
LIFTING OF OPERATIONS
IN

MODULAR MONADIC SEMANTICS

Mauro Jaskelioff

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

August 2009



Abstract

Monads have become a fundamental tool for structuring denotational semantics and
programs by abstracting a wide variety of computational features such as side-effects,
input/output, exceptions, continuations and non-determinism. In this setting, the notion
of a monad is equipped with operations that allow programmers to manipulate these
computational effects. For example, a monad for side-effects is equipped with operations
for setting and reading the state, and a monad for exceptions is equipped with operations
for throwing and handling exceptions.

When several effects are involved, one can employ the incremental approach to mod-
ular monadic semantics, which uses monad transformers to build up the desired monad
one effect at a time. However, a limitation of this approach is that the effect-manipulating
operations need to be manually lifted to the resulting monad, and consequently, the lifted
operations are non-uniform. Moreover, the number of liftings needed in a system grows
as the product of the number of monad transformers and operations involved.

This dissertation proposes a theory of uniform lifting of operations that extends the
incremental approach to modular monadic semantics with a principled technique for
lifting operations. Moreover the theory is generalized from monads to monoids in a
monoidal category, making it possible to apply it to structures other than monads.

The extended theory is taken to practice with the implementation of a new extensible
monad transformer library in Haskell, and with the use of modular monadic semantics
to obtain modular operational semantics.
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No hay ejercicio intelectual que no sea finalmente inútil. Una doctrina es
al principio una descripción verosı́mil del universo; giran los años y es
un mero capı́tulo—cuando no un párrafo o un nombre—de la historia de
la filosofı́a.

There is no exercise of the intellect which is not, in the final analysis,
useless. A philosophical doctrine begins as a plausible description of the
universe; with the passage of the years it becomes a mere chapter—if not
a paragraph or a name—in the history of philosophy.

Jorge Luis Borges
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Chapter 1

Introduction

Formal semantics of programming languages are essential for understanding and reason-
ing about how programs behave. A formal semantics not only provides the means for the
analysis and verification of programs, but also it affects language designs decisions as it re-
veals subtleties arising, for example, from the interaction of different features. Moreover, a
clear formal semantics helps the implementor of programming language processors such as
compilers and interpreters, by determining the correctness of the implementation and the
optimizations performed, and by providing high-level concepts with which to understand
and structure the implementation. In a sense, all programmers write programming lan-
guage processors. Reynolds (1998) observed “any system process that accepts information
from human users is such a processor”, an idea that it is even more evident today with the
rising popularity of domain specific languages (Gibbons 2009).

Modern programming languages combine a great variety of advanced features such as
side-effects, input/output, exceptions, continuations, non-determinism and concurrency.
Consequently, the formal semantics of languages incorporating these computational effects
can be very intricate and hence difficult to construct and understand, in effect, hindering the
raison d’être of a formal semantics.

In this chapter, the monadic approach to semantics is briefly reviewed and the need for
libraries for structuring monadic programs is discussed. Then, a description of the structure
of the thesis and of its contributions is given.

1.1 The Monadic Approach to Semantics

In order to tackle a complex construction it is beneficial to identify common structure, as
common structure gives rise to high-level abstractions which help to make the problem
more manageable. Moggi (1989b, 1991) observed that monads, a concept arising in cate-
gory theory, provide an effective abstraction for a great variety of computational effects. It
is unsurprising that category theory gave an appropriate abstraction; Reynolds (1980) noted
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many years ago that category theory was the appropriate tool for “the central problem” of
programming languages, that is “to organize a variety of concepts in a way which exhibits
uniformity and generality”.

Each monad modelling a computational effect is associated with a set of effect manipulat-
ing operations. For example, an exception monad may come with operations for throwing
an exception and for handling it, and a state monad may come with operations for read-
ing and updating the state. Then, it is possible to define the semantics of a programming
(meta)language for an abstract monad which supports a given set of operations, and only
provide a concrete monad at a later stage.

The monadic approach to the denotational semantics of a programming language, which
has been adapted also to other forms of programming language semantics based on inter-
preters (Liang, Hudak, and Jones 1995; Wadler 1992) or compilers (Liang and Hudak 1996),
consists of three steps (Benton, Hughes, and Moggi 2000; Moggi 1997):

• identify a metalanguage with computational types, to hide the interpretation of compu-
tational types and operations manipulating computations;

• define a translation of the programming language into the metalanguage;

• give a denotational semantics of the metalanguage, by interpreting computational
types and operations on computations using a monad and a set of operations asso-
ciated to it.

However, there is a caveat: when the programming language involves a mixture of compu-
tational effects, the number of operations for manipulating computations grows, the monad
needed to interpret computational types gets more complex, and the semantics of opera-
tions associated to the monad gets more complex, too. To tackle these issues one can adopt
a modular approach, by providing a set of basic building blocks and operations to build more
complex blocks, so that complex monads can be built from simpler ones. Roughly speaking,
one can identify two modular approaches:

• the incremental approach (taken in Benton, Hughes, and Moggi 2000; Liang, Hudak,
and Jones 1995; Moggi 1997) uses unary operations, called monad transformers, which
build complex monads by adding one computational feature to a pre-existing monad;

• the compositional approach (taken in Hyland, Plotkin, and Power 2006; Lüth and Ghani
2002) uses binary operations, which build complex monads by combining two pre-
existing monads.

Both approaches fall short in dealing with operations associated to monads.
The need to lift the operations associated to a monad to a combined monad was first iden-

tified by Moggi (1989a). Liang, Hudak, and Jones (1995) proposed a workaround, namely to

2



lift in an ad-hoc manner the operations associated to a monad through a monad transformer.
However, the workaround is non-modular: the number of liftings of operations grows like
the product of the number of monad transformers and operations involved. Alternatively,
one may achieve modularity by restricting the format of operations, for instance algebraic op-
erations in the sense of Plotkin and Power (2001b) are straightforward to lift. However, the
applicability of the monadic approach becomes limited if all the operations on computations
are required to be algebraic.

The compositional approach fits well with the algebraic view of computational effects ad-
vocated in (Hyland, Plotkin, and Power 2006; Plotkin and Power 2001b), where monads are
replaced by algebraic theories (Manes 1976), and combining computational effects is reduced
to composition of algebraic theories. Unfortunately, some computational monads are not
induced by algebraic theories, most notably the continuation monad; and some operations
on computations, such as handling of exceptions, are not algebraic.

The incremental approach, on the other hand, is the most popular among functional pro-
grammers, because monad transformers are easy to understand and implement. However,
there has been limited progress in addressing the lifting problem. This is precisely the focus
of the first part of this thesis, which proposes a theoretical foundation for uniform lifting of
operations which is applicable to a wide class of operations and monad transformers.

1.2 Modular Monadic Semantics in Haskell

The power of functional languages lies, to a great extent, in their ability to name and reuse
programming idioms (Hughes 1995). This power is often realised in the form of combinator
libraries, which consist of a collection of idioms commonly found in the library’s application
area. Programmers can reuse these idioms and combine them to obtain programs which
“very often [. . . ] are correct first time, since they are built by assembling correct compo-
nents” (Hughes 1995).

Computational effects such as state, exceptions and continuations are usually associated
with imperative languages but, with the help of monads, they can be elegantly incorporated
into a functional language (Peyton Jones and Wadler 1993). However, obtaining a monad
which combines effects can be difficult. Moreover, since monads must satisfy certain co-
herence conditions, the programmer is faced with the task of verifying these conditions.
Obtaining combined effects can be made much easier with a good combinator library for
monads.

There are several important qualities that any piece of software should have (Ghezzi,
Jazayeri, and Mandrioli 2002). First and foremost is the correctness of the implementation,
for which a solid-theoretical foundation is a great aid. Other significant qualities are effi-
ciency, portability, and usability, which in combinator libraries is greatly influenced by the
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ability of the library to let the programmer abstract from low-level implementation details
and think in terms of high-level idioms. Two factors are essential in order to achieve this:
the expressivity of the library, in the sense that the exposed interface is enough to obtain the
desired combinations, without the need to understand the internals of the library; and also
the predictability of the semantics of the combinators, in the sense that they should behave
uniformly and without corner cases. Finally, a library should be extensible to cope with the
additional requirements that new applications might bring.

Combinator libraries for monads can be built from modular components using monad
transformers (Liang, Hudak, and Jones 1995). Current monad transformer libraries, such
as mtl (Monad Transformer Library), have been very successful in providing useful combina-
tors for constructing monads. However, they have a number of shortcomings. Because no
general solution for the problem of lifting operations is known, liftings are done on a case-
by-case basis, there is no guarantee that the liftings are uniform, and extending the library is
cumbersome. Moreover, the lifting overloading mechanism produces shadowing of opera-
tions, and relies essentially on non-portable features. For all these reasons, the predictability,
extensibility, expressivity and portability of the library is affected.

The second part of the dissertation introduces Monatron, a transformer library that ad-
dresses the issues discussed above. Its implementation builds on the strengths of existing
monad transformer libraries and incorporates uniform liftings of operations. Uniform lift-
ing of operations have also been implemented by the author in the library mmtl (Modular
Monad Transformer Library), but the implementation of mmtl closely follows the design of
the mtl and, as a consequence, still suffers from some of its same problems. The desire to
eliminate these problems motivated the design of the Monatron library.

Also in the second part, the Monatron library is used to obtain modular interpreters in
the style of Liang, Hudak, and Jones (1995) and it is shown that monads can not only be used
to structure denotational semantics, but also to structure operational semantics.

1.3 Synopsis

The thesis is divided into two main parts and a conclusion. The first part, which develops a
theory of lifting of operations, consists of the following chapters:

Chapter 2 introduces categorical concepts which are needed for the formulation of the the-
ory such as monoidal categories, monoidal functors, and monoidal natural transforma-
tions, exponentials and monoids in a monoidal category. Several examples are given.

Chapter 3 presents a formal definition of different classes of operations: H-operations, first-
order operations and algebraic operations, and a precise definition of the notion of
lifting. It is shown that every algebraic operation can be lifted along a monoid mor-
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phism. Additionally, several examples of monads that model computational effects are
given along with their associated effect-manipulating operations.

Chapter 4 develops a theory of uniform liftings of operations for monoids in a monoidal
category. The theory introduces a hierarchy of monoid transformers, and several lifting
theorems are proved for transformers in that hierarchy. Additionally, it is shown that
when more than one lifting result is applicable, the liftings coincide.

In the second part of the thesis, the theory is implemented in Haskell and two applica-
tions are presented.

Chapter 5 introduces the Haskell library Monatron that implements the theory of uniform
liftings, showing how the concepts can be carried out in an actual programming lan-
guage, and therefore providing evidence that the proposed theory can have a direct
impact on programmers.

Chapter 6 reviews how modular interpreters are implemented using monad transformers,
providing at the same time an extended example of the use of the Monatron library.
The obtained modular semantics also serves as contrast to the modular semantics of
the following chapter.

Chapter 7 develops modular operational semantics. It presents an implementation of Turi’s
functorial operational semantics (Turi 1996; Turi and Plotkin 1997). In this style of op-
erational semantics, the rules that define structural operational semantics are param-
eterised by a signature functor that describes the syntax and a behaviour functor that
describes the observable behaviour. The chapter also presents a notion of modular
operational semantics which is obtained by structuring the behaviour functor with a
monad and a step functor, effectively applying the techniques from monadic semantics
to the case of operational semantics.

As there is no formal semantics of Haskell, it is difficult to establish rigourously the pre-
cise correspondence between the theory and the implementation. However, all the proofs in
the theory should hold in the implementation under the following assumptions:

• We work with the subset of Haskell without selective strictness constructs such as the
seq construct. In the presence of seq (see, for example, Johann and Voigtländer 2004)
η-equivalence does not hold. A rather paradoxical consequence of the lack of exten-
sionality is that in the full version of this language named after the logician Haskell
Curry, currying is not an isomorphism.

• There exists a relationally parametric model of Haskell. This assumption will allow us
to benefit from free theorems (Wadler 1989) and, for example, obtain that all terms of
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type ∀a. Fa → Ga must be natural transformations from the functor F to the functor G.
Although no such model is currently known, parametric models of subsets of Haskell
have been constructed (Johann and Voigtländer 2009).

Haskell provides more structure than the implementation requires. For example, partial
functions are not needed and working with the total fragment of Haskell would be enough.
However, the author feels Haskell is a reasonable choice for implementation language as it
provides a convenient notation for writing monadic computations, and it is the language on
which a monad transformer library has the potential of making the greatest impact.

The final part consists of the following chapter and appendix.

Chapter 8 summarises the results and gives some directions for further research.

Appendix A gives the full source code of the Monatron library.

Related work is discussed in the summary at the end of each chapter.

1.4 Contributions

The primary contributions of the thesis are as follows:

• An abstract theory of lifting for monoid transformers, where monoids are taken in
an unspecified monoidal category. This generalizes, extends and clarifies the incre-
mental approach to modular monadic semantics. The abstract category-theoretic for-
mulation of the theory opens the door to its application to other structures proposed
for modelling computational effects, such as arrows (Hughes 2000) and Freyd cate-
gories (Power and Robinson 1997), which can be viewed as monoids in suitable mon-
oidal categories (Heunen and Jacobs 2006) (Chapter 4).

• An algebraic presentation of the callcc operation, showing that it is well-behaved and
that it can be lifted along any monad morphism (Chapter 3).

• Theory is put into practice with the implementation of a monad transformer library
for Haskell which incorporates uniform liftings. Additionally, the traditional design of
monad transformers libraries is refined with some conceptual changes (Chapter 5).

• An implementation of Turi’s semantics-based approach to operational semantics. This
implementation allows programmers to write small-step operational semantics in a
natural manner, while keeping the benefits of denotational semantics. In fact oper-
ational semantics written in this way induce both a well-behaved transition system
(where bisimulation is a congruence) and an internally fully-abstract denotational se-
mantics. The ability to write well-behaved small-step semantics is particularly relevant
to the semantics of concurrent processes. (Chapter 7).
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• The aforementioned approach to operational semantics is extended with a technique
for writing operational semantics modularly. The technique incorporates the current
technology for modular monadic semantics to structure the functor representing ob-
servable behaviour (Chapter 7).

The source code for the chapters in the second part of the thesis can be downloaded from
the author’s webpage (http://www.cs.nott.ac.uk/˜mjj/thesis/).

Published contributions

Some of the results in this thesis have been published by the author, are accepted for publi-
cation or have been submitted for publication.

• Mauro Jaskelioff and Eugenio Moggi (2009). “Monad Transformers as Monoid Trans-
formers”. In: Theoretical Computer Science. Submitted for publication.

This article is the core of Part I. The idea of working with monoids in a monoidal cate-
gory, and of considering monoidal functors as another interesting class of transformers
is due to Moggi.

• Mauro Jaskelioff (2009). “Modular Monad Transformers”. In: European Symposium on
Programming. Ed. by Giuseppe Castagna. Vol. 5502. Lecture Notes in Computer Sci-
ence. Springer, pp. 64–79.

This article develops the theory in System Fω and has been superseded by the more
abstract category-theoretic presentation of the theory in Jaskelioff and Moggi (2009).
However, its formulation of standard callcc in terms of algebraic operations is included
in Chapter 3. In this paper only βη-equivalence is erroneously assumed, but actually a
stronger equational theory is needed for the results to hold.

• Mauro Jaskelioff (2008). “Monatron: an Extensible Monad Transformer Library”. In:
Implementation and Application of Functional Languages. Accepted for publication.

The main ideas of the Monatron library are presented in this article, but the library
presented in Chapter 5 and Appendix A has been extended and simplified.

• Mauro Jaskelioff, Neil Ghani, and Graham Hutton (2008). “Modularity and Implemen-
tation of Mathematical Operational Semantics”. In: Proceedings of the Workshop on Math-
ematically Structured Functional Programming. Reykjavik, Iceland.

The results in this article have been refined in Chapter 7 and the main example has
been extended with a parallel construct. The implementation of modular syntax in
Haskell is presented in Chapter 6.
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Prerequisites

For the first part of the thesis, a modest knowledge of Category Theory is assumed. The
category-theoretic notions which are relevant to the thesis, but might be out of the scope
of an introductory textbook, are recalled in Chapter 2. Further information can be found
in more advanced textbooks such as Mac Lane (1971), Borceux (1994a,b), or Barr and Wells
(1985, 1995).

For the second part, knowledge of Haskell (Peyton Jones 2003) is assumed. Readers un-
familiar with Haskell may consult introductory textbooks such as Hutton (2007), Thompson
(1999), or Bird (1998).
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Theory
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Chapter 2

Categorical Background

It is well-known (Mac Lane 1971) that monads on a category C correspond to monoids in the
(strict) monoidal category Endo(C) of endofunctors on C. A similar correspondence holds
when monads are replaced by strong monads on a cartesian closed category C or by monads
expressible in system Fω (or some other typed calculus of adequate expressivity), provided
Endo(C) is replaced with a suitable (strict) monoidal category Ê . These observations suggest
that a theory of monad transformers can be viewed as an instance of a more abstract theory
of monoid transformers in the setting of a monoidal category Ê .

Consequently, in this chapter, several categorical concepts which are needed to develop
the theory in this abstract manner are introduced. First, monoidal categories (together with
functors and natural transformations) are defined, along with other notions, such as expo-
nentials and monoids, definable in the setting of any monoidal category. After these notions
are introduced, several examples are given.

As a convention, a notion X with additional structure is written as X̂.

2.1 Monoidal Categories

Definition 2.1 (Monoidal Category). A monoidal category Ê is a tuple (E ,⊗, I, α, λ, ρ), where

• E is a category, ⊗ : E × E → E is a bifunctor, I ∈ E is an object;

• αa,b,c : a ⊗ (b ⊗ c) → (a ⊗ b) ⊗ c , λa : I ⊗ a → a , and ρa : a ⊗ I → a are natural
isomorphisms such that λI = ρI and the following diagrams commute

a⊗ (b⊗ (c⊗ d)) α //

id⊗α
��

(a⊗ b)⊗ (c⊗ d) α // ((a⊗ b)⊗ c)⊗ d

a⊗ ((b⊗ c)⊗ d) α
// (a⊗ (b⊗ c))⊗ d

α⊗id

OO
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a⊗ (I ⊗ b) α //

id⊗λ &&LLLLLLLLLL
(a⊗ I)⊗ b

ρ⊗idxxrrrrrrrrrr

a⊗ b

When the natural isomorphisms α, λ and ρ are identities, the diagrams necessarily com-
mute, and the monoidal category is called strict. Also, when there is a natural isomorphism
γa,b : a⊗ b → b⊗ a subject to some coherence conditions, the monoidal category is called
symmetric.

Definition 2.2 (Monoid). The category Mon(Ê) of monoids in a monoidal category Ê is given
by

objects are monoids M̂ = (M, e, m), i.e. diagrams I e //M M⊗Mmoo in E such that

(M⊗M)⊗M m⊗id // M⊗M

m
��

M⊗ (M⊗M)

α

OO

id⊗m
// M⊗M m

// M

M⊗M
m

&&MMMMMMMMMMM M⊗ I
id⊗eoo

ρ

��
I ⊗M

e⊗id

OO

λ
// M

arrows from M̂1 to M̂2 are arrows M1
f //M2 in E such that

M1

f

��

M1 ⊗M1
m1oo

f⊗ f

��

I

e1
55lllllllllllll

e2 ))RRRRRRRRRRRRR

M2 M2 ⊗M2m2
oo

Identities and composition in Mon(Ê) are inherited from E .

The forgetful functor U : Mon(Ê) // E maps a monoid M̂ to M and an arrow M̂1
f // M̂2

to M1
f //M2.

Definition 2.3 (Exponential). An exponential of b to a in a monoidal category Ê is an object ba

together with a map ev : ba ⊗ a //b satisfying the universal property

∀x ∈ E . ∀ f : x⊗ a // b. ∃! Λ f : x //___ ba such that ba ⊗ a ev // b

x⊗ a

Λ f⊗id

OO�
�
� f

<<yyyyyyyyy

Definition 2.4 (Monoidal Right-Closed Category). A monoidal right-closed category is a mon-
oidal category Ê with exponentials. That is, for every object a and b, the exponential ba

exists.
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Equivalently, a monoidal category is right-closed when, for every object a, the functor
−⊗ a has a right adjoint, i.e. for every a there is an isomorphism natural in x and b:

Ê(x⊗ a, b) ∼= Ê(x, ba)

By considering right adjoints to left tensoring one obtains the notion of monoidal left-closed
category. When Ê is symmetric monoidal, one simply speaks of monoidal closed category, since
the category is left-closed if and only if it is right-closed.

Definition 2.5 (Monoidal Functor). Given two monoidal categories Ê and Ê ′, a monoidal
functor T̂ from Ê to Ê ′ is a tuple (T, φI , φ), where

• T : E // E ′ is a functor

• φI : I′ // TI is a map, φa,b : Ta⊗′ Tb // T(a⊗ b) is a natural transformation such
that

Ta⊗′ (Tb⊗′ Tc)
id⊗′φ //

α′

��

Ta⊗′ T(b⊗ c)
φ // T(a⊗ (b⊗ c))

T(α)
��

(Ta⊗′ Tb)⊗′ Tc
φ⊗′id

// T(a⊗ b)⊗′ Tc
φ

// T((a⊗ b)⊗ c)

I′ ⊗′ Ta
λ′ //

φI⊗′id
��

Ta

TI ⊗′ Ta
φ
// T(I ⊗ a)

T(λ)

OO Ta⊗′ I′
ρ′ //

id⊗′φI

��

Ta

Ta⊗′ TI
φ
// T(a⊗ I)

T(ρ)

OO

When the map φI and the natural transformation φ are identities, the monoidal functor is
called strict, and the commuting diagrams amount to require that I′ = TI, Ta⊗′ Tb = T(a⊗
b), α′ = T(α), λ′ = T(λ), and ρ′ = T(ρ). Monoidal functors (as defined above) do not
require φI and φ to be isomorphisms. Some authors call these functors lax monoidal functors
and reserve the term monoidal functor for the case when φI and φ are isomorphisms.

