
Monitoring Reactive Systems with Dynamic Channels

Dante Zanarini Mauro Jaskelioff
CIFASIS - CONICET

Universidad Nacional de Rosario
{zanarini, jaskelioff}@cifasis-conicet.gov.ar

Abstract
Given the increasingly sensitive data that web applications
deal with, a lot of attention has been put into their security.
Dynamic methods for ensuring confidentiality of secret data,
such as monitors, are usually preferred due to their permis-
siveness and ability to adapt to dynamic features of web lan-
guages. One dynamic approach to confidentiality is through
secure multi-execution, a technique which transforms pro-
grams into secure ones. A recent refinement of this technique
led to a monitor for reactive systems such as web applica-
tions which is precise, in the sense that it raises an alarm
exactly when a security condition is violated, and transpar-
ent, in the sense that the semantics of secure programs is
preserved. A limitation of this and other approaches based
on secure multi-execution is that there is a fixed set of chan-
nels with a fixed security level. However, most web applica-
tions create channels dynamically, even by doing something
as trivial as adding a button to a page. Moreover, the security
level of such new channel would be chosen dynamically. In
this work, we overcome the limitation of assuming a fixed
set of channels and introduce a model of reactive systems
with dynamic channels and present a precise and transparent
monitor for it.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
flow controls

General Terms Languages, Security

Keywords Information Flow, Reactive Systems, Dynamic
Channels

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLAS 2014, July 29th, 2014, Uppsala, Sweden.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
Web applications are pervasive and deal with data of in-
creasing significance. Therefore, many researchers have
been working towards the goal of securing them. In par-
ticular, there have been many efforts to apply information
flow techniques to web applications as a general mecha-
nism to enforce confidentiality [7, 18, 20, 24, 35]. Given
that several of the OWASP top-ten web vulnerabilities [37]
can be rephrased in terms of information-flow problems, a
general information-flow technique would be a substantial
improvement over ad-hoc and purpose-specific approaches
such as architectures to contain advertisement scripts [23],
and browser extensions to control cache-based leaks [19], to
name just a few.

However, it is difficult to obtain a general solution for
controlling information flow in web applications. There are
millions of deployed web pages. A good solution should
raise a minimum of false alarms when applied to them,
and hence it must be permissive and allow as many secure
web pages as possible. Moreover, the advanced language
features of web applications make them difficult to analyse.
Therefore, researchers tend to work with simplified models
of real web applications in order for the problem to be
tractable.

Static Denning-style [14, 30, 36] enforcements of in-
formation flow, can reject secure programs, as they over-
approximate the problem. Moreover, dynamic features of
web applications can be difficult to work with in this style.
Hence, in order to increase permissiveness and be able to
cope with dynamic features of web applications, many ap-
proaches tend to be dynamic, usually in the form an exe-
cution monitor [1, 3, 4, 31], despite their inability to enforce
sound and precise standard notions of information-flow poli-
cies, such as non-interference [25, 32].

Recently, Zanarini, Jaskelioff, and Russo [39] introduced
a monitor for general reactive systems (such as web applica-
tions) which can precisely detect when a program leaks in-
formation, where the information leak is defined with respect
to an input without secrets. The monitor is based on the idea
of secure multi-execution (SME) [15], a technique which by
executing the same program several times, once for each se-
curity level, transforms an arbitrary program into a secure

one. By improving SME so that the order of events is pre-
served across security levels, one can compare the original
program with the transformed one and see if they differ, and
construct in this way a security monitor which is both pre-
cise (only raises alarms when there is an information leak)
and transparent (it does not affect the execution of secure
programs.)

In reactive systems one has input channels on which
events arrive, and output channels on which events are
outputted. For example, in a web application, every ele-
ment of the DOM tree has events associated to it (such as
onmouseover), and therefore we can think that every ele-
ment has an input channel associated to it. Having all events
arrive through a single channel is not an option since we
expect different nodes to have different security levels. An
output event can be, for instance, a modification of an at-
tribute of an existing node of the DOM, or the addition of a
new one.

One limitation of the approach in [39] and of other ap-
proaches based on SME [5, 6, 15, 21, 28] is that there is a
fixed set of channels, each with a fixed security level. How-
ever, web applications may modify the DOM during exe-
cution [8], and therefore the set of possible input channels
may be modified during execution. That is, the set of chan-
nels is dynamic. For example, when adding a button to a
web page, a new set of events will be possible (such as
an onclick event). Such events must come through a new
channel, which will have an application and context-specific
security level. That is, depending on the context, the events
from a newly created channel might be secret or public, and
what’s more, the security level of an existing channel might
change during execution. Therefore, in order to model more
realistic reactive systems, a way of dealing with dynamic
channels is needed. Note that, one could improvise a way of
dealing with dynamic channels by assumming a countably
infinite set of channels and assigning a “fresh” channel name
to a new channel, but this approach has clear diasvantages:
first and foremost, the security level for each channel is fixed
and cannot be changed dynamically; second, the interpreta-
tion of a source language into a model with a fixed set of
channels is more complex, and hence more error-prone.

Adding dynamic channels to a model has the disadvan-
tage of making it more complex. The very question of what
is a secure program in this context becomes non-trivial, as
the security level of a channel might change during execu-
tion. However, if we are to tackle realistic web applications,
it is a complexity that needs to be dealt with.

In this article, we extend the monitor for reactive systems
introduced in [39] to account for dynamic channels. In or-
der to do this, we need to extend the model of reactive sys-
tems and adapt the notion of non-interference. Notably, our
extended monitor offers the same security and transparency
guarantees as the one for static channels.

In Section 2, we introduce a model of reactive systems
with dynamic channels, and show how a JavaScript-like
language can be interpreted into such a model. In Section 3
we introduce notions of security for programs and for runs.
In Section 4, we introduce our monitor for reactive systems
with dynamic channels. In Section 5, we state the precision
and transparency guarantees of the monitor. In Section 6
we discuss related work. Finally, in Section 7, we conclude.
Proofs for all the results can be found in an online extended
version [38].

2. Modelling Reactive Systems
We want to provide an abstract model for reactive systems.
The model should be as abstract as possible in order to
simplify away irrelevant features, but powerful enough so
as to model all the pertinent features. The main example
of a reactive system we have in mind is web applications.
Therefore we will use this example to drive intuitions.

A reactive system consists of input events and of reac-
tions to those events, which may be output events or simply
an invisible change of the internal state of the system. Each
input or output event occurs in a given channel. When think-
ing about web applications, a typical input event is a mouse
click on an element of a web page, and a typical output event
is putting some text on the screen. More precisely, a web
page is represented by a DOM tree, input events are associ-
ated to elements of the DOM, and output events modify the
DOM. An obvious way of adding security level information
to a DOM, is adding an attribute to indicate the security level
of the element, which may be modified during execution.

We model a reactive program as an interaction struc-
ture [17]. Our model is based on the model in [39], but ex-
tended to account for the dynamic opening and closure of
channels. That is, we model reactive systems using an inter-
action structure indexed by a mapping of open channels to
their corresponding security levels.

