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Abstract

This Thesis introduces the fundamentals and the theory of a new way to ap-
proximate differential equations applied to numerical integration and digital
control.

Replacing the classic time discretization with state quantization –an approx-
imation approach already available in the literature– two new numerical inte-
gration methods are introduced. Due to this kind of discretization technique,
the resulting simulation models are discrete event systems instead of a discrete
time as in all classic numerical methods. This fact yields many practical ad-
vantages like an efficient sparsity exploitation and an important computational
cost reduction in hybrid system simulation.

From a theoretical point of view, it is shown that the methods can be an-
alyzed as continuous systems with bounded perturbations and thus, stability,
convergence and error bound properties are proven showing also some interest-
ing advantages with respect to classic approaches.

The application of the new first order method to the discretization of con-
tinuous controllers with the addition of an asynchronous sampling scheme allow
to define a new digital control methodology in which the time discretization is
ideally avoided. As a result, this new technique improves considerably the dy-
namic response of digital control systems, reduces the quantization effects, the
computational costs and the information traffic between plant and controller.

When it comes to theoretical properties, the new control scheme can ensure
stability, convergence and error bound properties which can be applied to linear,
non linear and time varying cases. Based on these properties, different design
algorithms are also provided.
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Chapter 1

Introduction

The resolution of most modern engineering problems could not be conceived
without the help of simulation. Due to risk and cost reasons, the direct ex-
perimentation on real systems is leaving his place to the experimentation on
simulation models (there are exceptions, of course). Nowadays, we can hardly
find a design problem which can be carried without the help of a computer.

The increasing complexity of man–made systems and the need of more and
more accurate and faster results stimulated the development of hundreds of new
simulation techniques in the last 40 years.

Simultaneously, the appearence of modern computers and its amazing evolu-
tion gave the necessary tool which allows the easy and efficient implementation
of the most complex simulation methods.

Due to these facts, computer simulation constitutes a discipline itself. As
every other discipline, it is divided in several sub–disciplines which deal with
different specific problems.

Engineering problems involve dealing with physical systems. Since most
physical laws are described by differential equations, simulation in engineering
is in fact related to numerical resolution of differential equations. This is also
called Continuous System Simulation.

However, modern egineering systems usually include the presence of digital
devices –digital controller for instance– whose description does not fit in the
form of a differential equation. This fact adds more complexity to our subject
and leads to the family of the Hybrid Systems.

In many applications, the simulations have to be performed in real–time.
Typical examples are the so called man–in–the–loop systems (flight simulators
for instance) and, in general, simulations which interact with systems of the real
world.

Digital control systems can be considered as part of the last category since
they have to interact with a real plant. Taking into account that plants are
usually described by differential equations and consequently most controllers are
designed to satisfy a continuous law, the digital implementation of continuous
controllers can be seen as a problem of real–time simulation. Thus, it has to be
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2 CHAPTER 1. INTRODUCTION

solved following some discretization techniques.
The goal of this Thesis is to develop a completely new family of numerical

methods for ordinary differential equations –which can be also applied to hybrid
and differential algebraic equation systems– and to use the same ideas in the
implementation of digital controllers.

The main innovation in the numerical methods developed here is the avoid-
ance of time discretization. All existing numerical methods for ordinary differ-
ential equations are based on the calculation of an approximate solution in some
discrete instant of time. Here, we replace that discretization by the quantization
of the state variables.

As a result, the simulation model becomes discrete event instead of discrete
time on one hand. This fact produces, in some cases, an important reduction
of the computational costs (specially in hybrid systems).

On the other hand, this new approximation yields strong theoretical prop-
erties related to stability, convergence, error bound, etc.

Both kind of advantages –practical and theoretical– are also verified in the
application to digital control.

1.1 Outline of the Thesis

This Thesis is conceived as a self content work where each chapter is based in
the previous ones although this does not always coincide with the chronological
order in which the subjects were developed.

On one hand, it is assumed that all the basic concepts –i.e. the concepts
which are usually learned at the undergraduate level in Control and Numerical
Methods– are already known by the reader. On the other hand, other new
subjects and tools are only introduced for its use in the Thesis.

In that way, the Thesis does not include neither a complete theory nor a state
of the art description about DEVS1, perturbation theory, numerical integration,
or other concepts involved.

Several original theoretical results, including theorems and proofs, are in-
cluded in the Thesis. In order to give the reader the possibility of skipping
them, most are concentrated in a chapter.

When it comes to notation, the classic notations of control and DEVS theory
were simulataneously used. Thus, many symbols are often redefined to be used
in different contexts. In that way, the meaning of each symbol must be seen
according to the last definition made.

Taking into account all these principles, the Thesis is organized as follows:
This first introductory chapter gives a description of the whole Thesis, not

only by enummerating the results but also trying to relate them with the state
of the art.

The second chapter introduces the seed of the main ideas in which the rest
of the work is based on. There, the original concepts about quantization and

1The list of abbreviations used in this Thesis can be found in Appendix A.
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DEVS are introduced starting from a motivating example in Section 2.1. Then,
Sections 2.2 to 2.4 develop an ad–hoc theory of DEVS which is then used in the
rest of the Thesis. After that, Section 2.5 shows the relationship between the
first example and DEVS introducing the concept of Quantized Systems (QS),
which was the first idea to approximate differential equations with DEVS mod-
els.

At that point, the state–of–the–art description is almost complete and then,
Section 2.6 describes the main problem –called illegitimacy– shown by Quantized
Systems. Discovering this problem and finding a solution were probably the
most important motivations of this work.

The third chapter starts describing the solution to the illegitimacy problem,
which consists in adding hysteresis to the quantization. Based on the use of
hysteretic quantization functions –formally defined in Section 3.1– theQuantized
State Systems (QSS) and the QSS–method are introduced in Section 3.2. This
method is the first general discrete event numerical method for integration of
Ordinary Differential Equations (ODEs).

Based on the study of the trajectory forms (Section 3.3), the DEVS model of
the QSS is deduced in Section 3.4. This model also shows the practical way to
implement the method. After introducing a simple simulation example –where
some qualities as the sparsity exploitations become evident– Sections 3.5 and
3.6 explain some practical aspects about the use of the QSS–method. Then, the
chapter finishes concluding about the need of a deeper theoretical analysis.

Chapter 4 is dedicated to the study of the main theoretical properties of
the approximation. After explaining the relatioship between the QSS–method
and the theory of perturbed systems, the convergence property is proven in the
theorem included in Section 4.2. Further, the general stability properties are
studied making use of a Lyapunov approach in Section 4.3. The main result
here (Theorem 4.2) concludes that –under certain conditions– the ultimately
boundedness of the approximate QSS solutions can be ensured.

Despite the importance and generality of that stability result, its use is quite
complicated and conservative (mainly due to the presence of Lyapunov func-
tions). Thus, the analysis is carried to the field of Linear Time Invariant (LTI)
Systems where the properties of classic numerical method are usually studied.
Here, in order to avoid conservative results, a new way to establish the bound
of the perturbation effects is introduced (Section 4.5) which is then compared
with the classic Lyapunov approach for LTI systems (previously introduced in
Section 4.4). This comparison shows the convenience of th new approach.

Based on this new approach, not only the stability but also the global error
bound properties of the QSS–method in LTI systems are shown in Section 4.6.
These theoretical results are then applied to the choice of the appropriate quan-
tization and hysteresis according to the required accuracy. In spite of the good
properties proven, the theoretical study also concludes that a good accuracy
cannot be achieved without an important amount of calculations and therefore,
a higher order approximation becomes necessary.

The fifth chapter introduces then the Second Order Quantized State Sys-
tems (QSS2) and the QSS2–method following a similar procedure to the one
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used when the QSS–method was presented. After studying the trajectories
in Section 5.2, the corresponding DEVS model is deduced (Section 5.3) and
then the theoretical properties studied in Chapter 4 are extended to the new
method. Finally, the simulation of some examples –which shows some practical
advantages– is followed with a theoretical and empirical comparison between
both introduced methods.

Chapter 6 is concerned with the extension of the QSS and QSS2 methods
to some special cases. Sections 6.1 and 6.2 study the use of these methods in
Differential Algebraic Equation (DAE) Systems, providing a general methodol-
ogy for the index 1 case. There, a very simple block–oriented solution which
permits the direct simulation on block diagrams containing algebraic loops is
also presented. The simulation examples illustrate an advantage: the method
only iterates with the implicit algebraic equations in some particular steps.

Section 6.3 shows the use of the new methods in Hybrid Systems. Here,
the knowledge of the complete QSS and QSS2 trajectories together with the
intrinsec asyncronous behavior of the methods give them several advantages
for discontinuity handling. These advantages are illustrated with two examples
which also include a comparative analysis against classic methods.

This chapter finishes introducing the application of the QSS–method to the
simulation of Bond Graphs (BG). The resulting scheme –called Quantized Bond
Graph (QBG) – gives a very simple way to perform a direct simulation on a
Bond Graph model of a physical system. There, Section 6.5 sketches a new way
to deal with higher index DAEs resulting from BG models based on a switching
behavior and avoiding iterative algorithms.

The seventh chapter introduces the use of the QSS–method in real time
control applications. The QSS approximation of a previously designed con-
tinuous controller implemented with an asynchronous sampling methodology
defines a new digital control scheme which –in theory– avoids the time dis-
cretization. This asynchronous digital control method is called Quantized State
Control (QSC) and it is formally defined in Section 7.2.

Similarly to the simulation methods, QSC can be analyzed as a perturbed
version of the original control system in order to deduce its theoretical proper-
ties. Making use of this, Sections 7.4 to 7.7 study the stability and the ultimate
bounds of QSC nonlinear systems, going from the particular case of Time In-
variant (TI) Systems to the general Time Varying cases. There, two practical
design procedures –whose use is also illustrated with simulation examples– are
developed from the corresponding stability theorems. Finally, the convergence
of QSC system trajectories to the Continuous Control System (CCS) trajectories
when the quantization goes to zero is shown in Section 7.8.

In Chapter 8, the particular case of QSC applied to LTI Systems is studied
and some practical aspects of the methodology are discussed. After introducing
the LTI QSC model, Section 8.2 introduces the stability and error bound results
based on the non conservative tools developed in Chapter 4. These results
are then translated into practical design rules which are applied in two new
examples where some advantages over classic digital discrete time control can be
observed. Final remarks about practical implementation problems and practical
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advantages are presented in Sections 8.4 and 8.5.
The last chapter of the Thesis is finally dedicated to the discussion of un-

solved problems, open questions, future research and general conclusions.

1.2 Original Contributions

From the last pages of the second Chapter to the end of the Thesis most of the
results are original.

The main contribution is the development of a new formal way to approxi-
mate differential equations, which not only includes methods and applications
but also a wide variety of analysis tools.

The first original contributions were discovering the illegitimacy of Quantized
Systems and finding the solution based on the use of hysteresis and the definition
of hysteretic quantization functions and Quantized State Systems.

All the work about Quantized State Systems is also original. There, the
study of the trajectory forms, the deduction of the DEVS models, the practical
issues related to the incorporation of input signals, startup and interpolation
were all developed as part of this work.

Another contribution was to realize the relationship between QSS and per-
turbed systems. Based on this, the theoretical study of stability and convergence
was made converting the QSS–method in a well posed integration technique.

In this theoretical study a colateral contribution was a new and less con-
servative way to analyze the ultimate bound of perturbed LTI systems which
can be used not only in the context of quantization but also in more general
problems related to perturbations. The use of this new analysis tool in the
QSS–method allowed to establish a practical global error bound.

Another original result was the definition of the second order method (QSS2)
and all the work made about it: deduction of the trajectory forms, construction
of the DEVS model and study of their theoretical properties.

The extension of the methods to be used in DAEs, Hybrid Systems and
Bond Graphs was also original as well as all the theoretical and practical study
included there.

When it comes to control, the definition of QSC is the first asynchronous
digital scheme which can be seen as an approximation of continuous controllers.
Except the asynchronous sampling technique, all the study about QSC (defini-
tions, theoretical properties and practical remarks) is completely original.

1.3 Related Works and Relevance of the Results

Among the works which have some relation with this Thesis, two different cases
should be distinguished.

On one hand, there are works which use a similar methodology, trying to
relate DEVS and differential equations. On the other hand, there are other
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works –based on different methods and tools- which attempt to give a solution
to similar problems.

With respect to the first group, there is not yet an important amount of
work in the literature.

The first ideas and definitions are due to Bernard Zeigler. After defining
DEVS [69] in the seventies, the concept of Quantized Systems took more than
20 years to be formally defined [67]. In the context of this line, some interesting
applications can be found in [64].

Following a similar goal –i.e. relating DEVS and ODEs– Norbert Giambiasi
gave his own approach based on the event representation of trajectories and the
definition of GDEVS [17], which was also applied to Bond Graph models in [49].
Although the event representation of piecewise linear trajectories in QSS2 was
made using some concepts developed there, GDEVS is based on the knowledge
of the ODE solutions and then it cannot be used as a general simulation method.

There is also some recent work of Jean–Sebastien Balduc [2], but –despite
the proposal is quite interesting – the research has not arrived yet to results
which go much further than Zeigler’s ideas.

This Thesis can be seen, in part, as a continuation of Zeigler’s work in the
area. Here, the main problem (illegitimacy) was discovered and solved and
the QSS–method appears then as the first general discrete event integration
algorithm for differential equations. However, as it was already mentioned,
solving the illegitimacy problem was just the beginning. The work was then
extended to a wide variety of theoretical and practical fields.

Although the problem of real–time DEVS has been being considered since
10 years ago [65], there are not precedents about its use in continuous control.
Anyway, there was already an idea about the use of quantization to approximate
a linear continuous controller using a finite state automata [45]. However, due to
the fact that Finite Automata are not as general as DEVS the resulting models
are non–deterministic unless they use a very sophisticate quantization.

When it comes to the second group –i.e. the related works which point to
the same problems with different tools– there is all the literature on numerical
integration and digital control. However, the problems for which this work tries
to offer better solutions are in fact much more bounded.

It is impossible anyway to mention and to know all what is being done to
solve all these problems. Thus, the works mentioned here will be just the ones
which were more related with the more important results of this Thesis.

One of the most remarkable features of the QSS and QSS2 methods is the
way in which they exploit sparsity. Many efforts are being doing in the field
in order to take advantages of this fact. One of the most efficient simulation
tools for numerical ODE integration is Matlab, whose algorithms are provided
of special routines which tries to make use of the structure in each matrix
multiplication and inversion [59].

However, in the QSS and QSS2 cases the sparsity exploitation is just due to
the intrinsic behavior of the methodology. Thus, it is not necessary to use any
special routine. Moreover, when a part of a system does not perform changes
(here each integrator acts independently) it does not expend computation time
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and it does not cause any calculation in the rest of the simulation model.

The global error bounds of different methods is usually studied to prove their
convergence when the step size goes to zero [18]. Besides these cases, variable
step methods are usually conceived to have this error bounded according to the
desired accuracy. In the new methods –which are not provided of any kind of
adaptive rules– the global error bound in LTI systems can be calculated by a
closed formula which holds for any time and for any input trajectory.

Another area in which QSS and QSS2 showed a good performance is in
the simulation of Hybrid Systems. These cases have been always a problem
for classic discrete time methods. Here, one of the most difficult issues is the
event detection. There is an important number of recent publications which are
pointed to find efficient solutions to this problem [53, 62, 58, 13].

QSS and QSS2 have clear advantages in these cases. On one hand, the
system trajectories are exactly known during the intersample times. Moreover,
they are piecewise linear or parabolic. Thus, finding the exact time at which the
discontinuities occur is a trivial problem. On the other hand, the methods are
asynchronous and they accept events at any time. Thus, the implementation
is very simple and it does not require to modify anything in order to take into
account the events.

When it comes to control applications, QSC is defined as an asynchronous
digital control scheme based on quantization and one of the most important
qualities is that it takes into account the quantization effects of converters at
the design time.

The study of quantization effects in sampled data control systems was stud-
ied during several years by Anthony Michel’s group. They have results on LTI
systems [48, 47, 14], concluding about ultimate bounds and errors. Some work
was also done with nonlinear plants [20] and with multirate controllers [21].

Some works also attempt to deal with the quantization at the design stage
with different goals. In [11] the problem of stabilizing a discrete time linear
system taking into account the quantization in the state measurement is studied.
The idea is also extended to continuous systems in [5].

Finally, there are some results which use quantization to reduce the amount
of information which is transmitted between sensors, controllers and actuators
[12].

In all these problems, QSC offers also new solutions. When it comes to
quantization effects, their estimation is bounded by a very simple closed formula
in LTI systems while in nonlinear cases the bound can be established by a
Lyapunov analysis. All these concepts can be taken into account with design
purposes.

In the case of information reduction, the advantages are amazing. QSC can
work transmitting only a single bit at each sampling.



8 CHAPTER 1. INTRODUCTION

1.4 Supporting Publications

Most of the results included in this Thesis were already published in journals
and conference proceedings, while the rest are still in press or under review.

The first results were discovering the illegitimacy of Quantized Systems,
solving it with the addition of hysteresis and the definition of QSS, the deduction
of the trajectory forms, the construction of the DEVS model and the proof of
the general stability properties. These results were first published in a local
conference [27] and then in an internation journal [39], where the convergence
property was also included (Sections 2.6 to 4.3 of the Thesis).

The second step was the extension of the results to Bond Graphs models
and the definition of Quantized Bond Graphs, whose first version was presented
in [26] and then extended for its publication in an international conference [40]
(Sections 6.4 and 6.5).

The comparison between the QS approach and the QSS method and the rules
for the hysteresis choice were included in an international conference paper [41]
(Section 4.7).

After that, the error bound properties of QSS in LTI systems (Section 4.6)
were published in the proceedings of a local meeting [28].

Simultaneously, the first results on QSC with Time Invariant plants including
the study of stability, design algorithm, convergence and practical remarks were
presented as a two parts paper [29, 30] in a local conference (Sections 7.1–7.5,
7.8, and 8.4–8.5). These results are also published in an international journal
[37].

The following step was the definition of the second order method QSS2
and the study of their properties (Chapter 5). The results were published in
a journal paper [31], where the error bound analysis in LTI systems was also
included (Section 4.6).

The non–conservative estimation of ultimate bounds in LTI perturbed sys-
tems and its comparison with the classic Lyapunov analysis (Sections 4.4–4.5)
was presented in a local control conference [33] and then submitted to a jour-
nal (Automatica) as a technical note (it is still under review). The application
of the previous result to QSC in LTI systems (Sections 8.1 and 8.3) was also
published in the local control conference [35].

A journal paper with the application of QSS and QSS2 to DAEs (Sec-
tions 6.1–6.2) was accepted in Simulation [34]. The extension of those methods
to Hybrid Systems (Section 6.3) was sent to a journal as a full paper [32], but it is
still in the review process. In the same situation is the paper [36] which extends
QSC for Time Varying plants (Sections 7.6–7.7 ) and study their properties in
LTI systems (Sections 8.1 and 8.3) .

Finally, all the results concerning simulation (Chapters 2 to 6) are included
in a coauthored textbook [7] which is still in preparation.



Chapter 2

Quantization and DEVS

The literature on numerical integration of Ordinary Differential Equations –see
for instance [55, 19, 18]– shows a wide variety of techniques.

The methods can be either explicit, implicit or linearly implicit (according
to the next–step formula), fixed or variable step, fixed or variable order, one or
multiple step, etc.

In spite of their differences all those methods have something in common:
they discretize the time. In other words, the resulting simulation model (i.e.
the system implemented in the computer program) is always a Discrete Time
System. Here, the name Discrete Time Systems refers to systems which change
in a synchronous way only in some given instants of time.

The problems carried by this kind of behavior in the simulation of Continu-
ous Systems are related to the lost of the simulation control between successive
discrete instants. Thus, the error could grow to undesired values and, in some
cases, it can produce unstability. It is also possible having input changes and
even structure changes in some instants of time which do not correspond to
those discrete instants.

It is known that the use of methods with step control and implicit formulas
allows –sometimes– to handle these problems. However, all these solutions imply
using algorithms whose implementation is not straightforward –unless we have
tools like Dymola or other comercial software– and they are completely useless
in some contexts (in Real-Time Simulation for instance).

Taking into account these facts, it is natural trying to do something in order
to avoid the time discretization.

However, the simulation model has to be implemented in a digital device.
Then, it is clear that discretization is necessary since only a finite number of
changes in the model can be computed for each finite interval of time. Thus, at
first glance, the time discretization avoidance seems to be impossible.

In spite of this remark there are other variables which can be discretized as
it will be shown in this chapter.

9
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2.1 An Introductory Example

Consider the first order system1:

ẋ(t) = −x(t) + 10µ(t − 1.76) (2.1a)

with the initial condition
x(t0 = 0) = 10 (2.1b)

An attempt to simulate it using Euler or any other classic method with a step
size h = 0.1 –which is appropiated according to the system speed– falls in the
case where the input changes at an instant of time which does not coincide with
the discrete time.

Let us see now what happens with the following Continuous Time System:

ẋ(t) = −floor(x(t)) + 10µ(t − 1.76) (2.2a)

or
ẋ(t) = −q(t) + 10µ(t − 1.76) (2.2b)

where q(t) , floor(x(t)).
Although the system defined by Eq.(2.2) is nonlinear and it does not sat-

isfy the properties usually observed in ODE integration (Lipchitz conditions,
continuity, etc.), it can be easily solved.

When 0 < t < 1/9 we have q(t) = 9 and ẋ(t) = −9. During this interval,
x(t) goes from 10 to 9 with a constant slope (-9). Then, during the interval
1/9 < t < 1/9 + 1/8 we have q(t) = 8 and ẋ(t) = −8. Now, x(t) goes from 9 to
8 (also with constant slope).