Definition 2.6 (Monoidal Natural Transformation). Given the monoidal functors T̂ and T̂′

from Ê to Ê ′, a monoidal natural transformation τ from T̂ to T̂′ is a natural transformation
τ : T • // T′ such that

I′
φI

~~~~~~~~~~~
φ′I

  AAAAAAAAA

TI τ
// T′ I

Ta⊗′ Tb
τ⊗′τ //

φ

��

T′a⊗′ T′b

φ′

��
T(a⊗ b)

τ
// T′(a⊗ b)

The following theorem shows that monoidal functors and monoidal natural transforma-
tions extend to the category Mon(Ê) of monoids in the monoidal category Ê .
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Theorem 2.7 (Monoidal Extension). A monoidal functor T̂ : Ê // Ê ′ induces a functor T :
Mon(Ê) //Mon(Ê ′). Similarly a monoidal natural transformation τ : T̂ • // T̂′ induces a natu-
ral transformation τ : T • // T′ such that

Mon(Ê)
T ,,

T′
22

�� ��
�� τ

U

��

Mon(Ê ′)

U

��
E

T
))

T′
55

�� ��
�� τ E ′

The induced functor and natural transformation are:

TM̂ =̂ I′
φI //TI

T(e) //TM T(M⊗M)
T(m)oo TM⊗′ TM

φoo

τM̂ =̂ TM̂
τM //T′M̂

Proof. We first prove that TM̂ is a monoid.

(TM⊗ TM)⊗ TM
φ⊗id //

(1)

T(M⊗M)⊗ TM
T(m)⊗id //

φ

��

TM⊗ TM

φ

��
TM⊗ (TM⊗ TM)

α

OO

id⊗φ

��

T((M⊗M)⊗M)
T(m⊗id) //

(2)

T(M⊗M)

T(m)

��

TM⊗ T(M⊗M)
φ //

id⊗T(m)
��

T(M⊗ (M⊗M))

T(α)

OO

T(id⊗m)
��

TM⊗ TM
φ

// T(M⊗M)
T(m)

// TM

The diagram commutes, (1) because T is monoidal, (2) because M̂ is a monoid (and
functoriality of T), and the rest by naturality of φ.

TM⊗ TM

φ

''

(2)

TM⊗ TI

φ

��

id⊗T(e)oo

(2)

TM⊗ I
id⊗φIoo

ρ

��

(1)

TI ⊗ TM

T(e)⊗id

OO

φ // T(I ⊗M)
T(e⊗id) //

T(λ)

,,

T(M⊗M)

T(m)

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
T(M⊗ I)ooT(id⊗e)oo

T(ρ)

!!BBBBBBBBBBBBBBBBBB

I ⊗ TM

φI⊗id

OO

λ
//

(1)

TM

13



The diagram commutes, (1) because T is monoidal, (2) by naturality of φ, and the rest be-
cause M̂ is a monoid (and functoriality of T).

The following diagram commutes, (1) because τ is a monoidal natural transformation
and the rest by naturality of τ, therefore proving that τM̂ is a monoid homomorphism.

TI
T(e) //

τI

��

TM

τM

��

T(M⊗M)
T(m)oo

τM⊗M

��

TM⊗ TM
φoo

τM⊗τM

��

I

φI

::uuuuuuuuuuu

φ′I $$IIIIIIIIIII (1)

T′ I
T′(e)

// T′M T′(M⊗M)
T′(m)

oo

(1)

T′M⊗ T′M
φ′

oo

2.2 Examples of Monoidal Categories

We give several examples of monoidal categories. The definition of monoidal category is
self-dual, i.e. when E is monoidal, then E op is monoidal as well. Therefore, each of these
examples has a dual.

Example 2.8. A category C with finite products (e.g. the category Set of sets) forms a
symmetric monoidal category (C,×, 1, α, λ, ρ), where × is a binary product functor, 1 is a
terminal object, and the natural isomorphisms are uniquely determined by the universal
properties of products. The category is monoidal closed and exponentials (in the sense of
Definition 2.3) correspond to the usual notion of exponentials for a cartesian closed category.

Example 2.9. If C is a (small) category, then the category Endo(C) of endofunctors over C
forms a strict monoidal category (Endo(C), ◦, Id), where ◦ is functor composition and Id is
the identity functor. More precisely,

objects are endofunctors F : C // C;

arrows from F to G are natural transformations τ : F • //G;

tensor is functor composition (G ◦ F)(−) =̂ G(F(−));

unit is the identity functor Id(−) =̂ −.

Also the category of profunctors Cop × C // Set forms a monoidal category (see Borceux
1994a), and there is a monoidal functor from endofunctors to profunctors mapping F to
C(−1, F−2).

If C has J-limits, i.e. limits for diagrams of shape J, then so does Endo(C). These J-
limits in Endo(C) are computed pointwise and are preserved by pre-composition of functors,
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i.e. functors − ◦ F : Endo(C) // Endo(C) (J-colimits are also computed pointwised and
preserved by pre-composition of functors).

In this monoidal category, an exponential GF corresponds to a right Kan’s extension of
G along F, characterized by a bijection from H • //GF to H ◦ F • //G natural in the endo-
functor H.

A category C is locally finitely presentable iff it is cocomplete, and has a strong generator
of finitely presentable objects (objects X of C such that its hom-functor C(X,−) : C → Set pre-
serves filtered colimits). For example, Set is locally finitely presentable. In general, the cate-
gory Endo(C) is not right-closed, but the full subcategory category Endo(C) f of finitary endo-
functors (i.e. endofunctors preserving filtered colimits) over a locally finitely presentable
category C has a right-closed monoidal structure (Kelly and Power 1993).

Example 2.10 (due to Eugenio Moggi). Let (A, ·) be a partial combinatory algebra, i.e. a set A
with two distinct elements K 6= S and a partial binary operation · : A× A /A , we write
a b for ·(a, b), such that

K x y = x i.e. K x y is defined and equal to x
S x y ↓ i.e. S x and (S x) y are defined
S x y z ' x z (y z) i.e. both terms are either undefined or equal

The category PA of partial equivalence relations over A is given by

objects are symmetric and transitive relations R ⊆ A× A (called PERs); A/R denotes the
set of R-equivalence classes, i.e. the set of subsets X ⊆ A such that ∃x ∈ X ∧ (∀a ∈
A. a ∈ X ⇐⇒ aRx);

arrows from R1 to R2 are maps f : A/R1 // A/R2 with a realiser, i.e. an r ∈ A such that
∀X ∈ A/R1. ∀x ∈ X. r x ∈ f (X) (r `A f for short).

The fact that (A, ·) is a partial combinatory algebra ensures that identity maps are realis-
able, composition of realisable maps is realisable, PA is locally cartesian closed and has finite
colimits.

Consider the strict monoidal category Endo(PA). It has a proper sub-category Endo(PA)r

of realisable endofunctors and realisable natural transformations given by:

objects are endofunctors F : PA //PA with a realiser, i.e. an r ∈ A such that a `A f
implies r a `A F( f ) for every a ∈ A and arrow f in PA.

arrows from F to G are natural transformations τ : F • //G with a realiser, i.e. an r ∈ A
such that r `A τR for every object R of PA.

The category Endo(PA)r inherits the strict monoidal structure of Endo(PA), because real-
isable endofunctors and realisable natural transformations are closed w.r.t. identities and
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composition. Therefore the inclusion of Endo(PA)r into Endo(PA) is a strict monoidal func-
tor. A remarkable property of Endo(PA)r, not shared by Endo(PA), is that it is right-closed.
The exponential GF for any pair of realisable functors F and G is constructed in the following
way:

• a GFR b ⇐⇒ a and b are realisers for the same realisable natural transformation
τ : YR ⊗ F • //G, where YR is the realisable endofunctor YR(−) =̂ −R given by expo-
nentiation to R in PA.

• An arrow R
f // S in PA induces a realisable natural transformation Y( f ) : YS

• //YR

such that Y( f )T =̂ T f . Therefore, when the arrow YR ⊗ F τ //G is realisable, then

the arrow YS ⊗ F
Y( f )⊗idF //YR ⊗ F τ //G is realisable as well. This induces a function

GF( f ) : A/GF(R) // A/GF(S), and by elementary considerations one can give an
a ∈ A such that a r `A GF( f ) whenever r `A f .

Example 2.11. Consider system F (Girard 1972; Reynolds 1974) (also known as the polymor-
phic lambda calculus). Bainbridge et al. (1990) showed that mixed-variant functors over PA

(with PA as in the previous example) and dinaturals transformations form a category that
provides a parametric model of system F without ad-hoc functions. We identify terms that
are equal in the model and define the strict monoidal category ÊF of endofunctors and natu-
ral transformations expressible in system F (Reynolds and Plotkin 1993). To fix the notation,
we recall the syntax

types U ::= X | U → U | ∀X. U

terms e ::= x | λx :U. e | e e | ΛX. e | e U

and some notational conventions: we write eU for e U (polymorphic instantiation) and we
write definitions gX(x : A) =̂ t for g =̂ ΛX. λx : A. t.

objects are expressible endofunctors, i.e. pairs F̂ = (F[−], mapF) with F[−] a type scheme
and mapF : ∀X, Y. (X → Y) → F[X] → F[Y] a closed term such that the following
equivalences hold.

mapF
A,A idA = idF[A]

mapF
A,C (g · f ) = mapF

B,C g · mapF
A,B f

where, idX =̂ λx : X. x is the identity on X and g · f =̂ λx : X. g ( f x) is the composition
of g : Y → Z and f : X → Y.

arrows from F̂ to Ĝ are expressible natural transformations, i.e. closed terms τ : ∀X. F[X] →
G[X]. The interpretation of ∀ in the model as a realisable end ensures that the naturality
condition holds for τ:

mapG
A,B f · τA = τB · mapF

A,B f

16



Identity on F̂ is ιF =̂ ΛX. λx : F[X]. x, and composition of σ and τ is σ ◦ τ =̂ ΛX. σX · τX.
The monoidal structure is given by:

tensor F̂ ◦ Ĝ is (F[G[−]], map) with mapA,B ( f : A→ B) =̂ mapF
G[A],G[B] (mapG

A,B f )

unit is the pair ([−], map) with mapA,B ( f : A→ B) =̂ f .

This monoidal category is right-closed. The exponential for Ĝ to F̂ is the expressible
endofunctor Ĥ given by

H[X] = ∀Z. (X → F[Z])→ G[Z]

mapH
X,Y ( f : X → Y, h : H[X]) =̂ ΛZ. λg : Y → F[Z]. hZ (g · f )

Example 2.12. If Ê is a (small) monoidal category, then the category Endo(Ê)s of strong
endofunctors over Ê forms a strict monoidal category (Endo(Ê)s, ◦, Îd), more precisely

objects are F̂ = (F, tF) with F : E // E functor tF
a,b : a⊗ Fb // F(a⊗ b) natural transfor-

mation such that

I ⊗ Fa tF
//

λ
%%LLLLLLLLLLL F(I ⊗ a)

F(λ)
��

Fa

a⊗ (b⊗ Fc) id⊗tF
//

α

��

a⊗ F(b⊗ c) tF
// F(a⊗ (b⊗ c))

F(α)
��

(a⊗ b)⊗ Fc tF
// F((a⊗ b)⊗ c)

arrows from F̂ to Ĝ are natural transformations τ : F • //G such that

a⊗ Fb
id⊗τ //

tF

��

a⊗ Gb

tG

��
F(a⊗ b)

τ
// G(a⊗ b)

tensor Ĝ ◦ F̂ is the pair (G ◦ F, t) with

ta,b =̂ a⊗ G(Fb) tG
// G(a⊗ Fb)

G(tF)// G(F(a⊗ b))

unit Îd is the pair (Id, t) with ta,b =̂ ida⊗b.

Moreover, the forgetful functor U : Endo(Ê)s // Endo(E), mapping F̂ to F, is strict monoi-
dal. Also the category Endo(Ê)m of monoidal endofunctors forms a strict monoidal category.

Example 2.13. Given a monoidal category Ê with J-limits, i.e. limits for diagrams of shape
J, we write LimJ(Ê) for the full sub-category of E whose objects a ∈ E preserve J-limits,
i.e. the functor a⊗− : E // E preserves J-limits. This sub-category inherits the monoidal
structure from E , in fact
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• I preserves J-limits, because I ⊗− is isomorphic (through λ) to the identity functor on
E , and the identity functor preserves all limits;

• if a and b preserve J-limits, then so does a ⊗ b, because (a ⊗ b) ⊗ − is isomorphic
(through α) to a⊗ (b⊗−), which is the composition of the J-limits preserving functors
a⊗− and b⊗−.

When C is a (small) category with J-limits, then the (strict) monoidal category Ê of endofunc-
tors over C has J-limits (see Example 2.9), and LimJ(Ê) is exactly the category of endofunctors
on C preserving J-limits in C.

2.3 Examples of Monoids

In this section, constructions of objects in Mon(Ê) are given. The constructions may require
additional assumptions on the monoidal category Ê . More examples of monoids, in the form
of strong monads, will be given in Section 3.2.

Example 2.14. The initial monoid Î, is given by the diagram

I id // I λoo I ⊗ I

In fact, Î is an initial object in Mon(Ê).

Example 2.15. When E has J-limits, then Mon(Ê) has J-limits which are computed pointwise,
therefore they are preserved by the forgetful functor U. In particular, if E has a terminal
object 1, then on 1 there is a unique monoid structure 1̂, which yields a terminal object in
Mon(Ê).

Example 2.16. When the exponential aa exists, we have a monoid of endomorphisms on a,
given by the diagram

I
ia // aa aa ⊗ aacaoo where

ia =̂ Λ(I ⊗ a λ // a)

ca =̂ Λ((aa ⊗ aa)⊗ a α−1
//aa ⊗ (aa ⊗ a) id⊗ev //aa ⊗ a ev //a)

Moreover, if M̂ = (M, e, m) is a monoid, then M Λm //MM is a monoid morphism from M̂ to
the monoid of endomorphisms on M.

Example 2.17. When the left-adjoint (−)∗ to U : Mon(Ê) // E exists, it gives free monoids.
Sufficient conditions for the existence of free monoids are:
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• The category E has denumerable coproducts, and for each a ∈ E the functors a ⊗ −
and −⊗ a preserve these coproducts. The free monoid on a exists (see Mac Lane 1971,
XII.Thm 2) and its carrier is given by the coproduct of the family (an | n ∈ N) with
a0 =̂ I and an+1 =̂ a⊗ an.

• The category E has binary coproducts and ω-colimits, and for each a ∈ E the functors
a⊗− and−⊗ a preserves ω-colimits and−⊗ a preserves also binary coproducts. The
free monoid a∗ exists (see Kelly 1980, Section 23; or, alternatively, Rezk 1996, Appendix

A) and its carrier is given by the colimit of the ω-chain (an
fn // an+1 | n ∈ N), where

f0 =̂ I inl // I + (a⊗ I)

fn+1 =̂ I + (a⊗ an)
id+(id⊗ fn) // I + (a⊗ an+1) .

If Ê is right-closed, then − ⊗ a will be a left adjoint and therefore it will preserve all
colimits. Also, as mentioned in Example 2.9, if Ê is an endofunctor category, −⊗ a will also
preserve colimits.

2.4 Summary

We have presented the notions of monoids in a monoidal category, as a generalization of the
application we have in mind, which is the modelling of computational effects by monads.
The advantage of working with monoids in a monoidal category is that monoids are simpler,
and that by working at that level of generality other structures which are used for modelling
effects can be incorporated into the theory. For example, arrows (Hughes 2000) and Freyd
categories (Power and Robinson 1997) can be viewed as monoids in suitable monoidal cate-
gories (Heunen and Jacobs 2006).

Many textbooks cover the subject of monoidal categories. Two standard references are
Mac Lane (1971), and Borceux (1994b).

Several examples of monoidal categories were introduced in this chapter. The category of
finitary endofunctors Endo(C) f over a locally finitely presentable category C (Example 2.9),
the category of realisable endofunctors Endo(PA)r (Example 2.10) and the category of ex-
pressible endofunctors ÊF (Example 2.11) have the remarkable characteristic of being right-
closed. This will play an important role in one of the liftings obtained in Chapter 4. For
more information on finitary endofunctors and locally finitely presentable categories, see
Adámek and Rosický (1994), for more information on realisable endofunctors see Hyland
(1988), or Asperti and Longo (1990).
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Chapter 3

Operations and Lifting

In this chapter, the notions of operation on a monoid and lifting of operations are introduced.
A classification of operations into H-operations, first-order operations and algebraic operations is
given, and it is shown that for every algebraic operation a lifting exists and is unique. In the
following chapter, we establish lifting results for wider classes of operations.

We give several examples of monoids in Endo(Set) (i.e. monads on Set) that model com-
putational effects and present some of the effect-manipulating operations that are usually
associated to them.

3.1 Abstract Operations and Algebraic Lifting

We will work with the following notions of operation.

Definition 3.1 (Operations). Given a functor H : Mon(Ê) // E , an H-operation for the

monoid M̂ = (M, e, m) is a map HM̂
op //M in E .

A first-order operation for M̂ of signature S ∈ E is a map S ⊗ M
op //M, i.e. op is an

H-operation for the functor H(−) = S ⊗ U(−), and such op is called algebraic when the
following diagram commutes

S⊗ (M⊗M) α //

id⊗m
��

(S⊗M)⊗M
op⊗id // M⊗M

m
��

S⊗M op
// M

Algebraic operations as presented here are a generalization of the standard notion of
algebraic operation (Plotkin and Power 2001b, see also remark 3.4). The terminology for
H-operation and first-order operation comes from Jaskelioff (2009), where the former corre-
sponds to a higher-order functor, and the latter is composition with a first-order functor.

An operation associated to a monoid M̂ may fail to be an H-operation, but can often
be defined from one, and we say that these operations are derived from the H-operations.
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For instance, when Ê has the dual of exponentials G ev //GF ⊗ F (see Definition 2.3), then
there is a bijection between operations H′M̂ //M⊗ F and H-operations HM̂ //M with
H(−) =̂ (H′−)F. Other instances of derived operations will be shown in the next section.

Given two H-operations on the same functor H but on different monoids, we say that
one is a lifting of the other, when they are “related” by a monoid morphism. The following
definition makes this precise.

Definition 3.2 (Lifting). Given an H-operation HM̂
opM
//M for M̂ and a monoid morphism

h : M̂ // N̂, an H-operation HN̂
opN
//N for N̂ is a lifting of op along h when

HN̂
opN

// N

HM̂

H(h)

OO

opM
// M

h

OO

Given an operation op on a monoid M̂ and a monoid morphism h : M̂ // N̂, the lifting
problem consists of finding an operation opN on N̂ that is a lifting of op along h. In the
following, we show that every algebraic operation lifts along any monoid morphism. First,
we prove a bijection between algebraic operations and certain morphisms that is essential to
proving the main theorem of this section, and that serves as an alternative characterization
of algebraic operations.

Proposition 3.3. Algebraic operations S ⊗ M
op //M for M̂ = (M, e, m) are in bijective corre-

spondence with maps S
op′ //M, i.e. H-operations for the functor H(−) = S. The bijective corre-

spondence is given by

φ(op) =̂ S
ρ−1

//S⊗ I id⊗e //S⊗M
op //M

ψ(op′) =̂ S⊗M
op′⊗id //M⊗M m //M
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Proof. We calculate:

φ(ψ(op′))

= {Definition of φ and ψ}

m ◦ (op′ ⊗ id) ◦ (id⊗ e) ◦ ρ−1

= {Bifunctoriality of ⊗}

m ◦ (id⊗ e) ◦ (op′ ⊗ id) ◦ ρ−1

= {Monoid law}

ρ ◦ (op′ ⊗ id) ◦ ρ−1

= {ρ is a natural isomorphism}

op′

For the other direction, we calculate:

ψ(φ(op))

= {Definition of φ and ψ}

m ◦ (op⊗ id) ◦ ((id⊗ e)⊗ id) ◦ (ρ−1 ⊗ id)

= {α is a natural isomorphism}

m ◦ (op⊗ id) ◦ α ◦ (id⊗ (e⊗ id)) ◦ α−1 ◦ (ρ−1 ⊗ id)

= {op is algebraic, monoidal isomorphisms}

op ◦ (id⊗m) ◦ (id⊗ (e⊗ id)) ◦ (id⊗ λ−1)

= {Monoid law}

op ◦ (id⊗ λ) ◦ (id⊗ λ−1)

= {Isomorphism}

op

Remark 3.4. Monoids in the category of endofunctors on a cartesian closed category C are
monads, and operations are natural transformations. When SX = A× XB, there is a further
bijection between algebraic operations op for a monad M̂ and maps op′′ : A→ MB, namely

op′′(a : A) =̂ opB(a, retM
B ).

where retM
B is the unit of the monad M̂.

Theorem 3.5 (Unique algebraic lifting). If opM : S⊗M //M is an algebraic operation for a
monoid M̂, and h : M̂ // N̂ is a monoid morphism, then there is a unique opN : S⊗ N //N
which is both algebraic for N̂ and a lifting of opM along h.
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Proof. Use Proposition 3.3 and replace opM and opN with opM ′ and opN ′. The following
lifting is obtained:

S
opN ′

// N

S
opM ′

// M

h

OO

3.2 Examples of Monads and Their Operations

In this section we give examples of (strong) monads on Set and associated operations, saying
explicitly whether the operations are algebraic, first-order or more general instances of H-
operations.

Monads on the cartesian closed category Set of sets coincide with strong monads, since
every endofunctor on Set is strong, more precisely U : Endo(Set)s // Endo(Set) of Exam-
ple 2.12 is an isomorphism. In other cartesian closed categories this is not the case, and the
importance of monads being strong becomes more evident. For example, if a monad M̂ is
not strong, then a term (letM x = e′ in e) is problematic when e has a free variable y 6= x (for
details, see Moggi 1989b, 1991).

There are equivalent ways of defining strong monads on a cartesian closed category C,
we borrow the definition adopted in Haskell, and freely use simply typed lambda-calculus
as internal language to denote objects and maps in C. When defining operations which are
H-operations we omit the result type and freely use standard syntactic-sugar to make the
definitions more clear.

Definition 3.6 (Strong Monad). A strong monad on a cartesian closed category C is a triple
M̂ = (M, retM, bindM) consisting of

• a map M : |C| // |C| on the objects of C

• a family retM
X : X //MX of maps with X ∈ C

• a family bindM
X,Y : MX× (MY)X //MY of maps with X, Y ∈ C

such that for every a : A, f : (MB)A, u : MA and g : (MC)B

bindM
A,B(retM

A (a), f ) : MB = f a

bindM
A,A(u, retM

A ) : MA = u

bindM
A,C(u, λa : A. bindM

B,C( f a, g)) : MC = bindM
B,C(bindM

A,B(u, f ), g)
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Definition 3.7 (Strong Monad Morphism). A strong monad morphism τ : M̂ // N̂ is a family
τX : MX //NX of maps with X ∈ C such that for every a : A, u : MA and f : (MB)A

τA (retM
A (a)) : NA = retN

A(a)

τB (bindM
A,B(u, f )) : NB = bindN

A,B(τA u, λa : A. τB ( f a))

Example 3.8. The monad M̂ = (M, retM, bindM) of environments in S is

MX =̂ XS

retM
X (x : X) : MX =̂ λs : S. x

bindM
X,Y(m : MX, f : MYX) : MY =̂ λs : S. f (m s) s

The environment monad indexes values by an environment, computations introduced by
retM ignore the environment, and bindM(m, f ) applies the same environment to m and to the
result of f .

The environment monad has an algebraic operation for the functor SgetX = XS for read-
ing the environment and a first-order (but not algebraic) operation for the functor SlocalX =
SS × X for performing a computation in a modified environment.

getX ( f : (MX)S) : MX =̂ λs : S. f s s

localX( f : SS, t : MX) : MX =̂ λs : S. t ( f s)

The more usual operation get for the environment monad is a derived operation which
is defined using get.

get : ME =̂ getE(retM
E ) = λe. e

Example 3.9. The monad M̂ = (M, retM, bindM) of side-effects on S is

MX =̂ (X× S)S

retM
X (x : X) : MX =̂ λs : S. (x, s)

bindM
X,Y(m : MX, f : MYX) : MY =̂ λs : S. let (a, s′) = m s in f a s′

Intuitively, a computation MX takes an initial state and produces a value of type X and a
final state, retM does not change the state, and bindM threads the state.

The side-effect monad has two algebraic operations, one for the functor SgetX = XS

which applies the current state to its argument and the other for the functor SputX = S× X,
which runs a stateful computation in the provided state.

getX (k : (MX)S) : MX =̂ λs : S. k s s

putX (s : S, m : MX) : MX =̂ λs′ : S. m s
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These operations can be used to define the more usual derived operations

get : M S =̂ getS(retM
S ) = λs. (s, s)

put : S→ M 1 =̂ λs : S. put1(s, retM
1 (∗)) = λs : S. λs′ : S. (∗, s)

where ∗ is the sole element of the final object 1.

Example 3.10. The monad M̂ = (M, retM, bindM) of traces over a monoid (W, 0, +) in Set is

MX =̂ X×W

retM
X (x : X) : MX =̂ (x, 0)

bindM
X,Y((x, w) : MX, f : MYX) : MY =̂ let (y, w′) = f x in (y, w + w′)

A computation MX associates to each value X a trace, retM associates a value with the empty
trace, and bindM(m, f ) combines the trace of m and the trace resulting from the application
of f to the value of m.

The trace monad has an operation trace that adds an element of the monoid to the trace
and it is an algebraic operation for the functor StraceX = X ×W, and an operation flush that
erases the trace and it is a first order operation for the functor SflushX = X.

traceX (t : MX, w : W) : MX =̂ let (x, w′) = t in (x, w′ + w)

flushX (t : MX) : MX =̂ let (y, w) = t in (y, 0)

The usual operation trace for the trace monad is a derived operation which is defined
using trace.

trace : W → M1 =̂ λw : W. trace1(w, retM
1 (∗)) = λw : W. (∗, w)

Example 3.11. The monad M̂ = (M, retM, bindM) of exceptions in E is

MX =̂ X + E

retM
X (x : X) : MX =̂ inl x

bindM
X,Y(m : MX, f : MYX) : MY =̂ [ f , inr] m

where [ f , g] : A + B→ C, for f : A→ C and g : B→ C, is defined by the universal property
of coproducts.

A computation MX is either a pure value in X or an exception in E, retM inserts a pure
value, and bindM propagates exceptions.

The exception monad has an algebraic operation for the functor SthrowX = E which
throws an exception in E, and a first-order (but not algebraic) operation for the functor
ShandleX = X× XE that handles exceptions, namely

throwX (e : E) : MX =̂ inr e

handleX : (m : MX, h : (MX)E) : MX =̂ [inl, h] m
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Example 3.12. The monad M̂ = (M, retM, bindM) of continuations in R is

MX =̂ R(RX)

retM
X (x : X) : MX =̂ λk : RX. k x

bindM
X,Y(m : MX, f : MYX) : MY =̂ λk : RY. m (λx : X. f x k)

Intuitively, MX is a computation that given a continuation RX returns a result in R, retM sim-
ply runs a continuation, and bindM(m, f ) runs m with a continuation constructed by running
f in the current continuation.

It has two algebraic operations, one for the functor SabortX = R and the other for the
functor ScallccX = X(RX), namely

abortX (r : R) : MX =̂ λk : RX. r

callccX( f : (MX)(RMX)) : MX =̂ λk : RX. f (λt : MX. t k) k

The usual call-with-current-continuation callcc is a derived operation which is defined using
callcc and abort.

callccX,Y ( f : MX(MYX)) : MX =̂ callcc (λk : RMX. f (λx : X. abortY(k (retMx)))) (3.1)

= λk : RX. f (λx : X. λk′ : RY. k x) k

Note that R is present in the signatures of the algebraic operations callcc and abort, but this
parameter is usually hidden from the user. In this sense, one can think of these operations
as being “low-level” operations for the continuation monad, from which higher-level oper-
ations are defined, such as callcc in (3.1).

The operations introduced in the examples are summarised in Fig. 3.1. All these oper-
ations are first-order, and interestingly, all the operations considered by Liang, Hudak, and
Jones (1995) for these monads are definable in terms of these operations.