Throughout this article, we organise security levels in a
lattice (L,v), with the intention to express that data at level
`1 can securely flow into data at level `2 when `1 v `2. Let
Chan be the set of channel names, and let CS = Chan ⇀ L
be the type of channel systems, i.e. a channel system cs : CS
is a partial function from channels to security levels. If c ∈
dom(cs), we say that c is open in cs.

An event is a piece of data paired with the name of the
communication channel associated to it. Given a channel
system cs, the domain of cs indicates which channels are
open, and therefore which events are compatible with cs.
Take A to be a set; the set of A-events compatible with cs is:

EA cs = {(c, a) ∈ Chan×A | c ∈ dom(cs)} .

That is, EA cs denotes the set of events on open channels
of the channel system cs. Equivalently, the set of compatible
events can be defined as

EA cs = {(c, a, `) ∈ Chan×A× L | cs(c) = `} .

It is not difficult to see that the two definitions are equiva-
lent. However, as discussed later in the article, the latter is
more convenient for analysing confidentiality in a dynamic-
channel context. We denote with I the set of input values,
and with O the set of output values.

Definition 2.1 (Reactive Behaviour). A reactive behaviour
React : CS → Set is the interaction structure given by the
following coinductive datatype indexed by a channel system.

React : CS→ Set =
Read : ∀cs. (EI cs→ React cs)→ React cs
Write: ∀cs. EO cs→ React cs→ React cs
Step : ∀cs.React cs→ React cs
Stop : ∀cs.React cs
New : ∀cs. ((c, `) : Chan× L)→ React (cs⊕ (c, `))

→ React cs
Close : ∀cs. (c : Chan)→ React cs

→ ∀`.React (cs⊕ (c, `))

The idea is that React cs describes the execution be-
haviour of a reactive system whose open channels are de-
scribed by a channel system cs. Because the behaviour
datatype is defined coinductively, it is perfectly suited to
model the behaviour of programs that run indefinitely.

Intuitively, constructor Read denotes a behaviour React cs
that receives an input from an open channel determined by
the environment (EI cs) and, based on that, decides how
to continue (React cs). Constructor Write represents a be-
haviour React cs which writes an output in a chosen channel
(EO cs) and continues with another computation (React cs).
Constructor Step corresponds to a silent step, that is, a com-
putation which does not affect the environment. Silent steps
allows us to model divergence. Constructor Stop models ter-
mination. Reactive systems usually run forever, but we use
this constructor to model abnormal termination as triggered
by an unrecoverable error condition. Constructor New de-
notes a behaviour React cs which opens a new channel c of
security level `, and continues with a behaviour on a channel
system which extends cswith (c, `). Note that in a behaviour
r′ = New (c, `) r : React cs the new channel c is open only
in the continuation r and not on r′. Finally, constructor Close
represents a behaviour on a channel system with an open
channel c and continues with a behaviour with that channel
closed. That is, the behaviour r′ = (Close c r) has channel c
open, but its continuation r must have it closed.

The operation ⊕ adds a channel to a channel system.
More precisely, given a channel c and a channel system
cs such that c /∈ dom(cs), cs ⊕ (c, `) = cs ∪ {(c, `)}.
As a consequence of this definition, in a behaviour r′ =
New (c, l) r : React cs, we know that c is not open in
cs, and r′ can interact with c only in the continuation r.
A similar observation applies to constructor Close. If r′ =
Close c r : React (cs⊕ (c, `)), then c is closed in cs, and the
continuation r cannot interact with c.

By modelling reactive systems with an interaction struc-
ture we obtain a black-box model of the system. The con-
structors represent only the features which are relevant to our
analysis of security and therefore we can abstract away all
the rest of the complex features of the system. In this manner,
we gain modularity since new programming features which
are not related to I/O do not affect our formal results. In-
dexing by the channel system means that behaviours cannot
do nonsense such as writing to a closed channel or open-
ing an open channel. Therefore, working with behaviours is
simplified since we do not need to consider absurd cases. Of
course, a JavaScript program might be erronous and try to
perform an illegal operation, but this can be handled as an
error, perhaps behaving as a Stop.

2.1 Semantics
A reactive behaviour is essentially a static description of the
possible interactions that might occur during execution. In
order to know what happens in a given run, we need to give
reactive behaviours some semantics. We start by defining
possibly infinite sequences.

Definition 2.2 (Colists). LetA be a set. Consider the type of
possibly infinite sequences of A to be coinductively defined
as follows.

ColistA = [] | A :: ColistA

We write [a, b, c] to denote a finite colist a :: b :: c :: [].

The structure of input and output events of the system is
given by colists. The set of all events with data from a set A
is defined as EA = Chan × A × L. It is easy to see that for
any channel system cs, the set EA cs of compatible events
is included in EA.

Definition 2.3 (Colists of input and output events). We de-
fine the set of colists of inputs I and the set of colists of
outputs O for reactive systems as follows.

I = ColistEI O = ColistEO∪{•,◦}

The elements of an output colist can be events in EO, an
invisible output (•), or an abnormal termination event (◦).

The rules in Figure 1 coinductively define an evaluation
relation for reactive behaviours. This is really a family of
relations indexed by a channel system. More precisely, we
define a family of relations⇒cs ⊆ (React cs×I ×O), and
write (t, i) ⇒cs o for (t, i, o) ∈ ⇒cs. Intuitively, feeding a
colist of inputs i to a reactive behaviour t yields the output
colist o ∈ O iff (t, i)⇒cs o.

Rule R1 produces no outputs ([]) when no input events
are present. Rule R2 consumes the first available input event
(e) if the event e is compatible with cs, and based on that,
produces the output o ((f e, i) ⇒cs o). Rule W outputs an
event e (e :: o), followed by the outputs triggered by program
t ((t, i) ⇒cs o). Rule N continues execution in the channel
system obtained after opening a new channel (cs ⊕ (c, `)).

R1
(Read f, [])⇒cs []

R2

e ∈ EI cs (f e, i)⇒cs o

(Read f, e :: i)⇒cs • :: o

W
(t, i)⇒cs o

(Write e t, i)⇒cs e :: o

N
(t, i)⇒cs⊕(c,`) o

(New (c, `) t, i)⇒cs • :: o

C
cs = cs′ ⊕ (c, `) (t, i)⇒cs′ o

(Close c t, i)⇒cs • :: o

S
(t, i)⇒cs o

(Step t, i)⇒cs • :: o
E

(Stop, i)⇒cs [◦]

Figure 1. Evaluation relation for reactive behaviours

Rule C continues execution in a channel system obtained
after closing channel c (that is, cs′). Rule S simply outputs •
when a silent computation step is performed. Finally, rule E
signals an abnormal termination event and ends. Here we see
the role of the termination event ◦: to indicate a termination
different from [].