This analysis continues in the same way and in time t = 1.329 it results that
x(t) = 3. If the input do not change, in t = 1.829 we would have x(t = 1.829) =
2. However, at time t = 1.76 (when x = 2.138) the input changes and we have
now ẋ(t) = 8. The derivative then changes again when x(t) = 3, i.e. in time
t = 1.8678 (this time can be calculated as 1.76 + (3− 2.138)/8).

The calculations continue until we have x(t) = q(t) = 10 and in that moment
the derivative ẋ(t) becomes zero and the system will not change any more.
Figure 2.1 shows the trajectories of x(t) and q(t).

This strange simulation was completed in only 17 steps and –ignoring the
round-off problems– the exact solution of (2.2) was obtained.

This solution and the solution of the original system (2.1) are compared in
Figure 2.2.

The solutions of the true system and the modified one are clearly similar.
Apparently, if variable x is replaced by floor(x) in the right hand of a first order
differential equation, a method to simulate it is obtained.

This idea could be generalized to be used in a system of order n replacing
all the state variables by its floor value in the right hand of the equation.

However, it is necessary to explore the discrete nature of system (2.2) first
and to introduce some tools for its representation and simulation.

1µ stands for the unit step.
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Figure 2.1: Trajectories in system (2.2)
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Figure 2.2: State trajectories in the systems (2.1) and (2.2)

2.2 Discrete Event Systems and DEVS

The simulation of a Differential Equation using any previously existing method
can be expressed by a difference equation in the form:

x(tk+1) = f(x(tk), tk) (2.3)

where the difference tk+1 − tk can be either constant or variable, and function
f can be explicit or implicit. As a consequence, the simulation program has an
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iterative code which advances the time according to the next step size. Thus, it is
said that those simulation methods produce Discrete Time Models of simulation.

System (2.2) can be seen itself as a simulation model because it can be
exactly simulated with only 17 steps. However, it does not fit in the form of
Eq. (2.3). The problem here is the asynchronous way in which it deals with the
input change at t = 1.76.

Evidently, there is a system here which is discrete in some way but it belongs
to a different category than Discrete Time. As it will be seen, our strange system
can be represented by a Discrete Event System.

The word ’Discrete Events’ is usually associated with very popular for-
malisms like State Automatas, Petri Nets, Event Graphs, Statecharts, etc.
Unfortunately, none of them can represent this kind of systems in a general
situation. Those graphical languages are limited to system with a finite number
of possible states while in this case a more general tool is required. Anyway, such
a general formalism exists and it is known as DEVS (Discrete EVent System
specification).

The DEVS formalism [69, 66] was developed by Bernard Zeigler in the mid-
seventies. The use of DEVS related with continuous systems is not yet very
common and it is almost unknown by the numerical method and control com-
munities. However, DEVS is widely used in computer sciences where it received
a very important theoretical and practical development.

DEVS allows to represent all the systems whose input/output behavior can
be described by sequences of events with the condition that the state has a finite
number of changes in any finite interval of time.

An event is the representation of an instantaneous change in some part of a
system. It can be characterized by a value and an ocurrence time. The value
can be a number, a vector, a word, or in general, an element of a given set.

The trajectory defined by a sequence of events adopts the value φ (or No
Event) for all the time values except in the instants in which there are events.
In these instants, the trajectory takes the value corresponding to the event.
Figure 2.3 shows an event trajectory which takes the value x1 in time t1, then
the value x2 at time t2, etc.

A DEVS model processes an input event trajectory and, according to that
trajectory and its own initial conditions provokes an output event trajectory.
This Input/Output behavior is represented in Figure 2.4.

The behavior of a DEVS model is expressed in a way which is very common
in automata theory.

A DEVS atomic model is defined by the following structure:

M = (X, Y, S, δint, δext, λ, ta)

where:

• X is the set of input event values, i.e., the set of all possible values that
and input event can adopt.

• Y is the set of output event values.
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Figure 2.3: An event trajectory
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Figure 2.4: Input/Output behavior of a DEVS model

• S is the set of state values.

• δint, δext, λ and ta are functions which define the system dynamics.

Each possible state s (s ∈ S) has an associated Time Advance calculated by
the Time Advance Function ta(s) (ta(s) : S → R

+
0 ). The Time Advance is a

non-negative real number saying how long the system remains in a given state
in absence of input events.

Thus, if the state adopts the value s1 at time t1, after ta(s1) units of time
(i.e. at time ta(s1) + t1) the system performs an internal transition going to a
new state s2. The new state is calculated as s2 = δint(s1). The function δint

(δint : S → S) is called Internal Transition Function.
When the state goes from s1 to s2 an output event is produced with value

y1 = λ(s1). The function λ (λ : S → Y ) is called Output Function. The
functions ta, δint and λ define the autonomous behavior of a DEVS model.

When an input event arrives the state changes instantaneously. The new
state value depends not only on the input event value but also on the previous
state value and the elapsed time since the last transition. If the system goes to
the state s3 at time t3 and then an input event arrives at time t3 + e with value
x1, the new state is calculated as s4 = δext(s3, e, x1) (note that ta(s3) > e).
In this case, it is said that the system performs an external transition. The
function δext (δext : S × R

+
0 × X → S) is called External Transition Function.
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No output event is produced during an external transition.

Example 2.1. DEVS model of a static scalar function.
Consider a system which receives a piecewise constant trajectory u(t) repre-

sented by a sequence of events with the consecutive values. The system output is
another sequence of events which represents the function y(t) = f(u(t)) where
f(u) is a known real–valued function.

A possible DEVS model corresponding to this behaviour is given by the fol-
lowing structure:

M1 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R

S = R × R
+
0

δint(s) = δint(u, σ) = (u,∞)
δext(s, e, x) = δext((u, σ), e, x) = (x, 0)
λ(s) = λ(u, σ) = f(u)
ta(s) = ta(u, σ) = σ

Note that the state is composed by two real numbers. The first one (u)
contains the last input value and the second one (σ) has the time advance. In
most DEVS models that variable σ, equal to the time advance, is put as part
of the state. In that way, the modeling task becomes easier.

This DEVS model has a static behavior since it only does something when
an event arrives. It was mentioned that no output event is produced during an
external transition. However, in this example a trick was made to produce the
the output event: the time advance is set to zero when an event arrives. Then,
the internal transition takes place immediatly and the output event is produced.

2.3 Coupled DEVS models

As it was mentioned, DEVS is a very general formalism and it can describe very
complex systems. However, the representation of a complex system based only
on the transition and time advance functions is too difficult. The reason is that
in those functions all the possible situations in the system must me imagined
and described.

Furtunately, complex systems can be usually thought as the coupling of
simpler ones. Through the coupling, the output events of some subsystems are
converted into input events of other subsystems. The theory guarantees that
the coupling of DEVS models defines a new DEVS model (i.e. DEVS is closed
under coupling) and the complex systems can be represented by DEVS in a
hierarchical way [66].

There are basically two different ways of coupling DEVS models. The first
one is the most general and uses translation functions between subsystems. The
second one is based on the use of input and output ports. This last way is the
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one which will be used in this Thesis since it is simpler and more adequate to
the simulation of continuous systems.

The use of ports requires adding to the input and output events a new
number, word or symbol representing the port in which the event is coming.
The following example –which is a modification of the Example 2.1– illustrates
this idea.

Example 2.2. DEVS model of a static function
Consider the system of Example 2.1, but suppose that it receives n piecewise

constant inputs, u1(t), . . . , un(t) and the output y(t) is now calculated as y =
f(u1, . . . , un).

Then, a DEVS atomic model with ports which can represent this behavior is
given by the following structure:

M2 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
n × R

+
0

δint(s) = δint(u1, . . . , un, σ) = (u1, . . . , un,∞)
δext(s, e, x) = δext((u1, . . . , un, σ), e, (xv, p)) = (ũ1, . . . , ũn, 0)
λ(s) = λ(u1, . . . , un, σ) = (f(u1, . . . , un), 1)
ta(s) = ta(u1, . . . , un, σ) = σ

where

ũi =
{

xv if i = p
ui otherwise

As it can be seen, in this last example the input and output events contain
a natural number which indicates the corresponding port.

Then, the coupling between different systems is indicated by enumerating
the connections to describe it. An internal connection involves an input and an
output port corresponding to different models. In the context of hierarchical
coupling, there are also connections from the output ports of the subsystems to
the output ports of the network –which are called external output connections–
and connections from the input ports of the network to the input ports of the
subsystems (external input connections).

Figure 2.5 shows a coupled DEVS model N which is the result of coupling
the models Ma and Mb. There, the output port 2 of Ma is connected to the
input port 1 of Mb. This connection can be represented by [(Ma, 2), (Mb, 1)].
Other connections are [(Mb, 1), (Ma, 1)], [(N, 1), (Ma, 1)], [(Mb, 1), (N, 2)], etc.
According to the closure property, the model N can be also used as an atomic
DEVS and it can be coupled with other atomic or coupled models.

The DEVS theory uses a formal structure to represent coupled DEVS models
with ports. The structure includes the subsystems, the connections, the net-
work input and output sets and a tie-breaking function to manage the presence
of simultaneous events. The connections are divided into three sets: one set
composed by the connections between subsystems (internal connections), other
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Figure 2.5: Coupled DEVS model

set which contains the connections from the network to the subsystems (external
input connections) and the last one has the connections from the subsystems to
the network (external output connections).

The tie-breaking function can be avoided with the use of Parallel-DEVS ,
which is an extension of the DEVS formalism that allows dealing with simulta-
neous events.

However, these last concepts –the coupled DEVS formal structure and the
parallel-DEVS formalism– will not be develped here since they are not necessary
to use DEVS as a tool for continuous system simulation. Anyway, the complete
theory of DEVS can be found in the second edition of Zeigler’s book [66].

2.4 Simulation of DEVS models

One of the most important features of DEVS is that very complex models can
be simulated in a very easy and efficient way.

In the last years, several software tools have been developed for the simula-
tion of DEVS models. Some of those tools offer libraries, graphical interfaces
and different facilities for the user. There are several free software packages for
DEVS simulation and the most popular are DEVS-Java [68] and DEVSim++
[25].

It should be also mentioned here a software tool conceived in the context
of this work which not only constitutes a general purpose DEVS simulation
environment but also implements the main ideas which will be developed in this
Thesis. This tool is called PowerDEVS [51] and it was developed by Esteban
Pagliero and Marcelo Lapadula as a Diploma Work at the FCEIA, UNR.

Besides these tools, DEVS models can be simulated with a simple ad-hoc
program written in any language. In fact, the simulation of a DEVS model is
not much more complicated than the simulation of a Discrete Time Model. The
problem is that there are models which are composed by many subsystems and
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Figure 2.6: Hierarchical model and simulation scheme

the ad-hoc programming may become a very hard task.
The basic idea for the simulation of a coupled DEVS model can be described

by the following steps:

1. Look for the atomic model that, according to its time advance and elapsed
time, is the next to perform an internal transition. Call it d∗ and let tn
be the time of the mentioned transition

2. Advance the simulation time t to t = tn and execute the internal transition
function of d∗

3. Propagate the output event produced by d∗ to all the atomic models con-
nected to it executing the corresponding external transition functions.
Then, go back to the step 1

One of the simplest ways to implement these steps is writing a program with a
hierarchical structure equivalent to the hierarchical structure of the model to be
simulated. This is the method developed in [66] where a routine called DEVS-
simulator is associated to each atomic DEVS model and a different routine
called DEVS-coordinator is related to each coupled DEVS model. At the top of
the hierarchy there is a routine called DEVS-root-coordinator which manages
the global simulation time. Figure 2.6 illustrates this idea over a coupled DEVS
model

The simulators and coordinators of consecutive layers communicates each
other with messages. The coordinators send messages to their children so they
execute the transition functions. When a simulator executes a transition, it
calculates its next state and –when the transition is internal– it sends the output
value to its parent coordinator. In all the cases, the simulator state will coincide
with its associated atomic DEVS model state.

When a coordinator executes a transition, it sends messages to some of their
children so they execute their corresponding transition functions. When an
output event produced by one of its children has to be propagated outside the
coupled model, the coordinator sends a message to its own parent coordinator
carrying the output value.
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Each simulator or coordinator has a local variable tn which indicates the time
when its next internal transition will occur. In the simulators, that variable is
calculated using the time advance function of the corresponding atomic model.
In the coordinators, it is calculated as the minimum tn of their children. Thus,
the tn of the coordinator in the top is the time in which the next event of the
entire system will occur. Then, the root coordinator only looks at this time,
advances the global time t to this value and then it sends a message to its child
so it performs the next transition (and then it repeats this cycle until the end
of the simulation).

The details and the pseudo–codes associated to the simulators, coordinators
and root coordinators are included in Appendix B.

One of the most interesting properties shown by this kind of simulation is
the independence between different simulators associated to different atomic
models. In that way, when an atomic model has its time advance set to a big
value (or infinite), it does not affect at all to the rest of the models and the
simulation does not spend any calculation with it. It will be seen that this fact
will result in an important advantage for the simulation of sparse systems.

There are many other possibilities to implement a simulation of DEVS mod-
els. The main problem with the methdology described is that, due to the hi-
erarchical structure, an important traffic of messages between the higher layers
and the lower ones can be present. All these messages and their corresponding
computational time can be avoided with the use of a flat structure of simulation.
The way of transforming a hierarchical simulation into a flat one is rather simple
in DEVS [24]. In fact, most of the software tools we mentioned implement the
simulation based on a flat code.

2.5 Quantized Systems and DEVS

In the examples 2.1 and 2.2 it was shown that piecewise constant trajectories
can be represented by sequences of events. This simple idea constitutes the
basis for the use of DEVS in the simulation of continuous systems.

In those example, it was also shown that a DEVS model can represent the
behavior of a static function with piecewise constant input trajectories. The only
problem is that most continuous system trajectories are not piecewise constant.
However, the system can be modified in order to have such kind of trajectories.
In fact, that is what was done to System (2.1) using the function floor to convert
it into System (2.2).

Coming back to that example, System (2.2) can be divided in the following
way:

ẋ(t) = dx(t) (2.4a)
q(t) = floor(x(t)) (2.4b)

and
dx(t) = −q(t) + u(t) (2.5)
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where u(t) = 10µ(t − 1.76).
The system can be then represented using the Block Diagram of Figure 2.7.

q(t)u(t) x(t)dx(t) ∫

Figure 2.7: Block Diagram Representation of (2.4)-(2.5)

As we mentioned before, Subsystem (2.5) –which is modeled by a static
function– can be represented by the DEVS model M2 in Example 2.2 (page 15).

Subsystem (2.4) is a dynamic equation which has a piecewise constant input
trajectory dx(t) and a piecewise constant output trajectory q(t). It can be
exactly represented using the DEVS model that follows:

M3 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 ×Z× R

+

δint(s) = δint(x, dx, q, σ) = (x + σ · dx, dx, q + sgn(dx),
1

|dx| )
δext(s, e, x) = δext(x, dx, q, σ, e, xv, p) = (x + e · dx, xv, q, σ̃)
λ(s) = λ(x, dx, q, σ) = (q + sgn(dx), 1)
ta(s) = ta(x, dx, q, σ) = σ

where

σ̃ =




q + 1− x
xv if xv > 0

q − x
xv if xv < 0

∞ otherwise

Subsystem (2.4) –which corresponds to the integrator with the stairway block
in the Block Diagram of Figure 2.7– is what Zeigler called Quantized Integrator
[67, 66]. There, the function floor acts as a quantization function. A quantization
function maps all real numbers into a discrete set of real values.

A quantizer is a system that relates its input and output by a quantization
function. Then, the stairway block is a particular case of a quantizer. Although
the DEVS model M3 represents a particular Quantized Integrator the DEVS
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model correponding to a general one –i.e.. with a general quantizer– is not very
different.

The complete system (2.2) was called Quantized System and it can be ex-
actly represented by the DEVS model resulting from the coupling of the atomic
models M2 and M3.

This was the idea sketched by Zeigler to approximate and simulate contin-
uous systems using DEVS.

As it was seen, a DEVS model representation of general Quantized Inte-
grators can be obtained. This idea will work when their input trajectories are
piecewise constant. It is also clear that the DEVS model of any static function
(with the same condition for the input trajectories) can be also built.

Taking also into account that DEVS is closed under coupling, it is natural
to think that a coupled DEVS model representing a general Quantized System
can be easily obtained.

In order to do it, a general time invariant system should be considered:

ẋ1 = f1(x1, x2, · · · , xn, u1, · · · , um)
ẋ2 = f2(x1, x2, · · · , xn, u1, · · · , um)

...
ẋn = fn(x1, x2, · · · , xn, u1, · · · , um)

(2.6)

This last equation can be can transformed into:

ẋ1 = f1(q1, q2, · · · , qn, u1, · · · , um)
ẋ2 = f2(q1, q2, · · · , qn, u1, · · · , um)

...
ẋn = fn(q1, q2, · · · , qn, u1, · · · , um)

(2.7)

where each qi(t) is related to xi(t) by some quantization function.
Considering that the input functions uj(t) are piecewise constant, each term

at the right hand of (2.7) can only adopt values in a finite set.
The variables qi are called quantized variables. This system can be repre-

sented by the block diagram of Figure 2.8, where q and u were defined as the
vectors formed with the quantized and input variables respectively.

Each subsystem in Figure 2.8 can be exactly represented by a DEVS model
since they are composed by a static function and a quantized integrator. These
DEVS models can be coupled and according to the closure under coupling prop-
erty the complete system will define a DEVS model.

Thus, when a system is modified with the addition of quantizers at the
output of the integrators, it can be exactly simulated by a DEVS model.

This idea is the formalization of the first approximation to a discrete event
based method for continuous system simulation. With this method –ignoring the
round–off errors– System (2.7) can be exactly simulated. Taking into account
that this system seems to be an approximation to the original System (2.6), it
can be thought that a numerical method which avoids the time discretization
was finally obtained.
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Figure 2.8: Block Diagram Representation of (2.7)

However, as it will be seen in the next section, this idea does not work in
general cases.

2.6 Illegitimacy of Quantized Systems

A DEVS model is said to be legitimate when it cannot perform an infinite
number of transitions in a finite interval of time [66].

Legitimacy is the property which ensures that a DEVS model can be sim-
ulated. Otherwise –when infinite transitions can occur in a finite interval– the
system can only be simulated until that condition is reached. In that case, it is
said that the system is illegitimate.

DEVS theory distinguishes two cases of illegitimacy. The first one is when
there are infinite transitions in the same instant of time (i.e. a loop between
different states with the time advance equal to zero). This kind of illegitimacy
is also common in other discrete event formalisms (timed event graphs for in-
stance).

The second case occurs when the system goes through an infinite sequence
of states in which the time advance decreases. In that case, if the summatory
of the serie defined by the time advance values converges to a finite number
there is also an infinite number of events in a finite interval of time. Those cases
are also called Zeno systems in reference to Zeno’s paradox of Achilles and the
Tortoise.

It can be easily checked that the atomic DEVS models M2 and M3 are
legitimate. Unfortunately, legitimacy is a property which is not closed under
coupling. As a result, the coupling of legitimate models might result in an
illegitimate coupled model.
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This fact opens the possibility that a DEVS model like the shown in Fig.2.8
results illegitimate. In fact, this is what happens in most cases.

However, the illegitimacy of Quantized Systems is not a problem of DEVS. It
is related to the solutions of (2.7). There, the trajetories qi(t) are not necessarily
piecewise constant. Sometimes, they can have an infinite number of changes in
a finite interval of time which produces an infinite number of events in the
corresponding DEVS model.

This problem can be observed just taking u(t) = 10.5µ(t − 1.76) in System
(2.5)–(2.4). The trajectories until t = 1.76 are exactly the same as the shown
in Figure 2.1. When the step is applied, the trajectory starts growing a bit
faster and when x(t) = q(t) = 10 the state trajectory continues growing with
a slope ẋ(t) = 0.5. Then, after 2 units of time we obtain x(t) = q(t) = 11 but
immediatly the slope becomes negative (ẋ(t) = −0.5). Thus, x(t) starts falling,
q(t) goes back to 10, the derivative becomes again positive and we obtain a
cyclic behavior. The problem is that the cycle has a period equal to zero and
there are infinte changes in q(t) in the same instant of time.

This anomalous behaviour can be also observed in the resulting DEVS model.
When the DEVS model corresponding to the integrator performs an internal
transition, it also produces an output event which represents the change in
q(t). This event is propagated by the internal feed-back –see Figure 2.7– and
it produces a new external transition in the integrator which changes the time
advance to zero. Thus, the integrator performs another internal transition and
the cycle continues forever.

This case belongs to the first kind of illegitimacy above mentioned. Here,
the system can be only simulated until the condition x(t) = 10 is reached.

It could be conjectured that illegitimacy only occurs when the system ap-
proachs the equilibrium point. If that were the case, the illegitimacy condition
could be detected finishing the simulation at that moment. However, that con-
jecture is only true in first order systems.

In higher order systems this can of behavior can be also observed far away
from the equilibrium points. Moreover, Zeno–like illegitimacy can also occur as
it is shown in the following counter–example:

Example 2.3. Achilles and the Tortoise.
Consider the second order system:

ẋ1 = −0.5 · x1 + 1.5 · x2

ẋ2 = −x1
(2.8)

Let us apply the quantization function:

qi = 2 · floor(xi − 1
2

) + 1 (2.9)

This quantization (see Figure 2.9) over both variables divides the state space as
Fig.2.10 shows:

Then, the resulting Quantized System is:

ẋ1 = −0.5 · q1 + 1.5 · q2

ẋ2 = −q1
(2.10)
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Figure 2.9: An odd quantization function
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Figure 2.10: Partition of the state space

Now, let us analyze the solution of (2.10) from the initial condition x1 = 0,
x2 = 2.