Monads Induced by Algebraic Theories

Algebraic theories (Manes 1976) are presented by operations and equations. They are a
common source of monads with associated operations, since every algebraic theory induces
a monad on Set.

An algebraic signature Σ consists of a set O of operations and a function # assigning to
each o ∈ O its arity #o ∈ Set (a signature Σ is called finitary when each #o is finite). A
signature induces an endofunctor ΣX =̂ äo∈O X#o, which allows to give a concise definition
of Σ-algebra and Σ-homomorphism. Given an endofunctor F (on Set) the category F-Alg of
F-algebras is given by

objects are F-algebras A = (A, α), i.e. a set A (the carrier) and a map FA α // A (the inter-
pretation of the operations o ∈ O when F = Σ)
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Monad Signature Σ̂-operations

Environment ΣgetX=̂ XS getX : MXS → MX

MX =̂ XS ΣlocalX=̂ SS × X localX : SS ×MX → MX

State ΣgetX=̂ XS getX : (MXS)→ MX

MX =̂ (X× S)S ΣputX=̂ S× X putX : S×MX → MX

Trace over W ΣtraceX=̂ W × X traceX : W ×MX → MX

MX =̂ X×W Σflush X=̂ X flushX : MX → MX

Exception ΣthrowX=̂ E throwX : E→ MX

MX =̂ E + X ΣhandleX=̂ X× (XE) handleX : MX× (MXE)→ MX

Continuation ΣabortX=̂ R abortX : R→ MX

MX =̂ R(RX) ΣcallccX=̂ X(RX) callccX : MX(RMX) → MX

Figure 3.1: First-order operations for the standard monads.

arrows from A1 to A2 are maps h : A1 // A2 such that

FA1
Fh //

α1

��

FA2

α2

��
A1 h

// A2

Identities and composition are inherited from Set.

There is an obvious forgetful functor UF : F-Alg // Set, mapping A to A. When Σ is
the endofunctor induced by an algebraic signature, UΣ has a left adjoint FΣ (FΣX is called the
free Σ-algebra over X, and an element t in its carrier is called a Σ-term with free variables
in X). The monad induced by the adjunction FΣ a UΣ is the free monad Σ∗ over Σ (see
Example 2.17), and Σ-Alg is isomorphic to the category SetΣ∗ of Eilenberg-Moore algebras
for the monad Σ∗.

An algebraic theory T = (Σ, Eq) consists of an algebraic signature Σ and a set Eq of equa-
tions between Σ-terms (with free variables in some set X). The theory T induces a full sub-
category T-Alg of Σ-Alg, whose objects are the Σ-algebras satisfying all the equations in Eq.
Also in this case there is a forgetful functor UT : T-Alg // Set (the restriction of UΣ to
T-Alg), which has a left adjoint FT. The adjunction FT a UT induces a monad MT on Set,
and the category T-Alg is isomorphic to the category SetMT of Eilenberg-Moore algebras for
the monad MT (see Mac Lane 1971).

All monads given in this section, except that in Example 3.12, are induced by algebraic
theories. Moreover, all monads for collection types (such as lists, bags, sets) arise from balanced
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finitary algebraic theories (see Manes 1998). An algebraic theory is balanced when for each
equation, the same set of variables occurs on both terms of the equation.

In the following examples, we write equations in the style of Universal Algebra and write
(ti | i ∈ S) for an S-indexed set.

• The monad of Example 3.8 MX = XS corresponds to Tenv given by O = {get}, #get = S
and the equation

get (get (ti,j | j ∈ S) | i ∈ S) = get (ti,i | i ∈ S)

• The monad of Example 3.9 MX = (X×S)S corresponds to Tstate given by Tenv extended
with O = {puts | s ∈ S}, #puts = 1 and equations

get(ti | i ∈ S) = get(puti(ti) | i ∈ S)

puti(get(tj | j ∈ S)) = puti(ti) with i ∈ S

puti(putj(t)) = putj(t) with i, j ∈ S

• The monad of Example 3.10 MX = X ×W, where (W, 0, +) is a monoid, corresponds
to TW given by O = {tracew | w ∈W}, #tracew = 1 and equations

trace0(t) = t

tracei(tracej(t)) = tracei+j(t) with i, j ∈W

• The monad of Example 3.11 MX = X + E corresponds to Texc given by

O = {throwe | e ∈ E}, #throwe = 0 and no equations

• The list monad MX = X∗ corresponds to Tlist given by O = {nil, append}, #nil = 0,
#append = 2 and equations

append(nil, t) = t = append(t, nil)

append(append(t1, t2), t3) = append(t1, append(t2, t3))

• The (finite) set monad corresponds to Tlist extended with the equations

append(t1, t2) = append(t2, t1)

append(t, t) = t

The monad M̂ induced by an algebraic theory T = (Σ, Eq) has an associated algebraic
operation opX : Σ(MX) //MX of signature Σ, where opX is the Σ-algebra structure on
MX. When M̂ is the free monad Σ∗, i.e. T = (Σ, ∅), one can associate to M̂ two other
operations
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• elimX : XΣX × XA //XMA captures initiality of MA among the Σ-algebras over A,

namely elimX(α, f ) is the unique Σ-homomorphism f ∗ from Σ(MA)
opA //MA (the free

algebra over A) to ΣX α //X such that f ∗ ◦ retM
A = f . The following diagram illus-

trates how elim captures initiality:

A
retM

A //

f

  BBBBBBBBBBBBBBBBB MA

f ∗

���
�
�
�
�
� ΣMA

opAoo

Σ f

��
X ΣXα
oo

The operation elim generalizes bindM
A,X and, in general, cannot be presented as an H-

operation.

• caseX : MA× XA × XΣ(MA) //X does case analysis on MA, which is isomorphic to
A + Σ(MA). The instance of case obtained by replacing X with MX, i.e. caseX : MA×
(MX)A× (MX)Σ(MA) //MX, can be presented as an H-operation for HN̂X =̂ NA×
(NX)A × (NX)Σ(MA), provided the M in contravariant position is fixed.

3.3 Examples of Lifted Algebraic Operations

The following examples show the operations obtained by applying the algebraic lifting to
the algebraic operations get and callcc.

Example 3.13. Let M̂ be the side-effect monad of Example 3.9, and consider the monad N̂—
which will be shown in the next chapter to be the result of applying the exceptions monad
transformer to the side-effects monad—given by NX = S → ((X + E)× S) and the monad
morphism ξ : M • //N defined as

ξX(t : MX) =̂ bindM
X,X+E(t, λx : X. retM

X (inl x)).

The algebraic lifting of the algebraic operation get yields the operation

getN
X (k : S→ NX) : NX =̂ λs : S. k s s.

Example 3.14. Let M̂ be the continuation monad of Example 3.12, and consider the monad
N̂—which will be shown in the next chapter to be the result of applying the side-effect
monad transformer to the continuation monad—given by NX = (R(RX×S))S and the monad
morphism ξ : M • //N defined as

ξX(t : MX) =̂ λs : S. bindM
X,X×S(t, λx : X. (x, s)).
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The operation obtained by the algebraic lifting of callcc simplifies to:

callccN ( f : NX(RNX)) : NX = λs : S. λk : RX×S. f (λn : NX. n s k) s k.

We can define a lifted version of callcc using equation 3.1, callccN , and abortN (the unique
algebraic lifting of abort) and obtain:

callccN ( f : NX(NYX)) : NX =̂ callccN (λk : RNX. f (λx : X. abortN
Y (k (retNx))))

= λs : S. λk : RX×S. f (λx : X. λs′ : S. λk′ : RY×S. k x s) s k.

The author has used the algebraic lifting of callcc to verify the ad-hoc liftings of callcc in
Haskell’s monad transformer library (mtl). This verification has revealed that the uniform
lifting above coincided with all of the library’s liftings, except for one: the library’s lifting of
callcc to the monad N̂ defined above is not consistent with the rest of the liftings. The ad-hoc
lifting of callcc in mtl is:

callcc−mtlN ( f : NX(NYX)) : NX = λs : S. λk : RX×S. f (λx : X. λs′ : S. λk′ : RY×S. k x s′) s k.

The difference is that the ad-hoc lifted operation preserves changes in the state produced
during the construction of the new continuation even when the current continuation is used.
However, all the other liftings of callcc in the library do not preserve produced effects when
using the current continuation. Consequently, that particular lifting in the mtl is not coherent
with the other liftings of callcc.

3.4 Summary

We have defined a general notion of operation on a monoid, and two refinements: first-order
operations and algebraic operations. Moreover we have shown that all algebraic operations
can be lifted along any monoid morphism.

We have shown many examples of monads and some of their associated operations. Al-
though all of the operations in Figure 3.1 are algebraic or first-order, they are enough to
define all the operations considered by Liang, Hudak, and Jones (1995). Comparing these
operations with the operations provided by Haskell’s mtl (Monad Transformer Library), the
only operation not covered is the operation of the trace monad listen :: MX → M(X ×W).
However, listen can be defined from the following H-operation:

collectA,X(t : MA, f : MX(A×W)) =̂ let (y, w) = t in ( f t, w)

Remarkably, as shown in Example 3.12, callcc is an algebraic operation despite not being
algebraic in the sense of Plotkin and Power (2001b) and hence, not tractable in that approach.
With the generalization made here, callcc is not only tractable, but also well-behaved. As a
consequence callcc easily lifts along any monad morphism.
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Many of the monads presented in this chapter arise from algebraic theories (Manes 1976).
Interestingly, these monads can arise from computationally natural operations and equa-
tions, as shown by Plotkin and Power (2002). Lawvere theories (Hyland and Power 2007;
Lawvere 1963) provide another way of modelling algebraic theories categorically. A more
general way to get monads, not pursued here, is through the equational systems of Fiore and
Hur (2009).

As shown at the end of Section 3.2, some operations such as elim and case are not, in
general, H-operations (the most general class of operations in this thesis). The operation
elim is related to the try construct in Plotkin and Pretnar (2009). These operations—which are
not H-operations—indicate an obvious direction for further extension of the framework.
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Chapter 4

Monoid Transformers
and Operation Lifting

In this chapter, the notion of a transformer is introduced, and a theory of monoid transform-
ers is developed. In particular, a hierarchy of monoid transformers in the setting of a mon-
oidal category Ê is defined and several lifting theorems are proved. The lifting theorems
show how certain classes of operations can be lifted through particular classes of monoid
transformers. For a given operation and monoid transformer, several lifting results may be
applicable, but it is shown that, when more than one lifting result is applicable, then the
liftings coincide. The chapter also provides various examples of monoid transformers moti-
vated by the incremental approach to monadic semantics and examples of operations lifted
through these transformers.

4.1 Monoid Transformers

Given a category A, a transformer on A is a 2-cell

A′
In

))

T

55
�� ��
�� lift

T A where

• A′ is a sub-category of A, such as A itself or the discrete category |A| with the same
objects as A,

• In : A′ //A is the inclusion functor,

• T : A′ //A is a functor, and

• liftT : In
• // T is a natural transformation, therefore liftT

a : a // Ta is a map in A for
any a ∈ A′.

32



Monoid transformers are simply transformers on Mon(Ê). In the following, a new hi-
erarchy of monad transformers is introduced (Jaskelioff and Moggi 2009). The minimum
requirement on a monoid transformer T is when the subcategory is |Mon(Ê)| and T sim-
ply maps a monoid M̂ ∈ Mon(Ê) to a monoid TM̂ (and provides a natural transformation
In // T). The maximum requirement in the hierarchy is a monoid transformer T induced
by a monoidal endofunctor T̂ on Ê and a monoidal natural transformation Îd→ T̂.

Definition 4.1 (Monoid Transformers).

1. A monoid transformer is a pair (T, liftT) such that

|Mon(Ê)|
In ,,

T
22

�� ��
�� lift

T Mon(Ê)

2. A covariant monoid transformer is a pair (T, liftT) such that

Mon(Ê)
Id ,,

T
22

�� ��
�� lift

T Mon(Ê)

3. A functorial monoid transformer is a covariant monoid transformer (T, liftT) with an
underlying transformer on E , also denoted (T, liftT), i.e.

Mon(Ê)
Id ,,

T
22

�� ��
�� lift

T

U
��

Mon(Ê)
U
��

E
Id

**

T

44
�� ��
�� lift

T E

In particular U(liftT
M̂) = liftT

UM̂ = liftT
M.

4. A monoidal monoid transformer is a functorial monoid transformer (T, liftT) induced

by a transformer Ê
ˆId

))

T̂

55
�� ��
�� lift

T Ê with T̂ a monoidal endofunctor and liftT a monoidal

natural transformation (see Theorem 2.7).

From the definitions and Theorem 2.7, we get that

monoidal ⊂ functorial ⊂ covariant ⊂ transformer.

These are proper inclusions, as shown in Example 4.8.
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4.2 Examples of Transformers

This section presents examples of strong monad transformers on a cartesian closed category
C, i.e. monoid transformers on the strict monoidal category of strong endofunctors on C.
Some examples require additional assumptions on C besides cartesian closure. Although
cartesian closure is assumed for the examples in this section, the definition of strong end-
ofunctors can be given assuming only a cartesian category. There are equivalent ways of
defining strong endofunctors on a cartesian closed category C. As already done for strong
monads (see Definition 3.6), we borrow the definition adopted in Haskell, and freely use sim-
ply typed lambda-calculus as internal language to denote objects and maps in C. Again, we
freely use syntactic sugar typical of typed lambda-calculi such as let constructs and pattern
matching on products.

Definition 4.2 (Strong Endofunctor). A strong endofunctor on a cartesian closed category C is
a pair F = (F, mapF) consisting of

• a map F : |C| // |C| on the objects of C

• a family mapF
X,Y : YX × FX // FY of maps with X, Y ∈ C

such that for every u : FA, f : BA and g : CB the following equations hold.

mapF
A,A(idA, u) : FA = u

mapF
A,C(g ◦ f , u) : FC = mapF

B,C(g, mapF
A,B( f , u))

A strong natural transformation τ : F //G is a family τX : FX //GX of maps with X ∈ C
such that for every u : FA and f : BA the following equation holds.

τB(mapF
A,B( f , u)) : GB = mapG

A,B( f , τA(u))

Example 4.3. The transformer (T, liftT) for adding environments in S ∈ C is

• T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ (MX)S

retN
X (x) : NX =̂ λs : S. retM

X (x)

bindN
X,Y(c, f ) : NY =̂ λs : S. bindM

X,Y(c s, λx : X. f x s)

• liftT maps a strong monad M̂ to τ : M̂ // TM̂ given by

τX(c : MX) : TM̂X =̂ λs : S. c

This transformer is monoidal. More precisely, it is induced by the following monoidal func-
tor T̂ = (T, φI , φ) and monoidal natural transformation liftT
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• T maps a strong functor F to the strong functor G given by

GX =̂ (FX)S

mapG
X,Y( f , u) : GY =̂ λs : S. mapF

X,Y( f , u s)

and maps τ : F1
• // F2 to Tτ : TF1

• // TF2 given by

(Tτ)X(u) : TF2X =̂ λs : S. τX(u s)

• φI : Id
• // T(Id) and φF2,F1 : TF2 ◦ TF1

• // T(F2 ◦ F1) are

φI,X(x : X) : T(Id)X =̂ λs : S. x

φF2,F1,X(u : (F2((F1X)S))S) : T(F1 ◦ F2)X =̂ λs : S. mapF2
(F1X)S,F1X(λ f : (F1X)S. f s, u s)

• liftT
F : F • // TF is liftT

F,X(u : FX) : TFX =̂ λs : S. u

Example 4.4. The transformer (T, liftT) for adding side-effects on S ∈ C is

• T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ (M(X× S))S

retN
X (x) : NX =̂ λs : S. retM

X×S(x, s)

bindN
X,Y(c, f ) : NY =̂ λs : S. bindM

X×S,Y×S(c s, λ(x : X, s′ : S). f x s′)

• liftT maps a strong monad M̂ to τ : M̂ // TM̂ given by

τX(c : MX) : TM̂X =̂ λs : S. bindM
X,X×S(c, λx : X. retM

X×S(x, s))

This transformer is monoidal. More precisely, it is induced by the following monoidal func-
tor T̂ and monoidal natural transformation liftT

• T maps a strong functor F to the strong functor G given by

GX =̂ (F(X× S))S

mapG
X,Y( f , u) : GY =̂ λs : S. mapF

X×S,Y×S(λ(x : X, s′ : S). ( f x, s′), u s)

and maps τ : F1
• // F2 to Tτ : TF1

• // TF2 given by

(Tτ)X(u) : TF2X =̂ λs : S. τX×S(u s)

• φI : Id
• // T(Id) and φF2,F1 : TF2 ◦ TF1

• // T(F2 ◦ F1) are

φI,X(x : X) : T(Id)X =̂ λs : S. (x, s)
φF2,F1,X(u : (F2(F1(X× S)S × S))S) : T(F2 ◦ TF1)X =̂

λs : S. mapF2
F1(X×S)S×S,F1(X×S)(λ( f : F1(X× S)S, s′ : S). f s′, u s)
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• liftT
F : F • // TF is liftT

F,X(u : FX) : TFX =̂ λs : S. mapF
X,X×S(λx : X. (x, s), u)

Example 4.5. The transformer (T, liftT) for adding traces over a monoid (W, 0, +) in C is

• T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ M(X×W)

retN
X (x) : NX =̂ retM

X×W(x, 0)

bindN
X,Y(c, f ) : NY =̂ bindM(c, λ(x : X, w : W). bindM( f x, λ(y : Y, w′ : W). retM(y, w + w′)))

• liftT maps a strong monad M̂ to τ : M̂ // TM̂ given by

τX(c : MX) : TM̂X =̂ bindM
X,X×W(c, λx : X. retM

X×W(x, 0))

This transformer is also monoidal. More precisely, it is induced by the following monoidal
functor T̂ and monoidal natural transformation liftT

• T maps a strong functor F to the strong functor G given by

GX =̂ F(X×W)

mapG
X,Y( f , u) : GY =̂ mapF

X×W,Y×W(λ(x : X, w : W). ( f x, w), u)

and maps τ : F1
• // F2 to Tτ : TF1

• // TF2 given by

(Tτ)X(u) : TF2X =̂ τX×W(u)

• φI : Id
• // T(Id) and φF2,F1 : TF2 ◦ TF1

• // T(F2 ◦ F1) are

φI,X(x : X) : T(Id)X =̂ (x, 0)

φF2,F1,X(u : F2(F1(X×W)×W)) : T(F2 ◦ F1)X =̂

mapF2(λ( f , w). mapF1(λ(x, w′). (x, w′ + w), f ), u)

where some type information has been omitted for readability.

• liftT
F : F • // TF is liftT

F,X(u : FX) : TFX =̂ mapF
X,X×W(λx : X. (x, 0), u)

Example 4.6. In this example we need additional assumptions on C, namely

• existence of binary sums A1
inl //

f1
&&MMMMMMMMMMMMMM A1 + A2

[ f1, f2]
���
�
� A2

inroo

f2
xxqqqqqqqqqqqqqq

A
(we write f1 + f2 for the action of + on maps), and
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• existence of initial algebras αF : F(µX. FX) // µX. FX for every strong endofunctor
F̂ (for simplicity, we assume that αF is the identity map).

To satisfy these assumptions one could take as C the cartesian closed category PA of
partial equivalence relations, and instead of Endo(PA)s use the more restricted category
Endo(PA)r of realisable endofunctors and realisable natural transformations (as done in Ex-
ample 2.10), take C to be a locally finitely presentable category such as Set, and instead of
Endo(C) use the full subcategory of finitary endofunctors Endo(C) f (see Example 2.9), or
use the subcategory of containers and container morphisms (Abbott, Altenkirch, and Ghani
2003). Given an endofunctor S, the transformer (T, liftT) for adding S-steps is

• T maps a monad M̂ to the monad N̂ given by

NX =̂ µX′. M(X + SX′)

retN
X (x) : NX =̂ retM

X+S(NX)(inl x)

stepX : S(NX) //NX

stepX(u) =̂ retM
X+S(NX)(inr u)

bindN
X,Y(c, f ) : NY =̂ h c

where NX h //NY is the unique M(X + S−)-algebra morphism from the initial alge-
bra to β : M(X + S(NY)) //NY given by

β(c) =̂ bindM
X+S(NY),Y+S(NY)(c, [ f , stepY])

• liftT maps a monad M̂ to τ : M̂ // N̂ = TM̂ given by

τX(c : MX) : NX =̂ bindM
X,X+S(NX)(c, retN

X )

This transformer is functorial, where the underlying endofunctor transformer (T, liftT) is

• T maps a functor F to the functor G given by

GX =̂ µX′. F(X + SX′)

mapG
X,Y( f , u) : GY =̂ h u

where GX h //GY is the unique F(X + S−)-algebra morphism from the initial algebra
to β : F(X + S(GY)) //GY given by

β(u) =̂ mapF
X+S(GY),Y+S(GY)( f + idS(GY), u)

and maps τ : F1
• // F2 to Tτ : TF1 = G1

• //G2 = TF2 given by

(Tτ)X(u) : G2X =̂ h u
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where G1X h //G2X is the unique F1(X + S−)-algebra morphism from the initial al-
gebra to β : F1(X + S(G2X)) //G2X given by

β(u) =̂ τX+S(G2X)(u)

• liftT maps a realisable endofunctor F to τ : F //G = TF given by

τX(u : FX) : GX =̂ mapF
X,X+S(GX)(inl, u)

As shown in Example 4.8, this transformer may fail to be monoidal.
The transformer for adding Ŝ-steps is sometimes referred to as the free-monad trans-

former. The transformer TM̂ corresponds to coproduct of the free monad on Ŝ and M̂ in
the category of monads over C, as shown by Hyland, Plotkin, and Power (2006).

Example 4.7. We define the list transformer, which needs additional assumptions, like those
identified in Example 4.6. The list transformer (T, liftT) is

• T maps a monad M̂ to the monad N̂ given by

NX =̂ µY. M(1 + X×Y)

nilX : NX

nilX =̂ retM
1+X×NX(inl ∗)

consX : X× NX //NX

consX(x, l) =̂ retM
1+X×NX(inr(x, l))

retN
X (x) : NX =̂ consX(x, nilX)

bindN
X,Y(c, f ) : NY =̂ h c

where NX h //NY is the unique M(1 + X × −)-algebra morphism from the initial
algebra to β : M(1 + X× NY) //NY given by

β(c) =̂ bindM
1+X×NY,1+Y×NY(c, [nilY, λ(x, l). appY(( f x), l)])

with NX
ΛappX // (NX)NX the unique M(1 + X ×−)-algebra from the initial algebra to

Λβ : M(1 + X× (NX)NX) // (NX)NX given by

β(c, l) =̂ bindM
1+X×(NX)NX ,1+X×NX(c, [nilX, λ(x, f ). consX(x, f l)])

To prove that retN and bindN satisfy the equations in Definition 3.6, one can use the
following properties of nilX, consX and appX

appX(nilX, l) = l = appX(l, nilX)

appX(consX(x, l1), l2) = consX(x, appX(l1, l2))

appX(appX(l1, l2), l3) = appX(l1, appX(l2, l3))
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• liftT maps a monad M̂ to τ : M̂ // N̂ = TM̂ given by

τX(c : MX) : TM̂X =̂ bindM
X,1+X×NX(c, retN

X )

This transformer is functorial, where the underlying endofunctor transformer (T, liftT) is

• T maps a functor F to the functor G given by

GX =̂ µX′. F(1 + X× X′)

mapG
X,Y( f , u) =̂ h u

where GX h //GY is the unique F(1 + X ×−)-algebra morphism from the initial al-
gebra to β : F(1 + X× GY) //GY given by

β(u) =̂ mapF
1+X×GY,1+Y×GY(id1 + ( f × idGY), u)

and maps τ : F1
• // F2 to Tτ : TF1 = G1

• //G2 = TF2 given by

(Tτ)X(u) : G2X =̂ h u

where G1X h //G2X is the unique F1(1 + X ×−)-algebra morphism from the initial
algebra to β : F1(1 + X× G2X) //G2X given by

β(u) =̂ τ1+X×G2X(u)

• liftT maps an endofunctor F to τ : F //G = TF given by

τX(u : FX) =̂ mapF
X,1+X×GX(inr′, u)

where inr′ : X // 1 + X× GX is given by

inr′(x) =̂ inr(x, mapF
X,1+X×GX(λ− . inl ∗, u))

Example 4.8. We give three (strong) monad transformers on Set, which show that the in-
clusions of the monoid transformer hierarchy are proper. When convenient, we use the fact
that every endofunctor/monad on Set is strong (see Section 3.2).

1. The transformer (T, liftT) for adding continuations is defined as follows, T maps a
strong monad M̂ to the strong monad N̂ of continuations in MR (see Example 3.12)

NX =̂ (MR)((MR)X)

retN
X (x) : NX =̂ λk : (MR)X. k x

bindN
X,Y(c, f ) : NY =̂ λk : (MR)Y. c (λx : X. f x k)

and liftT maps M̂ to the morphism τ : M̂ // TM̂ given by

τX(c : MX) =̂ λk : (MR)X. bindM
X,R(c, k)

This transformer is not covariant, because M is used in contravariant position in NX.

39



2. Given a strong monad M̂, we say that a computation c : MX is idempotent when
c = c; c where c1; c2 =̂ bindM

X,X(c1, λx : X. c2).

The transformer (T, liftT) making computations idempotent is defined as follows, T
maps a strong monad M̂ to the smallest quotient monad (Manes 1998) generated by
the family of relations

RX =̂ {(c, c; c) | c ∈ MX}

and liftT
M̂ is the epimorphism from M̂ to the quotient monad.

This transformer is covariant, because τX(c; c) = τX(c); τX(c) : NX for any strong
monad morphism τ : M̂ // N̂ and c : MX, but it is not functorial. In fact, there are
two trace monads M̂ and N̂ (see Example 3.10) with the same underlying endofunctor
F(−) =̂ −× bool, with bool the set of booleans, such that TM̂ = M̂ and TN̂ = Îd:

• M̂ is the strong monad induced by the monoid (bool, false, or) in Set. Since this
monoid is idempotent, all computations in MX are already idempotent, therefore
TM̂ = M̂.

• N̂ is the strong monad induced by the monoid (bool, false, xor) in Set. Since
xor(true, true) = false, the quotient monad TN̂ must identify (x, false) and (x, true)
for any x : X (and this suffices to make all computations idempotent).

3. The transformer (T, liftT) for adding exceptions in E is defined as follows, T maps a
strong monad M̂ to the strong monad N̂ given by

NX =̂ M(X + E)

retN
X (x) : NX =̂ retM

X+E(inl x)

throwX(e : E) : NX =̂ retM
X+E(inr e)

bindN
X,Y(c, f ) : NY =̂ bindM

X+E,Y+E(c, [ f , throwX])

and liftT maps M̂ to the morphism τ : M̂ // TM̂ given by

τX(c : MX) : TM̂X =̂ bindM
X,X+E(c, retN

X )

This transformer is functorial (since it is the instance of Example 4.6 with SX = E),
more precisely T maps an endofunctor F to the endofunctor F(− + E), but it is not
monoidal. In fact, if it were monoidal, then there should be a natural transformation

φG,F : G(F(−+ E) + E) • //G(F(−+ E)).

However, this is impossible when E = 1, GX = X and FX = 0: in Set there is no
function φG,F : 1 // 0.
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Lifting Algebraica Codensityb Monoidal

Theorem Theorem 3.5 Theorem 4.15 Theorem 4.9

Transformer Any Functorial Monoidal

Operation S //M S⊗M //M (S⊗M)⊗ F //M

Figure 4.1: Transformers, operations and lifting theorems.

aAlgebraic lifting is given for algebraic operations S⊗M //M for M̂.
bCodensity lifting requires a right-closed monoidal category.

4.3 Lifting Through a Transformer

Theorem 3.5 shows how every algebraic operation for a monoid lifts along a monoid mor-
phism. Therefore, given a monoid transformer (T, liftT) and a monoid M̂, every algebraic
operation op : S⊗M //M for M̂ can be lifted along liftT

M̂. We take advantage of the addi-
tional structure in functorial and monoidal monoid transformers to provide liftings for more
general classes of operations. The results are summarized in Figure 4.1: as one goes from
left to right the operations become more general, but the lifting theorems need additional
assumptions on the transformers (or the monoidal category, see Theorem 4.15).

To simplify proofs, in the rest of this chapter we assume that Ê is a strict monoidal cate-
gory. However, statements and definitions do not rely on this simplifying assumption. We
start with a result for monoidal monoid transformers.

Theorem 4.9 (Monoidal Lifting). If (T, liftT) is a monoidal monoid transformer with underlying