It might seem strange that input events carry a security
level. It would be more natural to consider input events
as pairs (c, d) of a channel and a datum, and assign the
security level of the event according to the mapping of c
in the channel system at the time the event arrives. As a
matter of fact, this is exactly the way we expect to implement
the semantics of behaviours. Nevertheless, this “natural”
semantics would be equivalent to the one in Fig. 1 as the
predicate e ∈ EI cs in R2 filters all non-compatible events.
Of the two equivalent semantics, we have chosen the less
intuitive semantics of Fig. 1 as it is better suited to formal
analysis. In fact, considering input events equipped with a
security level is precisely what is needed in order to define a
notion of confidentiality for systems with dynamic channels
(see Section 3).

2.2 Reactive Behaviour of a JavaScript-like Language
Reactive behaviours are independent of the features of the
programming languages that generate them, which may be,
for example, imperative or functional, call-by-name or call-
by-value, etc.

In this section, we show how to construct reactive be-
haviours from programs in a JavaScript-like language. Fig-
ure 2 presents the syntax of a language, which is inspired by
JavaScript models found in previous works [7, 27, 39].

Programs are defined as a list of event handlers. A handler
has the form (ch(x){c}), and associates a channel ch to a
command c to be executed when an input message (stored

p ::= · | h; p
h ::= ch(x) {c}
c ::= skip

| c; c
| x := e

| if e {c} {c}
| while e {c}
| out(ch,e)
| new h
| open(ch, `)
| close(ch)

Figure 2. A JavaScript-like language.

in variable x) is received on channel ch. A command c
is an imperative program augmented with output messages
(out), handler creation (new), and dynamic creation (open)
and deletion (close) of communication channels.

Command open(ch, `) opens a new communication chan-
nel ch at security level `. Command close(ch) closes chan-
nel ch. Command new h associates to an open channel a new
event handler (possibly replacing a previous handler.) Open-
ing an open channel, closing a closed channel, or associating
a handler to a closed channel, results in a run-time error.

To simplify the construction of the reactive behaviour,
we assume that every handler uses variable x to store the
message received, and we extend the set of commands C
with a special symbol c|.

A program state is a tuple (cs, hs, µ, c), where:

I cs : CS ⇀ L is a partial mapping from channels to
security levels: the set of channels being used by the
program to interact with the environment;

I hs : dom(cs) ⇀ C ∪ {c|} is the set of event handlers
associated to input channels in cs; if an input channel ch
does not have an event handler associated to it, then a
default handler hs(ch) = c| is assumed;

I µ is a mapping from variables to values, the store; and

I c is the command being executed in response to an input
event; or c| if the system is in a consumer state (the next
interaction will be an input event).

We write (State cs) for the set of states whose first com-
ponent is cs. Given a program state s = (cs, hs, µ, c), we
can compute the next interaction of s with the environment.
The set of possible interactions is defined as

Interaction =
{
↓, ↑chv ,�,⇑ch` ,⇓ch,}

}
.

Interaction ↓ is raised in a consumer state, i.e. when c = c|.
Interaction ↑chv is raised when s will produce an output
message to an open channel ch with value v. Interactions ⇑c`

step (cs, hs, µ, c) = case c of
c| → (↓, (cs, hs, µ, c|))
out(ch,e) → if ch ∈ dom(cs)

then
(
↑chJeKµ , (cs, hs, µ, c|)

)
else (}, (cs, hs, µ, c|))

open(ch, `) → if ch /∈ dom(cs)
then

(
⇑ch` , (cs[ch 7→ `], hs, µ, c|)

)
else (}, (cs, hs, µ, c|))

close(ch) → if ch ∈ dom(cs)
then

(
⇓ch, (del(cs, ch), del(hs, ch), µ, c|)

)
else (}, (cs, hs, µ, c|))

new ch(x) {c′} → if ch ∈ dom(cs)
then (�, (cs, hs[ch 7→ c′], µ, c|))
else (}, (cs, hs, µ, c|))

skip → (�, (cs, hs, µ, c|))
x := e → (�, (cs, hs, µ[x 7→ JeKµ], c|))
if e {c0} {c1} → if JeKµ = 0

then (�, (cs, hs, µ, c1))
else (�, (cs, hs, µ, c0))

while e {c′} → if JeKµ = 0
then (�, (cs, hs, µ, c|))
else

(
�,

(
cs, hs, µ, c′; while e {c′}

))
c0; c1 → let (i, (cs′, hs′, µ′, c′)) = step (cs, hs, µ, c0)

in if c′ = c| then (i, (cs′, hs′, µ′, c1))
else (i, (cs′, hs′, µ, c′; c1))

Figure 3. Next interaction for a program state

and ⇓c are used to signal opening and closure of channels.
A silent interaction is represented by �, and interaction }
represents termination. Our language has no instruction to
signal that execution should terminate. However, interaction
} is used to denote an abnormal termination, as it may
happen, for example, if a program tries to output a message
on a closed channel. Figure 3 defines a function

step : ∀cs, cs′.State cs→ Interaction× State cs′,

which computes the next interaction with the environment of
a state s : State cs, together with the new state s′ : State cs′

that results from such interaction.
The definition of step makes use of an evaluation function

for expressions; JeKµ = v iff expression e evaluates to value
v in memory µ. We assume that J K is a side-effect free
function. We write f [x 7→ y] for the mapping that behaves
like f except on x, where it maps to y, and del(f, a) for
f \ {(a, f a)}.

If there is no command to execute, the system is ready
to process the next input (interaction ↓). Assignments, con-
ditionals, loops and skip generate internal activities, rais-
ing interaction (�). A sequence c0; c1 of instructions gen-
erates the interaction of c0. If ch is open in cs, command
out(ch,e) generates an output message interaction (↑chJeKµ);
otherwise an error condition (}) is raised, since the program
is trying to send a message to a closed channel. Command
new (ch){c} interacts silently (�), and associates command
c to channel ch in the handler set, provided that ch is open in
the actual state. Otherwise, (}) is raised. If ch is closed in cs,
command open(ch, `) adds (ch, `) to the channel system and
generates interaction ⇑ch` . Command close(ch) raises inter-

J−K : ∀cs.State cs→ React cs
JsK = let (i, s′) = step(s) in

case i of
� → Step (Js′K)
} → Stop
↑chv → Write (ch, v, cs(ch)) Js′K
⇑ch` → New (ch, `) Js′K
⇓ch → Close ch Js′K
↓ → Read (λe.Jupdate(s′, e)K)

update : ∀cs.State cs× EI cs→ State cs
update ((cs, hs, µ, c), (ch, v, `)) = (cs, hs, µ[x 7→ v], hs(ch))

Figure 4. Reactive behaviour for program states

action ⇓ch, provided that ch is open in the current state. If ch
is open (close) in the current state, open(ch, `) (close(ch))
raises }.

Iterating over step, one can generate a reactive behaviour
t : React cs from a state s : State cs, as it is shown in Fig. 4.

Definition 2.4 (Reactive behaviour for a JavaScript-like pro-
gram). Given a channel system cs and a memory µ, the in-
terpretation of p in (cs, µ) is defined as

JpKcs,µ = J(cs, handlers(cs, p), µ, c|)K,

where

handlers : CS ⇀ C ∪ {c|}
handlers(cs, ·) = ∅
handlers(cs, ch(x){c}; p)= let hs = handlers(cs, p)

in if ch ∈ dom(cs)
then {(ch, c)} ∪ hs
else hs

is the set of handlers in p with open channels in cs.