The derivative of the state vector of (2.10) in a point is given by rigth hand
of that equation, using (2.9). This is equal to the derivative of the continuous
system (2.8) evaluated in the bottom left corner of the square cointaining that
point. For instance, at the point (0, 2) the derivative is given by the right hand
of (2.8) at the point (−1, 1), that is (2, 1).

Then, if the initial condition is (0, 2) the trajectory will go following the di-
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rection (2, 1) until it reaches the next square (here we have a transition since
there is a change in the quantized variable q1 corresponding to x1). The transi-
tion will occur at the time t = 0.5(the speed in x1 is 2 and the distance to the
square is 1). The point in which the trajectory reaches the new square is (1, 2.5).

After this transition, the derivative is calculated at the point (1, 1). The
direction is now (1,−1). After 1.5 units of time the system will reach the point
(2.5, 1) arriving to a new square. The new direction is (−2,−1) (calculated at the
point (1,−1)) and after 0.75 units of time the system will reach the point (1, 0.25)
in the bound of a new square. Then, the direction is (−1, 1) and after 0.75 units
of time the system reaches the initial square at the point (0.25, 1). Then, after
0.375 units of time the system goes back to the second square, arriving at the
point (1, 1.375).

The elapsed time from the first time the system reaches the second square
to the second arrival to that square is 3.375. Then, it can be easily seen that
the system will follow again a similar cycle but starting from the new initial
condition (1, 1.375) and it will take 3.375/4 = 0.84375 units of time. Each cycle
will be done four times faster than the previous one. Then, the sum of all the
cycle times will converge to 4.5 units of time. Since the first transition occurs
at time 0.5, before 5 unit of time the system performs an infinite number of
transitions.

Figure 2.11 shows that trajectory in the space state while Fig.2.12 shows the
temporal evolution of the quantized variable q1.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Figure 2.11: State Space trajectory with infinite transitions

As a result of this behavior, the simulation will be stuck after 5 units of time.

This last example not only exhibits illegitimacy, but it also shows that some-
times the illegitimacy condition cannot be easily detected. It is difficult –if not
impossible– to write a routine which distinguishes this case as illegitimate since
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Figure 2.12: Quantized variable trajectory with infinite transitions

the transitions does not occur at the same time.
Unfortunately, illegitimate Quantized Systems are very common. As it was

already mentioned, in most continuous system the use of this kind of quantiza-
tion yields illegitimate DEVS models. Consecuently, the approach introduced
cannot constitute a simulation method since it does not work in most cases.

2.7 DEVS and Continuous Systems Simulation

In spite of the illegitimacy problems, Zeigler’s idea of discretizing state variables
is very original and it yields very significant properties and qualities.

In fact, it was the first attempt to produce a formal transformation of a
continuous system in order to obtain a discrete event one.

There was also another idea which should be also mentioned at least. Fol-
lowing a similar goal, Norbert Giambiasi gave his own approach based on the
event representation of piecewise polynomial trajectories and the definition of
GDEVS [17]. However, this solution-based approximation requieres the knowl-
edge of the continuous system response to some particular input trajectories,
which is not available in most cases. Because of this and also due to impossibility
of formalizing the approach, these ideas will not be discussed here.

Coming back to Zeigler’s approach, the main motivation of this Thesis was
the discovering of illegitimacy in Quantized Systems and the original goal was
trying to solve it.

Thus, the next chapter is completely dedicated to describe the solution which
was found and to develop the resulting numerical algorithm, which is the first
general discrete event integration method for ordinary differential equations.

After that, the theoretical properties, extensions and applications will be
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introduced in the following chapters.



Chapter 3

Quantized State Systems

The previous and introductory chapter was a sort of description about the re-
lationship between discrete event systems and numerical methods for ODEs.

There, two counter–examples were included showing the impossibility of
simulating general continuous systems by using simple quantization because of
illegitimacy.

In spite of this problem, the idea of approximating a differential equation by
a discrete event system is still very attractive since it can offer many advantages
with respect to a discrete time approach. For instance, due to the asynchronous
behavior, the DEVS models can be implemented in parallel in a very easy and
efficient way.

Many modern technical systems are described with models which combine
discrete and continuous parts. The simulation of those Hybrid Systems requires
the use of special techniques and a discrete event approximation of the contin-
uous part would result in a unique discrete event simulation model. In fact,
this idea –combining continuous and discrete simulation in a unique method–
was the motivation of Herbert Praehofer’s PhD Thesis [54]. However, at the
beginning of the 90s there were not discrete event approximation methods and
Praehofer’s work was limited to express in terms of DEVS some existing discrete
time integration methods.

As it will be seen, the use of discrete event approximations yields an impor-
tant reduction of the computational costs in the simulation of hybrid systems.
But the advantages of a discrete event integration method do not finish here.
Besides other practical advantages it will be shown that some theoretical prop-
erties resulting from these kind of approximation are completely original in the
field of numerical integration theory.

This chapter introduces most of the key ideas which allowed the formulation
of the first general discrete event integration method for differential equations.

27
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3.1 Hysteretic Quantization

If the infinitely fast oscillations in System (2.4)–(2.5) are analyzed, it can be
seen that they are due to the changes in q(t). An infinitesimal variation in x(t)
can produce, due to the quantization, an important oscillation with an infinitely
fast frequency in q(t).

A possible solution might consist in adding some delay after a change in
q(t) to avoid those infinitely fast oscillations. However, adding such delays is
equivalent, in some way, to introduce time discretization. During the delays
the control over the simulation is lost and we come back to the problems of the
discrete time algorithms.

A different solution consists in the use of hysteresis in the quantization. If a
hysteretic characteristic is added to the relationship between x(t) and q(t), the
oscillations in q(t) can be only produced by large oscillations in x(t) which need
a minimum time interval to occur due to the continuity in the state trajectories.

The existence of a minimum time interval between events is a sufficient
condition for legitimacy [66]. Then, this simple idea –adding hysteresis to the
quantization– is a good solution to fix the illegitimacy problem.

The formalization of the idea is given by the definition of the hysteretic
quantization functions .

Definition 3.1. Hysteretic Quantization Function.
Let Q = {Q0, Q1, ..., Qr} be a set of real numbers where Qk−1 < Qk with

1 ≤ k ≤ r. Let Ω be the set of piecewise continuous real valued trajectories
and let x ∈ Ω be a continuous trajectory. Let b : Ω → Ω be a mapping and let
q = b(x) where the trajectory q satisfies:

q(t) =




Qm if t = t0
Qj+1 if x(t) = Qj+1 ∧ q(t−) = Qj ∧ j < r
Qj−1 if x(t) = Qj − ε ∧ q(t−) = Qj ∧ j > 0
q(t−) otherwise

(3.1)

and

m =




0 if x(t0) < Q0

r if x(t0) ≥ Qr

k if Qk ≤ x(t0) < Qk+1

Then, the map b is a hysteretic quantization function.

The discrete values Qj are called quantization levels and the distance ∆Q ,

Qj+1 − Qj is defined as the quantum, which is usually constant. The width
of the hysteresis window is ε. The values Q0 and Qr are the lower and upper
saturation values. Figure 3.1 shows a typical quantization function with uniform
quantization intervals.

The use of hysteretic quantization functions instead of memoryless quanti-
zation yields the Quantized State Systems method (or QSS–method for short)
for ODE integration.
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Figure 3.1: Quantization Function with Hysteresis

3.2 QSS–method

The QSS–method follows the idea of the generalization of Quantized Systems
(Section 2.5). The only difference here is the use of hysteresis in the quantiza-
tion.

Then, the QSS–method can be defined as follows:

Definition 3.2. QSS-method.
Given a time invariant state equation system:

ẋ(t) = f(x(t), u(t)) (3.2)

where x ∈ Rn, u ∈ Rm and f : Rn → Rn, the QSS–method approximates it by
a system:

ẋ(t) = f(q(t), u(t)) (3.3)

where q(t) and x(t) are related componentwise by hysteretic quantization func-
tions (i.e. each quantized variable qi(t) is related to the corresponding state
variable xi(t) by a hysteretic quantization function).

The resulting system (3.3) is called Quantized State System (QSS).
Figure 3.2 shows the block diagram representation of a generic QSS.
The QSS–method requires to choose quantization functions like the one

shown in Figure 3.1. After choosing one of such functions for each state variable,
a QSS is obtained.

In the next sections it will be proven that the resulting QSS is equivalent
to a legitimate DEVS model (i.e. it can be exactly simulated by a legitimate
DEVS).
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Figure 3.2: Block Diagram Representation of a QSS

Only after that, it will be possible to claim that the QSS–method approxi-
mates a Differential Equation System by a legitimate DEVS model.

3.3 Trajectories in QSS

Taking into account that QSS tries to be a discrete event approximation of a
continuous system, their trajectories should have some particular properties.
Since DEVS only processes events, each QSS trajectory should have an equiva-
lent event trajectory.

Then, QSS must have piecewise constant, piecewise linear or piecewise some-
thing trajectories. Otherwise, their segments could never be represented by a
finite sequence of values.

The non–hysteretic Quantized System approach failed in this goal.The tra-
jectories there were not necessarily piecewise constant or linear as it could be
seen in the counter–examples of Section 2.6.

However, the use of hysteresis in QSS solves those problems. Provided that
the input trajectories are piecewise constant and bounded and function f is
continuous and bounded in any bounded domain, the following properties are
satisfied:

• The quantized variables have piecewise constant trajectories

• The state variable derivatives have also piecewise constant trajectories

• The state variables have continuous piecewise linear trajectories

The following theorems give the necessary conditions and prove the mentioned
properties.
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Theorem 3.1. Quantized Trajectories in QSS
Given the QSS defined in (3.3) with f continuous and bounded in any bounded

domain and u(t) being bounded and piecewise constant, the trajectories of q(t)
are piecewise constant.

Proof. Let qi(t) be an arbitrary component of q. Assume that it is related to
xi(t) by the hysteretic quantization function given by (3.1). It follows from (3.1)
that:

Q0 ≤ qi(t) ≤ Qr (3.4)

If we assume that all the quantized variables are related to the corresponding
state variables by similar hysteretic quantization functions, Inequality (3.4) also
implies that ‖q‖ is bounded. From the hypothesis made about f there exists a
positive number R such that

−R ≤ ẋi ≤ R (3.5)

After integrating the inequality above we have

xi(0)− R(t − t0) ≤ xi(t) ≤ xi(t0) + R(t − t0) (3.6)

Inequality (3.6) shows that the state variables have bounded trajectories in any
finite time interval. Moreover, from (3.5) it follows that the state variables have
also continuous trajectories.

Assume that in certain time t there is a change in qi. If that change was
produced because xi was increasing its value, it results that:

xi(t) = qi(t+) = Qj (0 < j ≤ r)

Then, it follows from (3.5) and (3.1) that:

qi(t +∆t) �= qi(t+) ⇒ ∆t ≥ min(Qj+1 − Qj , ε)
R

, ∆tmin (3.7)

If we assume that xi was initially falling, then we have

xi(t) = Qj+1 − ε = qi(t+)− ε

and we get again (3.7).
This implies that variable qi needs a time interval greater than ∆tmin to

change its value twice. Since this value is constant (it does not depend on the
state), it results that qi has a piecewise constant trajectory.

Taking into account that we made the analysis for a generic component, we
conclude that q is piecewise constante.

Theorem 3.2. State Derivative Trajectories in QSS.
In a QSS verifying the hypothesis of Theorem 3.1 the trajectories of the state

variable derivatives are piecewise constant.
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Proof. It is straightforward from Theorem 3.1 since q(t) and u(t) are piecewise
constant and f is a static function.

Theorem 3.3. State Trajectories in QSS.
In a QSS verifying the hypothesis of Theorem 3.1 the trajectories of the state

variables are continuous and piecewise linear.

Proof. It is straightforward from Theorem 3.2.

The definition of ∆tmin in (3.7) shows the effect of the hysteresis in the QSS
trajectories. When ε is zero we cannot ensure the existence of a minimum time
between changes in qi.

Figure 3.3 shows typical trajectories in a QSS.
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Figure 3.3: Typical trajectories in a QSS
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3.4 DEVS model of a QSS

Taking into account that the components of q(t) and ẋ(t) are piecewise constant,
they can be represented by sequences of events. Thus, following the procedure
of Section 2.5, the QSS of Figure 3.2 can be divided into static functions and
quantized integrators (now hysteretic quantized integrators).

The static functions can be still represented by the DEVS model M2 in
Example 2.2 (page 15) but the DEVS model M3 corresponding to the quantized
integrators (page 19) must be modified taking into account the presence of
hysteresis.

With this modification, a hysteretic quantized integrator –which can be
thought as a system constituted by Eqs (2.4a) and (3.1)– can be represented by
the DEVS model:

M4 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 ×Z× R

+

δint(s) = δint(x, dx, j, σ) = (x + σ · dx, dx, j + sgn(dx), σ1)
δext(s, e, xu) = δext(x, dx, j, σ, e, xv, p) = (x + e · dx, xv, j, σ2)
λ(s) = λ(x, dx, j, σ) = (Qj+sgn(dx), 1)
ta(s) = ta(x, dx, j, σ) = σ

whith

σ1 =




Qj+2 − (x + σ · dx)
dx

if dx > 0

(x + σ · dx)− (Qj−1 − ε)
|dx| if dx < 0

∞ if dx = 0

σ2 =




Qj+1 − (x + e · xv)
xv if xv > 0

(x + e · xv)− (Qj − ε)
|xv| if xv < 0

∞ if xv = 0

Then, a complete QSS can be represented by a coupled DEVS constituted
by atomic models M2 and M4 according to Figure 3.2. If the round–off errors
are ignored, that coupled DEVS model can exactly simulate the QSS behavior.

Example 3.1. QSS simulation of a second order system.
Consider the second order system:

ẋ1(t) = x2(t)
ẋ2(t) = 1− x1(t)− x2(t)

(3.8)

with the initial condition
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x1(0) = 0, x2(0) = 0 (3.9)

Using a uniform quantum Qk+1−Qk = ∆Q = 0.05 and hysteresis width ε = 0.05
in both state variables, the resulting quantized state system:

ẋ1(t) = q2(t)
ẋ2(t) = 1− q1(t)− q2(t)

(3.10)

can be simulated by a coupled DEVS model, composed by two atomic models like
M4 –correponding to the quantized integrators– and two atomic models like M2,
which calculate the static functions f1(q1, q2) = q2 and f2(q1, q2) = 1− q1 − q2.
Let us call these subsystems QI1, QI2, F1 and F2 respectively.

The coupling can be then expressed by the connections: [(QI1, 1), (F1, 1)],
[(QI1, 1), (F2, 1)], [(QI2, 1), (F1, 2)], [(QI2, 1), (F2, 2)], [(F2, 1), (QI2, 1)] and
[(F1, 1), (QI1, 1)].

Figure 3.4 represents the coupled system.

F1

F2

QI1

QI2

∫

∫

Figure 3.4: Block Diagram Representation of (3.10)

Observe that, due to the fact that function f1 does not depend on the variable
q1, the connection [(QI1, 1), (F1, 1)] is not necessary. Moreover, taking into
account that f1(q1, q2) = q2 the subsystem F1 and the connections which invlove
it can be replaced by a direct connection from QI2 to QI1. These simplifications
can reduce considerably the computational cost of the implementation.

The simulation results are shown in Figure 3.5. The first simulation was
completed with 30 internal transitions at each quantized integrator, which gives
a total of 60 steps. It can be seen in that figure the piecewise linear trajectories
of x1(t) and x2(t) as well as the piecewise constant trajectories of q1(t) and
q2(t).
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Figure 3.5: Trajectories in System (3.10)

The presence of the hysteresis can be easily observed when the slope of the
state variables changes its sign. Near those points, there are different values of
q for the same value of x.

The simplifications which were mentioned in the connections can be applied
to general systems where some static functions do not depend on all the state
variables. In that way, the QSS method can exploit the structural properties of
the system to reduce the computational costs. When the system is sparse the
QSS simulation results particularly efficient since each step involves calculations
at very few integrators.

Discrete time algorithms can also make use of these sparsity properties.
However, they require from specific techniques of matrix manipulation. In the
QSS–method this is just an intrinsec property.

3.5 Input signals in the QSS–method

When the QSS–method was introduced, it was mentioned that it allows the sim-
ulation of time invariant systems with piecewise constant input signals. How-
ever, it was not said how these signals can be incorporated into the simulation
model.

In the DEVS simulation model, each event represents a change in a piece-
wise constant trajectory. Then, the input trajectories must be incorporated as
sequences of events. In the block diagram of Figure 3.2, the input signals u(t)
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seem to come from the external world and it is not clear where the corresponding
sequences of events should be generated.

In the context of DEVS simulation, all the events must come from an atomic
DEVS model. Thus, it is evident that some new DEVS models that generates
those sequences of events should be created and coupled with the rest of the
system in order to simulate it.

Suppose that there is a piecewise constant input signal u(t) which adopts
values v1, v2, . . . , vj , . . . at times t1, t2, . . . , tj , . . . respectively. Then, a DEVS
model which produces the events corresponding to this signal –i.e. a DEVS
event generator– can be built as follows:

M5 = (X, Y, S, δint, δext, λ, ta), where
X = φ

Y = R × N

S = N × R
+

δint(s) = δint(j, σ) = (j + 1, tj+1 − tj)
λ(s) = λ(j, σ) = (vj , 1)
ta(s) = ta(j, σ) = σ

Notice that in this model the external transition function δext is not defined
since it cannot be called due to the fact that the system does not receive input
events.

An interesting advantage of the QSS–method is that it deals with the input
trajectory changes in an asynchronous way. The event indicating a change in the
signal is always processed in the correct instant of time, producing instantaneous
changes in the slopes of the state variable trajectories which are directly affected.

This is the intrinsic behavior of the method and it is obtained without mod-
ifying the DEVS models corresponding to the quantized integrators and static
functions. Discrete time methods require an special treatment in order to per-
form a step in the exact instant in which an input change occurs. This issue will
be treated later in a deeper way showing the advantages of the QSS–method in
discontinuous systems.

Up to here, only piecewise constant input trajectories were considered. How-
ever, in many applications, the input signals have more general forms. Anyway,
they can be approximated by piecewise constant trajectories with the addition
of quantization functions and then, they can be represented by DEVS models.
For instance, the following DEVS generates an event trajectory which follows
the form of a sine function with angular frequency ω and amplitude A using a
quantum A∆u.
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M6 = (X, Y, S, δint, δext, λ, ta), where
X = φ

Y = R × N

S = R × R
+

δint(s) = δint(τ, σ) = (τ̃ , σ̃)
λ(s) = λ(τ, σ) = (A sin(ωτ), 1)
ta(s) = ta(τ, σ) = σ

with

σ̃ =




arcsin[sin(ωτ) + ∆u]
ω − τ if (sin(ωτ) + ∆u ≤ 1 ∧ cos(ωτ) > 0)

∨ sin(ωτ)−∆u < −1
sgn(τ)π − arcsin[sin(ωτ)−∆u]

ω − τ otherwise

and

τ̃ =
{

τ + σ̃ if ω(τ + σ̃) < π

τ + σ̃ − 2π
ω otherwise

The trajectory generated by this model with parameters A = 2, ω = 3 and
A∆u = 0.2 is shown in Figure 3.6.
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Figure 3.6: Piecewise constant sine trajectory

A piecewise constant trajectory can be also obtained using a constant time
step. However, the previous approximation is better in the QSS–method since
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the quantization in the values ensures that the difference between the continuous
signal an the piecewise constant one is always less than the quantum. This fact
can be easily noticed in Figure 3.6 whereas if a constant step approximation
had been taken, the maximum error would have depended on the relationship
between the time step and the signal frequency.

3.6 Startup and Output Interpolation

The QSS–method startup consists in giving appropriate initial conditions to the
atomic DEVS models which perform the simulation.

The quantized integrator state can be written as s = (x, dx, k, σ) (see model
M4 in page 33) where x is the state variable, dx is its derivative, k is the index
corresponding to the quantized variable qk and σ is the time advance.

It is clear that the variable representing the state should be initially chosen
as x = xi(t0) and j must be taken so that Qj ≤ xi(t0) ≤ Qj+1. With respect
to dx and σ, they could be calculated according to fi(q, u). However, there is a
much simpler solution.

If we choose σ = 0, all the quantized integrators will perform internal tran-
sitions at the beginning of the simulation and then, the models associated to
the static functions fi will calculate the derivatives producing –instantaneously–
output events. After that, the quantized integrators will receive the correct val-
ues of dx and they will calculate the corresponding σ in the external transition.

However, this behavior will be only observed if the quantized integrators
receive the input events –which come from the static functions– after they per-
formed the internal transitions. The problem is that after the first quantized
integrator performs the transition, not only the other quantized integrators but
also some static models will have their σ equal to 0 (because they perform an
external transition due to the quantized integrator output event).

Thus, it is necessary to establish priorities between the components in order
to ensure that when some models schedule their next transition for the same
instant of time, the quantized integrators are which perform it first. This can
be easily done using the tie-breaking function Select mentioned in Section 2.3.

These considerations also solve the problem of the static model initial condi-
tions. They can be arbitrarily chosen since the static models will receive input
events coming from the quantized integrators at the beginning of the simulation
and then their external transition functions will set the appropriate states.