monoidal functor (T, φI , φ), and op : S⊗M //M is a first-order operation for M̂, then there is a
lifting of op along liftT

M given by

opT =̂ S⊗ TM
liftT

S⊗id // TS⊗ TM
φS,M // T(S⊗M)

T(op) // TM

More generally, if H is the functor H(−) = S⊗U(−)⊗ F, and op : HM̂ //M is an H-operation
for M̂, then there is a lifting opT of op along liftT

M given by

TS⊗ TM⊗ F
φS,M⊗liftT

F // T(S⊗M)⊗ TF
φS⊗M,F // T(S⊗M⊗ F)

T(op)
��

S⊗ TM⊗ F
opT

//____________________

(liftT
S⊗id)⊗id

OO

TM

Proof. The first-order case reduces to the general case when F = I. To show that opT ◦ (id⊗
liftT

M ⊗ id) = liftT
M ◦ op we expand the definition of opT and prove that the following diagram

41



commutes

TS⊗ TM⊗ F
φS,M⊗liftT

F //

φS,M⊗id

((QQQQQQQQQQQQQQQQQQQQQQ T(S⊗M)⊗ TF
φS⊗M,F // T(S⊗M⊗ F)

T(op)

��
S⊗ TM⊗ F (1)

(liftT
S⊗id)⊗id

OO

T(S⊗M)⊗ F

id⊗liftT
F

OO

(1)

TM

S⊗M⊗ F op
//

id⊗liftT
M⊗id

hhQQQQQQQQQQQQQQQQQQQQQQ

liftT
S⊗M⊗id

OO liftT
S⊗M⊗F

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(2)

M

liftT
M

OO

(1) because liftT is a monoidal natural transformation.

(2) because liftT is a natural transformation.

We now focus on functorial monoid transformers. Before proving the main result (Theo-
rem 4.15), we establish the following lemma.

Lemma 4.10 (Derived Lifting). If (T, liftT) is a functorial monoid transformer, opN : HN̂ //N
is an H-operation for N̂, opN,T : H(TN̂) // TN is a lifting of opN along liftT

N̂ , t : M̂ // N̂ is a
monoid morphism and f : N //M is a map, then

• opM =̂ HM̂
H(t) // HN̂

opN
// N

f // M is an H-operation for M̂, and

• opM,T =̂ H(TM̂)
H(T(t)) // H(TN̂)

opN,T
// TN

T( f ) // TM is a lifting of opM along liftT
M̂.

Proof. The following diagram commutes

H(TM̂)
opM,T

//

H(T(t))

%%KKKKKKKKK
(1)

TM

(2)

H(TN̂)
opN,T

// TN

T( f )
99sssssssssss

HN̂
opN

//

H(liftT
N̂)

OO

N

liftT
N

OO

(2)

f

&&LLLLLLLLLLLL

HM̂
opM

//

H(liftT
M̂)

OO

H(t)
88rrrrrrrrrr (1)

M

liftT
M

OO

(1) by definition of opM and opM,T.

(2) because liftT is a natural transformation.
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Example 4.11. The H-operation collect of the monad M̂ of traces over a monoid (W, 0, +)
(see Example 3.10) is:

collectA,X(t : MA, f : MX(A×W)) =̂ let (y, w) = t in ( f t, w)

It can be lifted through any functorial monad transformer T̂ = (T, liftT) using Lemma 4.10
in the following manner:

• Take N̂ to be the side-effect monad of Example 3.9 with states in W.

• Take t to be the following monad morphism:

tX (m : MX) : NX =̂ λw : W. let (x, w′) = m in (x, w + w′)

• Take f to be the following natural transformation:

fX (n : NX) : MX =̂ n 0

• opN
A,X : (t : NA, f : (NX)(A×W)) = bindN(t, λa : A. get (λw : W. f (a, w)))

• Since opN is defined from bindN and the algebraic operation get, it can be lifted through
the monad transformer T̂:

opN,T
A,X : (t : TNA, f : (TNX)(A×W)) = bindTN(t, λa : A. getT (λw : W. f (a, w)))

where getT is the algebraic lifting of get.

It can be shown that opM as defined in the lemma is equivalent to collect, and therefore
opM,T is a lifting of collect through T̂.

The example shows that, in order to lift an operation, it may help to express the opera-
tion in another monad, even when opN is not a lifting of opM along t. It also shows that there
are many degrees of freedom that need to be fixed in order to use Lemma 4.10. The Coden-
sity Lifting presented next shows that when the operation is first-order and the underlying
category is monoidal right-closed, there is a canonical way to fix these degrees of freedom.

Codensity Lifting

Consider the instance of Lemma 4.10 for H(−) = S⊗U(−): if opN is an algebraic operation
for N̂, then opM is a first-order operation and one gets a lifting opM,T of opM along liftT

M̂
by taking as opN,T the algebraic lifting of opN along liftT

N̂ . We show that every first-order
operation opM can be defined (as described in Lemma 4.10) using an algebraic operation
opN , provided the monoidal category Ê is right-closed.
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Remark 4.12. In the rest of this section we assume that the strict monoidal category Ê is
right-closed. For example, we could consider Ê to be the category Endo(C) f of finitary func-
tors over a locally finitely presentable category C of Example 2.9, the category of realisable
endofunctors Endo(PA)r of Example 2.10, or the category of expressible endofunctors ÊF of

Example 2.11. In this setting, two maps X
fi //GF are equal iff X ⊗ F

fi⊗id //GF ⊗ F ev //G
are equal.

Definition 4.13 (Codensity). The codensity monoid transformer (K, liftK) is given by

• KM̂ =̂ (MM, iM, cM) is the monoid of endomorphisms of Example 2.16, whose defini-
tion is recalled here for the simplified case of a strict monoidal category.

iM =̂ Λ(I ⊗M = M id //M)

cM =̂ Λ(MM ⊗MM ⊗M id⊗ev //MM ⊗M ev //M)

• liftK
M̂ =̂ (M Λm //MM) is a monoid morphism M̂ //KM̂

Moreover, liftK
M̂ has a left inverse downM̂ : MM //M, i.e. downM̂ ◦ liftK

M̂ = idM, given by

downM̂ =̂ ( MM = MM ⊗ I
id⊗e //MM ⊗M ev //M)

Proof. This definition has some proof obligations, i.e.: Λm is a monoid morphism and
downM̂ is a left inverse of liftK

M̂. Diagrammatically:

I
e //

iM %%JJJJJJJJJJJ M

Λm
��

M⊗Mmoo

Λm⊗Λm
��

MM MM ⊗MM
cM

oo

M Λm //

LLLLLLLLLLL

LLLLLLLLLLL MM

downM̂
��

M

To prove commutativity of the first diagram we use Remark 4.12, the universal property of
exponentials, bifunctoriality of ⊗ and the monoid laws.

• Λm respects the unit of the monoid.

I ⊗M
e⊗id //

iM⊗id
�� PPPPPPPPPPPPPPP

PPPPPPPPPPPPPPP M⊗M
Λm⊗id //

m
��

MM ⊗M

ev
vvnnnnnnnnnnnnnn

MM ⊗M ev
// M
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• Λm respects the multiplication of the monoid.

M⊗M⊗M
m⊗id //

id⊗Λm⊗id
��

id⊗m

))SSSSSSSSSSSSSSSS M⊗M
Λm⊗id //

m

((QQQQQQQQQQQQQQQ MM ⊗M

ev
��

M⊗MM ⊗M
id⊗ev

//

Λm⊗id⊗id
��

M⊗M m
//

Λm⊗id
��

M

MM ⊗MM ⊗M
id⊗ev //

cM⊗id ))SSSSSSSSSSSSSS MM ⊗M
ev // M

MM ⊗M

ev

66mmmmmmmmmmmmmmm

To prove commutativity of the second diagram we use the definition of downM̂, the universal
property of exponentials and the equation m ◦ (id⊗ e) = idM for M̂.

MM ⊗ I
id⊗e // MM ⊗M

ev // M

M⊗ I
id⊗e

//

Λm⊗id

OO

M⊗M

Λm⊗id

OO

m

77ppppppppppppp

Theorem 4.14 (Codensity Properties). If op : S ⊗ M //M is a first-order operation for M̂,
then

(a) opK =̂ S⊗MM
Λ(op)⊗id // MM ⊗MM cM // MM is algebraic for KM̂

(b) op = S⊗M
id⊗liftK

M̂ // S⊗MM opK
// MM

downM̂ // M

Moreover, if op is algebraic, then opK is the algebraic lifting of op along liftK
M̂.

Proof. The operation opK is the algebraic operation induced by S
Λ(op) //MM (see Proposi-

tion 3.3), hence item (a) is proved. In order to prove item (b), we expand the definitions and
the equation becomes:

op = S⊗M
Λ(op)⊗Λm //MM ⊗MM cM⊗e //MM ⊗M ev //M

and the proof is given by the following commuting diagram (see Remark 4.12).

S⊗M

Λ(op)⊗id

((

S⊗M⊗ I
Λ(op)⊗Λm⊗id //

Λ(op)⊗id⊗e
��

MM ⊗MM ⊗ I
cM⊗e //

id⊗id⊗e
��

MM ⊗M

ev

��

MM ⊗M⊗M
id⊗Λm⊗id //

id⊗m
��

MM ⊗MM ⊗M

id⊗evttiiiiiiiiiiiiiiiiii

cM⊗id

44iiiiiiiiiiiiiiii

MM ⊗M ev
// M
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Finally, if op is algebraic, then op = S⊗M
op′⊗id //M⊗M m //M for a unique

map op′ : S //M (see Proposition 3.3). Therefore

Λ(op) = S
op′ //M Λm //MM

and opK is the algebraic operation induced by the lifting of op′ along liftK
M̂.

We now state our main lifting result for functorial monoid transformers.

Theorem 4.15 (Codensity Lifting). Given a functorial monoid transformer (T, liftT) and a first-
order operation op : S⊗M //M for a monoid M̂, there is a lifting of op along liftT

M̂ given by

opT =̂ S⊗ TM
id⊗T(liftK

M̂)
// S⊗ T(MM)

opK,T
// T(MM)

T(downM̂)
// TM

where opK,T is the unique algebraic lifting of opK along liftT
KM̂.

Proof. Apply Lemma 4.10 by taking opM = op, N̂ = KM̂, opN = S⊗ N
opK
//N, thus opN is

algebraic for N̂ (by Theorem 4.14), t = liftK
M̂, f = downM̂, and opN,T : S⊗ (TN) // TN the

unique algebraic lifting of opN along liftT
N̂ .

4.4 Coincidence of Liftings

For some combinations of monoid transformers and operations it is possible that two (or
more) of the lifting theorems summarized in Figure 4.1 are applicable. For instance, if op is
an algebraic operation for M̂ and (T, liftT) is a monoidal monoid transformer, then one can
apply both the algebraic lifting (Theorem 3.5) and the monoidal lifting (Theorem 4.9). In this
section it is proved that when more than one of the lifting theorems is applicable, they yield
the same result.

Theorem 4.16 (Algebraic/Monoidal Coincidence). When (T, liftT) is a monoidal monoid trans-
former, and op : S⊗M //M is an algebraic operation for M̂, the monoidal lifting (Theorem 4.9)
and the algebraic lifting (Theorem 3.5) of op along liftT

M̂ coincide.

Proof. Since op is an algebraic operation for M̂ = (M, e, m), by Proposition 3.3 there exists a
unique op′ : S //M such that op = m ◦ (op′ ⊗ id). Consider the following diagram, where
the top path from S ⊗ TM to TM is the monoidal lifting of op, and the bottom path is the
algebraic lifting of op. The diagram commutes because of naturality of liftT and φ.

S⊗ TM
liftT

S⊗id //

op′⊗id

��

TS⊗ TM
φ //

T(op′)⊗id

��

T(S⊗M)

T(op′⊗id)
��

T(op)

''OOOOOOOOOOOOO

M⊗ TM
liftT

M⊗id

// TM⊗ TM
φ

// T(M⊗M)
T(m)

// TM
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Theorem 4.17 (Algebraic/Codensity Coincidence). When (T, liftT) is a functorial monoid trans-
former (on a monoidal right-closed category), and op : S⊗M //M is an algebraic operation for
M̂, the codensity lifting (Theorem 4.15) and the algebraic lifting (Theorem 3.5) of op along liftT

M̂
coincide.

Proof. Since op is an algebraic operation for M̂ = (M, e, m), by Proposition 3.3 there exists
a unique op′ : S //M such that op = m ◦ (op′ ⊗ id). Similar characterizations hold for the
following algebraic operations:

• opT : S⊗ TM // TM is the algebraic lifting of op along liftT
M̂, therefore it is algebraic

for the monoid TM̂ and corresponds to liftT
M̂ ◦ op′;

• opK : S⊗MM //MM (see Proposition 4.14) is the algebraic lifting of op along liftK
M̂,

therefore it is algebraic for the monoid KM̂ and corresponds to liftK
M̂ ◦ op′ = Λ(op);

• opK,T : S ⊗ T(MM) // T(MM) given by the algebraic lifting of opK along liftT
KM̂ is

algebraic for the monoid T(KM̂) and corresponds to liftT
KM̂ ◦Λ(op).

By naturality of liftT, T(liftK
M̂) ◦ liftT

M̂ = liftT
KM̂ ◦ liftK

M̂, thus opK,T is the algebraic lifting of opT

along T(liftK
M̂) and the following diagram commutes (the bottom path from S⊗ TM to TM is

the codensity lifting of op). The triangle commutes because of functoriality of T and because
downM̂ is a left inverse of liftK

M̂ (see Definition 4.13).

S⊗ TM
opT

//

id⊗T(liftK
M̂)
��

TM

T(liftK
M̂)
�� NNNNNNNNNNNN

NNNNNNNNNNNN

S⊗ T(MM)
opK,T

// T(MM)
T(downM̂)

// TM

Theorem 4.18 (Codensity/Monoidal Coincidence). When (T, liftT) is a monoidal monoid trans-
former (on a monoidal right-closed category), and op : S⊗M //M is a first-order operation for
M̂, the codensity lifting (Theorem 4.15) and the monoidal lifting (Theorem 4.9) of op along liftT

M̂
coincide.

Proof. The codensity lifting of op is given by

S⊗ TM
id⊗T(liftK

M̂)
// S⊗ T(MM)

opK,T
// T(MM)

T(downM̂)
// TM

where opK,T is the algebraic lifting of the algebraic operation opK along liftT
KM̂, or equivalently

(by Theorem 4.16), opK,T is the monoidal lifting of opK along liftT
KM̂.
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Consider the following diagram, where the top path from S⊗ TM to TM is the monoidal
lifting of op, and the bottom path is the codensity lifting of op

S⊗ TM
liftT

S⊗id //

id⊗T(liftK
M̂)
��

(1)

TS⊗ TM
φ //

T(id)⊗T(liftK
M̂)
��

(2)

T(S⊗M)
T(op) //

T(id⊗liftK
M̂)

��
(3)

TM

S⊗ T(MM)
liftT

S⊗id

// TS⊗ T(MM)
φ

// T(S⊗MM)
T(opK)

// T(MM)

T(downM̂)

OO

The diagram commutes for the following reasons:

(1) by bifunctoriality of ⊗;

(2) because φ is a natural transformation;

(3) by item (b) of Theorem 4.14 (and functoriality of T).

4.5 Examples of Lifted Operations

In this section, the Codensity Lifting (Theorem 4.15) is specialized to various concrete monad
transformers and an arbitrary first-order operation op : Σ ⊗ M //M over a monoid M̂.
The obtained liftings of op show that the Codensity Lifting subsumes the incremental ap-
proach in (Benton, Hughes, and Moggi 2000; Moggi 1997). Additionally, each lifting is in-
stantiated to the non-algebraic first-order operations local, handle, and flush, showing that
the obtained lifted operations are the “expected” ones, in the sense that they coincide with
the existing ad-hoc liftings in the literature.

• When the functorial monad transformer T̂ is the side-effect monad transformer, thus
TMX = M(X× S)S, the lifting simplifies to:

opT
X (t : Σ(TMX)) : TMX = λs : S. opX×S(mapΣ τs t)

where τs( f : (M(X× S))S) =̂ f s.

– When M̂ is the monad for environments in V, thus TMX = ((X×S)V)S, the lifting
of local yields:

localT ( f : VV , t : TMX) : TMX = λs : S .λv : V. t s ( f v).

– When M̂ is the monad for exceptions in E, thus TMX = ((X× S) + E)S, the lifting
of handle yields:

handleT (t : TMX, h : (TMX)E) : TMX = λs : S. case t s of | inl e⇒ h e s

| inr x ⇒ inr x.
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– When M̂ is the monad for traces over a monoid (W, 0, +), thus TMX = ((X ×
S)×W)S, the lifting of flush yields:

flushT (t : TMX) : TMX = λs : S. let (x : X, w : W) = t s in (x, 0).

• When the functorial monad transformer T̂ is the exception monad transformer, thus
TMX = M(X + E), the lifting simplifies to:

opT
X(t : Σ(TMX)) : TMX = opX+E t.

– When M̂ is the monad for environments in S, thus TMX = (X + E)S, the lifting
of local yields:

localT ( f : SS, t : TMX) : TMX = λs : S. t ( f s).

– When M̂ is the monad for exceptions in E′, thus TMX = (X + E) + E′, the lifting
of handle yields:

handleT(t : TMX, h : (TMX)E′) : TMX = case t of | inl e⇒ h e

| inr x ⇒ inr x.

– When M̂ is the monad for traces over a monoid (W, 0, +), thus TMX = (X + E)×
W, the lifting of flush yields:

flushT ((c, w) : TMX, h : (TMX)E) : TMX = (c, 0).

• When the functorial monad transformer T̂ is the functorial monad transformer for en-
vironments in S, thus TMX = (MX)S, the lifting simplifies to:

opT
X (t : Σ(TMX)) : TMX = λs : S. opX(mapΣ τs t)

where τs( f : (MX)S) = f s.

– When M̂ is the monad for environments in S′, thus TMX = (XS′)S, the lifting of
local yields:

localT ( f : S′S
′
, t : TMX) : TMX = λs : S. λs′ : S′. t s ( f s′).

– When M̂ is the monad for exceptions in E, thus TMX = (X + E)S, the lifting of
handle yields:

handleT (t : TMX, h : (TMX)E) : TMX = λs : S. case t s of | inl e⇒ h e s

| inr x ⇒ inr x.
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– When M̂ is the monad for traces over a monoid (W, 0, +), thus TMX = (X×W)S,
the lifting of flush yields:

flushT (t : TMX) : TMX = λs : S. let (x : X, w : W) = t s in (x, 0).

• When the functorial monad transformer T̂ is the functorial monad transformer for
traces over a monoid (W, 0, +), thus TMX = M(X×W), the lifting simplifies to:

opT
X(t : Σ(TMX)) : TMX = opX×W t.

– When M̂ is the monad for environments in S, thus TMX = (X ×W)S, the lifting
of local yields:

localT ( f : SS, t : TMX) : TMX = λs : S. t ( f s).

– When M̂ is the monad for exceptions in E, thus TMX = (X ×W) + E, the lifting
of handle yields:

handleT(t : TMX, h : (TMX)E) : TMX = case t of | inl e⇒ h e

| inr x ⇒ inr x.

– When M̂ is the monad for traces over a monoid (W ′, 0′, +′), thus TMX = (X ×
W)×W ′, the lifting of flush yields:

flushT ((p, w′) : TMX) : TMX = (p, 0′).

4.6 Summary

We have defined a hierarchy of monoid transformers and shown several general liftings
results that are applicable to wide classes of operations. Moreover, the obtained liftings have
been shown to coincide when more than one of them is applicable to the same operation.
Using these results, all the operations considered by Liang, Hudak, and Jones (1995) and all
the operations in the mtl can be lifted through any functorial monad transformer. Through
several examples, we have given evidence that our uniform lifting subsumes the more or
less ad-hoc definitions of lifting that could be found in the literature.

The theoretical foundation for lifting of operations presented in this chapter was for-
mulated using category theory. This makes the results very general and susceptible to be
applied to other structures apart from monads by different instantiations of the monoidal
category. In this thesis, however, the focus is in the instantiation of the theory in functor
categories, where monoids are monads, and monoid transformers are monad transformers.

Monad transformers were first considered by Moggi (1989a) and called monad construc-
tors. The associated operations were considered to be morphisms between first-order types.
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A notion of natural lifting was defined and a few results about lifting were given. Some of
these ideas were implemented in Scheme by Espinosa (1993) (see also Espinosa 1995). Liang,
Hudak, and Jones (1995) implemented monad transformers in a strongly-typed language
for the first time and extended the class of operations considered by Moggi by incorporating
higher-order types. Also, ad-hoc liftings not considered by Moggi were provided for several
computational effects. Moggi (1997) (see also Benton, Hughes, and Moggi 2000) provided
liftings for a generic notion of operation, but for a fixed transformer, obtaining results sim-
ilar to the ones in Section 4.5, except that the results presented here all stem from a single
uniform lifting instantiated to different transformers.

Some of the related work focuses on the combination of monads but the problem of lift-
ing operations is not tackled. King and Wadler (1992) discussed some issues in composing
monads. Jones and Duponcheel (1993) analyzed functorial composition of monads, which
inevitably led them to distributive laws of monads (Barr and Wells 1985). They showed that
the list monad can be combined with any other commutative monad by functorial compo-
sition. In Example 4.7 it was shown how to define a list transformer that lifts the commu-
tativity restriction, but the combination is more subtle than functorial composition. Lüth
and Ghani (2002) implemented the coproduct of monads. This construction is very general
and works on a wide class of monads, but the ordering of effects is not taken into account
(coproducts are commutative up to isomorphism).

In the algebraic view of computational effects advocated by Hyland, Plotkin, and Power
(2006) (see also Plotkin and Power 2001a,b, 2002, 2004), the focus is put on operations and
equations. Instead of modelling computational effects with monads, one considers algebraic
theories, and computational effects are composed by combining algebraic theories. Opera-
tions which are not algebraic are not supported, but some of these operations are handlers
of algebraic effects, which can be understood as homomorphisms from the free model of the
theory (Plotkin and Pretnar 2009). However, it remains to be shown how to lift a handler to a
combined theory. A limitation of the algebraic view is that notions like continuations, which
do not arise from algebraic theories, are not tractable within this approach.
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Part II

Applications
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Chapter 5

Monatron:
A Monad Transformer Library

In this chapter we apply the theory developed in the first part of this thesis to the problem
of implementing a monad transformer library in Haskell. The implementation of the theory
in Haskell is reasonably straightforward, but in order to have a good library there are other
requirements that need to be met. Hence, in this chapter, we will mostly focus on the design
decisions that were made during the implementation.

In the first section we review how monads, functors and monad transformers are imple-
mented in Haskell. Then, in Section 5.2, we analyze some shortcomings of current monad
transformer libraries, such as mtl (Monad Transformer Library). In particular, it is shown that
the lifting of operations through monad transformers is done on a case-by-case basis, and
consequently there is no guarantee that the liftings are uniform, that extending the library is
cumbersome, that some liftings cannot be expressed because the lifting overloading mech-
anism produces shadowing of operations, and that the design relies essentially on non-
portable features of type classes.

The mtl has been distributed with GHC (Glasgow Haskell Compiler) and is now part of the
the Haskell Platform (2009), a collection of unessential but widely used libraries. It can be
considered the de facto standard of monad transformer libraries for Haskell.

A first attempt to remedy the problems in the mtl was to incorporate uniform liftings to
the mtl. This lead to the implementation of mmtl (Modular Monad Transformer Library), which
is almost1 a drop-in replacement for the mtl, but adds uniform liftings. The library mmtl was
implemented with the goal of obtaining backward-compatibility with the mtl while adding
uniform liftings but, in doing this, it carried over to the new library design flaws in the mtl.
Monatron is our attempt to remedy all these flaws, and its design is discussed in Section 5.3.

The complete source code of the Monatron library is included in Appendix A.

1Some liftings in the mtl, such as callCC through StateT are different.
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data Either x a = Left x | Right a
instance Functor (Either x) where

fmap f (Left x) = Left x
fmap f (Right a) = Right (f a)

instance Monad (Either x) where
return a = Right a
Left x >>= f = Left x
Right a >>= f = f a

newtype Id a = Id a
instance Functor Id where

fmap f (Id a) = Id (f a)
instance Monad Id where

return a = Id a
(Id a) >>= f = f a

Figure 5.1: Either and Id and their Monad and Functor instances

5.1 Functors, Monads and Monad Transformers in Haskell

In Haskell, a datatype constructor of kind ∗ → ∗ is shown to have a functorial or a monadic
structure by instances of the following type classes.

class Functor f where

fmap :: (a→ b)→ f a→ f b

class Monad m where

return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

Instances of Functor are required to preserve identities and composition:

fmap id = id

fmap (f · g) = fmap f · fmap g

Instances of the Monad class are required to satisfy the following equations that ensure that
return and (>>=) are well-behaved:

return a >>= f = f a

m >>= return = m

m >>= (λa→ f a >>= g) = (m >>= f ) >>= g

Satisfaction of these equations cannot be verified by the type-checker so it is the responsibil-
ity of the programmer to verify the correctness of each instance.

As an example, in Figure 5.1, we have defined two datatype constructors and given them
their corresponding Functor and Monad instances: Either x is a monad for exceptions of type
x, and the identity monad Id is a monad of pure computations.

Combinator libraries for monads come equipped with several standard monads corre-
sponding to different computational effects that provide readily available building blocks
for constructing effectful computations. For example, libraries usually provide a State s
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monad for modelling side-effects of type s, a Cont r monad for modelling continuations with
result type r, a Writer w monad for modelling traces over a monoid w, a Reader e monad for
modelling environments of type e, and an Exception x monad for modelling exceptions of
type x. These monads provide some of the most common computational effects but, by all
means, they are not the only ones. The fact that monad libraries (mostly) only support this
limited set of effects and have not been extended to other effects can be seen as evidence of
the universality of these effects. Less optimistically, it can be seen as symptomatic of a lack
of extensibility (see Section 5.2).

In addition to the aforementioned monads, combinator libraries provide the correspond-
ing monad transformer for each effect. A monad transformer in Haskell is a type constructor
of kind (∗ → ∗)→ (∗ → ∗) which is an instance of the type class MonadT.

class MonadT t where

treturn :: Monad m⇒ a→ t m a
treturn = lift · return

tbind :: Monad m⇒ t m a→ (a→ t m b)→ t m b
lift :: Monad m⇒ m a→ t m a

Instances of MonadT are required to make treturn and tbind satisfy the monad laws (making
t m a monad for every monad m) and to make lift a monad morphism from m into t m, i.e. lift

should preserve return and (>>=):

treturn = lift · return (5.1)

lift (m >>= f ) = lift m ‘tbind‘ (lift · f ) (5.2)

The type class MonadT provides a default implementation of treturn given by the equa-
tion (5.1), and therefore its instances only need to provide definitions for tbind and lift.

In most Haskell libraries, lift is the only member of the type class, and every instance T

of MonadT is required to provide an instance:

instance Monad m⇒ Monad (T m) where

...

However this assumption cannot be expressed in the type class MonadT and the equa-
tions that lift must satisfy need to have a side condition. With our formulation, the required
equations are expressible in terms of members of the type class, maintaining consistency
with the definition of other categorical constructs in Haskell such as monads and functors.
The disadvantage of our approach is that the syntactic sugar for monadic computations
available in Haskell is lost: the do notation works for return and >>= and not for treturn

and tbind. This is easily solved by adding the appropriate monad instance for each monad