3. Security Conditions for Reactive Systems
Confidentiality for a reactive system can be defined in terms
of a notion of similarity of colists of input and output events.
In a system with dynamic channels, the security level of
an event depends on the state of the system at the time of
the arrival of the event. For example, an onclick event
can be classified as public at first and as secret later. In
terms of reactive behaviours, the security level of a channel
might be changed by closing the channel and opening it
at a different security level. In this context, the analysis of
similarity of two colists for an observer at a certain security
level is simplified when the security level is part of the
event as we do not need to depend on the system state. This
is the main reason for considering events on A as triples
Chan × A × L. Once the security level is included in the
events, the definitions are analogous to those of systems
with static channels. We recap the concepts about security
of reactive systems presented in previous work [39], slightly
modified to work in our setting.

3.1 Reactive Noninterference
The security level of an event is defined as lvl (c, v, `) = `.
The predicate visible` on events determines when an event is
observable for an observer at level `:

lvl(e) v `
visible`(e) visible`(◦)

Termination (◦) is visible at all levels. Silent steps (•), on
the other hand, are not visible at any security level.

A reactive behaviour is non-interferent when similar in-
puts produce similar outputs for observers at any security
level.

Definition 3.1 (Security for Reactive Behaviours). Given a
family of similarity relations ∼` on colists, we say that a
reactive behaviour t : React cs is secure iff, for all ` and
input colists i, i′ such that i ∼` i′, if (t, i) ⇒cs o and
(t, i′)⇒cs o

′, then o ∼` o′.
Note that the definition depends on a notion of similarity.

Depending on the power of the attacker one wants to model,
one chooses a notion of similarity that makes more or less
distinctions and, as a result, one obtains stronger or weaker
notions of security. Bohannon et al. [7] identify two notions
of security with practical interest: ID- and CP-security.

Definition 3.2 (ID-similarity). ID-similarity between colists
for an observer at level ` is formalised coinductively by the
following rules.

[] ∼ID

` []

¬visible`(e) s ∼ID

` s
′

e :: s ∼ID

` s
′

¬visible`(e) s ∼ID

` s
′

s ∼ID

` e :: s
′

visible`(e) s ∼ID

` s
′

e :: s ∼ID

` e :: s
′

Intuitively, two colists are ID-similar at level ` if there
is no evidence that they produce different events for an
observer at level `. In particular, an infinitely silent colist
–such as one produced by a divergent computation– is ID-
similar to any other colist because we never find evidence
against it. A feature of ID-similarity is that it is symmetric
and reflexive, but not transitive. If it were, we could not
have an infinitely silent colist ID-similar to any other as
transitivity would imply that every colist is similar to each
other.

In order to take progress into account, and distinguish a
productive colist from a silent one, we consider a stronger
notion of non-interference for reactive systems called CP-
security [7].

We coinductively define when a colist of events is not
visible (silent) for an observer at level ` as follows.

¬visible`(e) silent`(s)

silent`(e :: s) silent`([])

We define a relation that identifies the next event that
is visible to an observer at security level ` (if it exists).

Intuitively, we say that s .` e :: s′ when e is the next event
in s visible at level `. The following rules inductively define
the relation .`.

visible`(e)
e :: s .` e :: s

¬visible`(e) s .` e
′ :: s′

e :: s .` e
′ :: s′

Note that the relation is inductively defined, which means
that when s .` e :: s′, the next `-visible event e of the colist
s must come after a finite sequence of `-invisible events.

Definition 3.3 (CP-similarity). CP-similarity between col-
ists is defined coinductively by the following rules.

silent`(s) silent`(s
′)

s ∼CP

` s′

s .` e :: s1 s′ .` e :: s
′
1 s1 ∼CP

` s′1
s ∼CP

` s′

As opossed to ID-similarity, the notion of CP-similarity
requires proof that if one colist produces a visible event e,
the next observable event in the other will be e and moreover,
it will be produced in a finite number of steps. Also, unlike
ID-similarity, CP similarity is an equivalence relation.

By instantiating Definition 3.1 to ID- and CP-similarity
we obtain the notions of ID- and CP-security for reactive
behaviours.

3.2 Run-based Security
It is well known that non-interference is not a safety property
and cannot be precisely enforced by execution monitors [16,
32]. Therefore, we introduce a security condition which is
defined on runs, and characterises the set of secure inputs,
i.e. inputs for which a program does not leak information.
One can think that if a program p receives an input i with
no secrets, then executing p by feeding it i is secure, since
there are no secrets to leak1. Using this intuition, we classify
an input i as secure if it reveals the same information as the
input where secrets have been erased.

We coinductively define the relation I` responsible for
removing all the events unobservable at level `.

silent`(s)

s I` []
s .` e :: s

′ s′ I` s′′

s I` e :: s′′

Observe that given a colist s, there is a unique colist s′ such
that s I` s′. We will write sI` for this unique colist, and
refer to it as the restriction of s at level `.

Let us assume a level-indexed similarity relation ∼` be-
tween colists. Two inputs for a program reveal the same se-
crets at a given security level ` if, for an observer at level `,
they are similar and induce similar outputs.

Definition 3.4 (≈`,t). Let t ∈ React, ` ∈ L, and i, i′ input
colists such that i ∼` i′, (t, i) ⇒ o and (t, i′) ⇒ o′. We say

1 This observation is valid if we ignore covert channels, in particular, the
termination channel.

that the program t reveals the same `-secrets when given the
inputs i, i′, noted i ≈`,t i′, iff o ∼` o′.

Similarly to [6], we consider an input to be secure for a
program t if it reveals the same information about the secrets
as the input where secrets have been erased.

Definition 3.5 (Secure input). Let t be a reactive behaviour.
An input colist i is secure for t iff ∀`. i ≈`,t iI` . We say
that the input i is ID-secure (CP-secure) for t when ∼` is
instantiated to ∼ID

` (∼CP

`) in Definition 3.4.

Example 3.6. Consider the following program

p = c?0(x){ r := x };

c?1(x){ if r ≥ 1 ∨ x = 0

{new c?2(x){out(c!0,r)}}
{while 1 {skip} }};

c?2(x){skip}

Let us assume an initial memory (µ0 = λx.0) and an
initial channel system

cs = {(c?0, H), (c?1, L), (c?2, L), (c!0, L)} ,

where L and H are security levels such that L v H. Let
t : React cs be the interpretation of program p in cs. That
is, t = JpKcs,µ0

. Consider an input i with three messages as
follows:

i = [(c?0, v, H), (c?1, u, L), (c?2, 42, L)]

If v = 1 and u = 0, then i is neither ID- nor CP-secure
for t. However, if v = u = 1, we have that i is ID-secure,
but not CP-secure for t. Taking v = u = 0, input i becomes
ID- and CP-secure for t.