Finally, the input signal generator models must start with their σ equal
to 0 and the rest of the state must be chosen so that the first output event
corresponds to the signal initial value.

A very important property of the QSS–method is related to the fact that
the state trajectory has a very particular form. It was already mentioned in
Section 3.3 that the state trajectories in a QSS are piecewise linear. Moreover,
they are also continuous.

Hence, if the values adopted by a variable xi at the event times are known,
they can interpolated with segments in order to obtain the exact evolution of
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(3.3) at any time. Moreover, to do that the only things which are needed are
the values after the external transitions because in the internal transitions the
slopes do not change.

Considering this, the problem of output interpolation has a straightforward
solution in the QSS–method.

3.7 Quantization, Hysteresis and Errors

After the definition of the QSS–method in Section 3.2 the following remarks
were focused in the DEVS implementation of Quantized State Systems. Taking
into account the considerations of Sections 3.4 to 3.6, it becomes clear how to
build and simulate the DEVS model corresponding to any QSS.

Then, given a continuous system like (3.2) and knowing which is the quantum
and hysteresis to be used, the DEVS simulation can be easily performed.

However, it was not mentioned any word about the key issue of the method:
the choice of the quantization and hysteresis to be applied at each state variable.

In classic discrete time methods, the simulation parameters (step size, error
tolerance, etc.) are chosen according to stability and accuracy considerations.

Up to here, it was not said anything about these matters –stability, error,
etc.– related to the QSS–method.

Since the goal is to simulate System (3.2), the accuracy of the simulation
will be connected to the similarity between this system and (3.3).

Taking into account that the only difference between both systems is the
presence of the quantization functions, it is natural to expect that the error
depends on the size of the quantization intervals.

However, this assertion requires a deeper study about the effects of the
quantization. All these theoretical issues will be left for the next chapter.

Anyway, we anticipate here that –under certain conditions– there is a linear
relationship between the quantum and the error and this fact will provide the
basic rule for the choice of the quantization and hysteresis.
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Chapter 4

Theoretical Properties of
QSS

In the previous chapter, it was claimed that the QSS–method was a general
simulation method for ODE. Although it was shown that it can be applied to
general time invariant ODEs, it was not proven any property telling that the
QSS solutions are in some way similar to the exat ones.

The properties which are typically studied in numerial analysis are consis-
tence, convergence, stability and error bound. Those properties allow to esti-
mate under which conditions the resulting approximate solution is in fact a good
approximation to the continuous trajectories. They also help in the choice of the
parameters (step–size, error tolerance, etc.) according to the desired accuracy.

The local error –the error in one step– is usually obtained from a Taylor
series expansion, while the global error –the error after several steps– is only
theoretically estimated making use of Lipschitz conditions (see [18] for instance).
The convergence property (i.e. the property for which the error goes to zero
when the step size goes to zero) is then obtained as the limit case of the global
error bound.

Since all the existing methods are discrete time ones, their stability proper-
ties are usually studied based on difference equations theory. The usual trick
here is to find the relationship between the eigenvalues of the original differen-
tial equation and the roots of the discrete time one (this procedure is obviously
limited to the analysis in linear systems1).

In the case of the QSS–method this last idea is completely useless. We
already mentioned that the Quantized State Systems do not fit in the form of
a difference equation. Similarly, the use of Taylor expansions does not lead to
any result.

However, there is a much more powerful tool wich can be used here: the
perturbation theory. Based on that, it will be possible not only to get similar

1There are other ways to study properties which can be applied to nonlinear systems. We
only refer here to the usual tools of numerical analysis.
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results to the classic ones, but also to calculate practical global error bounds
and to establish stability conditions including nonlinear cases.

Making use of those stability and error bound conditions –and after some
extra considerations– the problem which was open at the end of the previous
chapter –i.e. the choice of the appropriate quantization and hysteresis width–
will be finally solved.

4.1 QSS and Perturbation Theory

As it was mentioned, the usual tools for the analysis of numerical stability are
based on the discrete time systems theory. The basic idea is to obtain the
difference equation corresponding to a given method applied to a differential
equation and then to relate the eigenvalues of both systems.

This idea, which is useful for discrete time methods, cannot be applied to the
QSS–method because the resulting simulation model is a discrete event system
which does not fit in a difference equation representation.

A first attempt to solve this problem would consist in looking for a discrete
event systems theory which allows such kind of stability analysis. In fact, there is
a nice mathematical theory based on the use of max-plus algebra which permits
expressing some discrete event systems by difference equations in the context
of that algebra [1]. This theory also arrives to stability results based on the
study of eigenvalues and it is completely analogous to the discrete time systems
theory. However, it can be only applied to systems described by Petri Nets
and unfortunately, the QSS–method produces DEVS models which do not have
Petri Net equivalents.

A different way to study the QSS dynamics is using the representation (3.2)
for the original differential equation and (3.3) for its QSS approximation.

Let us define ∆x(t) , q(t)− x(t). Thus, the last equation can be written as

ẋ(t) = f(x(t) + ∆x(t), u(t)) (4.1)

and now, the simulation model (3.3) can be seen as a perturbed version of the
original system (3.2).

The hysteretic quantization functions have a fundamental property. If two
variables qi(t) and xi(t) are related by a quantization function like (3.1), then

Q0 < xi(t) < Qr ⇒ |qi(t)− xi(t)| ≤ max(∆Q, ε) (4.2)

where ∆Q , max(Qj+1 − Qj), 0 ≤ j ≤ r, is the maximum quantum (it was
mentioned in the previous chapter that the quantum is usually constant).

The property given by (4.2) implies that each component of the perturbation
∆x is bounded by the corresponding hysteresis width and quantum size. Thus,
the accuracy and stability analysis can be based on the effects of a bounded
perturbation.

As it was said, the study of numerical stability is usually restricted to linear
systems (their study in nonlinear systems is quite difficult). It will be seen
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that this problem disappears from the QSS–method because the perturbation
analysis can be easily applied to nonlinear systems. Moreover, when the method
is used with a linear system it will be also possible to establish a global bound
for the error and the problem of the approximation accuracy can be treated not
only locally but also globally.

Despite these advantages, a new problem appears in the QSS–method. Let
us illustrate it with the following example.

Example 4.1. Oscillations in the QSS–method.
Consider the first order system:

ẋ(t) = −x(t) + 9.5 (4.3)

with the initial condition x(0) = 0.
The simulation using the QSS–method with quantum ∆Q = 1 and hysteresis

width ε = 1 is shown in Figure 4.1
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Figure 4.1: QSS simulation of (4.3)

Although the system (4.3) is asymptotically stable, the QSS simulation fin-
ishes into a limit cycle. The equilibrium point x̄ = 9.5 is no longer an equilibrium
point in the resulting QSS and we cannot claim that the stability is conserved
by the method.

However, the QSS solution never goes far away from the exact solution and
it finishes with an oscillation near the equilibrium point. Taking into account
that the goal was just simulating the system, this result is not bad.

The trajectory given by the QSS–method is called ultimately bounded [23].
In general, the QSS–method cannot assure stability according to the classic
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definition. Thus, in the context of this method stability will refer in fact to
ultimately boundedness of the solutions.

4.2 Convergence of QSS–method

The convergence property tells that the solutions of (4.1) go to the solutions of
(3.2) when the maximum quantum ∆Q and the hysteresis width ε go to zero.

The importance of this property is in the fact that an arbitrarily small error
can be achieved in the simulation when a sufficiently small quantization is used.

The following theorem give sufficient conditions for the convergence of the
QSS–method.

Theorem 4.1. Convergence of QSS–method.
Consider System (3.2) and its associated QSS (3.3). Let D be the non-

saturation region defined by

D = {x = (x1, ..., xn)/Q0i
< xi < Qri

} (4.4)

Assume that the input u(t) ∈ Du being Du a bounded region and suppose that
function f(x, u) is locally Lipschitz on D×Du. Let φ(t) be the solution of (3.2)
from the initial condition x(0) = x0 and let φ1(t) be a solution of the related
QSS (3.3) starting in the same initial condition x0. Assume that φ(t) ∈ D1

where D1 ⊂ D (the continuous system solution is in the non-saturation region).
Then, φ1(t) → φ(t) when the quantization intervals go to 0.2

Proof. Let S be Rn − D and let F be

F , sup
u∈Du

(sup
x∈D

‖f(x, u)‖)

Let d be defined by
d , inf

x∈S
( inf
t∈[0,∞]

‖φ(t)− x‖) (4.5)

Taking into account the assumptions on f and φ(t), a positive constant t1 can
be found satisfying

t1 <
d

F
(4.6)

It can be easily seen that during the interval [0, t1] the trajectory of φ1(t) will
remain inside D.

Using the perturbation notation (4.1) instead of (3.3) and taking into ac-
count that when 0 ≤ t ≤ t1 the trajectories are inside the non–saturation region,
the fundamental property (4.2) stands for all the components and then ∆x(t)
satisfies

‖∆x(t)‖ ≤ ∆x (0 ≤ t ≤ t1) (4.7)
2Without modifying the saturation bounds (i.e. the number of quantization levels goes to

∞).
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being ∆x a constant defined by the quantization intervals. Let t ∈ [0, t1]. It
follows from (4.1), (3.2) and the fact that φ1(0) = φ(0) that:

φ1(t)− φ(t) =
∫ t

0

(f(φ1(τ) + ∆x(t), u(τ))− f(φ(τ), u(τ)))dτ

Thus, appliyng the euclidean norm we obtain

‖φ1(t)− φ(t)‖ = ‖
∫ t

0

(f(φ1(τ) + ∆x(τ), u(τ))− f(φ(τ), u(τ)))dτ‖

and then,

‖φ1(t)− φ(t)‖ ≤
∫ t

0

‖f(φ1(τ) + ∆x(τ), u(τ))− f(φ(τ), u(τ))‖dτ (4.8)

Let M be the Lipschitz constant of function f on D × Du. Since the argument
of the function f in (4.8) is inside that region we have

‖φ1(t)− φ(t)‖ ≤
∫ t

0

M‖φ1(τ) + ∆x(τ)− φ(τ)‖dτ

⇒ ‖φ1(t)− φ(t)‖ ≤
∫ t

0

M(‖φ1(τ)− φ(τ)‖+ ‖∆x(τ)‖)dτ

⇒ ‖φ1(t)− φ(t)‖ ≤
∫ t

0

M(‖φ1(τ)− φ(τ)‖+∆x)dτ

⇒ ‖φ1(t)− φ(t)‖ ≤
∫ t

0

M‖φ1(τ)− φ(τ)‖dτ + Mt∆x

The functions φ and φ1 are continuous, as well as the term Mt∆x. Since M
is positive, it is possible to apply the Gronwall–Bellman Inequality [23], resulting
in

‖φ1(t)− φ(t)‖ ≤ Mt∆x +
∫ t

0

M2s∆xe
R t

s
Mdτds

⇒ ‖φ1(t)− φ(t)‖ ≤ (eMt − 1)∆x

Then, since M and t1 do not depend on ∆x, for 0 ≤ t ≤ t1 we have

lim
∆x→0

‖φ1(t)− φ(t)‖ = 0 (4.9)

From (4.5) we have
d ≤ inf

x∈S
(‖φ(t1)− x‖) (4.10)

Taking into account (4.6), (4.9) and (4.10), it is possible to find a sufficiently
small quantization such that

t1 <
infx∈S(‖φ1(t1)− x‖)

F

This inequality implies that the solution φ1(t) does not leave the region D during
the interval [t1, 2t1]. Then, the validity of equations (4.7) to (4.9) holds for the
interval [0, 2t1]. Repeating that argument it results that (4.9) holds for all t.
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4.3 General Stability Properties of QSS

Although the convergence constitutes an important theoretical property, it does
not give any quantitative information about the relationship between the quan-
tum and the error and it does not establish any condition for the stability
domain.

The main result of this section –Theorem 4.2– follows this last goal by giv-
ing sufficient conditions to find the quantization which conserves3 the stability
properties of the original continuous system.

For the stability analysis an autonomous system will be considered (which
can eventually represent a non–autonomous system with a constant input tra-
jectory):

ẋ(t) = f(x(t)) (4.11)

whose corresponding QSS is given by

ẋ(t) = f(q(t)) (4.12)

where q(t) and x(t) are componentwise related by hysteretic quantization func-
tions.

A first property of this approximation is given by the following lemma

Lemma 4.1. QSS Equilibrium Points Consider the autonomous continuous
system (4.11) and its associated Quantized State System (4.12).

Then, the point x = x̄ is an equilibrium point of (4.11) if and only if the
point q = x̄ is an equilibrium point of (4.12).

The proof of this lemma is straightforward and, as it was already mentioned,
it also holds for system with constant inputs.

Lemma 4.1 implies that the quantized variables of the QSS have the same
possible values in the equilibrium than the state variables of the original system.
However, it does not imply that state variables in the quantized system will have
such values or that the quantized variables can reach them.

Anyway, taking into account that the difference between q(t) and x(t) is
bounded in the QSS the value of the state variables in an eventual equilibrium
situation will be near the right one.

Equation (4.12) can be rewritten using the perturbation notation:

ẋ(t) = f(x(t) + ∆x(t)) (4.13)

with ∆x(t) , q(t)− x(t).
Now, the theorem which relates the stability of systems (4.11) and (4.12)

can be introduced.
As before, this theorem assumes that the system is autonomous and it studies

the trajectories around an equilibrium point in the origin but it can be easily
extended to systems with constant inputs and with different equilibrium points.

3As it was mentioned before, the term stability refers in fact to ultimately boundedness of
solutions



4.3. GENERAL STABILITY PROPERTIES OF QSS 47

Theorem 4.2. Stability of QSS.
Consider a system as the one defined in (4.11) that has an equilibrium point

in the origin with the function f being continuously differentiable.
Assume that it is also possible to find a Lyapunov function V (x), which is

continuous in an open region D including the origin, and has a negative definite
time derivative along the trajectories of (4.11). Let D1 ⊂ D be a region limited
by a level surface of function V . Then, given an arbitrary open region D2 ⊂ D1

also limited by a level surface of V it is always possible to find a quantization so
that any trajectory of the resulting associated QSS starting into D1 converges to
the interior of D2.

Proof. Let D3 be the region defined by D3 , D1 − D2. Since V̇ (x) is negative
definite, it exists a positive number s such that:

V̇ (x) < −s,∀x ∈ D3 (4.14)

Define:
α(x,∆x) , ∇V (x)T · f(x +∆x) (4.15)

This is a continuous function in ∆x since it is the scalar product of a constant
vector and a continuous function. It is also verified that:

α(x, 0) = V̇ (x) (4.16)

Now, consider the following function

αM (∆x) , sup
x∈D3

(α(x,∆x)) (4.17)

It can be easily seen that this function is continuous and verifies

αM (0) < −s (4.18)

Thus, given a constant s1 (0 < s1 < s), a positive number ρ can be found
satisfying

αM (∆x) < −s1 < 0 (4.19)

if
‖∆x‖ < ρ (4.20)

The condition given by (4.20) can be satisfied with the choice of an adequate
quantization taking into account (4.2).

Let φ(t) be a solution of equation (4.13) starting from the initial condition
φ(t = 0) = x0 ∈ D3. Consider that the quantization was done in order to satisfy
the condition given by (4.20). From (4.13) and (4.15) it follows that:

α(φ,∆x) = ∇V (φ)T · φ̇

Using (4.17) and (4.19) in the equation above, it can be seen that:

∂V

∂x
(φ) · φ̇ < −s1 (4.21)
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This condition will be satisfied at least during certain time while φ(t) remains
inside D3 (the existence of this time is guaranteed by the continuity of φ(t)).

After integrating both sides of the Inequality (4.21), we have:

∫ t

0

∂V

∂x
(φ) · φ̇ · dt <

∫ t

0

−s1 · dt

V (φ(t))− V (φ(0)) < −s1 · t

V (φ(t)) < V (x0)− s1 · t

This implies that V evaluated along the QSS solution is bounded by a strictly
decreasing function while that solution remains inside D3. Since the value V (x0)
is smaller than the value that V takes in the bound of D1, it is clear that the
trajectory will never leave D1.

Let V1 be the value that V takes in the bound of region D2. Then, it can be
easily seen that the trajectory will reach the region D2 in a finite time t1 with:

t1 <
V (x0)− V1

s1

completing the proof.

A first remark is that the proof requires the choice of the quantization in-
tervals satisfying (4.20). In order to achieve that, it is necessary to leave the
saturation region outside region D3.

Then, considering the same constant quantum ∆Q and hysteresis window ε
for all the quantized variables, each component of ∆x is less than max(∆Q, ε).
Thus, ‖∆x‖ is less than √

n times that value, being n the dimension of the state
space. Thus, the condition given by (4.20) can be achieved by taking:

max(∆Q, ε) <
ρ√
n

Instead of ensuring stability, Theorem 4.2 shows that the QSS–method can
be implemented achieving a given final error. As it was mentioned before, the
QSS–method only can guarantee ultimately boundedness of solutions. This fact
can be easily understood taking into account that the perturbation term ∆x(t)
does not dissapear when the time goes to ∞. These kind of perturbations are
known as nonvanishing perturbations [23].

When the Lyapunov function V is also known, function α can be evaluated
to obtain ρ. In that way, this result also shows the way of doing the quantization
in order to obtain a final error bounded to some arbitrary value (given by the
choice of region D2).

In spite of the theoretical importance of these results, the relationship be-
tween quantization, stability and error bound cannot be easily deduced from
Theorem 4.2.

On one hand, the choice of the quantization requires the knowledge of a
Lyapunov function for the continuous system. There are converse theorems



4.4. LTI PERTURBED SYSTEMS: LYAPUNOV APPROACH 49

which ensure the existence of those functions in asymptotically stable systems
[23]. However, the way to obtain those functions is sometimes very difficult if
not impossible. Then, the result is not so useful from a practical point of view.

On the other hand, only a bound for the final error was obtained. Up to
here, there is no information about the relationship between the quantum and
the error bound at a given instant of time.

The main reason of these problems is the fact that we were working with
general nonlinear systems. It is necessary to deal with more particular cases in
order to get more practical and stronger results.

Like in all existing numerical methods, the most interesting properties of the
QSS–method result from the study of LTI systems.

Taking into account what was already done, a first attempt to study the QSS
properties in LTI system would consist in taking the Lyapunov–based theorem
and modifying it using the particular properties of linear systems.

However, that kind of study is a problem of ultimate bound estimation and
the use of Lyapunov–based approaches usually leads to very conservative results.
The reason of this can be found in the fact that the structure of the system and
perturbation are lost when the Lyapunov analysis is performed.

Thus, before studying the properties of the QSS–method in LTI systems
some new tools should be developed in order to analyze the behavior of those
systems in presence of nonvanishing perturbations.

The next section is dedicated to the particular Lyapunov analysis and then
the results are compared with the new methodology introduced in Section 4.5.
After that, these results are applied to the study of the QSS properties.

4.4 LTI Perturbed Systems: Lyapunov Approach

We shall consider the LTI nominal system

ẋ(t) = f(t, x) = Ax(t) + Bu(t) (4.22)

where A ∈ Rn×n is a Hurwitz matrix, u ∈ Rm and B ∈ Rn×m.
As it was seen in the previous sections, the QSS–method introduces bounded

perturbations in the state variables. Similarly, when continuous input signals
are approximated by their quantized versions, the effect can be represented by
the presence of bounded perturbations in the input variables.

In that way, the goal of this section is to study the effects of bounded state
and input perturbations in System (4.22).

It was already mentioned that one of the most important consequences car-
ried by the presence of nonvanishing perturbations is that the asymptotic sta-
bility dissapears, leaving its place to the ultimately boundedness of solutions.

The main problem is then to estimate a quantitative relationship between
the perturbation bounds and the resulting ultimate bound. In our particular
problem –the QSS–method– those bounds are respectively the quantum and the
final error.
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Taking into account the problem studied –to find the ultimate bound of a
perturbed system– it must be assumed that the non–perturbed system (4.22) is
asymptotically stable and it has a constant input.

Due to the linearity and without loss of generality it can be supossed that
u(t) = 0 and then, in presence of general input and state perturbations, Sys-
tem (4.22) can be written as

ẋ(t) = A(x(t) + ∆x(t)) + B∆u(t) (4.23)

It will be assumed that the perturbation components satisfy

|∆xi(t)| ≤ ∆xmaxi
1 ≤ i ≤ n (4.24)

and
|∆uj(t)| ≤ ∆umaxj

1 ≤ j ≤ m (4.25)

where ∆xmaxi
and ∆umaxj

are non-negative constants (which in the QSS–
method represent the quantum).

In order to simplify the next equations, a new notation will be introduced:
The symbol |·| will indicate the componentwise module of a matrix or vector.

If T is a matrix with components T1,1, . . . , Tn,m, then |T | will be a new matrix
of the same size than T with components |T1,1|, . . . , |Tn,m|.

For vectors having the same dimension, the vector inequality x ≤ y implies
that xi ≤ yi for every component of x and y.

According to these definitions, the following property will be satisfied:

|T · x| ≤ |T | · |x|
Using the notation defined above, the inequalities (4.24) and (4.25) can be
rewritten as

|∆x(t)| ≤ ∆xmax (4.26)

and
|∆u(t)| ≤ ∆umax (4.27)

Using this new notation, the problem is to find a ultimate bound for Sys-
tem (4.23) where the perturbations satisfy (4.26) and (4.27).

In Section 4.3 a similar study for general nonlinear systems was performed
making use of a Lyapunov’s based technique.

The classic way of studying this problem in LTI systems is just to follow that
technique improving it with the particular properties resulting from the system
linearity.