transformer T:
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instance Monad m⇒ Monad (T m) where

return = treturn

(>>=) = tbind

Although it would be more efficient to provide one general instance for an arbitrary
monad transformer, this would result in overlapping instances.

Since a monad transformer adds an effect to another monad, monads such as the side-
effect monad State are equivalent to adding side-effects to the identity monad Id.

State s ≡ StateT s Id

Therefore, in principle, only the transformer version of a monad is needed, and concrete
monads will be defined as an instance of the monad transformer at the identity monad,
avoiding repetition of instances for the same computational effect and ensuring consistency.
For example:

type State s = StateT s Id

Importantly, for the combined monads, the programmer has no need to verify any monad
laws, or declare new monad instances. The monad transformers will guarantee that the
obtained type is a monad by construction, realising the idea that correct constructions are
obtained by combining correct components.

Encapsulation of Effects

When declaring a new datatype in Haskell one has the option of defining it as a type syn-
onym (using the keyword type), as a datatype with constructor functions (using the keyword
data), or using the keyword newtype which is a datatype with only one constructor.

In order to be able to use Haskell’s type-class system, monad transformers are defined
as data or newtype. In our case we will also insist on making these types opaque. That
is, modules implementing the datatype will only export the type but not the constructors,
effectively making the monad operations and the associated effect-manipulating operations
the only way to construct monadic computations.

This is a common software engineering practice: hide the implementation so that the
interface of the library is not changed when the implementation is updated. Possible mod-
ifications that should remain hidden to the users of the library could be to replace the list
monad with more efficient implementations such as Hughes lists (Hughes 1986) or to re-
place a monad by a continuation passing style representation of the monad (Filinski 1994).

Despite the obvious benefits of opaque datatypes, most existing libraries expose the in-
ternal structure of each monad/monad transformer.
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Running Effects

Monad transformers and monads expressible in Haskell come equipped with a run function
that allows programmers to evaluate an effectful computation. For example, the state monad
can be run with runState :: s → State s a → (a, s), which given an initial state and a stateful
computation, returns the value of the computation together with the final state. The state
monad transformer can be run with runStateT :: Monad m ⇒ s → StateT s m a → m (a, s),
which given an initial state and a computation, returns an m-computation with a value and
final state. The exception monad is run with a function runException :: Exception x a →
Either x a, and the exception monad transformer is run with a function runExcT :: Monad m⇒
ExcT x m a → m (Either x a), which returns an m-computation over either an exception or a
value.

Consider now the following monads that combine side effects and exceptions.

type StExc s x = StateT s (Exception x)
type ExcSt x s = ExcT x (State s)

The monad StExc s x is obtained by applying the side-effect monad transformer to the
exception monad and ExcSt x s is obtained by applying the exception monad transformer
to the side-effect monad. Are these two monads equivalent? After all, both monads model
side-effects together with exceptions. The answer is no, and in general, the order in which
the monad transformers are applied is important. To see why, it is necessary to run the
effectful computations. The run function for a combined monad is obtained by composing
the run functions of its components:

runStExc :: s→ StExc s x a→ Either x (a, s)
runStExc s = runException · runStateT s

runExcSt :: s→ ExcSt x s a→ (Either x a, s)
runExcSt s = runState s · runExcT

Analysing the type of the resulting run functions, we can see that in StExc, when an ex-
ception is raised the computation forgets about the state, while in ExcSt, when an exception
is raised the computation preserves the state. One can then choose how exceptions should
interact with side-effects by choosing the order in which the monad transformers are ap-
plied. In general, applying monad transformers in different orders gives rise to different
interactions between effects (Liang, Hudak, and Jones 1995).

5.2 Some Problems with the Traditional Design

The current design of monad transformer libraries performs the liftings of operations of an
underlying monad to the transformed monad in an ad-hoc fashion, relying crucially on a
type-class trick in order to perform the liftings. The basic idea of the trick is to define a
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class of monads supporting a certain operation. For example, we define the class of monads
supporting the operation callCC, and show that the continuation monad transformer ContT

applied to any monad m is an instance of this class:

class Monad m⇒ ContM m where

callCC :: ((a→ m b)→ m a)→ m a

instance Monad m⇒ ContM (ContT m) where

callCC = ...

The final step is to show that, for each monad transformer in the library, if the underlying
monad supports callCC, then the transformed monad also supports callCC. For example, for
the exception monad transformer ExcT:

instance ContM m⇒ ContM (ExcT x m) where

callCC = ...

This type-class trick has some advantages such as an overloading of the operations that
is usually convenient, but libraries that rely on it have some shortcomings which affect the
predictability, extensibility, expressive power and portability of the library. In what follows,
we explain why this is so.

Non-uniform liftings

One can replace a computation on the Writer w monad over a monoid w by a computation
on the more general State w monad, and replace the trace operation trace of the Writer w
monad by a trace operation on State w. Similarly, one can do the same replacements on
the transformer version of these monads. For example, when the monoid is the monoid of
Strings (with unit the empty string "", and multiplication given by string concatenation ++),
one can replace the operation trace :: Monad m ⇒ String → WriterT String m () that adds a
string to a trace, with the following operation:

traceS :: Monad m⇒ String→ StateT String m ()
traceS w = do s← get

put (s ++ w)

One would expect that replacing WriterT by StateT, replacing trace by traceS, and replac-
ing runWriterT by runStateT "", the semantics of a program would be preserved. However,
in the mtl (Monad Transformer Library), the following two programs, which perform compu-
tations over WriterT String (Cont (String, String)) and StateT String (Cont (String, String))
respectively, have different behaviours:

p1 :: (String, String)
p1 = (runCont id · runWriterT)

(callCC (λexit→ trace "1">>= λ → exit "Exit"))
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p2 :: (String, String)
p2 = (runCont id · runStateT "")

(callCC (λexit→ traceS "1">>= λ → exit "Exit"))

While p1 = ("Exit",""), we have that p2 = ("Exit","1"). The difference in be-
haviour is caused by non-uniform liftings in the mtl. In particular, callCC is lifted through the
StateT monad transformer in a way which is not coherent with the lifting of callCC through
WriterT. Although we can regard this as a bug and change the implementation of the library,
each operation is lifted on a case-by-case basis and, consequently, there is no intrinsic guar-
antee that the liftings are coherent. Hence, with no guarantee that the liftings are coherent,
the predictability of the semantics of the library is seriously affected.

Quadratic number of instances

Suppose a programmer wants to extend the library with a new monad transformer which
comes equipped with some operations. The programmer must write a new class corre-
sponding to the added operations and an instance of this new class for each existing monad
transformer, so that the added operations can be lifted through other monad transformers.
Furthermore, the programmer is required to write instances of each existing class of oper-
ations for the new monad transformer. In other words, assuming one class of operations
per monad transformer, the number of instances increases quadratically with the number of
monad transformers.

The extensibility of the library is affected not only because of the quadratic growth of
required lines of code, but also because of the lack of separation of concerns. Extending
the library requires understanding the semantics of all the existing monad transformers and
their operations.

The quadratic growth in the number of instances and lack of separation of concerns is
a major hurdle. It discourages anyone willing to extend the library and it shows that the
traditional design can only work for a library with a very limited number of monads.

Shadowing of operations

We have seen in Section 5.1 how StExc and ExcST give rise to different interactions between
exceptions and state. With the former, state changes are lost when an exception is raised,
while with the latter state changes are preserved. Suppose that we need both types of excep-
tion. We can easily construct such a monad as follows:

type ExcStExc x1 s x2 = ExcT x1 (StExc s x2)

runExcStExc :: s→ ExcStExc x1 s x2 a→ Either x2 (Either x1 a, s)
runExcStExc s = runStExc s · runExcT
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We now have two different types of exceptions with two different types of exception (x1
and x2). Let us assume that both x1 and x2 are of the same type, say Int. Since there is no type
that will distinguish instances, the function handle will refer to the instance of the outermost
monad. We have no way of handling the other type of exceptions, as there is no way of
saying “What I mean is the handle operation corresponding to the monad under two monad
transformers”. The inner handle operation is shadowed by the outer one.

One way to deal with this problem is to define different types of exceptions, but this
entails inserting unnecessary constructors and destructors which clutter the program and
make it more difficult to understand. We see shadowing as revealing a limitation in the
expressive power of the library.

Portability

The implementation of the type-class trick requires several extensions to the Haskell 98 stan-
dard (Peyton Jones 2003), such as functional dependencies and multi-parameter classes. Al-
though many of these extensions have been around for a while and their semantics are quite
stable, they certainly affect the portability of the library. This is particularly so because the
whole implementation of the library revolves around this type-class trick. We would like to
have the choice of paying the price and using the overloading of operations provided by the
implementation with type classes when it is convenient without being forced to do so.

5.3 The Monatron Approach

We now present the design of the Monatron monad transformer library, which is based on
the following ideas:

• Uniform liftings of operations: we implement the uniform liftings explained in Chap-
ters 3 and 4 and summarised in Figure 4.1. For this, we define different type classes
that correspond to each type of monad transformer, and define a lifting function for
the corresponding class of operations.

• Opaque datatypes. The library provides an interface in which the details of the imple-
mentation of monad transformers are hidden. Changes in the implementation of the
library should be transparent to its users.

• Explicit liftings. We provide explicit lifting functions that perform the liftings through
appropriate monad transformers. This solves the shadowing problem, and removes
the forced dependency on many extensions to Haskell 98.
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Uniform Liftings

In order to incorporate uniform liftings we need to develop the infrastructure of the first
part of the thesis. Many of the results rely on natural transformations, which in Haskell are
expressed by polymorphic functions ∀ a. F a → G a, between Functors F and G. This means
that the extension to Haskell 98 adding rank-2 types will be essential. However, this is the
only extension that will be needed to get a fully functional monad transformer library.

We define the type class of functorial monad transformer FMonadT and the type class of
monoidal monad transformer MMonadT. Instances of FMonadT are required to be instances
of MonadT and instances of MMonadT are required to be instances of FMonadT, reflecting the
inclusions in the monoid transformer hierarchy of Section 4.1.

Instances of FMonadT should make tmap respect the identity natural transformation and
composition of natural transformations. Instances of MMonadT should make flift be equal
to lift (although this seems to make flift superfluous, it has different type-class requirements
as lift requires a Monad, while flift requires a Functor), monoidalT should be associative, and
flift at the identity functor (this corresponds to φI in Definition 2.5) should be a left and right
unit for monoidalT.

class MonadT t⇒ FMonadT t where

tmap :: (Functor m, Functor n)⇒ (∀ b. m b→ n b)→ t m a→ t n a

class FMonadT t⇒ MMonadT t where

flift :: Functor f ⇒ f a→ t f a
monoidalT :: (Functor f , Functor g)⇒ t f (t g a)→ t (f ◦ g) a

where the type ◦ expresses functor composition (see Appendix A.6).
The codensity monad transformer and its down operation are defined as follows:

newtype Cod f a = Cod {unCod :: ∀ b. (a→ f b)→ f b}

down :: Monad m⇒ Cod m a→ m a
down c = unCod c return

instance MonadT Cod where

tbind c f = Cod (λk→ unCod c (λa→ unCod (f a) k))
lift m = Cod (m>>=)

instance Monad m⇒ Monad (Cod m) where

return = treturn

(>>=) = tbind

instance Functor f ⇒ Functor (Cod f ) where

fmap f (Cod c) = Cod (λk→ c (k · f ))

The implementation of a particular operation for a monad provides a model of the op-
eration. We define three types of models and for each of these we provide a generic lifting
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function. This corresponds to each of the three classes of operations, transformers and lift-
ings in Figure 4.1. Each of the lifting functions is constrained to the corresponding monad
transformer class and type of operation.

type AlgModel f m = ∀ a. (Functor f , Monad m)⇒ f a→ m a
liftAlgModel :: (MonadT t, Monad m, Functor f )⇒ AlgModel f m→ AlgModel f (t m)
liftAlgModel mdl = lift ·mdl

type Model f m = ∀ a. (Functor f , Monad m)⇒ f (m a)→ m a
liftModel :: (Functor f , Monad m, Functor m, FMonadT t, Monad (t (Cod m)))⇒

Model f m→ Model f (t m)
liftModel mdl = tmap down · join · lift · toAlg mdl · fmap (tmap lift)

toAlg :: (Functor f , Monad m)⇒ Model f m→ AlgModel f (Cod m)
toAlg mdl t = Cod (λk→ mdl (fmap k t))

type ExtModel f g m = ∀ a. f (m (g a))→ m a
liftExtModel :: (Functor f , Functor g, Monad m, Functor m,

MMonadT t, Functor (t f ), Functor (t m))⇒
ExtModel f g m→ ExtModel f g (t m)

liftExtModel mdl = tmap (mdl · fmap deComp · deComp) ·monoidalT · flift ·
fmap (monoidalT · fmap flift)

The function join in the definition of liftModel is the multiplication of a monad, and it is
defined as follows.

join :: Monad m⇒ m (m a)→ m a
join = (>>=id)

Operations

For each (set of) operations we define a signature functor and functions associated to that
signature functor which given a model perform an effect-manipulating operation (identified
by the X suffix, and called X-operations henceforth). For example, the signature for side-effect
operations and its associated X-operations are:

data StateOp s a = Get (s→ a) | Put s a
instance Functor (StateOp s) where

fmap f (Get g) = Get (f . g)
fmap f (Put s a) = Put s (f a)

getX :: Monad m⇒ AlgModel (StateOp s) m→ m s
getX mdl = mdl (Get id)
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putX :: Monad m⇒ AlgModel (StateOp s) m→ s→ m ()
putX mdl s = mdl (Put s ())

The X-operations do not need to have the same type as the one dictated by the signature
(for example, (s→ a)→ m a for accessing the state) but can be presented in a form which is
more familiar to programmers, as in the example above.

As another example, we present the operations for throwing and handling exceptions.
In this case one of the operations is algebraic but the other is not. We choose to separate
the operations into two separate signatures, so that it is possible to lift the operation Throw

through arbitrary monad transformers.

data ThrowOp x a = Throw x
instance Functor (ThrowOp x) where

fmap (Throw x) = Throw x
throwX :: Monad m⇒ AlgModel (ThrowOp x) m→ x→ m a
throwX mdl x = mdl (Throw x)

data HandleOp x a = Handle a (x→ a)
instance Functor (HandleOp x) where

fmap f (Handle a h) = Handle (f a) (f . h)
handleX :: Monad m⇒ Model (HandleOp x) m→ m a→ (x→ m a)→ m a
handleX mdl m h = mdl (Handle m h)

With this interface the problem of shadowing disappears. It is now possible, when us-
ing an operation, to state explicitly and precisely which model is meant and through how
many monad transformers this model should be lifted. For example, if modelHandleExcT

is the model of handle as provided by the exception monad transformer, then the oper-
ation handleX modelHandleExcT is the operation for handling exceptions as implemented
by modelHandleExcT. Its lifting through two functorial monad transformers is given by
handleX (liftModel (liftModel modelHandleExcT)).

Overloading of operations

It is simple to add overloading on top of the core functionality. Define a type class of monads
with models of a given signature, and then show that all the appropriate monad transform-
ers for that kind of models are also in the same type class (i.e. they also have model). Finally,
define operations which work on any monad of the appropriate type class.

In the following we present the case of Models. The other two cases (AlgModel and
ExtModel) are analogous. We define the class of monads m which have a model of signa-
ture f :
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class (Functor f , Monad m)⇒ MonadModel f m where

model :: Model f m
instance (. . ., FMonadT t, MonadModel f m)⇒ MonadModel f (t m) where

model = liftModel model

The instance—where we omit a part of the class context—indicates that if a monad m has
a model Model f m, then also t m has a model (when t is a functorial monad transformer).
In order to obtain operations with automatic liftings, we replace the explicit parameter in
handleX (a model Model (HandleOp x) m) by an implicit parameter given by the type class.

handle :: MonadModel (HandleOp x) m⇒ m a→ (x→ m a)→ m a
handle = handleX model

Finally, we provide instances for the concrete monads that implement the operations: in this
case, the monad ExcT x m (for any monad m).

instance Monad m⇒ MonadModel (HandleOp x) (ExcT x m) where

model = modelHandleExcT

Of course, implementing overloading of operations will require the use of many exten-
sions to Haskell 98, as it was the case with the traditional design of monad transformer
libraries. However, in this case, the core functionality does not rely on the language exten-
sions and one has the choice of using the extensions when they are available and overloading
is convenient, as opposed to being forced to always do so.

Implementing Transformers and Models

So far, we have defined functions that deal with generic implementations of certain opera-
tions. For example, handleX deals with models Model (HandleOp x) m. We now define con-
crete monad transformers and show that they provide a model of its associated operations.
In particular, we will define the side-effect monad transformer and its model of StateOp

operations, and the exception monad transformer and its models of ThrowOp and HandleOp.

Side-Effect Monad Transformer

We start with the side-effect monad transformer.

newtype StateT s m a = S {unS :: s→ m (a, s)}

runStateT :: s→ StateT s m a→ m (a, s)
runStateT s m = unS m s

instance MonadT (StateT s) where

tbind m k = S (λs→ unS m s >>= λ(a, s′)→ unS (k a) s′)
lift m = S (λs→ m >>= λa→ return (a, s))
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instance FMonadT (StateT s) where

tmap f (S m) = S (f ·m)

instance MMonadT (StateT s) where

flift t = S (λs→ fmap (λa→ (a, s)) t)
monoidalT (S t) = S (λs→ Comp (fmap (λ(S t′, s′)→ t′ s′) (t s)))

instance Monad m⇒ Monad (StateT s m) where

return = treturn

(>>=) = tbind

The monad transformer StateT provides a model of StateOp:

modelStateT :: Monad m⇒ AlgModel (StateOp s) (StateT s m)
modelStateT (Get g) = S (λs→ return (g s, s))
modelStateT (Put s a) = S (λ → return (a, s))

Once we have defined the model, we can use it via getX and putX, and lift it with
liftAlgModel. Importantly, there is a separation of the notion of model of operations (as pro-
vided by modelStateT) and the use of that type of operation (as provided by the functions
getX, putX, and liftAlgModel).

Exception Monad Transformer

The exception monad transformer ExcT is defined as follows:

newtype ExcT x m a = X {unX :: m (Either x a)}

runExcT :: ExcT x m a→ m (Either x a)
runExcT = unX

instance MonadT (ExcT x) where

tbind (X m) f = X (do a← m
case a of Left x→ return (Left x)

Right b→ unX (f b))
lift m = X (liftM Right m)

instance FMonadT (ExcT x) where

tmap f = X · f · unX

instance Monad m⇒ Monad (ExcT x m) where

return = treturn

(>>=) = tbind

It provides, for any monad m, an algebraic model AlgModel (ThrowOp x) (X x m), and a
model Model (HandleOp x) (X x m).

modelThrowExcT :: Monad m⇒ AlgModel (ThrowOp x) (ExcT x m)
modelThrowExcT (Throw x) = X (return (Left x))
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modelHandleExcT :: Monad m⇒ Model (HandleOp x) (ExcT x m)
modelHandleExcT (Handle m h) = X (unX m >>= λexa→ case exa of

Left x → unX (h x)
Right a→ return (Right a))

More examples of monad transformers and their operations can be found in Appendix A,
where the full source of the Monatron library is provided.

5.4 Summary

Combinator libraries for monads are essential for facilitating the construction of complex
monads that naturally appear in applications that go from basic parser libraries (Hutton and
Meijer 1998) to end-user applications (Stewart and Sjanssen 2007). We have shown that the
current design of monad transformer libraries has a number of shortcomings that hinder the
extensibility, predictability, portability, and expressive power of the library.

By restructuring the design and incorporating uniform liftings of operations we have
managed to address these issues. The approach has several advantages:

Uniform-liftings: operations are lifted uniformly through monad transformers by construc-
tion. This means that the semantics of the lifted operations is predictable.

Modularity: operations need to be defined only once for each monad/monad transformer
that supports them, effectively reducing the quadratic growth of number of instances
to linear.

Expressivity: One has the ability to exactly state which operation one is referring to. In fact,
if desired, one can have more that one model of an operation for a given monad, since
all operations and liftings are parametrised by arbitrary models.

The implementation that follows the ideas above constitutes the core of our library Mona-
tron. This core only needs Haskell 98 (Peyton Jones 2003) extended with rank-2 types (Pey-
ton Jones et al. 2007) and provides full functionality, but no overloading of operations. How-
ever, the overloading of operations provided by type classes is often convenient. When there
is no possible shadowing, and using additional language extensions is not problematic, one
can let the compiler infer to which model one is referring to.

The operations in the library must be constrained to one of the three formats provided.
This means that a programmer extending the library with a new monad transformer has to
be careful about how to define the effect-manipulating operations, for example analyzing if
the operations is algebraic or not, in order to get the most general lifting. Additionally, the
new transformer need to be studied to see if it is monoidal or functorial. However, once
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this is done, there is no need to do any additional work in order to lift the new operations
through existing monad transformers, or to lift existing operations through the new monad
transformer, as this is taken care of by the library infrastructure.

One of the design decisions was to maintain hidden the implementation of transformers
and operations. This may prove to be useful for improving the efficiency of the library, as
hidden implementations allow for optimizations that preserve the interface. For example,
the list monad is often used for modelling non-determinism, but its merge operation (concate-
nation) is rather inefficient. Using a different internal structure, but preserving the interface,
we can provide an efficient merge operation. We leave as future work a further departure
from the traditional implementation of monads in search for better performance.

The mtl (Monad Transformer Library) is the most well-known monad transformer library.
It is inspired by the work of Liang, Hudak, and Jones (1995), and for many years it has been
distributed together with the Haskell compiler GHC. More recently, a new library called
MonadLib (MonadLib) has been introduced. This library is an improvement over the mtl, but