The evaluation relation defined in Figure 1 is only defined
for compatible inputs, which means that for incompatible
inputs evaluation will get stuck. However, as shown by the
following example, erasing the secrets can turn a compatible
input into an incompatible one.

Example 3.7. Consider the following program:

p = c?0(x){ r := x };

c?1(x){ if r ≥ 1

{open(c?2, L);
new c?2(x){out(c!0,r)}}
{skip }};

Let cs = {(c?0, H), (c?1, L), (c!0, L)}, be the initial
channel system, let t : React cs be such that t = JpKcs,µ0 .
The insecure input i = [(c?0, 1, H), (c?1, 1, L), (c?2, 1, L)] is
compatible with t:

(t, i)⇒cs [•, •, •, •, •, (c!0, 1, L)]

However, its restriction iIL
= [(c?1, 1, L), (c?2, 1, L)] is

not, as channel c?2 is never opened.

Hence, the filtering of a compatible input may be incom-
patible. Moreover, the fact that a program may get stuck with
a filtered input does not imply that the (unfiltered) input is
insecure for that program.

Therefore, in order to be able to use the notion of secure-
run we need to account for incompatible input events in the
evaluation relation. We extend the evaluation relation with
the following rule:

R3

e /∈ EI cs (Read f, i)⇒cs o

(Read f, e :: i)⇒cs • :: o

Intuitively, Rule R3 simply discards the next input event if it
is not compatible with the actual channel system. With this
additional rule, the evaluation relation is defined for every
input and it becomes a function.

We can now prove the following relation between ID-
secure and CP-secure inputs:

Lemma 3.8. Let t : React cs and i an input colist. If i is
CP-secure for t, then i is ID-secure for t.

3.3 From Run-based Security to Noninterference and
Back

We have the notions of ID-security and CP-security which
characterise the security of programs, and the notions of ID-
and CP-secure inputs which characterise the security of runs.
As it is shown in [39], the security for programs and runs is
closely related for CP-similarity.

Lemma 3.9 (Secure inputs and CP-security). A reactive
behaviour t ∈ React cs is CP-secure iff ∀i ∈ I. i is CP-
secure for t.

It is easy to see that all inputs are CP-secure for a CP-
secure program. In order to see why a program such that
every input is CP-secure is a CP-secure program, observe
that whenever two inputs i, i′ are similar at some level ` they
have exactly the same restriction at that level.

i ∼CP

` i′ =⇒ iI` = i′I`

Using the transitivity of ∼CP

` and the definition of secure
input, one obtains that the output colists produced by t when
executed on i and i′ must be CP-similar, provided that i and
i′ are CP-secure.

The strong correspondence between security of programs
and security of runs does not hold when we consider ID-
security, and we only have the property that all inputs are
secure for secure programs.

Lemma 3.10 (Secure inputs and ID-security). If a reactive
behaviour t ∈ React cs is ID-secure, then every input i ∈ I
is ID-secure for t.

Even though all inputs may be ID-secure for a program,
the program might be interferent, as shown by the following
example.

Example 3.11. Consider the following program

p = c?0(x){ r := x };

c?1(x){ if r ≥ 1

{out(c!0,r)}
{while 1 {skip} }};

where we assume an initial channel system

cs = {(c?0, H), (c?1, L), (c!0, L)} .

Every input is ID-secure for p but p is not an ID-secure
program, as the following two ID-similar inputs show.

i = [(c?0, 1, H), (c?1, 0, L)]
∼ID

L

i′ = [(c?0, 2, H), (c?1, 0, L)]

Let t = JpKcs,µ0
, the reactive behaviour obtained from p and

µ0 in cs. Then, we see that t is not ID-secure, since i and i′

are ID-similar at level L, but their outputs are not ID-similar
at level L.

(t, i) ⇒ [•, •, •, •, (c!0, 1, L)]
�ID

L

(t, i′) ⇒ [•, •, •, •, (c!0, 2, L)]
Nevertheless, all inputs i are ID-secure for t (Definition
3.5). The key observation here is that t diverges for iIL
(which coincides with i′IL

), since r was initially zero. In
other words, the input colist without events on channel c?0
produces an output which is silent and infinite, and hence
ID-similar to every other output.

4. Monitoring Reactive Behaviours
In this section, we present the main contribution of the paper:
a monitor for reactive behaviours. The monitor is based on
a multi-execution of a reactive behaviour: for each security
level in ` ∈ L, a modified reactive behaviour is created,
named the producer at level `. A producer at level ` is fed
only input events visible at security level `, and it produces
outputs only at level `. Therefore, it is easy to see that each
producer cannot leak secrets, since it never has any secrets
available.

In order to detect if a run is secure or not, the following
procedure is followed: if the original program produces an
output event at security level `, then:

I only the producer at level ` can produce an output at such
security level;

I if such producer outputs the same event, it is safe, since
producers do not leak secrets;

I if such producer outputs a different event, then the run is
unsafe.

Hence by the coordinated execution of the original pro-
gram and the producers, one can replicate the behaviour of
the original program for as long as the program is secure,
and detect when a run becomes insecure.

prd : ∀`, cs.React cs→ React cs↓`
prd`,cs (Read f) = Read (λe. prd`,cs (f e))
prd`,cs (Write e t) = if ` = lvl(e)

then Write e (prd`,cs t)
else Step (prd`,cs t)

prd`,cs (Step t) = Step (prd`,cs t)
prd`,cs(New (c, `′) t) = if `′ v `

then New (c, `′) (prd`,cs⊕(c,`′) t)
else Step (prd`,cs⊕(c,`′) t)

prd`,cs(Close c t) = if cs c v `
then Close c (prd`,cs\{(c,`)} t)
else Step (prd`,cs\{(c,`)} t)

prd`,cs(Stop) = Stop

Figure 5. Producer creation at level `

4.1 Creation of Producers
A producer at level ` is a modification of a reactive behaviour
in such a way that it only outputs events at level `. Moreover,
the channel system of the producer at level ` is restricted to
channels of at most level `. More precisely, the restriction of
a channel system cs to level ` is given by:

cs↓` = {(c, `′) ∈ cs | `′ v `}

The creation of producers is defined in Figure 5. When
the original behaviour does a Read, the producer reads the
event and continues execution with the producer correspond-
ing to the reaction to that event. Because the channel system
of a producer is restricted to `, the security level of this input
event is necessarily less or equal to `. In the case of a Write,
the producer will perform it only when the level of the chan-
nel is `, and do a silent step otherwise. Silent steps (Step)
and stops (Stop) are simply copied. The creation (New) or
closure (Close) of a channel will be replicated, as long as
it is compatible with the restricted channel system (i.e. the
security level `′ of the channel being created or closed is
such that `′ v `.) On the contrary, if the security level of the
channel being created or closed is not compatible with the
restricted channel system, a silent step is generated and the
modification to the channel system is ignored.

Note how the type of the transformation ensures that ini-
tially the reactive behaviour does not has access to secrets
since only channels with public events are open, and how
this invariant is preserved by the function prd which creates
producers. Also, it is easy to see that a producer at security
level ` will only perform Writes at level ` by simple inspec-
tion of the definition of prd.

