
general natural transformations Ω(Id × B) → BTΣ+Ω , which are not very dif-
ferent from operational rules. Hence, although we can view guarded equations
as providing different concrete syntax for describing operational behaviour, they
are essentially abstract operational rules in disguise.

In conclusion, we showed how to add recursively defined operations to a SOS
using the distributive law approach of Turi which results in bisimulation as a
congruence. Tantalizingly, this shows that recursive programs are a reflection in
syntax of operationally defined infinitary behaviour.

References

1. Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communi-
cation. Information and Control, 60(1-3):109–137, 1984.

2. D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc.

12th LICS Conf., pages 280–291. IEEE, Computer Society Press, 1997.
3. Daniele Turi. Categorical modelling of structural operational rules: Case studies.

In Category Theory and Computer Science, pages 127–146, 1997.