it still suffers from the problems described in Section 5.2. However, the library presented in
this article owes a lot to the excellent work done by the authors of these two libraries.

The codensity monad transformer has appeared in a number of functional programming
papers. For example, it has been derived as a monad transformer for backtracking (Hinze
2000), it has been calculated in a search for efficient parsers (Claessen 2004), and it has been
used to optimize substitution in the free monad (Voigtländer 2008). In our case, however, we
were motivated by its mathematical properties.
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Chapter 6

Modular Interpreters Revisited

In this chapter we implement a modular interpreter for an example language. The language
is constructed by combining a process algebra, an arithmetic language, and a language for
exceptions. The language is later extended with parallel processes.

The purpose of the implementation is two-fold.

• The modular interpreter serves as an extended example of the use of monad trans-
formers in general, and of programming using Monatron, in particular.

• The example language will be reused in the next chapter on modular operational se-
mantics. This will allow us to compare the similarities, strengths and limitations of the
two approaches.

6.1 Modular Syntax

The first step towards obtaining modular semantics is to obtain modular syntax, in the sense
that the terms of a language are constructed by combining smaller languages. Consider
a simple process language P whose terms p ∈ P are specified by the following grammar,
which corresponds to Basic Process Algebra (Bergstra and Klop 1985; Fokkink 2000) with
empty process (Bergstra, Fokkink, and Ponse 2001):

p ::= nil | !a | p ; p | pt p

where a is a character. The informal meaning of the operators in the language is that !a

performs an atomic action a, which for the purposes of this chapter can be thought of as the
printing of the character a on the screen, p ; q sequences the execution of p and q, and pt q
non-deterministically chooses to execute either p or q.

It is straightforward to implement the grammar for P as a recursive datatype:

data P = Nil | Put Char | Seq P P | Alt P P
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However, datatype P is monolithic. In order to obtain modular syntax we need to reveal
the underlying structure, separating the operators of the language from the description of
its terms. We use the standard categorical technique (for example, see Lüth and Ghani 2002)
of modelling terms by the free monad over a signature, and the combination of languages
by the coproduct of free monads.

Terms as Free Monads

We will specify the syntax of a language by its signature, that is, the set of its operators and
their corresponding arities. Each signature has a corresponding instance of the Functor class,
which is its signature functor.

Example 6.1. The signature functor for P is as follows:

data P a = Nil | Put Char | Seq a a | Alt a a

instance Functor P where

fmap Nil = Nil

fmap (Put c) = Put c
fmap f (Seq p q) = Seq (f p) (f q)
fmap f (Alt p q) = Alt (f p) (f q)

Example 6.2. We define a simple language of arithmetic expressions, with integers, additions
and a conditional expression, whose terms z ∈ Z are specified by the following grammar:

z ::= Z | z + z | ifz z z z

The informal meaning of ifz c t e is that if c is 0 then t is evaluated, otherwise e is evaluated.
The signature functor for Z is as follows:

data Z a = Num Int | Add a a | Ifz a a a

instance Functor Z where

fmap f (Num i) = Num i
fmap f (Add p q) = Add (f p) (f q)
fmap f (Ifz c t e) = Ifz (f c) (f t) (f e)

Example 6.3. Let us consider now a language E of exceptions:

e ::= throw | catch e e

The informal meaning is that throw throws an exception and catch t u evaluates t and, if t
throws an exception, it recovers from it by evaluating u.

The signature functor for E is as follows:

data E a = Thr | Cat a a
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instance Functor E where

fmap Thr = Thr

fmap f (Cat p q) = Cat (f p) (f q)

This language is not very useful by itself as the only possible outcome is to throw an
exception. Its real utility is exhibited when one considers the language E together with some
other language.

Terms constructed with operators from the signature functor f and with variables of type
x are given by the free monad on f at x, represented by the datatype Term f x. The flexibility
of having variables of an arbitrary type will play a significant role in the next chapter where
they are used to represent meta-variables in operational rules.

data Term f x = Var x | Con (f (Term f x))

That is, a term is either a variable or an operator from f applied to a term. It is now straight-
forward to make such terms into both Functors and Monads:

instance Functor f ⇒ Functor (Term f ) where

fmap f (Var x) = Var (f x)
fmap f (Con t) = Con (fmap (fmap f ) t)

instance Functor f ⇒ Monad (Term f ) where

return = Var

(Var x) >>= f = f x
(Con t) >>= f = Con (fmap (>>=f ) t)

The fact that Term f is a monad shows that terms structured in this way come equipped with
a substitution operator, as given by (>>=) :: Term f a → (a → Term f b) → Term f b (Ghani
and Lüth 1997; Mac Lane 1971). With this representation of terms, the natural manner in
which to process terms is using a generic fold operator (Hagino 1987; Meijer, Fokkinga, and
Paterson 1991):

foldTerm :: (Functor f )⇒ (a→ b)→ (f b→ b)→ Term f a→ b
foldTerm v (Var a) = v a
foldTerm v c (Con fta) = c (fmap (foldTerm v c) fta)

Intuitively, the argument of type a → b is used to process variables, and the argument of
type f b→ b (an f -algebra) is used to process operators.

Finally, the programs of a language are its closed terms. That is, programs are terms with
variables taken from the empty datatype Zero, which comes equipped with a canonical map
empty :: Zero→ a into any other type a.

type Program f = Term f Zero
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Thus, we have a generic notion of syntax equipped with well-behaved substitution and a
well-behaved recursion operator. Moreover, as shown in the next section, we obtain a simple
and principled method for combining the syntax of languages.

Coproducts of Free Monads

We have shown that signatures define the operators of a language. The natural way to
combine two languages is to take the coproduct of the free monads modelling them. Since
free constructions preserve coproducts, this is equivalent to the free monad on the coproduct
of their signature functors. Consequently, we define the coproduct of functors as follows.

data (f ⊕ g) a = Inl (f a) | Inr (g a)

instance (Functor f , Functor g)⇒ Functor (f ⊕ g) where

fmap h (Inl fx) = Inl (fmap h fx)
fmap h (Inr gx) = Inr (fmap h gx)

copair :: (f a→ b)→ (g a→ b)→ (f ⊕ g) a→ b
copair f (Inl fa) = f fa
copair g (Inr ga) = g ga

The function copair processes the coproduct of functors f and g, given that we provide two
functions: one to process f and the other to process g. We can use copair to define an f ⊕ g-
algebra from an f -algebra and a g-algebra. Therefore, foldTerm can be used to process f ⊕ g
terms.

Example 6.4. We can combine the signature of the languages P, Z, and E using coproducts:

type L = P⊕ Z⊕ E

The term of the combined language L ( !a ;(3 + 5))t(catch throw !c) is written in Haskell
as the program prog:

prog :: Program L

prog = (seq (put ’a’) ((n 3) + (n 5)))t (catch throw (put ’c’))

put :: Char→ Term L a
put c = Con (Inl (Put c))
n :: Int→ Term L a
n m = Con (Inr (Inl (Num m)))
throw :: Term L a
throw = Con (Inr (Inr Thr))
seq, · t ·, ·+ ·, catch :: Term L a→ Term L a→ Term L a
seq p q = Con (Inl (Seq p q))
pt q = Con (Inl (Alt p q))
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p + q = Con (Inr (Inl (Add p q)))
catch p q = Con (Inr (Inr (Cat p q)))

Note that we may define other languages by taking other combinations. For example, we
may define the syntax EP of basic process algebra extended with exceptions or define EZ of
arithmetic extended with exceptions.

type EP = P⊕ E

type EZ = Z⊕ E

Coproducts provide a structured, mathematical foundation for assembling syntax. There
are, however, some practical concerns. As shown in example 6.4, we had to define auxiliary
functions such as put, seq, and · t · in order to make the definition of programs less cum-
bersome. These shorthands will only work for terms of signature P, and would need to
be changed should the language be extended. For instance, if we were working with the
language EP, then we would have to define a new auxiliary function throw′ as:

throw′ :: Term EP a
throw′ = Con (Inr Thr)

Redefining these auxiliary functions every time we change our language is inherently
non-modular. In the following subsection we show how to solve this problem.

Automatic Injections and Partial Projections

Let Σ = F1 ⊕ . . .⊕ Fn be a coproduct of functors such that i 6= j ⇒ Fi 6= Fj. Then, if G = Fi

we can talk about an injection inG rather than ini, hence avoiding the need to explicitly state
the index of G in the coproduct. In this situation, it is possible to define injections and do
case analysis of coproducts for which only a particular type is known (in which case we call
the case analysis a partial projection).

The way to achieve this (Liang, Hudak, and Jones 1995; Swierstra 2008) is to parame-
terise each function by injection/projection pairs corresponding to each of the summands
a producer/consumer of the coproduct is interested in. Rather than explicitly parameteris-
ing each function, we use Haskell’s type-class system and let the compiler figure out which
injection/projection is meant.

class sub ↪→ sup where

inj :: sub a→ sup a
prj :: sup a→ Maybe (sub a)

We can think of sub ↪→ sup as meaning “sub is a subtype of sup”. The class method inj is
used to inject a subtype sub into the supertype sup, and prj let us do a case analysis on a sup
to determine if it is in fact a sub.
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The following instances state the reflexivity of · ↪→ · and that f is a subtype of a coproduct
g1 + (g2 + (. . . )) when either f = g1 or f is a subtype of (g2 + (. . . )). Importantly, the sum
must be associated to the right for the type-checker to be able to infer an instance, so we need
to be careful when constructing coproducts.

instance f ↪→ f where

inj = id

prj = Just

instance f ↪→ f ⊕ g where

inj = Inl

prj (Inl f ) = Just f
prj = Nothing

instance (f ↪→ g)⇒ f ↪→ h⊕ g where

inj = Inr · inj

prj (Inr a) = prj a
prj = Nothing

Finally, we will rewrite the auxiliary functions in Example 6.4 so that they work with any
signature which satisfies certain requirements expressed as type constraints. In Figure 6.1
we show the modular constructors for the operators in P, Z, and E.

The type-class ↪→ provides injections and case analysis for types of kind ∗ → ∗. We apply
the same technique for types of kind ∗ and define the following type-class and instances.

class sub
∗

↪→ sup where

inj∗ :: sub→ sup
prj∗ :: sup→ Maybe sub

instance v
∗

↪→ v where

inj∗ = id

prj∗ = Just

instance v
∗

↪→ Either v u where

inj∗ = Left

prj∗ (Left v) = Just v
prj∗ = Nothing

instance (v
∗

↪→ w)⇒ v
∗

↪→ Either u w where

inj∗ = Right · inj∗

prj∗ (Right a) = prj∗ a
prj∗ = Nothing

The instances for
∗

↪→ are analogous to the instances for ↪→ except that instead of the
coproduct of functors ⊕ we use the datatype Either. For convenience, we define a function
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con :: (s ↪→ t)⇒ s (Term t x)→ Term t x
con = Con · inj

nil :: (P ↪→ t)⇒ Term t x
nil = con Nil

put :: (P ↪→ s)⇒ Char→ Term s x
put c = con (Put c)
seq :: (P ↪→ s)⇒ Term s x→ Term s x→ Term s x
seq p q = con (Seq p q)
· t · :: (P ↪→ s)⇒ Term s x→ Term s x→ Term s x
pt q = con (Alt p q)
n :: (Z ↪→ s)⇒ Int→ Term s x
n m = con (Num m)
·+ · :: (Z ↪→ s)⇒ Term s x→ Term s x→ Term s x
p + q = con (Add p q)
ifz :: (Z ↪→ s)⇒ Term s x→ (Term s x, Term s x)→ Term s x
ifz c (t, e) = con (Ifz c t e)
thr :: (E ↪→ s)⇒ Term s x
thr = con Thr

cat :: (E ↪→ s)⇒ Term s x→ Term s x→ Term s x
cat p q = con (Cat p q)

Figure 6.1: Modular constructors for the operators of P, Z, and E

>>=↪→ which acts like >>=, but works on monads on a supertype, and only binds a subtype.

(>>=↪→) :: (sub
∗

↪→ sup, Monad m)⇒ m sup→ (sub→ m sup)→ m sup
m >>=↪→ f = do x← m

case prj∗ x of

Nothing→ return x
Just y → f y

With the use of coproducts and the functorial representation of signatures, we achieved
our goal of obtaining and implementing a modular syntax.

6.2 Modular Interpreters

We now present how to combine the semantics of each language into the semantics for the
total language. Since an interpreter for a language with signature functor f is given by an
f -algebra, we define the class Interp of functors with an algebra over a given computational
monad M and type of values V. Evaluating a program of a language f which is an instance
of Interp is simply folding the algebra interp.
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class (Functor f )⇒ Interp f where

interp :: f (M V)→ M V

eval :: (Interp f )⇒ Program f → M V

eval = foldTerm empty interp

Given two languages f and g which are instances of Interp, the semantics of the combined
language is given by the copair of the corresponding algebras.

instance (Interp f , Interp g)⇒ Interp (f ⊕ g) where

interp = copair interp interp

Computations and Values

The class Interp is defined over a computational monad M and value type V For defining L

we need a computational monad that can do exceptions, output, non-determinism, and a
value type that can express the null process and integers. We take the monad M and type V

of values to be:

type V = Either Int ()

type M = ExcT () (WriterT String (NonDetT Id))

The value type V is defined as either an Int (as produced by the arithmetic language) or
unit (as produced by the process algebra language). The type V could have been defined as
Maybe Int, but by using Either we benefit from the automatic injections and partial projec-
tions provided by the type class

∗
↪→.

The monad M is constructed by successively applying monad transformers to the monad
of pure computations Id. The applied monad transformers are:

• the NonDetT monad transformer to add non-determinism;

• the WriterT String monad transformer to add string output;

• the ExcT () monad transformer to add exceptions of type unit.

Full details of the implementation of these three monad transformers are available in
Appendix A.

6.3 Interpreters for the Sub-Languages

We define the interpreters of the languages that are assembled to form L by providing in-
stances of the type class Interp for each signature functor. In each case, the interpreters are
defined assuming as little as possible about the monad M and the type of values V.
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Interpreter for Z

The interpreter for the arithmetic language Z is given by the following instance.

instance Interp Z where

interp (Num n) = return (inj∗ n)
interp (Add x y) = x >>=↪→ λm→

y >>=↪→ λn→
return (inj∗ (n + m :: Int))

interp (Ifz c t e) = c >>=↪→ λm→ if (m :: Int) ≡ 0 then t else e

The use of >>=↪→ allows us to define this instance of Interp with only the knowledge that
Int is a subtype of V. We had to add type annotations so that the compiler can infer the type
of the injection inj∗, as addition an 0 are overloaded in Haskell and they can refer to any type
which is an instance of the type-class Num. There no requirements on M apart from it being
a monad.

Interpreter for E

The interpreter for the exception language E is given by the following instance. In this case
the semantics is discharged on the effectful operations of the monad M.

instance Interp E where

interp Thr = throw ()
interp (Cat a h) = handle a (λ()→ h)

The interpreter for E does not need any knowledge of the values in V, but requires a
monad M which supports the operations throw and handle.

Interpreter for P

The interpreter for the process algebra language P is given by the following instance.

instance Interp P where

interp Nil = return (inj∗ ())
interp (Put c) = trace [c ] >>= return · inj∗

interp (Seq t u) = t >>= λ → u
interp (Alt t u) = plusND t u

The interpreter for P requires a monad M which supports operations for writing String

traces and for non-determinism. The semantics of Put requires that the unit type () is a
subtype of V.
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We have defined instances of Interp providing interpreters for the languages Z, E, and
P. The instance for the combined language L is automatically obtained by the previously
defined instance of Interp for coproducts.

6.4 Adding Parallel Computations

If we want to extend our language with a merge operator for adding parallel computation of
processes we need to:

• Define the syntax for the operator (and provide a modular constructor)

data R a = Par a a

instance Functor R where

fmap f (Par p q) = Par (f p) (f q)

· || · :: (R ↪→ s)⇒ Term s x→ Term s x→ Term s x
p || q = con (Par p q)

• Extend the computational monad M in a way that allows us to define the desired se-
mantics. The intuitive understanding of the merge operator is that two processes are
run in parallel, interleaving atomic actions or steps. For this we use the step monad
transformer (for details, see Appendix A.1).

codata StepT f m x = T {runT :: m (Either x (f (StepT f m x)))}

In Haskell there is no distinction between least and greatest fixpoints of recursive
datatypes. To distinguish between them, we write least fixpoints as data and great-
est fixpoints, such as StepT as codata. Note that the related monad transformer of
example 4.6 is a least fixpoint and can only represent the interleaving of terminating
processes.

The monad StepT f m has steps of type f and supports an operation step :: f (m a)→ m a
(see Appendix A.4). The intended notion of step for our language is to print a character. That
is, we will consider printing a character (possibly with other effects) as an atomic action.
Therefore, we define the functor Pr for representing this notion of step and we show that for
any monad m, the monad StepT Pr m has the algebraic operation trace:

data Pr a = Pr Char a

instance Functor Pr where

fmap f (Pr c a) = Pr c (f a)

instance (Monad m)⇒ MonadAlgModel (WriterOp Char) (StepT Pr m) where

algModel (Trace c a) = step (Pr c (return a))
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We redefine the monad M, replacing the WriterT String monad transformer by the monad
transformer for Pr-steps. Importantly, there is no need to modify existing interpreters, as this
new combined monad supports all the operations required by them.

type M = ExcT () (StepT Pr NonDet)

Finally, we provide the interpreter for the parallel merge operation:

instance Interp R where

interp (Par t u) = t⊗ u
where t⊗ u = plusND (caseStepExcT (const u)

(λft→ step (fmap (⊗u) ft)) t)
(caseStepExcT (λv→ liftM (const v) t)

(λfu→ step (fmap (t⊗) fu)) u)

where the function

liftM :: (Monad m)⇒ (a→ b)→ m a→ m b
liftM f m = m >>= return · f

maps a function under a monad, in the same way that fmap maps a function under a functor.
The parallel merge is defined by non-deterministically doing a step on the left argument

or on the right argument. This implementation of parallel execution is not symmetric. The
term on the left is only executed for side-effects and its resulting value is discarded. This kind
of parallelism is commonly seen in functional languages where one is interested in both the
effects and the value of an expression (for another example of this style of semantics, see
Peyton Jones, Gordon, and Finne 1996).

In order to define the parallel merge operation, we needed to use the caseStep operation
of the StepT monad transformer.

caseStep :: (Functor f , Monad m)⇒
(a→ StepT f m x)→ (f (StepT f m a)→ StepT f m x)
→ StepT f m a→ StepT f m x

caseStep v c (T m) = T (m >>= either (runT · v) (runT · c))

This operation does not fit in any of our formats of liftable operations (see the discussion
at the end of Section 3.2). Consequently, we have to manually lift it trough the exception
monad transformer.

caseStepExcT :: (Functor f , Monad m)⇒
(a→ ExcT e (StepT f m) x)→
(f (ExcT e (StepT f m) a)→ ExcT e (StepT f m) x)→
ExcT e (StepT f m) a→ ExcT e (StepT f m) x

caseStepExcT v c = X · caseStep (runExcT · either throw v) (runExcT · c · fmap X) · runExcT
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6.5 Summary

We have seen how monad transformers and the Monatron library can be used to program
modular interpreters. In particular, we combined three languages, and then extended the
resulting language with a parallel merge operator without the need to modify the existing
interpreters.

We have shown how to combine syntax modularly. The technique is based on the simple
fact that, since left adjoints preserve colimits, the coproduct of two free monads TF + TG is
equivalent to TF+G (i.e. the free monad on the coproduct F + G). The implementation of
the type class that provides automatic injections and partial projections for types of kind ∗ is
originally from Liang, Hudak, and Jones (1995), and has been implemented for kind ∗ → ∗
and explained in detail by Swierstra (2008).

The combination of the languages for exceptions, arithmetic and basic process algebra
worked seamlessly: The interpreters for each of these languages were defined indepen-
dently, with each language posing certain requirements on the computational monad and
type of values. It is interesting to note that, because the order in which transformers are ap-
plied to construct a monad matters, we can define many different semantics by instantiating
M to different monads.

The addition of a construct for parallelism required modifying the existing monad for a
more refined version which incorporated a notion of “step”. In the literature the resump-
tions monad transformer is often used for this purpose (see, for example, Espinosa 1994).
The resumptions monad transformer is equivalent to the step monad transformer on a triv-
ial step (i.e. where the step functor is the identity functor). In other papers (for example,
Papaspyrou 2001)1 the completely iterative monad (Milius 2005) on the underlying functor
of the transformed monad is presented as the resumptions monad transformer. However
this construction does not fit the standard notion of monad transformer as it does not have
a monad morphism lift. When using the resumptions monad, interleaving points have to be
manually inserted in the semantics, for example, after printing a character. We prefer the use
of the StepT monad transformer as it does not require us to modify the existing semantics.

One problem with the use of the StepT monad transformer is that we were required to
lift caseStep manually (this problem would also occur had we used the resumptions monad
transformer). A more satisfying solution for lifting operations such as caseStep is clearly
needed.

The idea of a type-class Interp for signatures with an interpreter instance, is inspired by
the modular interpreter implementation of Liang, Hudak, and Jones (1995).

1In these papers the ambient category is assumed to be algebraically compact and, consequently, they make
no distinction between least and greatest fixpoints.
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Chapter 7

Modular Operational Semantics

Operational semantics is one of the primary techniques for formally specifying the meaning
of programs. Traditionally, one defines the operational semantics of a programming lan-
guage as a relation over the syntax of programs. In structural operational semantics (Plotkin
1981; reprinted in Plotkin 2004), this relation is defined by a set of inductive rules. More-
over, one seeks syntactic restrictions of the format of rules in order to guarantee certain
properties. The simplicity of this approach has made structural operational semantics very
popular, especially for concurrent languages. Nevertheless, the syntactic nature of this ap-
proach to operational semantics means that it is difficult to establish language-independent,
meta-theoretical results. In the absence of a non-syntactic meta-theory one is faced with the
following problems:

• It is not clear how the syntactic restrictions on rules that are needed to obtain a sensible
notion of equivalence arise, or how they can be modified to accommodate changes in
the language or in the notion of observable behaviour. The lack of an abstract meta-
theory means that different rule formats have to be developed independently in order
to accommodate different language features (for an overview of different rule formats
and language features supported, see Aceto, Fokkink, and Verhoef 2001).

• It is not clear how to relate operational semantics with denotational semantics in a
language-independent manner. One would like to reason about programs with the
more abstract denotational semantics, for which general, language-independent tools
are available, and use the operational semantics to understand how programs would
be executed in a machine. However, without a meta-theory which relates the two
approaches, proofs of adequacy need to be done for each language.

• Without an abstract meta-theory it is difficult to express a generic notion of operational
semantics in a programming language or in a theorem prover. Without a way to ex-
press such a generic notion, it is hard to imagine how one could develop a framework
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for operational semantics similar to those existing for implementing logics or type the-
ories.