4.2 Small-step Semantics of Reactive Behaviours
The monitor works by analising the next step that would be
performed by a reactive behaviour and comparing it with
a producer. In order to be able to refer easily to the next
step of a behaviour we introduce a small-step execution

SR1

e ∈ EI(cs)
(cs,Read f, e :: i)

•−→ (cs, f e, i)

SR2

e /∈ EI(cs)
(cs,Read f, e :: i)

•−→ (cs,Read f, i)

SW
(cs,Write e t, i)

e−→ (cs, t, i)

SS
(cs,Step t, i)

•−→ (cs, t, i)

SN
cs′ = cs⊕ (c, `)

(cs,New (c, `) t, i)
•−→ (cs′, t, i)

SC
cs(c) = ` cs′ = cs \ {(c, `)}
(cs,Close c t, i)

•−→ (cs′, t, i)

Figure 6. Small step semantics for React

relation for React. The rules in Figure 6 define a relation
−→ ⊆ Conf × EO∪{•} × Conf, where a configuration is
a (dependent) tuple Conf = (cs : CS) × React cs × I
consisting of a channel system, a reactive behaviour for that
channel system, and a colist of input events. As usual, we
write σ e−→ σ′ for (σ, e, σ′) ∈ −→.

Intuitively, a Read is only actually performed when the
next input event is compatible (SR1). If the event is incom-
patible it is discarded without reading (SR2). A Write e t out-
puts an event e and continues executing t (SW). A Step t per-
forms a silent step and continues with t (SS). A New (c, `) t
performs a silent step and continues with t on a channel sys-
tem extended with c open at level ` (SN). A Close c t per-
forms a silent step and continues with t on a channel system
with channel c closed.

There are two ways in which a configuration may be
final: when doing a Read on an empty input colist, and
on a Stop. The predicates on configurations end• and end◦
capture these two situations.

end•(cs,Read f, []) end◦(cs,Stop, i)

4.3 A Precise Monitor
We define the monitor for reactive behaviours by a family of
evaluation relations ⇓cs indexed by a channel system. Like
the evaluation relation in Figure 1, the monitor evaluation
relation tell us which outputs a reactive behaviour might
generate given a certain input. However, the monitor may
also rise an alarm if it detects an insecure run. More precisely
the monitor is given by a relation

⇓cs⊆ React cs× I × (L → Conf)×Oε

where Oε is similar to the colist of output events O, but it
may also end with an alarm ε. Formally, we coinductively

define Oε as follows.

Oε = [] | ε | (EO ∪ {•, ◦}) :: Oε

We write (t, i, σ) ⇓cs o for (t, i, σ, o) ∈ ⇓cs indicating that
the reactive behaviour t, with input i, and producers σ (we
have one configuration for each producer at each security
level, hence the vector notation) produce an output o.

The monitor evaluation relation is given by the rules in
Figure 7. Rule SIL indicates it is always safe for a reactive
behaviour to perform a silent step. Note that in doing the
silent step the channel system may change, as it happens
when opening or closing channels (see Fig. 6.) The other
rules concern the case where a reactive behaviour wants to
perform an operation which might produce a visible event, in
which case the monitor needs to check that the correspond-
ing producer outputs the same event. The most obvious case
of visible event is when a reactive behaviour wants to output
an event by doing a Write (rules VIS1−4.) Rule VIS1 applies
when the event to be written coincides with the output of
the producer at the corresponding security level. In this case,
the output is safe and the event is outputted. It might happen
that the producer needs to do some silent steps before it out-
puts an event. Rule VIS2 takes care of this case by advanc-
ing the computation on the producer. If the producer outputs
an event, but it does not coincide with the one the reactive
behaviour wants to output, we are in presence of an insecure
run and an alarm is raised (rule VIS3.) If the producer config-
uration at the event level is final, then it cannot produce such
an event and an alarm is raised (rule VIS4.) Finally, the last
two rules (END1 and END2) concerns the case where the re-
active behaviour would finish executing. Before concluding
that finishing would not leak information, the monitor needs
to make sure that every producer finishes silently. Since we
distinguish between finishing by emptying the input colist
and finishing by a Stop (see Fig. 1) we need to treat the two
cases differently. Therefore we need two rules with two dif-
ferent functions (done and stop) that will execute producers
until they finish in the appropriate manner, or until they pro-
duce some visible output, raising an alarm. Note that even
if the reactive behaviour terminates, some producer may di-
verge, and hence, the monitor may diverge. As we will see in
the next section, this may only happen if the run is insecure.

The following example shows why, even if the reactive
behaviour was going to end, rules END1 and END2 are
needed.

Example 4.1. Consider the following program:

p = c?0(x){ r := x };

c?1(x){ if r = 0

{out(c!0,1)}
{skip} };

SIL
(cs, t, i)

•−→ (cs′, t′, i′) (t′, i′, σ) ⇓cs′ o
(t, i, σ) ⇓cs • :: o

VIS1

lvl(e) = ` σ(`)
e−→ σ′

(t, i, σ[` 7→ σ′]) ⇓cs o
(Write e t, i, σ) ⇓cs e :: o

VIS2

lvl(e) = ` σ(`)
•−→ σ′

(Write e t, i, σ[` 7→ σ′]) ⇓cs o
(Write e t, i, σ) ⇓cs • :: o

VIS3

lvl(e) = ` σ(`)
e′−→ σ′

e′ 6= • e′ 6= e

(Write e t, i, σ) ⇓cs ε

VIS4
lvl(e) = ` (end•(σ(`)) ∨ end◦(σ(`)))

(Write e t, i, σ) ⇓cs ε

END1
(Read f, [], σ) ⇓cs done(σ)

END2
(Stop, i, σ) ⇓cs stop(σ)

Figure 7. Monitor for Reactive Behaviours

Let t be the reactive behaviour obtained from it for the
initial memory µ0 and channel system

cs = {(c?0, H), (c?1, L), (c!0, L)}

and let i = [(c?0, 1, H), (c?1, 0, L)]. The evaluation of t with
input i results in a finite sequence of invisible events.

(t, i)⇒cs [•, •, •, •, •]

However, the evaluation of t when fed with the restriction of
i at level L, i.e. iIL

= [(c?1, 0, L)], has an observable event.

(t, iIL
)⇒cs [•, •, (c!0, 1, L)]

Therefore, the outputs are distinguishable at level L, and we
conclude that i is not ID-secure for t.

The above example illustrates the need to run all produc-
ers and check that they terminate in the same manner as the
reactive behaviour. In the monitor, this check is performed
by the following functions.

done(σ)=

[] if ∀`. end•(σ(`))
ε if ∃`. isWrite(σ(`))

∨ end◦(σ(`))
• :: done(next(σ)) otherwise

stop(σ) =

 ε if ∃`. isWrite(σ(`))
∨ end•(σ(`))

• :: stop(next(σ)) otherwise

The predicate on configurations isWrite tell us if a configu-
ration is a Write:

isWrite(cs,Write e t, i)

Function next advances each producer a silent step (when
possible):

next : (L → Conf)→ (L → Conf)

next(σ)(`) =

{
σ′ if σ(`) •−→ σ′

σ(`) otherwise.