In order to justify the use of a new approach, the ultimate bound of system
(4.23) will be obtained following that Lyapunov’s analysis and then it will be
compared with the new one in the next section.

The study will be done for norm 2 and norm ∞. Although a bound in
norm ∞ can be obtained from the norm 2 –using the fact that the first one is
always less or equal than the second one– this bound could result even more
conservative.
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Let U(x) = xTPx where P = PT > 0 satisfies

ATP + PA = −Q (4.28)

with Q = QT > 0. Then

U̇(x) = ẋTPx + xTP ẋ

= [A(x +∆x) + B∆u]TPx + xTP [A(x +∆x) + B∆u]

and
U̇(x) = −xTQx + 2xTPA∆x + 2xTPB∆u (4.29)

It is known that

2xTPA∆x ≤ 2‖x‖ · ‖PA‖ · ‖∆x‖
≤ 2‖x‖ · ‖PA‖ · ‖∆xmax‖ (4.30)

and similarly

2xTPB∆u ≤ 2‖x‖ · ‖PB‖ · ‖∆u‖
≤ 2‖x‖ · ‖PB‖ · ‖∆umax‖ (4.31)

Up to here, the analysis was the same to both norms. Now, the study should
continue using particular properties of each norm.

In norm 2, we know that:

xTQx ≥ ‖x‖2
2λmin(Q) (4.32)

Then, if

‖x‖2 ≥ ρ ,
2

λmin(Q)
(‖PA‖2 · ‖∆xmax‖2 + ‖PB‖2 · ‖∆umax‖2) (4.33)

it results from (4.30) and (4.31) that

xTQx ≥ ‖x‖2
2λmin(Q) ≥ 2xTPA∆x + 2xTPB∆u

and from (4.29) we have
U̇(x) < 0

Let
c , max

‖x‖2=ρ
U(x) = ρ2λmax(P ) (4.34)

Then, it can be ensured that the trajectories will finish inside the level surface
given by

U(x) = c = ρ2λmax(P )

and the ultimate bound will be µ2 so that

min
‖x‖2=µ2

U(x) = µ2
2λmin(P ) = c
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this is

µ2 =
√

c

λmin(P )

using (4.34) and (4.33) in the last equation, we have

µ2 =

√
λmax(P )
λmin(P )

· 2
λmin(Q)

· (‖PA‖2 · ‖∆xmax‖2 + ‖PB‖2 · ‖∆umax‖2)(4.35)

The analysis in norm∞ is almost identical to the norm 2. The only difference
is that the lower bound given by (4.32) does not stand for norm ∞. To obtain
a similar inequality, the following result will be used.

Lemma 4.2. Constrained Quadratic [44].
Let U(x) = xtQx, where Q = QT > 0, and let C be a row vector in Rn and r

be a nonzero scalar. Then the minimum of U(·) along a hyperplane {x|Cx = r}
is given by: r2/CQ−1CT .

Using this lemma, the minimum of the quadratic function when the compo-
nent xi = r is r2/eiQ

−1eTi = r2/(Q−1)i,i. Thus, it results that

min
‖x‖∞=r

xTQx =
r2

maxi(Q−1)i,i

and Equation (4.32) can be replaced by

xTQx ≥ ‖x‖2
∞

maxi(Q−1)i,i
(4.36)

Then, following a similar idea to the analysis in norm 2, the bound obtained is

µ∞ = 2bq
√

bp‖P‖∞ · (‖PA‖∞‖∆xmax‖∞ + ‖PB‖∞‖∆umax‖∞)(4.37)

where
bq , max

1≤i≤n
(Q−1)i,i

and
bp , max

1≤i≤n
(P−1)i,i

4.5 LTI Perturbed Systems: Non Conservative
Approach

In order to obtain a less conservative result, it is necessary to exploit the struc-
ture of the system. Then, a completely different idea to the Lyapunov analysis
has to be followed.



4.5. LTI PERTURBED SYSTEMS: NON CONSERVATIVE APPROACH 53

To make use of the structure, the decoupled system will be studied (Lemma 4.3
and Corollary 4.1). Then, the results will be brought back to the original system
in Theorem 4.3.

This way of working will allow to use the geometrical properties of the system
and perturbations. As it will be seen later, this idea results in a less conservative
estimation of the ultimate bound.

Lemma 4.3. Scalar Perturbed System
Consider the following first order equation with complex coefficient

ẋ = a(x +∆x) + B∆u (4.38)

where a, x, ∆x ∈ C , ∆u ∈ C k and B ∈ C 1×k. Assume also that Re(a) < 0,
|∆x| ≤ ∆xmax and |∆u| ≤ ∆umax.

Let x(t) be a solution of (4.38) from the initial condition x(t0) = 0. Then,
for all t ≥ t0 it results that

|x(t)| ≤
∣∣∣∣ a

Re(a)

∣∣∣∣∆xmax +
∣∣∣∣ B

Re(a)

∣∣∣∣∆umax

Proof. Let x = ρ · ejθ with ρ, θ ∈ R. With this, Equation (4.38) becomes

ρ̇ · ejθ + jρ · ejθ · θ̇ = a(ρ · ejθ +∆x) + B∆u

Then, we have

ρ̇ + jρ · θ̇ = a(ρ +∆x · e−jθ) + B∆u · e−jθ

Taking the real part of the equation above it results that

ρ̇ = Re(a)ρ + Re(a∆x · e−jθ) + Re(B∆u · e−jθ)

and
ρ̇ ≤ Re(a)ρ + |a|∆xmax + |B|∆umax

Thus, when

ρ = |x(t)| = |a|∆xmax + |B|∆umax
|Re(a)|

it results that ρ̇ ≤ 0 and |x(t)| cannot become greater than the given bound.

Applying Lemma 4.3 to each component of a decoupled system, the following
corollary is obtained

Corollary 4.1. Decoupled Perturbed System.
Consider System (4.23) where x, ∆x ∈ C n, A ∈ C n×n, ∆u ∈ C k and

B ∈ C n×k. Assume further than A is a diagonal matrix with Re(Ai,i) < 0 and
consider the inequalities (4.26) and (4.27). Let x(t) be a solution of (4.23) from
x(t0) = 0. Then, for all t ≥ t0 we have

|x(t)| ≤ |Re(A)−1A|∆xmax + |Re(A)−1B|∆umax
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With this corollary, the following theorem can be derived

Theorem 4.3. Bound of Trajectories Starting from the Origin
Consider System (4.23) where x, ∆x ∈ Rn, A ∈ Rn×n, ∆u ∈ Rk and

B ∈ Rn×k. Assume that A is a diagonalizable Hurwitz matrix and suposse that
the perturbation terms satisfy (4.26) and (4.27). Let x(t) be a solution of the
system starting from x(t0) = 0. Then, for all t ≥ t0

|x(t)| ≤ |V | · (|Re(Λ)−1Λ||V −1|∆xmax + |Re(Λ)−1V −1B|∆umax) (4.39)

where Λ is a diagonal eigenvalues matrix of A and V is an associated matrix of
eigenvectors, that is

V −1AV = Λ (4.40)

Proof. Let x = V z. It results from (4.23) that

V ż = A(V z +∆x) + B∆u

Then,
ż = Λ(z + V −1∆x) + V −1B∆u (4.41)

Taking into account the restrictions in |∆x| and |∆u|, we have

|V −1∆x| ≤ |V −1|∆xmax

and
|V −1B∆u| ≤ |V −1B|∆umax

Since Λ is a diagonal matrix with Re(Λi,i) < 0 (since A is Hurwitz) and tak-
ing into account the last inequalities, System (4.41) satisfies the hypothesis of
Corollary 4.1.

Then, for all t ≥ t0 we can ensure that

|z(t)| ≤ |Re(Λ)−1Λ||V −1|∆xmax + |Re(Λ)−1V −1B|∆umax

and finally, we have

|x(t)| = |V z(t)| ≤ |V ||z(t)| ≤
≤ |V |(|Re(Λ)−1Λ||V −1|∆xmax + |Re(Λ)−1V −1B|∆umax)

which completes the proof.

Theorem 4.3 calculates a bound for the trajectories of a LTI perturbed sys-
tem assuming that the trajectories start from the origin.

Now, based on this last result, Theorem 4.4 gives an estimation of the ul-
timate bound by components and in terms of a norm p for a LTI perturbed
system with arbitrary initial conditions.
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Theorem 4.4. Ultimate Bound of LTI Perturbed Systems.
System (4.23), under the hypothesis of Theorem 4.3 is globally ultimately

bounded with ultimate bound

µ =
∥∥|V | · (|Re(Λ)−1Λ| · |V −1|∆xmax + |Re(Λ)−1V −1B|∆umax)

∥∥ (4.42)

Moreover, it exists a finite time t1 = t1(c, x0) so that for each positive constant
c the solutions satisfy

|x(t)| ≤ (1 + c)|V | · (|Re(Λ)−1Λ| · |V −1|∆xmax + |Re(Λ)−1V −1B|∆umax)(4.43)

for all t ≥ t1 and for an arbitrary initial condition x0.

Proof. Let x(t) be a solution of (4.23) starting from an arbitrary initial condition
x(0) = x0, and let x̃(t) be a solution of the nominal system

˙̃x = Ax̃ (4.44)

starting from the same initial condition.
Let e(t) = x(t) − x̃(t). Then, it results that e(0) = 0 and e(t) satisfies

Equation (4.23), which implies that it satisfies the hypothesis of Theorem 4.3.
Then,

|e(t)| ≤ |V | · (|Re(Λ)−1Λ| · |V −1|∆xmax + |Re(Λ)−1V −1B|∆umax) (4.45)

Since A is Hurwitz, the nominal system (4.44) is exponencially stable. Then,
for each positive constant c a finite time t1 exists so that for all t > t1 we have

|x̃(t)| ≤ c|V | · (|Re(Λ)−1Λ| · |V −1|∆xmax + |Re(Λ)−1V −1B|∆umax) (4.46)

Then, for t > t1,

x(t) = e(t) + x̃(t)
|x(t)| ≤ |e(t)|+ |x̃(t)|

and replacing with (4.45) and (4.46) we arrive to (4.43), which completes the
proof.

The results, Theorem 4.4 and Eq.(4.42), provide an alternative to the bounds
given by (4.35) and (4.37).

The following examples illustrate the advantages of the new approach.

Example 4.2. Ultimate Bound of a Stiff Perturbed System
Consider the perturbed system

ẋ(t) =
[

0 100
−100 −10001

]
· [x(t) + ∆x(t)]
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where the perturbation components are bounded by

|∆x1(t)| ≤ 0.01; |∆x2(t)| ≤ 0.0001

The Lyapunov-based formula (4.35) is minimized taking4

Q =
[

1 −1.4631
−1.4631 197.568

]

obtaining the ultimate bound µ2 = 20.1861. Similarly, the minimum of (4.37)
is obtained for

Q =
[

1 −1.448
−1.448 196.124

]
which gives µ∞ = 14.45.

For the same example, the new approach –Theorem 4.4 and Equation (4.42)–
gives µ̃2 = 0.0100085 (bound in norm 2) and µ̃∞ = 0.01. The estimation is
about 2000 times less conservative in norm 2 and 1400 times in norm ∞.

Moreover, Theorem 4.4 concludes that according to (4.43), after certain time
t1 we will have

|x1(t)| < (1 + c)0.01; |x2(t)| < (1 + c)0.0003

for any given positive constant c. If the goal were knowing about the second
component, this result is even much better than the obtained with (4.42).

The calculations were made using the eigenvectors and eigenvalues matrices
obtained with function ’eig’ of Matlab:

V =
[

1 −0.01
−0.01 1

]
; Λ =

[ −1 0
0 −10000

]

The reason for the poor performance of the Lyapunov analysis is, in part,
due to the big difference between the system eigenvalues (the system is stiff).
Thus, the eigenvalues of matrix P are also very different which implies that the
level surfaces of U(x) are very flat ellipses. Hence, the radius ρ which defines
the ball where the Lyapunov function derivative is negative differs significantly
from the radius µ2, which defines the ball cointaining all the level surfaces that
passes by the ball with radius ρ (see Figure 4.2).

However, the bad performance is also due to the lost of the problem structure
when the Lyapunov function is used. In this way, the analysis cannot obtain
any profit from the fact that the perturbation term acts in each direction with
different amplitude.

Example 4.3. A Stiff System with Input Perturbations.
Consider now the same system than before with an input perturbation.

ẋ(t) =
[

0 100
−100 −10001

]
· x(t) +

[
1
0

]
· d(t)

4The minimum was obtained with Nelder–Mead simplex method (function ’fminsearch’ of
Matlab).
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µ2

ρ

U(x) = c

Figure 4.2: Lyapunov Bound in Norm 2

where |d(t)| ≤ 1.
The minimum of the Lyapunov bound given by (4.35) is obtained with

Q =
[

1 −2.2822
−2.2822 266.581

]

which results in an estimation of µ2 = 26.7327.
Similarly (4.37) has a minimum for

Q =
[

1 −1.7681
−1.7681 195.484

]

giving µ∞ = 21.593.
Now, the use of (4.42) gives µ̃2 = 1.00015 and µ̃∞ = 1.0001. Then, the

results with the new approach are more than 20 times better.
Theorem 4.4 also ensures that, according to (4.43), after some time we will

have
|x1(t)| < 1.0001; |x2(t)| < (1 + c)0.01

and the estimation of the bound in the second component becomes 2000 times
better than the given by the Lapunov analysis.

The advantages of the new approach in stiff systems is quite clear taking
into account what was illustrated by Figure 4.2.

The last example of this section will illustrate the use of the new methodol-
ogy in a very simple non-stiff second order system with complex eigenvalues in
presence of input perturbations. This is not the case of Figure 4.2 and then the
advantage of the method here is only due to the conservation of the problem
structure.
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Example 4.4. A Non–Stiff Perturbed System
Consider the system

ẋ(t) =
[

0 1
−1 −1

]
· x(t) +

[
1
0

]
· d(t)

where |d(t)| ≤ 1.
The bounds obtained via Lyapunov’s analysis are µ2 = 5.1098 and µ∞ =

3.7535 obtained with the optimal matrices Q:

Q =
[

1 −0.0421
−0.0421 1.1177

]

and

Q =
[

1 −0.475
−0.475 1.0703

]
respectively.

On the other hand, the bounds obtained with the new approach are µ̃2 = 3.266
and µ̃∞ = 2.3094, which still are less conservative.

The eigenvectors and eigenvalues matrices used here were also the ones ob-
tained with Matlab:

V =
[
0.612− j0.354 0.612 + j0.354

j0.707 j0.707

]

and

Λ =
[ −0.5 + j0.866 0

0 −0.5− j0.866

]

Although this new approach was developed in order to study the QSS–
method properties, it can be also applied in a much more general context.

In fact, these results will be reused in the second order approximation and in
the asynchronous control methodology. But they can be also applied to many
other problems which require ultimate bound estimation in presence of bounded
nonvanishing perturbations.

Nonvanishing perturbations can also represent effects of unknown distur-
bance signals (see [42] for instance), unmodeled dynamics [43] and errors in
networked control systems [63]. Then, the new methodology may also provide
a useful tool in applications corresponding to all these cases.

4.6 QSS–method in LTI Systems

The stability of numerical methods is always studied in linear systems. As it was
already exaplined, the idea is to relate the eigenvalues of the original continuous
systems with the eigenvalues of the resulting difference equation. In that way,
the analysis arrives to conditions –usually about the step size– so that the stable
eigenvalues of the continuous system –i.e. in the left half–plane– are mapped
into stable eigenvalues –i.e. inside the unit circle– in the difference equation.
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As it is already known, this idea cannot be applied to the QSS–method
because here there is no difference equation to study.

In Section 4.3 general conditions were found in order to ensure ultimately
boundedness of the QSS solutions. There, a Lyapunov function was required for
the analysis and then the result was not really practical. Although that general
result has very important theoretical consequences, it is necessary to go to the
particular case of LTI systems in order to obtain more practical conditions.

Let us then consider the following LTI system:

ẋ(t) = A · x(t) + B · u(t) (4.47)

with the same definitions made in (4.22)
The use of the QSS–method transforms it into:

ẋ(t) = A · q(t) + B · uq(t) (4.48)

where q(t) and x(t) are related componentwise by hysteretic quantization func-
tions. Here, it is considered that uq(t) is the quantized version of u(t) (in case
it is not piecewise constant).

Then, defining ∆x(t) , q(t) − x(t) and ∆u(t) , uq(t) − u(t) Eq.(4.48) can
be rewritten as

ẋ(t) = A(x(t) + ∆x(t)) + B(u(t) + ∆u(t)) (4.49)

where each component of the perturbation terms ∆x and ∆q is bounded by
the corresponding quantum (according to Eq.(4.2)). Thus, provided that the
trajectories do not reach the saturation bounds, we have that ∆x(t) and ∆u(t)
satisfy (4.26) and (4.27) respectively.

Based on this last remark and making use of the results of the previous
section, the following theorem gives the fundamental error bound property of
the QSS–method in LTI systems.

Theorem 4.5. Global Error bound of the QSS–Method
Consider the LTI system (4.47) where matrix A is Hurwitz and diagonaliz-

able. Let φ(t) be a solution of that system and let φ1(t) be a solution calculated
by the QSS–method from the same initial condition using a quantization so that
(4.26) and (4.27) are satisfied.

Then, the error e(t) , φ1(t)− φ(t) is always bounded by:

|e(t)| ≤ |V | · (|Re(Λ)−1Λ||V −1|∆xmax + |Re(Λ)−1V −1B|∆umax) (4.50)

where Λ is a diagonal eigenvalues matrix of A and V is an associated matrix of
eigenvectors (i.e., they verify Eq.(4.40)).

Proof. From the definition of e(t), using (4.47) and (4.49) it results that

ė(t) = A · e(t) + B ·∆u(t) (4.51)

Since both solutions start from the same initial condition we have that e(t0) =
0 and then, System (4.51) verifies all the hypothesis of Theorem 4.3. Thus,
Inequality (4.39) takes the form of (4.50) completing the proof.
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Theorem 4.5 gives the relationship between quantization and error. Inequal-
ity (4.50) can be also seen as a closed formula to choose the quantization ac-
cording to the desired error.

A remarkable fact is that the formula does not depend neither on the input
trajectory nor on the initial condition. Besides being an amazing theoretical
property, it gives to the method very important practical advantages.

It can be easily seen that the error bound is proportional to the quantum
and, for any quantum adopted, the error is always bounded. Then, the method
is always stable. In that way the QSS–method –using only explicit formulas–
shares some properties with implicit discrete time methods.

It is also important to notice that Inequality (4.50) is an analytical expression
for the maximum global error . As we already mentioned, discrete time methods
lack of similar formulas.

Finally, an interesting fact is that in explicit discrete time algorithms the
stability depends on a relationship between the location of the eigenvalues –the
system speed– and the step size.

Here, if a constant input is considered it results that ∆umax = 0 and then the
error is only connected to geometrical properties of the system: the eigenvectors
and the angles of the eigenvalues (note that the product |Re(Λ)−1Λ| is a diagonal
matrix where each entry on the diagonal is the inverse of the cosine of an
eigenvalue angle). This is coherent with the fact that the method discretizes
the state variables.

4.7 Quantum and Hysteresis Choice

The QSS–method requires the choice of an adequate quantum and hysteresis
size. Although we mentioned that the error is always bounded –at least in LTI
systems– an appropriate quantization must be chosen in order to obtain a decent
simulation result.

It was also mentioned that Inequality (4.50) can be used for the quantization
design. Given a desired error bound, it is not difficult to find appropriate values
for ∆xmax and ∆umax so the inequality is satisfied. Let us illustrate this in a
simple example.

Example 4.5. Choosing the Quantum.
Consider the system:

ẋ1 = x2

ẋ2 = −x1 − x2 + u(t) (4.52)

A set of matrices of eigenvalues and eigenvectors (calculated with Matlab) are

Λ =
[ −0.5 + 0.866i 0

0 −0.5− 0.866i

]

and

V =
[
0.6124− 0.3536i 0.6124 + 0.3536i

0.7071i −0.7071i
]
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Then,

T , |V ||Re(Λ)−1Λ||V −1| =
[
2.3094 2.3094
2.3094 2.3094

]
(4.53)

Let us consider that the goal is to simulate (4.52) for an arbitrary initial condi-
tion and input trajectory with an error less or equal than 0.1 in each variable.
Then, a quantum

∆Q =
[
0.05/2.3094
0.05/2.3094

]
=

[
0.0217
0.0217

]
(4.54)

is enough small to ensure that the error cannot be bigger than the given bound.

Although Inequality (4.50) gives an idea about the relationship between the
quantum, the hysteresis and the error bound, sometimes it might result quite
conservative (despite the fact that it is less conservative than the Lyapunov–
based analysis).

In fact, using a quantum and hysteresis equal to 0.05 in each variable of
System (4.52) and taking u(t) = 1, the simulation shown in Figure 3.5 (page
35) is obtained. The predicted error bound is 0.23094 in each variable. However,
the maximum error in that simulation results quite smaller than this bound.

Up to here, the hysteresis width was chosen equal to the quantum size.
However, no reason was given for this election.

On one hand, Inequality (4.2) tells that the perturbation at each variable
is bounded by the maximum between the quantum and the hysteresis width.
Then, a hysteresis width bigger than the quantum should not be used because
in that way the error would be increased.

On the other hand, the minimum time between succesive internal transitions
in a quantized integrator –given by Eq.(3.7) in page 31– depends on the mini-
mum between the quantum and hysteresis width. Thus, the use of a hysteresis
smaller than the quantum would increase the number of calculations.