Fortunately, the development of an abstract meta-theory for operational semantics has
begun. Turi (1996) abstracted from the concrete, syntactic approach to operational semantics,
and expressed operational semantics as a categorical construct, namely a distributive law of
syntax over behaviour. By parameterising his construct by a functor representing syntax and
a functor representing semantics, Turi abstracted away from the specific details of particular
languages and their meaning. Moreover, it became possible to relate the operational and
denotational approaches; indeed, they become two sides of the same coin, as they define the
same semantic function, one by the universal property of the final coalgebra, the other by
the universal property of the initial algebra. That is, the semantic function J−K : µΣ → νB
from the syntax into the behaviour, is induced by both an algebra over the final coalgebra
νB and a coalgebra over the initial algebra µΣ. These are provably equal.

In previous chapters we have shown how to modularly combine denotational semantics
using monads and monad transformers. In this chapter, we take advantage of the relation
between the operational and the denotational approaches exposed by Turi, and use monads
and monad transformers to obtain modular operational semantics.

We implement our ideas in Haskell, which helps to bring Turi’s categorical work to the
functional programming community in a more accessible way, makes the ideas directly exe-
cutable, facilitates experimentation, and allows us to benefit from Haskell’s well-developed
support for monadic programming. Moreover, it will make more direct the comparison
between the obtained modular operational semantics and the modular interpreters of the
previous chapter.

7.1 Structural Operational Semantics

Operational semantics gives meaning to terms in a language by defining a transition rela-
tion that captures execution steps in an abstract machine. Reasoning about this relation can
be difficult. Therefore Plotkin proposed structural operational semantics (SOS), in which the
transition relation is defined by structural recursion on syntax-directed rules (Plotkin 1981,
2004). One then uses the principle of structural induction to reason about the induced tran-
sition relation.

We give as examples the structural operational semantics for the languages P, Z, and E

introduced in Chapter 6.

Example 7.1. The operational semantics for the basic process algebra P is given by the fol-
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lowing set of structural rules:

nil↓ !a
a−→ nil

p a−→ p′

p ; q a−→ p′ ; q

p↓ q a−→ q′

p ; q a−→ q′
p↓ q↓

p ; q↓

p a−→ p′

pt q a−→ p′
q a−→ q′

pt q a−→ q′
p↓

(pt q)↓
q↓

(pt q)↓

The rules recursively define the relation→⊆ P× A× P and a predicate ↓⊆ P, on terms P
and set of characters A. We write p a−→ p′ for (p, a, p′) ∈ → and p↓ for p ∈↓. Intuitively, the
transition p a−→ p′ represents a term p which can evolve into term p′ by printing the character
a on the screen, whereas p↓ holds for terms which can successfully terminate.

Example 7.2. The operational semantics for the language Z is given below. The rules recur-
sively define a relation ⇓ ⊆ Z ×Z, where we write t ⇓ n for (t, n) ∈ ⇓. Intuitively, t ⇓ n
means that term t can evaluate to integer n.

n ⇓ n
t ⇓ n u ⇓ m
t + u ⇓ n + m

c ⇓ 0 t ⇓ n
ifz c t e ⇓ n

c ⇓ n n 6= 0 e ⇓ m
ifz c t e ⇓ m

Note that the semantics were given in a small-step style for P and a big-step style for Z.
However, the mathematical approach to operational semantics of this chapter treats these
two different styles uniformly, as long as the rules are of a particular type (see Section 7.3).

Example 7.3. The operational semantics for the language of exceptions E is given by the
rules below and define a predicate ↑ ⊆ E, where we write e ↑ for e ∈ ↑. Intuitively, e ↑means
that e can throw an exception.

throw ↑
t ↑ u ↑

(catch t u) ↑

As in Chapter 6, we will consider combining E with P and Z. In order to obtain an
operational semantics for the combined language, not only do we need to put together the
operational rules corresponding to each language, but also we need to add extra rules, for
example, explaining how catch deals with the transitions defined by the other languages and
how the operators in other languages deal with exceptions. In Figures 7.1, 7.2, and 7.3, we
show all the rules that need to be added to combine E with P and Z.

There were some decisions to be made when combining these languages. For example,
when combining P and Z (Figure 7.3), we decided that sequencing discards the value of its
first argument, and that addition is evaluated from left to right (whereas before the order of
evaluation did not matter).

More generally, combining operational semantics is not just a matter of the tedious and
error-prone task of adding extra syntactical rules, but may also involve modifying the orig-
inal rules, for example, to propagate state. This makes it difficult to formally relate the
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p a−→ p′

catch p q a−→ catch p′ q

p↓
(catch p q)↓

p ↑ q a−→ q′

catch p q a−→ q′

p ↑ q↓
(catch p q)↓

p ↑
(p ; q) ↑

p↓ q ↑
(p ; q) ↑

p ↑
(pt q) ↑

q ↑
(pt q) ↑

Figure 7.1: Additional rules for combining P and E

t ⇓ n
catch t u ⇓ n

t ↑ u ⇓ n
catch t u ⇓ n

t ↑
t + u ↑

u ↑
t + u ↑

c ↑
(ifz c t e) ↑

c ⇓ 0 t ↑
(ifz c t e) ↑

c ⇓ z z 6= 0 e ↑
(ifz c t e) ↑

Figure 7.2: Additional rules for combining Z and E

p ⇓ n q a−→ q′

(p ; q) a−→ q′
p ⇓ n q↓
(p ; q)↓

p↓ q ⇓ n
(p ; q) ⇓ n

p ⇓ n
(pt q) ⇓ n

q ⇓ n
(pt q) ⇓ n

p↓
p + q↓

p ⇓ n q↓
p + q↓

p a−→ p′

p + q a−→ p′ + q

p ⇓ n q a−→ q′

p + q a−→ p + q′
c a−→ c′

(ifz c t e) a−→ c′
c↓

(ifz c t e)↓

c ⇓ 0 t↓
(ifz c t e)↓

c ⇓ z z 6= 0 e↓
(ifz c t e)↓

c↓
(ifz c t e)↓

c ⇓ 0 t a−→ t′

(ifz c t e) a−→ t′
c ⇓ z z 6= 0 e a−→ e′

(ifz c t e) a−→ e′

Figure 7.3: Additional rules for combining Z and P

original and combined languages. The underlying problem is that SOS lacks a language-
independent theory that would clarify what combining languages means in general, rather
than for specific rules.

7.2 Transition Relations as Coalgebras

Operational semantics are given by a transition relation which represents execution steps in
an abstract machine. Transition relations can be modeled in a generic, categorical way by
coalgebras (Jacobs and Rutten 1997). Given an endofunctor B, a B-coalgebra is an object X
and a structure map X → BX. The carrier of the coalgebra X can be seen as the set of states
of an abstract machine, while the endofunctor B represents the observable behaviour of the
machine.

Every relation R ⊆ X × Y can be written as a function X → PY mapping every element
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in X to its set of related elements in Y. The simplest technique for interpreting the pow-
erset functor in Haskell is to use the list functor provided by the language. However, we
will use the NonDet monad provided by the Monatron library instead. In this way we will
benefit from the automatic lifting of its two algebraic operations zeroND and plusND (see
Appendix A.4 for details of their implementation). Thus, we interpret relations R ⊆ X × Y
as Haskell functions X→ NonDet Y.

Example 7.4. The SOS rules for the language P define a transition relation →⊆ P× A× P
and a predicate ↓⊆ P. The → relation is equivalent to a function of type P → P(A × P),
and the predicate ↓ is equivalent to a function of type P → Bool ∼= P(1). By the universal
property of products, giving two such functions is equivalent to giving a function of type
P → P(A × P) × P(1), which by the isomorphism P(A) × P(B) ∼= P(A + B), is in turn
equivalent to a function

k : P→ P(1 + A× P).

That is, both transition relations can be given by a single coalgebra (P, k) for the functor
P(1 + A×−). In Haskell, we can express this functor as the following datatype, where Pr

is the datatype Pr a = Pr Char a defined in Section 6.4.

data BP a = BP {unBP :: NonDet (Either () (Pr a))}

instance Functor BP where

fmap f (BP m) = BP (fmap (fmap (fmap f )) m)

Example 7.5. Consider the language Z of Section 7.1. A simple inductive argument shows
that the ⇓ relation is a function. Hence, we can describe the induced transition relation by a
KI-coalgebra, where KI is the constant Int functor.

newtype KI a = KI Int

Example 7.6. The transition relation ↑ can be represented by a KE-coalgebra, where KE is
the constant unit functor.

data KE a = KE

As shown in these last two examples, when the transition relation is a function, we can
remove the powerset (or list) functor. In this manner, the determinism of the underlying
transition system is made explicit, avoiding the need for a separate proof. Being able to
describe precisely what is observable by choosing an appropriate behaviour functor is an
important advantage of the coalgebraic approach.
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Execution of transition systems

In order to execute a transition system specified by a coalgebra, we unfold the coalgebra (Hut-
ton 1998; Jacobs and Rutten 1997) to construct a tree of observations. The appropriate notion
of tree is given by the greatest fixpoint of the behaviour functor of the coalgebra.

codata Nu f = Nu (f (Nu f ))
out :: (Nu f )→ f (Nu f )
out (Nu n) = n

unfold :: Functor b⇒ (x→ b x)→ x→ Nu b
unfold g = Nu · fmap (unfold g) · g

As observed in Section 6.4, in Haskell there is no distinction between least and greatest
fixpoint, and the use of codata above only expresses the intended meaning.

In conclusion, coalgebras provide an abstract model of transition systems, where the
type of the transition system and its corresponding notion of equality are determined by a
functor. However, as discussed in the next section, this is not sufficient to model structural
operational semantics.

7.3 Mathematical Operational Semantics

Coalgebras provide an abstract model of transition systems. Unfortunately, they do not
support a proper theory of SOS. In particular, the carrier of a coalgebra is unstructured, and
hence a purely coalgebraic approach will not be able to take advantage of the fact that the
carrier of the coalgebra is the set of terms, and hence, has an algebra structure. Therefore,
in order to develop a mathematical operational semantics, what it is needed is a structure
which contains both coalgebraic and algebraic features. Turi constructed such a structure in
his categorical framework for SOS by focusing on the operational rules rather than on the
transition relation.

In this section, we present our implementation of Turi’s framework. To begin with, let us
consider a typical operational rule and analyse its structure:

p a−→ p′

p ; q a−→ p′ ; q

premisses
source→ target

In general, a rule consists of some premisses and a conclusion. The source of the conclusion
consists of an operator of the language (the ; operator, in the example above) applied to some
metavariables (p and q) which stand for arbitrary terms. Premisses are transitions from these
metavariables. Finally, the target of the conclusion is a term with metavariables taken from
the source of the conclusion and from the premisses (q and p′, respectively).
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In the previous two sections, we showed how to abstract the notion of syntax by a sig-
nature functor and the notion of observable behaviour by a behaviour functor. Using these
concepts we can abstract the structure of operational rules.

The Type of Operational Rules

Given a language with syntax determined by a signature functor s and behaviour functor b,
its structural operational semantics is given by rules of the form:

type OR s b = ∀ x. s (x, b x)→ b (Term s x)

The type above says that operational rules are defined by a polymorphic function which,
given the source of the conclusion of a rule in which every variable is paired with its be-
haviour, it returns the transition in the conclusion of the rule.

Importantly, operational rules are polymorphic in the (meta)variables x in order to guar-
antee that the induced transition depends only on the behaviour of the subterms, and not on
the actual subterms.

Example 7.7. We give an operational semantics to the constructs of P given in Section 6.1
with a behaviour functor BP.

orP :: OR P BP

orP Nil = BP (return (Left ()))
orP (Put c) = BP (return (Right (Pr c nil)))
orP (Seq ( , bp) (q, bq)) = BP (unBP bp >>= either

(λ()→ unBP (fmap Var bq))
(λ(Pr c p′)→ return (Right (Pr c (seq (Var p′) (Var q))))))

orP (Alt ( , bp) ( , bq)) = BP (unBP (fmap Var bp) ‘plusND‘ unBP (fmap Var bq))

Function orP implements the operational rules of P given in Example 7.1 by pattern-
matching on the operator in the source of the conclusion. In the case of Nil, the only possible
transition is to terminate. In the case of Put c, the only possible transition is to print c and
then behave as the term nil. In the case of Seq p q, the type of each possible transition of p is
analysed in order to see which transition to perform. If p may terminate, then Seq p q may
continue execution with the behaviour of q. If p may print c and continue execution with
term p′, then Seq p q may print c and continue execution with term Seq p′ q. In the case
of Alt p q, the possible transitions are the union of the possible transitions from p and the
possible transitions from q.

Operational rules OR not only are a structured, language-independent formulation of
SOS, but also have the important property that they are guaranteed to induce a transition
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relation with bisimulation as a congruence and to generate an adequate denotational model,
as shown in the next subsection.

Obtaining a Transition Relation

Every operational rule OR s b induces a lifting opMonad of the syntax monad Term s to the
category of b-coalgebras. The function opMonad (the operational monad of Turi (1996)) takes
a b-coalgebra on x and returns a b-coalgebra on Term s x. Intuitively, opMonad shows that
given an operational rule and the semantics of variables x in the terms, we can give semantics
to terms with variables from x.

opMonad :: (Functor s, Functor b)⇒
OR s b→ (x→ b x)→ Term s x→ b (Term s x)

opMonad op k = snd · foldTerm 〈Var, fmap Var · k〉
〈Con · fmap fst, fmap join · op〉

where 〈f , g〉 a = (f a, g a)

In order to execute a Program (where Program s = Term s Empty as defined in the previ-
ous chapter) we unfold the coalgebra obtained from opMonad:

run :: (Functor s, Functor b)⇒ OR s b→ Program s→ Nu b
run op = unfold (opMonad op empty)

Moreover, an operational rule gives rise to a denotational model s (Nu b)→ (Nu b).

denModel :: (Functor s, Functor b)⇒ OR s b→ s (Nu b)→ Nu b
denModel or = unfold (opMonad or out) · Con · fmap Var

eval :: (Functor s, Functor b)⇒ OR s b→ Program s→ Nu b
eval or = foldTerm empty (denModel or)

Theorem 7.8 (Adequacy (Turi 1996)). The operational and the denotational semantics induced by
an operational rule or coincide.

run or ≡ eval or

Corollary 7.9. Bisimulation is a congruence for the transition relation corresponding to an opera-
tional rule or.

This concludes our functional implementation of Turi’s mathematical operational seman-
tics. In the next section, we tackle the question of how to modularly combine operational
rules.

7.4 Modular Operational Semantics

Operational rules OR s b are defined for a given signature functor s and behaviour functor
b. In Section 6.1 we showed how to obtain modular syntax by abstracting from a specific
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signature functor. Our goal now is to abstract from specific behaviour functors in order to
obtain modular behaviours. We achieve this by structuring the behaviour functor with three
components:

• A monad m which models computational effects;

• A step functor f which determines the notion of a (small) step;

• Final values v.

type B m f v x = m (Either v (f x))

Additionally, we use the
∗

↪→ relation to structure values in v (when several types of values
are present) and the ↪→ relation to structure the step functor f (when several types of steps
are present).

Putting together modular behaviours with modular syntax yields the following defini-
tion of modular operational rules:

type MOR s t m f v = ∀ x. s (x, B m f v x)→ B m f v (Term t x)

Modular operational rules MOR differ from concrete operational rules OR in two ways:

(1) there is a distinction between the signature s of the language being defined and the
signature of the complete language t, simplifying the combination of modular opera-
tional rules (otherwise, one needs to traverse terms, inserting each construct into the
total language);

(2) behaviours are structured with a monad m, a step functor f and a type of values v.

Proposition 7.10. The carrier of the final coalgebra on a structured behaviour functor (B m f v)
coincides with the monad transformer of f -steps applied to the monad m at v.

StepT f m v ∼= Nu (B m f v)

Proof. Unfold the definitions.

Given a MOR, we can ossify1 it and obtain a concrete OR by fixing the signature of the
complete language to be the signature of the language being defined, and by providing a
behaviour which satisfies the behaviour requirements of the given MOR. A new datatype
BF is introduced for the technical reason that B was defined as a type synonym, and hence
cannot be made an instance of the class Functor (as needed by opMonad, for example).

newtype BF m f v y = BF {unBF :: m (Either v (f y))}

1To ossify is to turn into bone, and figuratively, to become rigid.
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instance (Monad m, Functor f )⇒ Functor (BF m f v) where

fmap f (BF m) = BF (liftM (fmap (fmap f )) m)

ossify :: (Functor s)⇒ MOR s s m f v→ OR s (BF m f v)
ossify mor = BF ·mor · fmap (λ(a, b)→ (a, unBF b))

Defining Modular Operational Rules

We give examples of modular operational rules. For convenience, we first define several
auxiliary functions.

caseAny :: (Monad m, Functor f )⇒
B m f v x→ (Term s x→ Term s x)→
(v→ B m f v (Term s x))→ B m f v (Term s x)

caseAny b t h = b >>= either h (return · Right · fmap (t · Var))

caseVal :: (Monad m, Functor f , u
∗

↪→ v)⇒
B m f v x→ (Term s x→ Term s x)→
(u→ B m f v (Term s x))→ B m f v (Term s x)

caseVal b t h = caseAny b t (λv→ case (prj∗ v) of

Nothing→ return (Left v)
Just u → h u)

The function caseAny takes a structured behaviour and does a case analysis trying to find
any value v. If a value is found, the third argument h –which handles values– is applied.
On the other hand, if a step is found, the step is performed and computation is continued
by applying the endofunction on Terms t. The function caseVal is similar but only handles a
particular type of value u

∗
↪→ v. (cf. the operation >>=↪→ in 6.1).

Finally, we define functions val and stp, which return a structured behaviour from a value
or a step respectively, and the function up, which takes a structured behaviour on a variable
and returns a structured behaviour on a term.

val :: (u
∗

↪→ v, Monad m)⇒ u→ B m f v x
val = return · Left · inj∗

stp :: (g ↪→ f , Monad m)⇒ g x→ B m f v x
stp = return · Right · inj

up :: (Monad m, Functor s, Functor f )⇒ B m f v x→ B m f v (Term s x)
up = liftM (fmap (fmap Var))

Using these tools we can carry out one of the fundamental ideas of the approach: a
modular language should have the least possible requirements on syntax and behaviour, as
illustrated in the following example.

Example 7.11. The semantics of P as a modular operational rule is:
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morP :: (Functor f , Functor s, P ↪→ s, ()
∗

↪→ v, Pr ↪→ f , MonadAlgModel NonDetOp m)
⇒ MOR P s m f v

morP Nil = val ()
morP (Put c) = stp (Pr c nil)
morP (Seq ( , bp) (q, bq)) = caseAny bp (‘seq‘ (Var q)) (λ → up bq)
morP (Alt ( , bp) ( , bq)) = up (bp ‘plusND‘ bq)

The operational rule morP requires:

• P ↪→ s : The signature functor s should include the constructs of P;

• ()
∗

↪→ v : The type of values should include the unit type ();

• Pr ↪→ f : The step functor f should include the functor Pr;

• MonadAlgModel NonDetOp m : The monad m should support the algebraic operations
zeroND and plusND for non-determinism.

In the sequencing construct, the computation moves to second argument after any value
is reached. Alternatively, one could have used caseVal and only move to the second argu-
ment when a value () is reached. This would mean that if p reaches a value other than
() then that value would be returned without ever executing q. Remarkably, Seq does not
need to know anything about the step functor; computation simply continues until a value
is reached.

Example 7.12. The modular operational semantics for the language Z is given by morZ,
where the monad in the structured behaviour forces the choice of an order of evaluation
of the arguments of Add.

morZ :: (Functor f , Functor s, Monad m, Z ↪→ s, Int
∗

↪→ v)⇒ MOR Z s m f v
morZ (Num i) = val i
morZ (Add (p, bp) (q, bq)) = caseVal bp (‘add‘ Var q)

(λi→ caseVal bq (Var p ‘add‘)
(λj→ val (i + j :: Int)))

morZ (Ifz ( , bc) (t, bt) (e, be)) = caseVal bc (‘ifz‘ (Var t, Var e))
(λi→ if i ≡ (0 :: Int) then up bt else up be)

The operational rule morZ requires:

• Z ↪→ s : The signature functor s should include the constructs of Z;

• Int
∗

↪→ v : The type of values should include the type of integers Int.

Example 7.13. The modular operational semantics for the language E is given by morE.
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morE :: (Functor s, Functor f , E ↪→ s, MonadAlgModel (ThrowOp ()) m,
MonadModel (HandleOp ()) m)⇒ MOR E s m f v

morE Thr = throw ()
morE (Cat ( , bp) (q, bq)) = handle (bp >>= return · fmap (fmap g)) (λ()→ up bq)

where g p′ = Var p′ ‘cat‘ Var q

As opposed to the interpreter for E in Section 6.3, the semantics of Cat is not just a matter
of using the operation handle provided by the monad m. It is also necessary to catch the
exceptions that might be thrown in future steps.

The operational rule morE requires:

• E ↪→ s : The signature functor s should include the constructs of E;

• MonadAlgModel (ThrowOp ()) m : The monad m should support the algebraic opera-
tion throw for throwing exceptions of type ();

• MonadModel (HandleOp ()) m : The monad m should support the operation handle for
handling exceptions of type ().

Example 7.14. As a last example we define an operational rule for the merge operator. Since
behaviours already provide a notion of step, the only requirement on the behaviour is that
the monad m should support non-determinism.

morR :: (Functor s, Functor f , R ↪→ s, MonadAlgModel NonDetOp m)⇒ MOR R s m f v
morR (Par (p, bp) (q, bq)) = caseAny bp (|Var q) (λ → up bq)

‘plusND‘
liftM (fmap (fmap (λy→ Var p |Var y))) bq

7.5 Combining Modular Operational Rules

Combining modular operational rules is a simple matter of taking their copair.

(d) :: MOR s t m f v→ MOR s′ t m f v→ MOR (s⊕ s′) t m f v
op1 d op2 = copair op1 op2

This is the fundamental tool for combining modular operational rules. The constraint
that the monad m and behaviour b should be the same for the input rules of d appears to
be a severe restriction that undermines our original goal. However, since MOR are expected
to be written on an abstract notion of structured behaviour with certain requirements, the
requirements on the behaviour of the combined rules is the combination of the requirements
on behaviour of each of the operational rules being combined.

Example 7.15. We construct an operational rule corresponding to the combination of the
modular operational rules morP, morZ, and morE. The requirements on syntax and behaviour
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of (morP d morZ d morE) are the combination of the requirements of each language. To ob-
tain a concrete operational semantics for L we fix the syntax to be L = P⊕ Z⊕ E and we
instantiate the behaviour to the monad ExcT () NonDet, step functor Pr, and values to be
either a successfully terminating process () or an integer.

The operational rule morR does not add any requirements, except for R being present in
the signature functor.

orL :: OR (P⊕ Z⊕ E) (BF (ExcT () NonDet) Pr (Either () Int))
orL = ossify (morP d morZ d morE)

orR :: OR (R⊕ P⊕ Z⊕ E) (BF (ExcT () NonDet) Pr (Either () Int))
orR = ossify (morR d morP d morZ d morE)

Example 7.16. Adding exceptions to P is just a matter of adding the semantics of throw and
catch. In this case, we do not need values to contain integers.

ep :: OR (E⊕ P) (BF (ExcT () NonDet) Pr ())
ep = ossify (morE d morP)

Example 7.17. Adding exceptions to Z is once again, just a matter of adding the semantics
of throw and catch. In this case, we choose the monad to be the exception monad and, since
there are no requirements on the step functor, we choose it to be the identity functor.

ez :: OR (E⊕ Z) (BF (Exception ()) Id Int)
ez = ossify (morE d morZ)

In order to obtain a combined semantics we need to provide a monad which supports
the operations required by the modular components. Since the requirements do not spec-
ify any order on the layering of effects, there could be many different monads that satisfy
these requirements, each yielding different combined semantics, as it was the case with the
modular interpreters of Chapter 6.

An advantage of defining the combination operation for MOR rather than OR is that
elements of MOR are flexible enough to allow the separate definition of operators which
depend on other operators. This flexibility is especially advantageous if each operator has
different requirements on the behaviour functor, as each operator will be defined with less
requirements, yielding a more general semantics. For example, with MORs it is possible to