Given a channel system cs, a reactive behaviour t, and
an input colist i, the monitor is initialised in the following
manner

monitor(cs, t, i) =
(
t, i, λ`. (cs↓`, prd`,cs(t), i)

)
That is, producers are created with function prd in a

restricted channel system. Since inputs on closed channels
are ignored there is no need to filter the input colist of each
producer.

5. Properties of the Monitor
Ideally, a monitor should be precise and transparent. Preci-
sion means that the monitor should raise an alarm only for
insecure runs. Transparency, on the other hand, means that
secure runs should be indistinguishable from an ordinary ex-
ecution (i.e. with the monitor not present.)

In order to state these properties formally, we define the
predicate ok ⊆ Oε which identifies output colists where the
monitor has not raised an alarm. The predicate is defined
coinductively by the following rules.

ok([])

ok(s)

ok(e :: s)

The monitor for reactive behaviours of the previous sec-
tion is precise with respect to ID-security.

Theorem 5.1 (Precision for ID-secure runs). Let cs be a
channel system, t : React cs a reactive behaviour and i an
input colist such that monitor(cs, t, i) ⇓cs o. Then,

i is ID-secure for t ⇐⇒ ok(o)

Moreover, the monitor is transparent with respect to both
ID- and CP-security.

Theorem 5.2 (Transparency for secure runs). Let cs : CS
be a channel system, t : React cs a reactive behaviour
on cs, and i an input colist, such that (t, i) ⇒cs o and
monitor(cs, t, i) ⇓cs o′. Then,

i is ID-secure for t =⇒ ok(o′) ∧ ∀`. o ∼ID

` o
′, (1)

and

i is CP-secure for t =⇒ ok(o′) ∧ ∀`. o ∼CP

` o′. (2)

However, the monitor is not precise with respect to CP-
security: it could happen that an insecure run causes the
monitor to diverge instead of raising an alarm.

As a corollary of Theorem 5.2, Lemma 3.10, and Lemma 3.9,
we have the following result on behaviours.

Corollary 5.3 (Transparency for secure behaviours). Let cs
be a channel system, t an (ID/CP)-non-interferent reactive
behaviour on cs, and i an input colist i. Then

(t, i)⇒cs o
monitor(cs, t, i) ⇓cs o′

}
=⇒ o ∼ID/CP o′.

Therefore, the monitor will always preserve the semantics
of secure programs.

6. Related Work
There are many security policies enforceable by execution
monitoring [16, 22, 32], but non-interference is not one of
them [25, 32]. Therefore, monitors often enforce properties
stronger than non-interference [1, 3, 4, 29, 31] losing preci-
sion, and hence raising false alarms.

Our approach to monitoring is an extension of the mon-
itor by Zanarini, Jaskelioff, and Russo [39]. The idea of
transforming programs according to their security level is in-
spired by secure multi-execution as introduced by Devriese
and Piessens [15] for interactive systems. However, the idea
of having different execution threads according to their se-
curity level had been used before [9, 11]. Barthe et al. [5]
show that secure multi-execution can also be achieved by
code transformation. Rafnsson and Sabelfeld [28] make sev-
eral improvements to secure multi-execution of interactive
systems, such as lifting the totality assumptions on input
channels and distinguishing between presence and content
of messages. Differently from the above mentioned works
which focused on interactive systems, Bielova et al. [6] adapt
secure multi-execution for reactive systems and, similarly to
this work, consider security in terms of runs.

Zheng and Myers [40] consider dynamic security labels
for a statically typed language. Nevertheless, none of the
works based on secure multi-execution described above [5,
6, 15, 28, 39] consider dynamic channels.

De Groef et al. [12] implement FlowFox, a web browser
that supports an information flow control mechanism based
on SME. The actual implementation of FlowFox allows for
policies that assign labels to API method calls based on a
state maintained by the security policy. Hence, the policy
can record in its state which channels are open. However,
this support for dynamic channels is not present in the formal
model of FlowFox [13], and hence no formal guarantees are
provided when using this feature.

The notions for reactive systems of ID- and CP-non-
interference were introduced by Bohannon et al. [7]. As op-
posed to ID-security, the notion of CP-security is progress-
sensitive. However, it is more difficult to enforce. Rafns-
son and Sabelfeld [27] show that ID- and CP-security are

termination-insensitive, and therefore susceptible to brute
force attacks that exploit the termination channel. Our pro-
posal, similarly to other modern information-flow tools [10,
26, 33] cannot avoid this kind of leaks. However, for deter-
ministic systems, the bandwidth of leaking information by
exploiting outputs in combination with termination is loga-
rithmic in the size of the secret [2] and can be reduced by
applying buffering techniques [27].

Our model of reactive behaviours is an extension of the
description of interactions in [21] which in turn is inspired
by [34]. In order to cope with dynamic channels it has
been extended to use the expressive power of interaction
structures [17].

7. Conclusions
We propose a monitor for reactive systems in which chan-
nels can be opened and closed dynamically. Our approach
extends the multi-execution monitor of Zanarini, Jaskelioff,
and Russo [39] which could only handle a fixed set of chan-
nels. Due to the generality of the approach in [39] and a care-
ful choice of how to extend it, we were able to adapt many
notions to our more complex setting of dynamic channels
with only slight modifications. The main issue to consider
was how to model non-interference. Once we decided that
the right way was to pair each event with a security level,
the rest of the design decisions followed up naturally. Inter-
estingly, we obtained similar results as the previous monitor:
our monitor is precise with respect to ID-security and trans-
parent with respect to both ID and CP-security.

The addition of dynamic channels means that a channel
may be closed and then opened at a different security level,
and therefore we need to treat security levels dynamically.
This opens the door for an approach to declassification:
by adding a declassification primitive, we may allow the
temporary change of the security level of a channel and still
be able to provide formal security guarantees.

Finally, we would like to implement the monitor in a real
browser and develop some applications for it. This would
provide a reality check for our model of reactive systems
and suggest areas where improvement is needed.

Acknowledgments
We thank the anonymous reviewers for their constructive
criticism, and Exequiel Rivas and Alejandro Russo for their
insightful comments and generous help. This work was
funded by the Agencia Nacional de Promoción Cientı́fica
y Tecnológica (PICT 2009-15) and Consejo Nacional de In-
vestigaciones Cientı́ficas y Técnicas (CONICET).

References
[1] A. Askarov and A. Sabelfeld. Tight Enforcement of

Information-Release Policies for Dynamic Languages. In Pro-
ceedings of the 22nd IEEE Computer Security Foundations

Symposium, Washington, DC, USA, 2009. IEEE Computer
Society.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
Insensitive Noninterference Leaks More Than Just a Bit. In
Proceedings of the 13th European Symposium on Research
in Computer Security: Computer Security, ESORICS ’08.
Springer-Verlag, 2008.

[3] T. H. Austin and C. Flanagan. Efficient Purely-Dynamic
Information Flow Analysis. In Proc. ACM Workshop on
Programming Languages and Analysis for Security (PLAS),
June 2009.