The following example illustrates these ideas.

Example 4.6. Choosing the Hysteresis.
Consider system the first order system (4.3).
Figure 4.3 shows simulation results with quantum ∆q = 1 and hysteresis

widths ε = 1, ε = 0.6 and ε = 0.1. In all the cases the maximum error is bounded
by the same value. In theory, the bound is equal to 1 but in the simulations we
can observe that the maximum error is always 0.5.

However, the final oscillation frequency increases as well as the hysteresis
width becomes smaller. In fact, that frequency can be calculated as

f =
1
2ε

Then, it is clear that when the hysteresis is chosen to be equal to the quantum,
the frequency is reduced without increasing the error. The result of reducing
the oscillation frequency is a reduction in the number of steps performed by the
algorithm and a consequent reduction of the computational costs.
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Figure 4.3: Simulation of (4.3) with different hysteresis values

4.8 Limitations of the QSS–method

Along this chapter, several theoretical properties were studied concluding about
the good qualities of the QSS approximation. Particularly, the results of Section
4.6 shows that the QSS–method has very strong properties which are at the level
of variable step and implicit discrete time methods.

However, there is a problem which was not mentioned up to here. On one
hand, Inequality (4.50) says that the error bound is proportional to the quan-
tum. On the other hand, the model M4 in page 33 tells that the time advance σ
is inversely proportional to the quantum. Thus, the number of step will result
approximately proportional to the required accuracy.

It means that any attempt to increase the accuracy in 10 times, will result
in an increment in about 10 times of the number of calculations.

This fact can be easily understood taking into account that QSS only per-
forms a first order approximation and then a good accuracy cannot be obtained
without increasing significantly the number of calculations.

This limitation will be –partially– solved in the next chapter with a second
order approximation.

There are, of course, more limitation. The most important is probably the
one related to stiff systems. These cases will be studied at the end (we anticipate
now that there are some encouraging results but the problem is still open).

The last problem is related –again– to the choice of the quantization. Despite
Inequality (4.50) could be useful, nobody wants to calculate eigenvalues and
eigenvectors before simulating. The only good solution to this is the use of
adaptive quantization, which was not still developed.



Chapter 5

Second Order QSS

The previous chapter finished with a brief analysis on the limitations of the
QSS–method. The first problem mentioned there was related to the fact that
the method performs only a first order approximation.

As a result, there is an approximate linear relationship between the inverse
of the global error bound and the number of steps. Thus, any attempt to reduce
the error results in a proportional increase of the computational costs and it is
quite expensive to obtain accurate results.

In this chapter, a second order approximation will be developed which per-
mits arriving to more accurate results without increasing considerably the num-
ber of calculations.

In QSS, the quantizers approximate continuous trajectories by piecewise
constant ones. Thus, the information about the higher order derivatives of the
state variables is lost. Here, the main idea is to use piecewise linear trajectories
instead of piecewise constant in order to make use of the state second order
derivatives.

This new numerical approximation will be stated so that it allows to ensure
that it satisfy most of the practical and theoretical properties showed by the
QSS–method.

On one hand, the coupling scheme of the resulting DEVS atomic models
will be the same than before, exploiting sparsity and making use of their asyn-
chronous features. On the other hand, the approximatting simulation model will
be still seen as a perturbed version of the original system. In that way, similar
theoretical properties to the shown for the QSS–method will be obtained.

5.1 QSS2–Method

The basic idea of the second order method is the use of first order quantizers
replacing the simple hysteretic quantizers which were placed to define QSS.

A hysteretic quantizer whose quantum and hysteresis width are equal to
each other –it was already mentioned that this is the best choice– can be seen

63
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as a system that produces a piecewise constant output trajectory which only
changes when the difference between that output and the input reaches certain
threshold (i.e. the quantum).

Following this idea, a first order quantizer is defined as a system which
produces a piecewise linear output trajectory having discontinuities only when
its difference with the input reaches the quantum. This behavior is illustrated
in Figure 5.1.

Input
Output

∆q

Figure 5.1: Input and Output trajectories in a First Order quantizer

This idea can be formalized as follows:

Definition 5.1. First Order Quantization Function.
Two trajectories xi(t) and qi(t) are related by a first–order quantization func-

tion if they satisfy:

qi(t) =
{

xi(t) if t = t0 ∨ |qi(t−)− xi(t−)| = ∆q
qi(tj) + mj(t − tj) otherwise (5.1)

with the sequence t0, . . . , tj , . . . defined as

tj+1 = min(t|t > tj ∧ |xi(tj) + mj(t − tj)− xi(t)| = ∆Q)

and the slopes are

m0 = 0, mj = ẋi(t−j ) j = 1, . . . , k, . . . (5.2)

The constant ∆Q will be called again the quantum and variables xi(t) and
qi(t) satisfy

|qi(t)− xi(t)| ≤ ∆Qi ∀t (5.3)

Notice that this inequality is just a particular case of (4.2) with a constant
quantum equal to the hysteresis width.
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Taking into account that the difference between the new approximation and
the QSS–method is the use of first order quantizers instead of hysteretic quan-
tization functions, the new method can be defined as follows:

Definition 5.2. QSS2–Method.
Given a time invariant state equation system like (3.2), the QSS2–method

approximates it by a system like (3.3) where the components of q(t) and x(t)
are related componentwise by first–order quantization functions.

The resulting system (3.3) will be called Second Order Quantized State Sys-
tem (or QSS2 for short). Figure 5.2 shows the corresponding block diagram.

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

F.O.Q.

F.O.Q.

Figure 5.2: Block Diagram Representation of a QSS2

As before, the components of q(t) will be called quantized variables.
In QSS it was necessary to add hysteresis in order to ensure that the quan-

tized variable trajectories become piecewise constant avoiding illegitimacy. In
the QSS2 definition the hysteresis seems to be absent. However, hysteresis is
implicitly present in the definition of first–order quantization function. Indeed,
the absolute value in Equation (5.1) expresses that hysteretic behavior.

5.2 Trajectories in QSS2

It is quite obvious that the output of a first order quantization function is a
piecewise linear trajectory. In fact, it was defined in order to obtain such kind
of trajectories. Thus, it can be expected that the quantized variables of a QSS2
are piecewise linear (this fact will be formaly proven later on).

In QSS not only the quantized variables but also the state derivatives were
piecewise constant. In that way, it could be affirmed that the state variables had
piecewise linear trajectories and these feactures were used to build the DEVS
model.
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However, all that kind of particular trajectories in QSS2 cannot be found.
Although the quantized variables are piecewise linear, it does not mean that
the state derivatives are the same even if the inputs have piecewise linear tra-
jectories. The reason is that a nonlinear function applied to a piecewise linear
trajectory gives a trajectory which is not necessarily piecewise linear.

The only case in which it can be claimed that the state derivative trajectories
are piecewise linear is in LTI systems and then, in that case, the state variables
have piecewise parabolic trajectories.

The following theorems prove all these facts.

Theorem 5.1. Quantized Trajectories in QSS2
Given the QSS2 defined in (3.3) with f continuous and bounded in any

bounded domain and u(t) being bounded, the trajectories of q(t) are piecewise
linear while they remain inside a bounded region.

Proof. Let qi(t) and xi(t) denote the trajectory of the i-th component of q(t) and
x(t) respectively. Since xi(t) and qi(t) are related by a first order quantization
function, the last trajectory can be written as

qi(t) =
{

xi(t) if t = t0 ∨ |q(t−)− x(t−)| = ∆q
qi(tj) + mj(t − tj) otherwise (5.4)

with the sequence t0, . . . , tj , . . . defined according to

tj+1 = min(t|t > tj ∧ |xi(tj) + mj(t − tj)− xi(t)| = ∆qi) (5.5)

and where, according to (5.2), we have

m0 = 0, mj = ẋi(t−j ) j = 1, . . . , k, . . . (5.6)

Although Equation (5.4) implies that qi(t) is formed by sections of lines, in
order to assure that it is piecewise linear it is also necessary to prove that the
sequence t0, . . . , tj , . . . , does not contain an infinite number of components in a
finite interval of time.

Since it was assumed that q(t) is bounded over some interval of time [t0, tf ],
and taking into account the hypothesis made about f and the fact that u(t) is
bounded, we have

|fi(q(t), u(t))| ≤ Fi t0 ≤ t ≤ tf (5.7)

From (5.6) we have
|mj | ≤ |fi(q(t), u(t))| ≤ Fi (5.8)

Thus, the slope results always bounded by a constant Fi. From (5.5) we have

∆qi = |xi(tj) + mj(tj+1 − tj)− xi(tj+1)|
≤ |xi(tj+1)− xi(tj)|

tj+1 − tj
(tj+1 − tj) + |mj |(tj+1 − tj)

≤ |mj+1|(tj+1 − tj) + |mj |(tj+1 − tj)
≤ 2Fi(tj+1 − tj)
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Finally, it results that

tj+1 − tj ≥ ∆qi
2Fi

This inequality implies that the sequence t0, . . . , tj , . . . , has a minimum time
between successive components and it is impossible to have an infinite number of
components in a finite interval of time. As a consequence of this, the trajectories
of q(t) are piecewise linear.

Theorem 5.2. State Derivative Trajectories in QSS2.
In a QSS2 related to a LTI system with bounded piecewise linear inputs, the

trajectories of the derivatives of the state variables are piecewise linear when the
quantized variables remain in a bounded region.

Proof. In LTI systems we have f = Ax + Bu and then, the hypothesis of con-
tinuity and boundedness formulated in Theorem 5.1 are satisfied. Taking into
account the assumptions on the input and quantized variable trajectories it
can be easily seen that the mentioned theorem holds and then, the quantized
variables have piecewise linear trajectories.

A LTI system can be expressed by Eq.(4.47) (page 59) and its associated
QSS2 takes the form of (4.48).

Since q(t) and u(t) have piecewise linear trajectories, it is clear that the
trajectories of ẋ(t) are also piecewise linear

A corollary of this theorem is that in the case of QSS2 related to LTI systems,
the state variables have piecewise parabolic trajectories, as it was mentioned
before.

The piecewise constant and piecewise linear trajectories of QSS allowed to
find its DEVS representation. In a similar way, the piecewise linear and piece-
wise parabolic trajectories will allow to find a DEVS model that exactly repre-
sents the behaviour of a QSS2 associated to a LTI system.

However, taking into account that the trajectory forms are not conserved
in nonlinear systems, it will be only possible to simulate exactly the QSS2
approximations of LTI systems.

Anyway, as it will be seen in the next section, the QSS2–method can be also
applied to general nonlinear systems but in that case the simulation results will
not coincide exactly with the solutions of (3.3).

5.3 DEVS Representation of QSS2

The DEVS model of QSS built in Section 3.4 was based on the use of events
representing the changes in the values of the piecewise constant variables.

Here, in a similar way, the changes in the slopes and values of the piecewise
linear trajectories will be represented by events carrying the new values and
slopes of the corresponding variables.
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At this point, Giambiasi’s work must be mentioned again, since his definition
of GDEVS [17] gives a way of representing piecewise polynomial trajectories by
segments of events.

We shall start focusing on LTI systems where –provided that the input tra-
jectories are piecewise linear– the state derivatives result piecewise linear and
then the state variables have continuous piecewise parabolic trajectories.

Using these facts, the same procedure used in Section 3.4 to build the DEVS
model of a QSS can be followed. There, the main idea was splitting the model
into quantized integrators and static functions.

In spite of the similarity between QSS and QSS2, the atomic models in the
latter approximation will result quite different since they should calculate and
take into account not only the values but also the slopes of the trajectories.
Moreover, the events will carry both, values and slopes.

As before, the quantized integrators in QSS2 will be formed by an integrator
and a first–order quantizer. They will be called second–order quantized integra-
tors . The reason for this name is that they calculate the state trajectories using
their first and second derivatives (i.e. the state derivative values and slopes).

A DEVS model which can represent the behavior of a second–order quantized
integrator is the following one

M7 = (X, S, Y, δint, δext, λ, ta), where:
X = R

2 × N

S = R
5 × R

+

Y = R
2 × N

δint(u, mu, x, q, mq, σ) = (u + mu · σ, mu, q̃, q̃, u + mu · σ, σ1)
δext(u, mu, x, q, mq, σ, e, v, mv, p) = (v, mv, x̃, q + mq · e, mq, σ2)

λ(u, mu, x, q, mq, σ) = (x + u · σ +
mu

2
σ2, u + mu · σ, 1)

ta(u, mu, x, q, mq, σ) = σ

where
q̃ = x + u · σ +

mu

2
σ2; x̃ = x + u · e +

mu

2
e2

σ1 =

{ √
2∆q
mu

if mu �= 0
∞ otherwise

(5.9)

and σ2 can be calculated as the least positive solution of

|x + u · e +
mu

2
e2 + v · σ2 +

mv

2
σ2

2 − (q + mq · e + mqσ2)| = ∆q (5.10)

It can be easily seen that model M7 gives an exact representation of a second–
order quantized integrator with piecewise linear input trajectories.

Equations (5.9) and (5.10) calculate the time advance, that is, the time in
which the difference between the piecewise parabolic state trajectory (x(t)) and
the piecewise linear quantized trajectory (q(t)) reaches the quantum (∆q).
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It is clear that in a QSS2 simulation the integrators should be represented
with models like M7 instead of M4. To represent the static functions in the
QSS–method, the model M2 was used. However, this last model does not take
into account the slopes. Then, the representation of static functions in QSS2
requires using a different DEVS model.

Before trying to build the new DEVS model for the static functions it is it is
necessary to take into account the possible presence of a nonlinear relationship.

Each component fj of a static function f(q, u) will receive the piecewise
linear trajectories of the quantized and input variables.

Let us define z , [qT , uT ]T . Each component of z has a piecewise linear
trajectory:

zi(t) = zi(tk) + mzi
(tk) · (t − tk)

Then, the static function output can be written as

ẋj(t) = fj(z(t)) = fj(z1(tk) + mz1(tk) · (t − tk), . . . , zl(tk) + mzl
(tk) · (t − tk))

where l , n + m is the number of components of z(t).
Defining mz , [mz1 , . . . , mzl

]T , the last equation can be rewritten as

ẋj(t) = fj(z(t)) = fj(z(tk) + mz(tk) · (t − tk))

which can be expanded in Taylor series as follows

ẋj(t) = fj(z(t)) = fj(z(tk)) +
[

∂fj
∂z

(z(tk))
]T

· mz(tk) · (t − tk) + . . . (5.11)

Then, a piecewise linear approximation of the output can be obtained by
taking the two first terms of (5.11).

This idea requires an estimation of the partial derivatives of function fj ,
which must be recalculated in all the changes of the piecewise linear trajectories.

Taking into account these considerations, a DEVS model which can be as-
sociated to a generic static function fj(z) = fj(z1, . . . , zl) taking into account
input and output values and slopes can be written according to

M8 = (X, S, Y, δint, δext, λ, ta), where:
X = R

2 × N

S = R
3l × R

+

Y = R
2 × N

δint(z, mz, c, σ) = (z, mz, c,∞)
δext(z, mz, c, σ, e, v, mv, p) = (z̃, m̃z, c̃, 0)
λ(z, mz, c, σ) = (fj(z), mf , 1)
ta(z, mz, c, σ) = σ

where z = (z1, . . . , zl) and z̃ = (z̃1, . . . , z̃l) are the input values.
Similarly, mz = (mz1 , . . . , mzl

) and m̃z = (m̃z1 , . . . , m̃zl
) represent the input

slopes.
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The coefficients c = (c1, . . . , cl) and c̃ = (c̃1, . . . , c̃l) estimate the partial
derivatives ∂fj

∂zi
which are used to calculate the output slope according to

mf =
n∑
i=1

cimzi

After the external transition function, the components of z̃, m̃z and c̃ are cal-
culated according to

z̃i =
{

v if p = i
zi + mzi

e otherwise

m̃zi
=

{
mv if p = i
mzi

otherwise

c̃i =

{
fj(z + mze)− fj(z̃)

zi + mzi
e − z̃i

if p = i ∧ zi + mzi
e − z̃i �= 0

ci otherwise
(5.12)

If the function f(z) is linear, this DEVS model exactly represents its behavior
when the components of z(t) are piecewise linear.

In the nonlinear case, the DEVS model approximates the Taylor expansion
(5.11).

Then, through the coupling DEVS models like M7 and M8 as it is shown in
Figure 5.2, the QSS2–method can be used to simulate any time invariant ODE
system.

5.4 Properties of the QSS2–Method

It was already mentioned that the QSS2–method shares some properties with
QSS. The reason can be easily understood. Two variables, xi(t) and qi(t) related
by a first–order quantization function satisfy (5.3).

This inequality is just a particular case of (4.2) with a constant quan-
tum equal to the hysteresis width. The QSS properties were deduced using
this inequality –which implies that the method only introduces a bounded
perturbation– and the representation of (4.1). Taking into account that this
representation is also correct for QSS2, the conclusion is that the QSS2–method
satisfies the same convergence, stability and error bound properties than QSS.

However, in nonlinear systems the QSS2 definition and what the DEVS
model simulates do not coincide. Thus, the analysis only ensures that those
properties hold in the simulation of LTI systems. Although there are many
reasons which allow to conjecture that convergence and stability are still verified
in the simulation of nonlinear systems, there is not yet a formal proof of this.

When it comes to the error bound, Inequality (4.50) is verified by the QSS2–
method since they were deduced for LTI systems.

Besides the theoretical properties deduced from the perturbation analysis, it
was seen that the QSS–method also exhibits some practical advantages related
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to the incorporation of input signals and the exploitation of sparsity. Let us see
then what happens with these practical issues in the QSS2–method.

The sparsity exploitation is straightforward. The simulation structure is
conserved from QSS and then each transition only involves calculation at the
integrators and static functions directly connected to the integrator which per-
formed it.

When it comes to the input signals, now the situation is better than before.
Here, it can be ensured that not only the inputs are processed as soon as they
change but also it is possible to exactly represent piecewise linear instead of just
piecewise constant trajectories.

The following example illustrates these advantages:

Example 5.1. A Transmission Line Simulation
The circuit of Figure 5.3 represents an RLC transmission line. This model

can be used to study the performance of integrated circuits transmitting data at
a very fast rate. Although the length of the wires is only of a few centimeters,
the high frequency of the signal produces that the delays introduced by the wires
cannot be ignored and the transmission line theory must be applied.

The transmission line models are described as systems of partial differential
equations. However, they can be approximated by lumped models where the
distributed effects of capacity, inductance and resistance are represented by a
cascade of single capacitors, inductors and resistors, as Figure 5.3 shows. In

Vin Vout

RRR LLL

CCC

Figure 5.3: RLC Transmission Line

order to constitute a good approximation, the RLC model must be formed by
several sections. As a consequence of this, it results in a sparse high order
ordinary differential equation.

In [22] an example composed by five sections of RLC circuits is introduced.
The resistance, inductance and capacitance values used there corresponds to
real parameters. The model obtained is a tenth order linear system, where the
evolution matrix (A) can be written as follows:

A =




−R/L −1/L 0 0 0 0 0 0 0 0
1/C 0 −1/C 0 0 0 0 0 0 0
0 1/L −R/L −1/L 0 0 0 0 0 0
0 0 1/C 0 −1/C 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 1/C 0
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A typical input trajectory in these digital systems is a trapezoidal wave repre-
senting the “0” and “1” levels as well as the rising and falling times. Since a
trapezoidal wave is a piecewise linear trajectory, we can generate it exactly using
the following DEVS model

M9 = (X, S, Y, δint, δext, λ, ta), where:
X = φ

S = N × R
+

Y = R
2 × N

δint(k, σ) = (k̃, tk̃)
λ(k, σ) = (uk̃, muk̃, 1)
ta(k, σ) = σ

where k̃ = (k + 1 mod 4) is the next cycle index which has 4 phases: The low
level (index 0), the rising phase (1), the high level (2) and the falling phase (3).
The duration of each phase is given by tk.

During the low level the output is u0 and at the high level phase it is u2.
Then, the slopes mu0 and mu2 are zero. During the rising time we have u1 = u0

and the slope is mu1 = (u2 − u0)/t1. Similarly, during the falling time we have
u3 = u2 and mu3 = (u0 − u2)/t3.

Then, the DEVS generator representing the input trajectory produces only 4
events in each cycle. This is an important advantage, since the presence of the
input wave only adds a few extra calculations. Moreover, since the representa-
tion is exact, it does not introduce any error, i.e. we can estimate the error
bound using Inequality (4.50) with ∆umax = 0.

The simulation was performed using parameters R = 80Ω, C = 0.2pF and
L = 20nH. (These parameters correspond to a transmission line of one cen-
timeter divided in five sections, where the resistance, capacitance and inductance
are 400Ω/cm, 1pF/cm and 100nH/cm respectively)

The trapezoidal input has the rising and falling times t1 = t3 = 10ps, while
the low and high times are t0 = t2 = 1ns. The low and high levels are 0V and
2.5V respectively.

The quantization adopted was ∆v = 4mV in the state variables representing
voltages and ∆i = 10µA in the state variables representing currents. That
quantization, according to (4.50) ensures that the maximum error is smaller
than 250mV in the variable Vout.

The input and output trajectories are shown in Figure 5.4. The simulation
took a total of 2536 steps (between 198 and 319 internal transitions at each
integrator) to obtain the first 3.2ns of the system trajectories.

The experiment was repeated using a quantization 100 times smaller, which
ensures having a maximum error in Vout of 2.5mV . This new simulation was
performed with a total of 26883 internal transitions.