define the construct nil and put from P separately, while with ORs this is not possible since
put depends on nil.

7.6 Summary

We have developed a modular approach to operational semantics which allows us to define
the semantics of a language as a combination of the semantics of its individual components.
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The approach is based on writing the operational semantics on partially known syntax and
behaviour, and on the representation of an operational semantics as a polymorphic function
that distributes syntax over behaviour. This high-level modular approach leads to a simple
and natural implementation in Haskell.

The modular operational semantics obtained in this chapter and the modular interpreters
of the previous chapter have some interesting differences.

• The modular operational semantics have a concept of “step” which is more natural
than in the case of modular interpreters, where the StepT transformer had to be intro-
duced in order to make possible the definition of merge.

• The interaction with “global” exceptions is different. In the case of modular inter-
preters, it was obtained by applying the exception monad transformer last, while for
modular operational semantics the exception monad transformer was applied to each
step. The difference here is noticeable when handling exceptions. In the interpreters
case, the handle operation supplied by the monad is enough, while in the case of oper-
ational rules, extra work is required (but it is still possible to define it).

• In the interpreter of parallel merge, the operation caseStep for doing case analysis on
StepT had to be lifted manually. In the operational rule, this was not necessary.

A practical approach to modular operational semantics for certain specific effects has
recently been put forward by Mosses (2004) (see also Mosses and New 2008), but it is based
on the syntactic rather than semantic approach to SOS.

Turi (1997) showed with a few examples how operational rules which are parametric in
their behaviour could be instantiated to different settings but did not attempt to systematize
this technique. Lenisa, Power, and Watanabe (2000) defined an operation that combines
two operational rules on the same behaviour OR s b and OR s′ b into an operational rule
OR (s⊕ s′) b, but did not consider the problem of semantics with different behaviour.

Kick and Power (2004) presented the dual of the syntax combination operation for ORs,
that is, an operation which takes two operational rules OR s b and OR s b′, and returns
a OR s (b ⊗ b′) (where ⊗ is the functorial product). This operation does not seem to be
powerful enough to support the combinations we are trying to obtain. However, it would
be interesting to see how this operation, in the particular case of the behaviour being of
the form PB, could be used to obtain results similar to ours by exploiting the isomorphism
P(A + B) ∼= P(A)×P(B).

Some languages require the framework to be interpreted in CPO-like categories (Klin
2004), in particular for dealing with general recursion, but for all the examples in this chapter,
the structure of Set would be enough.

93



Part III

Conclusion
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Chapter 8

Summary and Further Work

In this chapter we review the contributions of this thesis and discuss some directions for
future research.

8.1 Summary of Contributions

This thesis generalizes and extends the incremental approach to modular monadic seman-
tics. The generalization is obtained by working with monoids in a monoidal category, rather
than monads, and considering operations associated to a monoid M̂ to be maps HM̂ → M
for a functor H : Mon(Ê)→ E . Working at this level of generality, the incremental approach
is then extended with general results about lifting of operations. These results show how an
operation can be lifted through a monoid transformer according to the classes the operation
and the transformer belong to. The lifting results are summarised in the following table1,
along with the relevant classes of operations and transformers.

Lifting Algebraic Codensity Monoidal

Theorem Theorem 3.5 Theorem 4.15 Theorem 4.9

Transformer Any Functorial Monoidal

Operation S //M S⊗M //M (S⊗M)⊗ F //M

Many of the usual effect-manipulating operations that are usually associated with com-
putational monads—in fact, all operations from (Liang, Hudak, and Jones 1995)—are shown
to be definable from operations which fall into one of these classes. In particular, and per-
haps most surprisingly, the callcc operation is definable in terms of algebraic operations. This
shows that it is well-behaved and that it can be lifted along any monad morphism.

1The Algebraic Theorem is given for algebraic operations and the Codensity Theorem requires a monoidal
right-closed category.
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The theory is implemented in Monatron, a monad transformer library for Haskell. The
library solves some problems in existing monad transformer libraries by incorporating uni-
form liftings, and by making the models of the operations first-class entities (as opposed to
type-class instances). The usage of the library is demonstrated with an implementation of
modular interpreters.

Turi’s semantics-based approach to operational semantics induces well-behaved transi-
tion systems (where bisimulation is a congruence) and an internally fully-abstract denota-
tional model. We have implemented Turi’s semantics for the first time, allowing program-
mers to write small-step operational semantics in a natural manner, while keeping the ben-
efits of denotational semantics. This approach to operational semantics was extended with
a technique for writing operational semantics modularly, which structures the behaviour
functor with a monad, a step functor, and an object of values. One can then apply the in-
cremental approach to modular monadic semantics to structure the monad in the behaviour
functor.

8.2 Directions for Further Research

The notion of operation presented in this thesis leaves out some operations such as elim and
case (introduced in Chapter 3.2). A problem in operations such as elim, which capture ini-
tiality, is that the transformed monad might not carry an initial algebra. A possible solution
might arise from the following observations.

As shown by Uustalu (2003), the free monad and the free completely iterative monad
over a functor Σ arise as the least/greatest fixpoint of a functor F : C → Mon(C). For
example, let the underlying monoidal category C be a category of endofunctors and let F
be the functor F(Y) X =̂ X + ΣY. Then µY. F(Y) X is the free monad over Σ on X, i.e.
µY. X + ΣY (assuming the fixpoint exists).

Given any functor F : C → Mon(C), and a covariant monad transformer T̂ = (T, liftT),
one can obtain a transformed functor:

FT =̂ T ◦ F : C →Mon(C)

Then, MTX =̂ µY.FT(Y)X can be considered as the monad MX = µY.F(Y)X with the ad-
dition of T-effects. In general, the resulting monad MT will be different from the monad
obtained by applying T̂ and then the step monad transformer, or the monad obtained by
applying first the step monad transformer and then T̂.

By transforming monads arising from functors F : C → Mon(C) in this way, the trans-
formed monad still carries an initial algebra, and the operations associated to T̂ can still be
applied, so it seems like a promising alternative, but details still need to be worked out.

This approach might also shed light on how to lift handlers of operations (Plotkin and
Pretnar 2009), since these are defined by initiality of the free model of an algebraic theory.
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Another application might be to provide a structured foundation for semantics of inheritance
in object-oriented systems (Cook and Palsberg 1994).

There seems to be a relation between the algebraic operations for a signature S presented
in this thesis and the functorial terms of arity S for equational systems (Fiore and Hur 2009).
A topic of future work is to make this connection precise and use free constructions for equa-
tional systems to define monad transformers by adding new operations satisfying certain
equations to a pre-existing monad.

Another application of the connection with equational systems would be to define an
equational system for continuations using the algebraic operations callcc and throw and an
appropriate set of equations.

Apart from extending the approach to more expressive operations (as discussed above)
one might also consider extending the techniques to other transformers. For example, by
providing a lifting result for mixed-variant monad transformers such as the codensity and
continuation monad transformer.

Monads are not the only structure proposed to model computational effects. Also other
structures such as arrows (Hughes 2000), the related Freyd categories (Jacobs and Hasuo
2006; Power and Robinson 1997), and comonads (Uustalu and Vene 2005) have been pro-
posed for this purpose. Arrows can be viewed as monoids in suitable monoidal categories
(Heunen and Jacobs 2006) so our lifting results are directly applicable but the details need
to be worked out. Comonads are the dual of monads, so one could try to dualise the theory
to comonoids, and apply it to the case of comonads. The extension to arrows and comonads
could then be implemented in Haskell and incorporated to the library Monatron as arrow
transformers and comonad transformers.

Our implementation of operational semantics, as Turi’s original work, is fundamentally
first-order. Therefore, it would be interesting to consider modular operational semantics for
languages with more advanced features such as binding. Incorporating binding operations
into Turi’s framework is a difficult task, see (Fiore and Staton 2004; Fiore and Turi 2001) but
it should be possible.

Additionally, it would be interesting to implement a modular operational semantics
framework in a theorem prover, so as to formally reason about the properties of the com-
bined semantics with the help of a machine.

The definition of modular operational rules is done in the Haskell language. It would
be interesting to define a more restricted language, so that operational rules can be defined
in a syntax closer to the original (syntactical) rules (perhaps taking some ideas from Mosses
(2004)). Additionally, one would like to be able to print the combination of two operational
semantics as operational rules. With a more restricted language, this should be easier than it
is now, where reifying a Haskell function is required.

For some languages, such as PCF with algebraic effects (Plotkin and Power 2001a), it
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seems that the intended semantics require us to interpret the operational rules in the Kleisli
category of a monad, where operational rules are natural transformations:

Σ(Id× B) • //MBTΣ

Consequently, one can ask under which conditions it is possible to develop Turi’s semantics
in such a Kleisli category. For example, we would need to calculate a final coalgebra in
the Kleisli category of a monad. Sufficient conditions for its existence are given by Hasuo,
Jacobs, and Sokolova (2007).

8.3 Conclusion

This thesis generalises and extends the incremental approach to modular monadic semantics
with uniform liftings of operations. It starts with the development of theoretical foundations
in category-theory, and then applies the abstract results to obtain a concrete, usable imple-
mentation of a monad transformer library in Haskell.

The well-known ability of category theory to provide higher-level concepts that abstract
from irrelevant details was crucial in developing the theory. The expressivity of Haskell was
essential to carrying out the implementation. However, there are many subtleties and pitfalls
that make the passage of ideas from one to the other a hazardous journey. Computer science
would clearly benefit enormously from a practical programming language overtly rooted in
category theory.
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Appendix A

Monatron Source Code

A.1 Monad Transformers

class MonadT t where

treturn :: Monad m⇒ a→ t m a
treturn = lift · return

tbind :: Monad m⇒ t m a→ (a→ t m b)→ t m b
lift :: Monad m⇒ m a→ t m a

class MonadT t⇒ FMonadT t where

tmap :: (Functor m, Functor n)⇒ (∀ b. m b→ n b)→ t m a→ t n a

class FMonadT t⇒ MMonadT t where

flift :: Functor f ⇒ f a→ t f a -- should coincide with lift!
monoidalT :: (Functor f , Functor g)⇒ t f (t g a)→ t (f ◦ g) a

Codensity Monad Transformer

newtype Cod f a = Cod {unCod :: ∀ b. (a→ f b)→ f b}

down :: Monad m⇒ Cod m a→ m a
down c = unCod c return

instance MonadT Cod where

tbind c f = Cod (λk→ unCod c (λa→ unCod (f a) k))
lift m = Cod (m>>=)

instance Monad m⇒ Monad (Cod m) where

return = treturn

(>>=) = tbind

instance Functor f ⇒ Functor (Cod f ) where

fmap f (Cod c) = Cod $ λk→ c (k · f )
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State Monad Transformer

newtype StateT s m a = S {unS :: s→ m (a, s)}

runStateT :: s→ StateT s m a→ m (a, s)
runStateT s m = unS m s

instance MonadT (StateT s) where

tbind m k = S (λs→ unS m s >>= λ(a, s′)→ unS (k a) s′)
lift m = S (λs→ m >>= λa→ return (a, s))

instance FMonadT (StateT s) where

tmap f (S m) = S (f ·m)

instance MMonadT (StateT s) where

flift t = S (λs→ fmap (λa→ (a, s)) t)
monoidalT (S t) = S (λs→ Comp $ fmap (λ(S t′, s′)→ t′ s′) (t s))

instance Monad m⇒ Monad (StateT s m) where

return = treturn

(>>=) = tbind

instance Functor m⇒ Functor (StateT s m) where

fmap f (S g) = S (λs→ fmap (λ(a, s′)→ (f a, s′)) (g s))

Reader Monad Transformer

newtype ReaderT s m a = R {unR :: s→ m a}

runReaderT :: s→ ReaderT s m a→ m a
runReaderT s m = unR m s

instance MonadT (ReaderT s) where

tbind m k = R (λs→ unR m s >>= λa→ unR (k a) s)
lift m = R (λ → m)

instance FMonadT (ReaderT s) where

tmap f (R m) = R (f ·m)

instance Monad m⇒ Monad (ReaderT s m) where

return = treturn

(>>=) = tbind

instance MMonadT (ReaderT s) where

flift t = R (λ → t)
monoidalT (R t) = R (λs→ Comp $ fmap (($s) · unR) (t s))

instance Functor m⇒ Functor (ReaderT s m) where

fmap f (R g) = R (λs→ fmap f (g s))
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Exception Monad Transformer

newtype ExcT x m a = X {unX :: m (Either x a)}

runExcT :: ExcT x m a→ m (Either x a)
runExcT = unX

instance MonadT (ExcT x) where

tbind (X m) f = X (do a← m
case a of Left x→ return (Left x)

Right b→ unX (f b))
lift m = X (liftM Right m)

instance FMonadT (ExcT x) where

tmap f = X · f · unX

instance Monad m⇒ Monad (ExcT x m) where

return = treturn

(>>=) = tbind

instance Functor m⇒ Functor (ExcT x m) where

fmap f (X m) = X (fmap (either Left (Right. f )) m)

Writer Monad Transformer

newtype WriterT w m a = W {unW :: m (a, w)}

runWriterT :: WriterT w m a→ m (a, w)
runWriterT = unW

instance Monoid w⇒ MonadT (WriterT w) where

tbind (W m) f = W (do (a, w)← m
(a′, w′)← unW (f a)
return (a′, w ‘mappend‘ w′))

lift m = W (liftM (λa→ (a, mempty)) m)

instance Monoid w⇒ FMonadT (WriterT w) where

tmap f = W · f · unW

instance Monoid w⇒ MMonadT (WriterT w) where

flift t = W (fmap (λa→ (a, mempty)) t)
monoidalT (W t) = W $ Comp $ fmap (λ(W t′, w)→

fmap (λ(a, w′)→ (a, w ‘mappend‘ w′)) t′) $ t

instance (Monad m, Monoid w)⇒ Monad (WriterT w m) where

return = treturn

(>>=) = tbind

instance Functor m⇒ Functor (WriterT x m) where
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fmap f (W m) = W (fmap (λ(a, w)→ (f a, w)) m)

Continuation Monad Transformer

newtype ContT r m a = C {unC :: (a→ m r)→ m r}

runContT :: Monad m⇒ (a→ m r)→ ContT r m a→ m r
runContT k m = unC m k

instance MonadT (ContT r) where

tbind c f = C (λk→ unC c (λa→ unC (f a) k))
lift m = C (m>>=)

instance Monad m⇒ Monad (ContT r m) where

return = treturn

(>>=) = tbind

Step Monad Transformer

newtype StepT f m x = T {runT :: m (Either x (f (StepT f m x)))}

instance (Functor f , Monad m)⇒ Monad (StepT f m) where

return = treturn

(>>=) = tbind

instance (Functor f , Monad m)⇒ Functor (StepT f m) where fmap = liftM

caseStep :: (Functor f , Monad m)⇒
(a→ StepT f m x)→ (f (StepT f m a)→ StepT f m x)
→ StepT f m a→ StepT f m x

caseStep v c (T m) = T (m >>= either (runT · v) (runT · c))

unfoldStepT :: (Functor f , Monad m)⇒ (y→ m (Either x (f y)))→ y→ StepT f m x
unfoldStepT k y = T (liftM (fmap (fmap (unfoldStepT k))) (k y))

instance (Functor f )⇒ MonadT (StepT f ) where

tbind t f = caseStep f (T · return · Right · fmap (‘tbind‘f )) t
lift = T · liftM Left

instance (Functor f )⇒ FMonadT (StepT f ) where

tmap t (T m) = T (t (fmap (either Left (Right · fmap (tmap t))) m))

Non-Determinism Monad Transformer

data NDSig f a = NilT | ConsT a (f a)

instance Functor f ⇒ Functor (NDSig f ) where

fmap NilT = NilT

102



fmap f (ConsT a fa) = ConsT (f a) (fmap f fa)

newtype NonDetT m a = L {unL :: m (NDSig (NonDetT m) a)}

runNonDetT :: NonDetT m a→ m (NDSig (NonDetT m) a)
runNonDetT = unL

emptyL :: Monad m⇒ NonDetT m a
emptyL = L $ return $ NilT

appendL :: Monad m⇒ NonDetT m a→ NonDetT m a→ NonDetT m a
appendL (L m1) (L m2) = L $ do l ← m1

case l of

NilT → m2
ConsT a l1→ return (ConsT a (appendL l1 (L m2)))

foldNonDetT :: Monad m⇒ (a→ m b→ m b)→ m b→ NonDetT m a→ m b
foldNonDetT c n (L m) = do l← m

case l of

NilT → n

ConsT a l1→ c a (foldNonDetT c n l1)

collectNonDetT :: Monad m⇒ NonDetT m a→ m [a ]
collectNonDetT lt = foldNonDetT (λa m→ m >>= return · (a:)) (return [ ]) lt

instance MonadT NonDetT where

lift m = L $ liftM (‘ConsT‘emptyL) m
m ‘tbind‘ f = L $ foldNonDetT (λa l→ unL $ f a ‘appendL‘ L l)

(return NilT)
m

instance FMonadT NonDetT where

tmap t (L m) = L $ t $ fmap (λlsig→ case lsig of

NilT → NilT

ConsT a l→ ConsT a (tmap t l)) m

instance Monad m⇒ Monad (NonDetT m) where

return = treturn

(>>=) = tbind

instance Functor f ⇒ Functor (NonDetT f ) where

fmap h (L f ) = L $ fmap (fmap h) f

A.2 Monads

type State s = StateT s Id
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runState s = runId · runStateT s

type Reader s = ReaderT s Id

runReader e = runId · runReaderT e

type Writer w = WriterT w Id

runWriter = runId · runWriterT

type Exception x = ExcT x Id

runException = runId · runExcT

type Cont r = ContT r Id

runCont k = runId. runContT (Id. k)

type NonDet = NonDetT Id

runNonDet = runId. runNonDetT

Identity Monad

newtype Id a = Id a

runId :: Id a→ a
runId (Id a) = a

instance Monad Id where

return = Id

(Id a) >>= f = f a

instance Functor Id where fmap = liftM

A.3 Models and Standard Liftings

type ExtModel f g m = ∀ a. f (m (g a))→ m a
type Model f m = ∀ a. f (m a)→ m a
type AlgModel f m = ∀ a. f a→ m a

toAlg :: (Functor f , Monad m)⇒ Model f m→ AlgModel f (Cod m)
toAlg op t = Cod $ λk→ op (fmap k t)

liftModel :: (Functor f , Monad m, Functor m, FMonadT t, Monad (t (Cod m)))⇒
Model f m→ Model f (t m)

liftModel op = tmap down · join · lift · toAlg op · fmap (tmap lift)

liftAlgModel :: (MonadT t, Monad m, Functor f )⇒ AlgModel f m→ AlgModel f (t m)
liftAlgModel op = lift · op

liftExtModel :: (Functor f , Functor g, Monad m, Functor m,
MMonadT t, Functor (t f ), Functor (t m))⇒
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ExtModel f g m→ ExtModel f g (t m)
liftExtModel op = tmap (op · fmap deComp · deComp) ·

monoidalT · flift · fmap (monoidalT · fmap flift)

A.4 Operations

State Operations

data StateOp s a = Get (s→ a) | Put s a

instance Functor (StateOp s) where

fmap f (Get g) = Get (f · g)
fmap f (Put s a) = Put s (f a)

modelStateT :: Monad m⇒ AlgModel (StateOp s) (StateT s m)
modelStateT (Get g) = S (λs→ return (g s, s))
modelStateT (Put s a) = S (λ → return (a, s))

getX :: Monad m⇒ AlgModel (StateOp s) m→ m s
getX op = op $ Get id

putX :: Monad m⇒ AlgModel (StateOp s) m→ s→ m ()
putX op s = op $ Put s ()

Reader Operations

data ReaderOp s a = Ask (s→ a) | InEnv s a

instance Functor (ReaderOp s) where

fmap f (Ask g) = Ask (f · g)
fmap f (InEnv s a) = InEnv s (f a)

modelReaderT :: Monad m⇒ Model (ReaderOp s) (ReaderT s m)
modelReaderT (Ask g) = R (λs→ runReaderT s (g s))
modelReaderT (InEnv s a) = R (λ → runReaderT s a)

askX :: Monad m⇒ Model (ReaderOp s) m→ m s
askX op = op $ Ask return

inEnvX :: Monad m⇒ Model (ReaderOp s) m→ s→ m a→ m a
inEnvX op s m = op $ InEnv s m

Exception Operations

data ThrowOp x a = Throw x
data HandleOp x a = Handle a (x→ a)

instance Functor (ThrowOp x) where
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fmap (Throw x) = Throw x

instance Functor (HandleOp x) where

fmap f (Handle a h) = Handle (f a) (f · h)

modelThrowExcT :: Monad m⇒ AlgModel (ThrowOp x) (ExcT x m)
modelThrowExcT (Throw x) = X (return (Left x))

modelHandleExcT :: Monad m⇒ Model (HandleOp x) (ExcT x m)
modelHandleExcT (Handle m h) = X (unX m >>= λexa→ case exa of

Left x→ unX (h x)
Right a→ return (Right a))

throwX :: Monad m⇒ AlgModel (ThrowOp x) m→ x→ m a
throwX op x = op $ Throw x

handleX :: Monad m⇒ Model (HandleOp x) m→ m a→ (x→ m a)→ m a
handleX op m h = op $ Handle m h

Writer Operations

data WriterOp w a = Trace w a

instance Functor (WriterOp w) where

fmap f (Trace w a) = Trace w (f a)

modelWriterT :: (Monad m, Monoid w)⇒ AlgModel (WriterOp w) (WriterT w m)
modelWriterT (Trace w a) = W (return (a, w))

traceX :: (Monad m)⇒ AlgModel (WriterOp w) m→ w→ m ()
traceX op w = op $ Trace w ()

Continuation Operations

data ContOp r a = Abort r | CallCC ((a→ r)→ a)

instance Functor (ContOp r) where

fmap (Abort r) = Abort r
fmap f (CallCC k) = CallCC (λc→ f (k (c · f )))

modelContT :: Monad m⇒ AlgModel (ContOp (m r)) (ContT r m)
modelContT (Abort mr) = C $ λ → mr
modelContT (CallCC k) = C $ λc→ c (k c)

abortX :: Monad m⇒ AlgModel (ContOp r) m→ r→ m a
abortX op r = op (Abort r)

callCCX :: Monad m⇒ AlgModel (ContOp r) m→ ((a→ r)→ a)→ m a
callCCX op f = op (CallCC f )
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callccX :: Monad m⇒ AlgModel (ContOp r) m→ ((a→ m b)→ m a)→ m a
callccX op f = join $ callCCX op (λk→ f (λx→ abortX op (k (return x))))

Step Operations

newtype StepOp f x = StepOp (f x)

instance (Functor f )⇒ Functor (StepOp f ) where

fmap h (StepOp fa) = StepOp (fmap h fa)

modelStepT :: (Functor f , Monad m)⇒ Model (StepOp f ) (StepT f m)
modelStepT (StepOp fa) = T (return (Right fa))

stepX :: (Monad m)⇒ Model (StepOp f ) m→ f (m x)→ m x
stepX op = op · StepOp

Non-Determinism Operations

data NonDetOp a = ZeroND | PlusND a a

instance Functor NonDetOp where

fmap ZeroND = ZeroND

fmap f (PlusND a b) = PlusND (f a) (f b)

modelNonDetT :: Monad m⇒ AlgModel NonDetOp (NonDetT m)
modelNonDetT ZeroND = emptyL

modelNonDetT (PlusND t u) = appendL (return t) (return u)

zeroNDX :: Monad m⇒ AlgModel NonDetOp m→ m a
zeroNDX op = op ZeroND

plusNDX :: Monad m⇒ AlgModel NonDetOp m→ m a→ m a→ m a
plusNDX op t u = join $ op (PlusND t u)

A.5 Automatic Liftings

Classes of Models

class (Functor f , Monad m)⇒ MonadModel f m where

model :: Model f m

class (Functor f , Monad m)⇒ MonadAlgModel f m where

algModel :: AlgModel f m

class (Functor f , Functor g, Monad m)⇒ MonadExtModel f g m where

extModel :: ExtModel f g m
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Automatic Lifting of Models

instance (FMonadT t, MonadModel f m, Monad (t m), Functor m, Monad (t (Cod m)))
⇒ MonadModel f (t m) where

model = liftModel model

instance (MonadT t, MonadAlgModel f m, Monad (t m))
⇒ MonadAlgModel f (t m) where

algModel = liftAlgModel algModel

instance (MMonadT t, MonadExtModel f g m, Monad (t m), Functor m,
Functor (t f ), Functor (t m))⇒ MonadExtModel f g (t m) where

extModel = liftExtModel extModel

Reader

ask :: MonadModel (ReaderOp s) m⇒ m s
ask = askX model

inEnv :: MonadModel (ReaderOp s) m⇒ s→ m a→ m a
inEnv = inEnvX model

instance Monad m⇒ MonadModel (ReaderOp s) (ReaderT s m) where

model = modelReaderT

State

get :: MonadAlgModel (StateOp s) m⇒ m s
get = getX algModel

put :: MonadAlgModel (StateOp s) m⇒ s→ m ()
put = putX algModel

instance Monad m⇒ MonadAlgModel (StateOp s) (StateT s m) where

algModel = modelStateT

Continuations

abort :: MonadAlgModel (ContOp r) m⇒ r→ m a
abort = abortX algModel

callCC :: MonadAlgModel (ContOp r) m⇒ ((a→ r)→ a)→ m a
callCC = callCCX algModel

instance Monad m⇒ MonadAlgModel (ContOp (m r)) (ContT r m) where

algModel = modelContT
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Exceptions

throw :: MonadAlgModel (ThrowOp x) m⇒ x→ m a
throw = throwX algModel

handle :: MonadModel (HandleOp x) m⇒ m a→ (x→ m a)→ m a
handle = handleX model

instance Monad m⇒ MonadModel (HandleOp x) (ExcT x m) where

model = modelHandleExcT

instance Monad m⇒ MonadAlgModel (ThrowOp x) (ExcT x m) where

algModel = modelThrowExcT

Writer

trace :: MonadAlgModel (WriterOp w) m⇒ w→ m ()
trace = traceX algModel

instance (Monoid w, Monad m)⇒ MonadAlgModel (WriterOp w) (WriterT w m) where

algModel = modelWriterT

Step

step :: (Functor f , MonadModel (StepOp f ) m)⇒ f (m x)→ m x
step = stepX model

instance (Functor f , Monad m)⇒ MonadModel (StepOp f ) (StepT f m) where

model = modelStepT

Nondeterminism

zeroND :: MonadAlgModel NonDetOp m⇒ m a
zeroND = zeroNDX algModel

plusND :: MonadAlgModel NonDetOp m⇒ m a→ m a→ m a
plusND = plusNDX algModel

instance Monad m⇒ MonadAlgModel NonDetOp (NonDetT m) where

algModel = modelNonDetT

A.6 Other

Functor Composition

newtype (f ◦ g) a = Comp {deComp :: (f (g a))}
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instance (Functor f , Functor g)⇒ Functor (f ◦ g) where

fmap f (Comp fga) = Comp (fmap (fmap f ) fga)

Either Functor Instance

instance Functor (Either x) where

fmap (Left x) = Left x
fmap f (Right y) = Right (f y)
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