[4] T. H. Austin and C. Flanagan. Permissive dynamic informa-
tion flow analysis. In Proceedings of the 5th ACM SIGPLAN
Workshop on Programming Languages and Analysis for Se-
curity, PLAS ’10. ACM, 2010.

[5] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Ri-
vas. Secure multi-execution through static program trans-
formation. In Formal Techniques for Distributed Systems
(FMOODS/FORTE 2012), June 2012.

[6] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Re-
active non-interference for a browser model. In Proceedings
of the 5th International Conference on Network and System
Security (NSS 2011), Sept. 2011.

[7] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic. Reactive noninterference. In Proceedings of
the 16th ACM Conference on Computer and Communications
Security, CCS ’09. ACM, 2009.

[8] S. B. Byrne, R. S. Sutor, J. Robie, G. Nicol, M. Champion,
S. Isaacson, I. Jacobs, L. Wood, C. Wilson, and A. L. Hors.
Document Object Model (DOM) Level 1. W3C recommen-
dation, W3C, Oct. 1998. http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001.

[9] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla.
Preventing Information Leaks through Shadow Executions. In
Proceedings of the 2008 Annual Computer Security Applica-
tions Conference, ACSAC ’08. IEEE Computer Society, 2008.

[10] R. Chapman and A. Hilton. Enforcing security and safety
models with an information flow analysis tool. In Proc. of the
2004 annual ACM SIGAda international conference on Ada.
ACM, 2004.

[11] M. Cristiá and P. Mata. Runtime Enforcement of Noninterfer-
ence by Duplicating Processes and their Memories. In Work-
shop de Seguridad Informática WSEGI 2009, Argentina, 38
JAIIO, 2009.

[12] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens.
FlowFox: a web browser with flexible and precise information
flow control. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12. ACM,
2012.

[13] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens.
Secure multi-execution of web scripts: Theory and prac-
tice. Journal of Computer Security, 22(4):469–509, 2014.
ISSN 0926-227X. . URL https://lirias.kuleuven.be/

handle/123456789/442492.

[14] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow. Commun. ACM, 20(7):504–513,

July 1977.

[15] D. Devriese and F. Piessens. Noninterference through Secure
Multi-execution. In Proc. of the 2010 IEEE Symposium on
Security and Privacy, SP ’10. IEEE Computer Society, 2010.

[16] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computabil-
ity classes for enforcement mechanisms. ACM Trans. Pro-
gram. Lang. Syst., Jan. 2006.

[17] P. Hancock and A. Setzer. Interactive programs in dependent
type theory. In P. Clote and H. Schwichtenberg, editors,
Computer Science Logic. 14th international workshop, CSL
2000, Springer Lecture Notes in Computer Science, Vol. 1862,
pages 317 – 331, 2000.

[18] D. Hedin and A. Sabelfeld. Information-Flow Security for a
Core of JavaScript. In Proc. IEEE Computer Sec. Foundations
Symposium. IEEE Computer Society, 2012.

[19] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting
browser state from web privacy attacks. In Proceedings of
the 15th international conference on World Wide Web, WWW
’06. ACM, 2006.

[20] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In Proceedings of the 17th ACM conference
on Computer and communications security, CCS ’10. ACM,
2010.

[21] M. Jaskelioff and A. Russo. Secure multi-execution in
Haskell. In Proc. Andrei Ershov International Conference on
Perspectives of System Informatics, LNCS. Springer-Verlag,
June 2011.

[22] J. Ligatti, L. Bauer, and D. Walker. Edit Automata: Enforce-
ment Mechanisms for Run-time Security Policies. Interna-
tional Journal of Information Security, Feb. 2005.

[23] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. AdJail:
practical enforcement of confidentiality and integrity policies
on web advertisements. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, Berkeley, CA,
USA, 2010. USENIX Association.

[24] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based
approach to mashup security. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications
Security, ASIACCS ’10. ACM, 2010.

[25] J. McLean. A General Theory of Composition for Trace Sets
Closed under Selective Interleaving Functions. In Proceed-
ings of the 1994 IEEE Symposium on Security and Privacy,
SP ’94. IEEE Computer Society, 1994.

[26] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java Information Flow. Software release. Located
at http://www.cs.cornell.edu/jif, July 2001.

[27] W. Rafnsson and A. Sabelfeld. Limiting information leak-
age in event-based communication. In Proceedings of the
ACM SIGPLAN 6th Workshop on Programming Languages
and Analysis for Security, PLAS ’11. ACM, 2011. ISBN 978-
1-4503-0830-4.

[28] W. Rafnsson and A. Sabelfeld. Secure Multi-execution: Fine-
Grained, Declassification-Aware, and Transparent. In Com-
puter Security Foundations Symposium (CSF), 2013 IEEE
26th, pages 33–48, June 2013.

[29] A. Russo and A. Sabelfeld. Securing Timeout Instructions in
Web Applications. In Proc. IEEE Computer Sec. Foundations
Symposium. IEEE Computer Society, July 2009.

[30] A. Sabelfeld and A. C. Myers. Language-Based Information-
Flow Security. IEEE J. Selected Areas in Communications,
21(1):5–19, Jan. 2003.

[31] A. Sabelfeld and A. Russo. From dynamic to static and
back: Riding the roller coaster of information-flow control
research. In Proc. Andrei Ershov International Conference
on Perspectives of System Informatics, volume 0 of LNCS.
Springer-Verlag, June 2009.

[32] F. B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 2000.

[33] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible
Dynamic Information Flow Control in Haskell. In Haskell
Symposium. ACM SIGPLAN, September 2011.

[34] W. Swierstra and T. Altenkirch. Beauty in the Beast: A
Functional Semantics of the Awkward Squad. In Haskell
’07: Proceedings of the ACM SIGPLAN Workshop on Haskell,
pages 25–36, 2007.

[35] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In Proc. Network and
Distributed System Security Symposium, Feb. 2007.

[36] D. Volpano, G. Smith, and C. Irvine. A Sound Type System
for Secure Flow Analysis. J. Computer Security, 4(3):167–
187, 1996.

[37] Williams and D. Wichers. OWASP Top 10 2010. http:

//www.owasp.org/index.php/Top_10_2010, 2010.

[38] D. Zanarini and M. Jaskelioff. Monitoring Reactive Systems
with Dynamic Channels: Extended Version, 2014. Available
at http://www.fceia.unr.edu.ar/~dante.

[39] D. Zanarini, M. Jaskelioff, and A. Russo. Precise Enforcement
of Confidentiality for Reactive Systems. In Computer Security
Foundations Symposium (CSF), 2013 IEEE 26th, pages 18–
32, June 2013.

[40] L. Zheng and A. C. Myers. Dynamic security labels and
noninterference (extended abstract). In T. Dimitrakos and
F. Martinelli, editors, Formal Aspects in Security and Trust,
volume 173 of IFIP International Federation for Information
Processing, pages 27–40. Springer US, 2005. ISBN 978-0-
387-24050-3.