The comparision of the results of both experiments (Figure 5.5) shows that
the difference between the trajectories never becomes greater than 14.5mV which
implies that the error in the first simulation was not greater than 17mV . In this
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Figure 5.4: QSS2 simulation results in a RLC transmission line

case, the theoretical prediction of the error (the bound was 250mV ) was quite
conservative (this can be easily understood taking into account that the theoretical
bound of the error holds for any input trajectory and for any initial condition).
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Figure 5.5: Difference in Vout using two different quanta

Although the number of steps (2536) seems to be quite big, it is important to
take into account that each step only involves calculations at three integrators
(the integrator that performs the internal transition and the two integrators di-
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rectly connected to its output). This is due to the particular form of the matrix
A (which is sparse).

It is important to mention that any fixed step discrete time method should
use a step size of about 1ps in order to obtain a good representation of the
input signal since its rising time is very short (mainly if we are interested in the
behavior of the system during the rising time). As a result, the number of steps
would be 3200 or greater with each step involving calculations over all the state
variables. Even in the case that tools for dealing with sparse matrices are used
all the state variable will change at each step.

It was already mentioned that the QSS2–method properties only stand in
LTI systems but it was conjectured that in nonlinear systems they should be
quite similar. The reason of this conjecture has to do with the validity of the
linearized models, which can be justified in general simulation problems taking
into account that there are only small changes in the variables during successive
steps. Thus, after each step, the trajectories stay inside the region where the
linearized model constitutes a good approximation.

The following example illustrates these ideas through the use of the QSS2–
method in a nonlinear system.

Example 5.2. Lotka–Volterra’s model.
The famous second order Lotka–Volterra’s model is a nonlinear system of

differential equations that tries to represent the evolution of the population of
two species, prey and predator, in a common habitat.

The following set of state equations constitutes one possible representation
of the mentioned system{

ẋ1 = εx1 + αx1x2 − σx2
1

ẋ2 = −mx2 + βx1x2

where the variables x1 and x2 represent the population of preys and predators
respectively.

The system was simulated using QSS2 with a quantization of ∆q1 = ∆q2 =
0.001. The parameters taken were ε = 0.1, α = 0.01, σ = 0.01, m = 0.4, β = 0.5
and the initial condition adopted was x1(0) = x2(0) = 10. The results are shown
in Figures 5.6 and 5.7.

The simulation was performed with 211 internal transitions in the first in-
tegrator and 264 in the second, which gives a total of 475 steps. These results
were compared with the trajectories obtained using Heun’s method, the classic
second order fixed step method. The step size used in Heun’s method was 0.63
so that it performed the same number of steps. Figure 5.8 shows a part of those
trajectories and the “true” trajectory. The “true” trajectory was obtained using
the fifth order Dormand-Prince method with a step size of 0.1.

The absolute error of the QSS2 and Heun’s method during the simulation
is shown in Figure 5.9. The use of QSS2 achieves a considerable reduction of
the maximum error. However, the error does not converge to zero as in Heun’s
method.
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Figure 5.6: Number of preys in Lotka Volterra’s model
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Figure 5.7: Number of predators in Lotka-Volterra’s model

In spite of the lack of convergence, the results obtained with QSS2 simulation
are much more reliable than the results with Heun’s method since the error is
bounded during the whole simulation. Here it can be seen that this property
deduced for LTI systems in Section 4.6 is still verified in this nonlinear example.
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Figure 5.8: Number of preys according to Heun’s method, QSS2 and the “true”
trajectory.
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Figure 5.9: Error in Heun and QSS2 simulation of Lotka–Volterra’s model

5.5 QSS vs. QSS2

It was mentioned that the error bound (4.50) holds for QSS and QSS2. Then,
if the same quantum is used in QSS and QSS2 methods it should be expected
to have the same error bound.

This last remark opens a question: Where is the advantage of using the
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QSS2–method if it has the same error than QSS?.
The answer is that the simulation using QSS2 requires much less steps than a

simulation using QSS for the same quantization (i.e. for the same error bound).
The cause of the reduction of the number of steps can be found in the

comparision of the Figures 5.1 and 5.10. The number of steps used by a QSS
to represent the same trajectory with the same quantum (∆q) is much greater
than the used by the QSS2. The key is that using the information of the slope
in QSS2 the time required to obtain a difference equal to ∆q with respect to
the input trajectory becomes much greater.

Input
Output

∆q

Figure 5.10: Input and Output trajectories in a Zero Order quantizer

In Lotka-Volterra’s example, the simulation via QSS using the same quan-
tization would have taken more than 10000 internal transitions at each inte-
grator1. This value, compared against the 264 and 211 steps performed by the
QSS2 simulation shows clearly the advantage of the new method.

The difference between the performance of QSS and QSS2 becomes greater
as well as the quantization is taken smaller. In fact the number of internal tran-
sitions in QSS is approximately proportional to the inverse of the quantum while
in QSS2 it is approximately proportional to the square root of that number (see
Equation (5.9)). This relationship is verified in the example of the transmission
line, where the use of a quantization 100 times smaller resulted in an increment
of about 10 times in the number of steps.

However, it is clear that each transition in the QSS2–method involves more
calculations than in QSS. Thus, if it is not important obtaining a good accuracy,
the QSS method might result more efficient.

The following example illustrates these facts.

Example 5.3. QSS vs. QSS2
1This number can be obtained comparing the amplitude of the trajectories and the quan-

tum 0.001
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Consider the second order LTI system{
ẋ1 = x2

ẋ2 = 1− x1 − x2

The system was simulated using both methods and different quanta. In all cases,
it was taken ∆q1 = ∆q2.

Figure 5.11 compares the CPU time taken by both methods. QSS shows a
better performance for big quanta but when the quantization becomes smaller
QSS2 reduces considerably the computational costs. In fact, for ∆q = 0.0001
the second order method is 40 times faster than QSS.
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Figure 5.11: CPU time vs. quantum in QSS and QSS2



Chapter 6

Extensions of QSS and
QSS2 Methods

Up to here, the Thesis attempted to develope a sort of theory about discrete
event approximation of ordinary differential equations.

However, ODEs constitute only one fraction in the continuous systems world.
Leaving the partial derivative problems aside, there are many continuous sys-
tems which cannot be represented by ODEs.

Many physical and egineering problems yield models where, in spite of having
a differential equation nature, the functions involved in the corresponding ODE
are not explicitely defined. These problems are called Differential Algebraic
Equations (DAEs) and constitute a more general class than the ODEs.

In other cases –very common in modern technical systems– a single set of
ODEs is not enough to represent the complete behavior. Those problems usu-
ally have some components which should be described by difference equations
or discrete event systems (digital devices, for instance). Since these discrete
components interact with the continuous parts of the system –which are typi-
cally described by ODEs or DAEs– those ODEs or DAEs show a discontinuous
nature.

These last cases are called Hybrid Systems and, as in the case of the DAEs,
their numerical integration has new problems and difficulties.

This chapter focuses in the application of QSS and QSS2 methods to the
simulation of Differential Algebraic Equations and Hybrid Systems, taking also
into account the particular case of physiscal systems modeled by Bond Graphs.

In all the cases some interesting advantages over the classic approaches will
be found.

As it was anticipated, those advantages will result notably significant in
the particular case of Hybrid Systems due to the discrete event nature of the
approximation. There, an important reduction of the computational costs will
be observed with a remarkable increase of accuracy and simplicity.

79
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6.1 QSS and QSS2 in DAE Systems

There are many continuous systems where an explicit ODE formulation cannot
be easily obtained [10]. Indeed, there are cases in which that representation
does not exist. These systems, where only implicitely defined state equations
can be written, are called Differential Algebraic Equations. The difficulty car-
ried by DAE simulation is that it requires the use of some special techniques,
which include iterations or symbolic manipulation to solve the implicit equations
involoved.

A time invariant DAE can be written as

f̃(ẋ(t), x(t), u(t)) = 0 (6.1)

The problem here with QSS and QSS2 is that the quantized integrators need
the value of ẋ, which can be only approximately obtained with iterations.

One of the most important results in the area came from the idea of com-
bining the ODE solver rules with the system implicit equations in order to solve
them together (with iterations or symbolic manipulation). This idea, due to
Gear [16], established the basis for all the modern DAE simulation methods.

Then, if the QSS or QSS2 solver rules are used here the state variables
x(t) should be replaced by their quantized versions q(t). Thus, Equation (6.1)
becomes

f̃(ẋ(t), q(t), u(t)) = 0 (6.2)

Then, iteration rules –like Newton– can be used to obtain ẋ from (6.2). In this
work, it is assumed that the index is 1. If it is higher, the Pantelides’ algorithm
[52] can be applied in order to reduce it to 1.

Once the state derivatives are calculated, they can be sent to the quantized
integrators which perform the rest of the job, i.e. calculating the quantized
variable trajectories. Each time a quantized variable changes, a new iteration
process should be performed in order to recalculate ẋ.

It was already explained that QSS and QSS2 methods exploit the system
sparsity reducing the computational costs. Now, it will be shown that this is
also true in DAE problems.

Equation (6.1) can be rewritten as

ẋ(t) = f(x(t), u(t), z(t)) (6.3a)
0 = g(xr(t), ur, z(t)) (6.3b)

where z(t) is a vector of auxiliary variables whose dimension is equal or less
than n. The vectors xr and ur are reduced versions of x and u respectively1.

Equation (6.3b) expresses the fact that some state and input variables may
not act directly on the algebraic loops.

1A strightforward way of going from (6.1) to (6.3) is defining z(t) = ẋ(t), xr(t) = x(t),
ur(t) = u(t), g(x, u, z) = f̃(z, x, u) and f(x, u, z) = z.
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Then, the use of the QSS or QSS2 method tranforms (6.3) into

ẋ(t) = f(q(t), u(t), z(t)) (6.4a)
0 = g(qr(t), ur, z(t)) (6.4b)

and now, the iterations should be only performed to solve Eq.(6.4b) when the
components of qr or ur change. When the dimension of xr is significantly less
than the dimension of x, i.e. when there are several state variables which do
not influence on the loop, this fact represents an important advantage.

When Equation (6.4b) defines the value of z, (6.4) defines a system which
behaves like a QSS or a QSS2. In fact, it can be easily proven that the state
and quantized variable trajectories correspond to QSS or QSS2. Moreover, the
auxiliary variables z have piecewise constant and piecewise linear trajectories in
QSS and QSS2 respectively.

Then, it is said that System (6.4) is an implicitely defined QSS or QSS2.
What should be solved now is the way in which an implicitely defined QSS
(QSS2) like this can be translated into a DEVS model.

It is clear that (6.4a) can be represented by quantized integrators and static
functions as we did before. The only difference now is the presence of the aux-
iliary variables z which act as inputs like u(t). However, while the components
of u(t) are known and they come from DEVS signal generators, the auxiliary
variables should be calculated by solving the restriction (6.4b).

Thus a new DEVS model shuld be built. This DEVS model must receive
events with the values of qr and ur and then it has to calculate z. Figure 6.1
shows the new coupling scheme with the addition of a new DEVS model which
calculates z.

A DEVS model which solves a general implicit equation like

g(v, z) = g(v1, . . . , vm, z1, . . . , zk) = 0 (6.5)

for the QSS case can be written as follows

M10 = (X, Y, S, δint, δext, λ, ta), where
X = R × N

Y = R
k × N

S = R
m+k × R

+

δext(s, e, x) = δext(v, z, σ, e, xv, p) = (ṽ, h(ṽ, z), 0)
δint(s) = δint(v, z, σ) = (v, z,∞)
λ(s) = λ(v, z, σ) = (z, 1)
ta(s) = ta(v, z, σ) = σ

where

ṽ = (ṽ1, . . . , ṽm)T ; ṽi =
{

xv if p = i
vi otherwise

and the function h(v, z) returns the result of applying Newton iteration or some
other iteration rules to find the solution of (6.5) using an initial guess z.
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Figure 6.1: Coupling scheme for the QSS simulation of (6.3)

When the size of z (i.e. k) is greater than 1, the output events of model
M10 contains a vector. Thus, they cannot be sent to static functions like M2.
Anyway, a DEVS model which demultiplexes a vectorial input value into scalar
output values at different ports can be used in order to solve this difficulty.

The idea for the QSS2–method is similar, but now the implicit equation
should be rewritten as:

g(v(t), z(t)) = g(v0 + mv∆t, z0 + mz∆t) = 0 (6.6)

which can be splitted into

g(v0, z0) = 0 (6.7a)

and a first order approximation

∂g

∂v

∣∣∣∣
(v0,z0)

mv +
∂g

∂z

∣∣∣∣
(v0,z0)

mz = 0 (6.7b)

Then, the algorithm should iterate using Eq.(6.7a) to obtain z0 and then, it
must use this value in (6.7b) to calculate mz.

The calculation of mz can be done using symbolic manipulation (i.e. matrix
inversion) or a new iteration process which will finish after two steps (because
this is a linear equation). If the partial derivatives are not available, they can
be estimated using coefficients as we did in Equation (5.12).

When z and g(v, z) are scalar, Equation (6.7b) can be easily solved. In this
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case, we have

mz = −
∂g
∂v

∣∣∣
(v0,z0)

mv

∂g
∂z

∣∣∣
(v0,z0)

(6.8)

and then, a DEVS model can be built as follows

M11 =< X, S, Y, δint, δext, λ, ta >, where:
X = R

2 × N

S = R
3(m+1) × R

+
0 ∞

Y = R
2 × N

δint((v1, mv1 , c1), ..., (vm, mvm
, cm), (z, mz, cz), σ) =

= ((v1, mv1 , c1), ..., (vm, mvm
, cm), (z, mz, cz),∞)

δext((v1, mv1 , c1), ..., (vm, mvm
, cm), (z, mz, cz), σ, e, u, mu, p) =

= ((ṽ1, m̃v1 , c̃1), ..., (ṽm, m̃vm
, c̃m), (z̃, m̃z, c̃z), 0)

λ((v1, mv1 , c1), ..., (vm, mvm
, cm), (z, mz, cz), σ) = (z, mz, 1)

ta((v1, mv1 , c1), ..., (vm, mvm
, cm), (z, mz, cz), σ) = σ

with

ṽi =
{

u if p = i
vi + mvi

e otherwise

and
z̃ = h(ṽ, z)

where h is the result of the iterations to solve Equation (6.7a) starting from the
initial guess z.

The coefficients which estimate the partial derivatives can be recalculated
as:

c̃i =

{
g(v + mve, z̃)
vi + mvi

e − ṽi
if p = i ∧ vi + mvi

e − ṽi �= 0

ci otherwise

c̃z =

{
g(ṽ, z + mze)
z + mze − z̃ if z + mze − z̃ �= 0

cz otherwise

and finally, the new slopes are

m̃vi
=

{
mu if p = i
mvi

otherwise

and

m̃z = − 1
c̃z

m∑
i=1

m̃vi
c̃i

If m is big, i.e. v has many components, the new output slope m̃z can be
calculated with the equivalent formula:

m̃z =
cz
c̃z

mz +
1
c̃z
(mvp

cp − m̃vp
c̃p)
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This last DEVS model is just a possible alternative to solve an implicit
restriction like (6.6) taking into account the slopes. There are many other
possibilities. When function g is linear, the DEVS model produces the exact
output values z and mz. Otherwise, it gives only a first order approximation.

Example 6.1. A Transmission Line with Surge Voltage Protection.
Figure 6.2 shows the transmission line model of Figure 5.3, modified with

the addition of a load.

vin

RRR LLL

C CC vz

Rp

Rl
+ +

− −
Line Load

Figure 6.2: RLC Transmission Line with surge voltage protection

The load is composed by a resistor Rl –which may represent the gate of some
electronic component– and a surge protection circuit formed by a zener diode and
a resistor Rp. It will be considered that the zener diode satisfies the following
nonlinear current–voltage function:

iz =
I0

1− (vz/vbr)m
(6.9)

where m,vbr and I0 are parameters which depend on different physical features.
If the transmission line is divided in five sections –as it was done before–,

the following equations are obtained:

di1
dt

=
1
L

vin − R

L
i1 − 1

L
u1

du1

dt
=

1
C

i1 − 1
C

i2

di2
dt

=
1
L

u1 − R

L
i2 − 1

L
u2

du2

dt
=

1
C

i2 − 1
C

i3

...
di5
dt

=
1
L

u4 − R

L
i5 − 1

L
u5

du5

dt
=

1
C

i5 − 1
RpC

(u5 − vz)

Here, the state variables uj and ij represent the voltage and current in the
capacitors and inductors respectively and the output voltage vz is an algebraic
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variable which should satisfy

1
Rp

u5 −
(

1
Rp

+
1
Rl

)
vz − I0

1− (vz/vbr)m
= 0 (6.10)

Thus, there is a DAE here which cannot be converted into an ODE by symbolic
manipulation and the simulation with any classic method should iterate at each
step to solve the implicit equation (6.10).

However, as it can be deduced from (6.4), the QSS methods will only iterate
when there are changes in the quantized version of u5. In the rest of the steps
–when the other 9 quantized variables change or when the input changes– no
iteration has to be performed.

Using the ideas expressed above, the simulation of page 73 was modified with
the addition of a DEVS model like M11 which solves (6.10) considering also the
slopes.

Taking Rl = 100MΩ, I0 = 0.1µA, vbr = 2.5V , m = 4 and without modifying
the remaining parameters, the results shown in Figure 6.3 were obtained.
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Figure 6.3: QSS2 simulation results in a RLC transmission line with surge
protection

The first 3.2ns of the simulation were completed after 2640 steps (between
200 and 316 steps at each integrator). The implicit model (M11) performed a
total of 485 iterations with the Secant–method. The reason for this is that the
quantized integrator which calculates u5 only performed 200 internal transitions,
and then the implicit model received only 200 external events. The Secant–
method needed between two and three iterations to find the solution of Eq.(6.10)
with the required tolerance (it was taken tol = 1× 10−8) which explains the fact
that the total number of iteration was 485 (between 400 and 600).
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The advantages of the QSS2 method are evident in this example. In a
discrete–time algorithm, the Secant–Method would have been invoked in all the
steps while the QSS2 only called it after the changes in u5 (about once every 13
steps). Thus, the presence of the implicit equation only adds a few calculations
which do not affect significantly the total number of computations.

6.2 Block–Oriented DEVS Simulation of DAEs

DAE systems of index 1 are often represented by Block Diagrams containing
algebraic loops.

The circuit of Figure 6.4, for instance, can be modelled by the block diagram
of Figure 6.5. The bold lines in this block diagram indicate the presence of an
algebraic loop.

L

R1

R2

C

+−

Figure 6.4: RLC circuit

1
L

1
R1

R2

1
C

∫∫−
−

iC

iCiL

uC

u0 uL

Figure 6.5: Block Diagram representation of the RLC circuit

The QSS–method can be implemented transforming the integrators into
DEVS models like M4 (quantized integrators) and the static functions into their
DEVS representation (DEVS models like M2). Then, these DEVS models can
be coupled according to the coupling scheme of Figure 6.5.

In fact, that is what was done to convert System (3.2) into a DEVS repre-
sentation of (3.3) (see Figure 3.2 in page 30).
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Although the translation block by block from a continuous system to a DEVS
model may result in an inefficient simulation (from the point of view of the
computational costs), it is very simple and it does not require from any kind of
symbolic manipulation.

Block Diagrams are a usual tool for representing differential equations and
the available DEVS simulation programs do not offer tools to translate them
into sets of equations like (3.2). Thus, if the translation by hand is not wanted
and there are not another automatic tool to generate a set of equations like (3.2),
the block by block translation is the only possibility to apply the QSS–method.

However, if this is done with the Block Diagram of Figure 6.5 a problem
appears. Due to the algebraic loop, the DEVS model will result illegitimate and
when an event comes into the loop, it will propagate forever through the static
functions.

Evidently, it is necessary to add a new DEVS model into the loop so that
it solves the implicit equation. This new model will be called loop–breaking
DEVS.

In the example of Figure 6.5, that loop–breaking DEVS can be placed, for
instance, before the gain R2 as Figure 6.6 shows.

1
L

1
R1

R2

1
C

∫∫−
−

iC

iCiL

uC

u0 uL

ĩC
LB

Figure 6.6: Addition of a Loop-Breaking model to the Block Diagram of Fig.6.5

Then, the loop–breaking model will receive the values of iC and it should
send ĩC . Each time this DEVS model sends an event, it receives a new event
with the value iC calculated by the static functions belonging to the loop. When
this value coincide with the value of ĩC that the model had previously sent it
means that the implicit equation was solved and it is unnecessary to send a new
ĩC . In that way, the simulation continues outside the loop until a new value of
iC arrives to the breaking loop model and the process is repeated.

This idea can solve the problem. However, it was not said yet how the value
of ĩC has to be calculated. Before giving an answer to this question the problem
should be formulated in a more formal and general fashion.

Let us call z the variable sent by the loop–breaking model. Then, when it
sends an event with value z1 it immediately receives a new event with value
h(z1) calculated by the static functions.

Thus, the model should calculate a new value for z, let us call it z2, which
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should satisfy
h(z2)− z2 , g(z2) ≈ 0 (6.11)

If it is not verified, the process should be repeated sending a new value z3.
It is clear that zi+1 must be calculated following some algorithm to find the

solution of g(z) = 0. Taking into account that the derivative of g(z) is not
known, a good alternative to the Newton iteration is the use of the Secant–
Method.

Using this method, the loop–breaking DEVS model can be represented as
follows:

M12 = (X, Y, S, δint, δext, λ, ta), where
X = R × N

Y = R × N

S = R
3 × R

+

δext(s, e, x) = δext(z1, z2, h1, σ, e, xv, p) = s̃

δint(s) = δint(z1, z2, h1, σ) = (z1, z2, h1,∞)
λ(s) = λ(z1, z2, h1, σ) = (z2, 1)
ta(s) = ta(z1, z2, h1, σ) = σ

where

s̃ =
{

(z1, z2, h1,∞) if |xv − z2| < tol
(z2, z̃, xv, 0) otherwise

with

z̃ =
z1 · xv − z2 · h1

xv − h1 + z1 − z2
(6.12)

The parameter tol is the maximum error we allow between z and h. Equa-
tion (6.12) is the result of applying the secant–method to approximate g(z) = 0
where g(z) is defined according to (6.11). The iteration algorithm can be then
changed by modifying (6.12).

Example 6.2. Block–Oriented Simulation of the RLC Circuit.
For the circuit example, a coupled DEVS model was built according to Fig-

ure 6.6 and simulated until a final time of 30 seconds. The parameters used
were R1 = R2 = L = C = 1 and u0 was chosen as a unit step. The quantum
and hysteresis adopted were 0.01 in both state variables and the error tolerance
tol was taken equal to 0.001.

The simulation –which is shown in Figure 6.7– was completed after 118 and
72 internal transitions at each quantized integrator and a total of 377 iterations
at the loop–breaking DEVS model.

In this case, due to the system linearity, during each step the secant–method
arrives to the exact solution of g(z) = 0 performing only two iterations. This
explains the fact that the total number of iterations at the loop-breaking model
was approximately twice the total number of steps at both quantized integrators.
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Figure 6.7: QSS simulation of the RLC circuit using a Loop–Breaking DEVS

An interesting observation is that the effect of the error in the calculation of
iC can be seen as an additional perturbation. If it can be ensured that this error
is bounded, the perturbation is also bounded and it can be seen as something
equivalent to having a bigger quantum which only affects the error bound but
it does not modify the stability properties. It is clear that the same remark can
be made with respect to the transmission line example.

Finally, it should be mentioned that a DEVS loop–breaking model model
like M12 can be also obtained for the QSS2–method following the same ideas
expressed above.

6.3 QSS and QSS2 Simulation of Hybrid Sys-
tems

The complexity of many technical systems yields models which often combine a
continuous part (described by ODEs or DAEs) and discrete components. The
interaction between these subsystems can produce sudden changes (discontinu-
ities) in the continuous part which must be handled by the integration algo-
rithms.

These discontinuities yield important difficulties in the context of discrete
time classic methods. The problem is that numerical integration algorithms
in use are incompatible with the notion of discontinuous functions [50] and an
integration step which jumps along a discontinuity may produce an unacceptable
error.

To avoid this, the methods should perform steps in the instants of time in
which the discontinuities take place and then, the simulation of a hybrid system
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should be provided of tools for detecting the discontinuities occurrence (what
includes iterations and extra computational costs), for adapting the step size to
hit those instants of time and of course, to represent and simulate the discrete
part of the system (which can be quite complicated itself) in interaction with
the continuous part.

Although there are several methods and software tools which simulates hy-
brid systems in a quite efficient way, none of them can escape from these prob-
lems.

The mentioned sudden changes are called events and two different cases can
be distinguished according to the nature of their occurrence. The events which
occur at a given time, independently of what happens in the continuous part
are called Time Events. On the other hand, events which are produced when
the continuous subsystem state reaches some condition are called State Events .

The integration along discontinuities without event detection techniques can
cause severe inefficiency, and even simulation failures or incorrect event se-
quences to be generated, because the non–smoothness violates the theoretical
assumptions on which solvers are founded [3]. Thus, time and state events must
be detected in order to perform steps at their occurrence.

The incorporation of event detection techniques to numerical methods have
been being studied since Cellier’s Thesis [8] and many works can be found in
the recent literature (see for instance [53, 62, 58, 13]).

Although these ideas work quite efficiently, the techniques do not say how
to represent discrete parts and how to schedule the time events in general cases.
Moreover, the state event detection requires performing some iterations to find
the time of the event occurrence.

When it comes to QSS and QSS2, some improvements can be be expected
due to their discrete event asynchronous nature.

Before starting to develop the ideas about this, it must be mentioned that
there is not a unified representation of hybrid systems in the literature.

Anyway, the different approaches coincide in describing them as sets of ODEs
or DAEs which are selected according to some variable which evolves in a dis-
crete way (different examples of hybrid systems representation can be found in
[61, 4, 6, 3]).

Here, it will be assumed that the continuous subsystem can be represented
by

ẋ(t) = f(x(t), u(t), z(t), m(t)) (6.13a)
0 = g(xr(t), ur(t), z(t), m(t)) (6.13b)

being m(t) a piecewise constant trajectory coming from the discrete part, which
defines the different modes of the system. Thus, for each value of m(t) there is
a different DAE representing the system dynamics.

It will be also considered that the implicit equation (6.13b) has a solution
for each value of m(t) (which implies that System (6.13) has always index 1).

Independently of the way in which m(t) is calculated, the simulation sub–
model corresponding to the continuous part can be built considering that m(t)
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acts as an input.
Then, the QSS and QSS2 methods applied to this part will transform (6.13)

into:

ẋ(t) = f(q(t), u(t), z(t), m(t)) (6.14a)
0 = g(qr(t), ur(t), z(t), m(t)) (6.14b)

with the same definitions done in (6.4). Thus, the simulation scheme for the
continuous part will be identical to the one shown in Figure 6.1, but now m(t)
must be included with the input.

One of the most important features of DEVS is its capability to represent all
kind of discrete systems. Taking into account that the continuous part is being
approximated by a DEVS model, it is natural representing also the discrete
behavior by another DEVS model. Then, both DEVS models can be directly
coupled to build a unique DEVS model which approximates the whole system.

In presence of only Time Events, the DEVS model representing the discrete
part will be just an event generator like M5 (page 36). Here, the output events
will carry the successive values of m(t)

Then, the simulation of the complete hybrid system can be performed by
coupling this time event generator with the continuous part.

Taking into account the asynchronous way in which the static functions and
quantized integrators work, the events will be processed by the continuous part
as soon as they come out from the generator without the need of modifying
anything in the QSS or QSS2 methods. This efficient event treatment is just
due to intrinsic behavior of the methods.

This fact makes a big difference with respect to discrete time methods which
must be modified in order to hit the event times.

When it comes to state events, the discrete part is ruled not only by the
time advance but also by some events which are produced when the input and
state variables reach some condition.

Here, the QSS and QSS2 methods have a bigger advantage: The state tra-
jectories are perfectly known for all time. Moreover, they are piecewise linear or
piecewise parabolic functions which implies that detecting the event occurrence
is straightforward.

The only thing which has to be done is to provide those trajectories to
the discrete part so it can detect the event occurrence and it can calculate the
trajectory m(t). Since the state trajectories are only known inside the quantized
integrators, these models could be modified in order to output not only the
quantized variables but also the state trajectories.

However, this is not necessary. The discrete part can receive the state deriva-
tive trajectories and then integrate them. It is simple and it does not require
computational effort since the derivative trajectories are piecewise constant or
piecewise linear (in QSS2) and their integration only involves the manipulation
of the polynomial coefficients.

Using these ideas, the simulation model for a hybrid system like (6.13) using
the QSS or QSS2 method will be a coupled DEVS with the structure shown in
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Figure 6.8.
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Figure 6.8: Coupling scheme for the QSS simulation of discontinuous systems

Here the discrete part is a DEVS model which receives the events represent-
ing changes in the state derivatives as well as changes in the input trajectories.

Since the discrete model receives and produce only a finite number of events
in any finite interval of time (because of its definition as a discrete model), it
can be ensured that a DEVS model can represent it no matter the complexity
of its dynamic. Taking into account this, the scheme of Figure 6.8 can simulate
any systems like (6.13) in interaction with any discrete model.

There are cases in which this scheme can be simplified. As we mentioned
before, when only Time Events are considered, the DEVS model of the discrete
part will not have inputs.

Usually, the event occurrence condition is related to a zero (or another fixed
value) crossing of some state variable. In this case, if the simulation is per-
formed with the QSS–method the event condition can be detected directly by
the corresponding quantized integrator. This can be easily done provided that
the quantization functions contain quantization levels at the given fixed crossing
values.

Example 6.3. DC-AC Inverter Circuit.
The inverter circuit shown in Figure 6.9 can be used to feed different electrical

machines.
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Figure 6.9: DC-AC Full Bridge Inverter

The set of switches can take two positions. In the first one the switches 1
and 4 are closed and the load receives a positive voltage. In the second position
the switches 2 and 3 are closed and the load receives a negative voltage.

The system can be represented by the following differential equation:

d

dt
iL = −R

L
· iL + sw · Vin (6.15)

where sw is 1 or −1 according to the position of the switches.
A typical way of controlling the switches in order to obtain a harmonic cur-

rent at he load is using a pulse width modulation (PWM) strategy. The PWM
signal is obtained by comparing a triangular wave (carrier) with a modulating
sinusoidal reference. The sign of the voltage to be applied (+Vin or −Vin) and
the corresponding position is given by the sign of the difference between those
signals. Figure 6.10 shows this idea.

In this case, the switches change their position independently of what happens
in the circuit. Then, the events representing those changes are time events.

The system was simulated with the QSS2–method, using a scheme like the
shown in Figure 6.8 but the discrete block was just an event generator producing
events when the variable sw changes.

The event times where calculated for a carrier frequency of 1.6kHz and a
modulating sinusoidal signal of the same amplitude and a frquency of 50Hz.
Thus, the number of events per cycle was 64, which is enough to produce a quite
smooth sinusoidal current.

Using parameters R = 0.6Ω, L = 100mHy and Vin = 300V the simulation
starting from iL = 0 and taking a quantization ∆iL = 0.01A gave the result
shown in Figures 6.11–6.12.

The final time of the simulation was 1 second and then the number of cycles
was 50. This gives a total of 3200 changes in the position of the switches.

Despite this number of events, the simulation was completed after only 3100
internal transitions at the second order quantized integrator. Thus, the total
number of steps was 6300.

In this case, since the commutations do not produce any structural change
(they only affect the input voltage sign), the formula (4.50) can be applied and
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Figure 6.10: Pulse Width Modulation
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Figure 6.11: Load current with Pulse Width Modulation

it can be ensured that the error in the trajectory of iL obtained is always less
than 10mA (which is about the 0.1% of the oscillation amplitude) .

The same system was simulated with all the discrete time methods imple-
mented in Simulink. The fixed step ode5 algorithm (5th order) needed more
than 50000 steps to obtain an acceptable result. Of course, lower order fixed
step methods required more steps.

Using variable step methods the result was even worse. Only the ode23s
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Figure 6.12: Detail of the permanent regime load current

methods gave acceptable results with about 100000 steps.
The simulations were repeated with variable step methods enforcing addi-

tional calculations at the event times. In this case they worked sensibly better.
Anyway, using the tolerance obtained with QSS2, the ode23 (which now showed
the best performance) needed more than 20000 steps to complete the simulation.

However, this trick –enforcing calculations at predetermined time instants–
cannot be used in general cases since often the event times are not known before
the simulation starts. In the PWM case it is usual to calculate them during
the simulation since the frequency and amplitude of the modulating signal often
change according to control strategies.

Example 6.4. A Ball Bouncing Downstairs.
A typical example of a discontinuous system is the bouncing ball. Here, it

will be considered the case in which the ball moves in two dimensions (x and y)
bouncing downstairs. Thus, the bouncing condition depends on both variables
(x and y).

It will be assumed that the ball has a model when it is in the air –with the
presence of friction– and a different model in the floor. Here, a spring–damper
model will be consider.

According to this idea, the model can be written as

ẋ = vx

v̇x = −ba
m

· vx

ẏ = vy

v̇y = −g − ba
m

· vy − sw · [ b

m
· vy +

k

m
(y − int(h + 1− x))]



96 CHAPTER 6. EXTENSIONS OF QSS AND QSS2 METHODS

where sw is equal to 1 in the floor and 0 in the air. The function int(h+1− x)
gives the height of the floor at a given position (h is the height of the first step).
Note that we are considering steps of 1m by 1m.

The state events are produced when x and y verify the condition:

y = int(h + 1− x)

The simulation model structure results then similar to the one shown in
Figure 6.8 but without the implicit block. The discrete model should receive the
events with the derivatives of x and y and send events when the event condition
is achieved (to calculate that, it just has to find the roots of a second degree
polynomial).

The system was then simulated using parameters m = 1, k = 100000, b = 30,
ba = 0.1, initial conditions x(0) = 0.575, vx(0) = 0.5, y(0) = 10.5, vy = 0 and a
quantum of 0.001 in the horizontal position, 0.0001 in the vertical position and
0.01 in the speeds.

The first 10 seconds of simulation were completed after 2984 internal tran-
sitions at the integrators (39 at x, 5 at vx, 2420 at y and 520 at vy). The
trajectories do not differ appreciably from what can be obtained with a fixed step
high order method using a very small step size.

Figures 6.13 and 6.14 show the simulation results.
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Figure 6.13: y vs. t in the bouncing ball example

It is important to remark that each step only involves very few calculations
and the sparsity is well exploited. In fact, the internal transitions in x does
not affect any other subsystem. The steps in vx give events to itself, to the
integrator which calculates x and to the discrete model which predicts the next
event occurrence. Similarly, the internal events of y only provoke external events
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Figure 6.14: x vs. y in the bouncing ball example

to the integrator corresponding to vy when the ball is in the floor and finally, the
events produced in vy are propagated to itself, to the integrator which calculates
y and to the discrete model.

As a result, the discrete model receives 525 events and it produces only 26
internal transitions (at the event occurrence times, it is, two events for each
bounce).

The same model was simulated with Simulink, using different fixed and vari-
able step algorithms. Obtaining a similar result with a fifth order fixed step
method requires more than 10000 steps (and here each step involves calculations
in the whole system).

When it comes to variable step methods, the best result using Simulink was
obtained with the ode23s, which could obtain a similar result with about 5000
steps.

In the bouncing ball case, the problem of discrete time methods is that when
they increment the step size, they start skipping events as shown in Figure 6.15.
An example of this problem was given in [13] where the authors gave a solu-
tion based on decreasing the step size as well as the system approximates the
discontinuity condition.

The quantization-based approach does not modify anything. It just makes
use of a discrete block which exactly predicts when the next event will occur and
then produce an event at that time. The rest of the DEVS models (quantized
integrators, static and implicit functions) work without taking into account the
presence of discontinuities but they receive the events coming form the discrete
part and treat them as if they were coming from an input generator or another
quantized integrator. As a consequence, there are not extra calculations and
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Figure 6.15: Event skipping in discrete time algorithms

there is no need of modifying anything.

6.4 Quantized Bond Graphs

Bond Graphs [56, 9] allow the graphical representation of complex physical sys-
tems. As other object–oriented modeling languages, the resulting mathematical
models are often sets of DAEs instead of common ODEs.

The most efficient way –from the computational cost point of view– of im-
plementing a QSS simulation of a Bond Graph model is to obtain the equivalent
set of ODEs or DAEs and then to apply the results explained in the previous
sections. In fact, there are several tools which automatically translate Bond
Graph models into sets of equations (Dymola and Modelica for instance) or
simple block diagrams (Power DynaMo [38] is an example of this).

However, as it was mentioned in Section 6.2, sometimes it is simpler to
perform the simulation directly on the original model.

Bond Graph models are formed by static and dynamic components which
relate the power variables e (effort) and f (flow). The basic static components
are the resistors (R), sources (Se and Sf) and the structural elements: junctions
(0 and 1), transformers (TF) and gyrators (GY).

The dynamic elements are capacitors C and inertias I, which establish rela-
tionships between efforts and flows with the presence of an integral (or deriva-
tive) operation.

The main difference with Block Diagrams is that all the mentioned rela-
tionships are not causally defined a priori. Anyway, a causalization of these
relations can be proposed and represented in the Bond Graph .
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In absence of structural singularities (i.e. in absence of coupled storage and
resistor elements), a causal assignement can be found (following a standard
algorithm) so that the relationships are equivalent to the obtained from a block
diagram with integrators.

Taking into account that QSS modifies the original system by adding hys-
teretic quantizers at the output of its integrators, the only thing which should
be modified to apply this method are the capacitors and inertias.

A capacitor defines the following relationships between the power variables
and the energy variable (q or displacement):

e(t)− g(q(t)) = 0 (6.16a)
q̇(t)− f(t) = 0 (6.16b)

In this element, the integral causality assignment provokes that f(t) acts as input
and e(t) is the resulting output. The displacement q(t) is the state variable (i.e.
the output of the integrator).

The use of the QSS–method here transforms (6.16a) into

e(t) = g(qq(t))

being qq(t) the quantized version of q(t).
In this last equation, the quantization function can be composed together

with function g and it can be rewriten:

e(t) = gq(q(t))

where now function gq is a quantized function (the composition of a quantization
function with a continuous function). Figure 6.16 illustrates a nonlinear function
and its quantized version.

xx

ε

g gq

Figure 6.16: A function and its quantized version

The same concepts can be applied to the inertias and then the QSS–method
can be applied in a Bond Graph by replacing the static functions of inertias and
capacitors by their quantized versions.

The following definitions formalize the ideas expressed above:
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Definition 6.1. Hysteretic Quantized Function.
Let x(t) be a scalar continuous trajectory. We say that y(t) is related with

x(t) by a quantized function if a function g : R → R exists so that

y(t) = g(z(t))

being z(t) and x(t) related by some hysteretic quantization function.
In that case we also say that x(t) and y(t) are related by the quantized version

of function g.

Based on this definition, we can now define

Definition 6.2. Quantized Capacitor (Inertia).
A quantized capacitor (inertia) is a capacitor where the displacement (im-

pulse) is related to the effort (flow) with a hysteretic quantized function.

and finally,

Definition 6.3. Quantized Bond Graph (QBG).
A quantized Bond Graph is a Bond Graph where the inertias and capacitors

are quantized ones.

As it was mentioned before, in absense of structural singularities a causalized
Bond Graph is equivalent to a Block Diagram and it defines a state equation
system like (3.2) where the state variables are the corresponding energy variables
(p and q) of inertias and capacitors.

If in that system the static functions which relate energy and power variables
of inertias and capacitors are replaced by their quantized versions, a QBG is
obtained. It can be easily seen that if the new equations are written, a system
like (3.3) is obtained.

Thus, everything which was proved for the QSS–method is true in Quantized
Bond Graph. When it comes to the trajectories, we have that,

Theorem 6.1. Trajectories in QBG.
Consider a Quantized Bond Graph without coupled storages, where all the

passive and structural component are defined by continuous and bounded rela-
tions. Then the trajectories of all power variables are piecewise constant and
the trajectories of all energy variables are piecewise linear.

Proof. Under the assumptions made, the application to the QBG of the standard
procedure for the derivation of state equations [56], yields a QSS of the form
(3.3).

There, because of the assumptions, function f is bounded and continuous
in any compact domain. This property, along with Theorem 3.1, guarantees
that the trajectories of the quantized energy variables are piecewise constant.
The power variables are consequentely also piecewise constant, because they are
computed from the former variables via static relationships.

Then, it follows that the energy variables are piecewise linear since they can
be calculated as the integral of the power variables.
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Based on this result and taking into account that the Bond Graph elements
are related between them by the power variables, an exact DEVS representation
of each QBG component can be obtained.

The static element R calculates a piecewise constant effort or flow according
to a piecewise constant flow or effort. Thus, they can be represented by a model
like M2.

Similar ideas can be applied to transformers and gyrators, but now they
calculate two piecewise constant power variables and the DEVS model should
be modified adding a new output port. A possible DEVS model for a transformer
or gyrator (which relate efforts and flows with a function h) is the following one:

M13 = (X, Y, S, δint, δext, λ, ta), where
X = Y = R × N

S = R
2 × N × R

+
0

δint(s) = δint(u1, u2, m, σ) = (u1, u2, m,∞)
δext(s, e, x) = δext((u1, u2, m, σ), e, (xv, p)) = (ũ1, ũ2, p, 0)
λ(s) = λ(u1, u2, m, σ) = (h(um), m)
ta(s) = ta(u1, u2, m, σ) = σ

where

ũi =
{

xv if i = p
ui otherwise

The case of multiport junctions 0 and 1 can be treated in the same way (but
now there are more than two inputs)

When it comes to the dynamic capacitors and inertias, the model will be the
almost same than the quantized integrator. The only difference is that now the
output is not the quantized variable but the power variable.

With this, the model is just the same as before (M4 in page 33) with only a
change in the output function, which now becomes:

λ(s) = λ(x, dx, j, σ) = (g(Qj+sgn(dx)), 1)

being g the static function relating the corresponding energy and power vari-
ables.

The sources (Se and Sf), as in the QSS case, can be represented as DEVS
generators.

Then, the QBG will be represented by a coupled DEVS model formed by
the DEVS models corresponding to the Bond Graph elements.

The coupled DEVS structure will be the one shown by the Bond Graph
model, where each arpoon is replaced by two connections between the cor-
responding elements. Those connection will carry the effort and flow values
according to the causality assignement. Figure 6.17 illustrates this idea.

In absense of structural singularities a QBG defines a QSS. Thus, its the-
oretical properties –stability, convergence and error bound– will be the same
shown by the corresponding QSS.
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Figure 6.17: DEVS structure of a Quantized Bond Graph

Example 6.5. QBG Simulation of a DC–Motor.
The permanent magnet DC–motor of Figure 6.18 can be represented by the

Bond Graph of Figure 6.19.

Ua

+

–

Ra La

b

τc

Figure 6.18: Permanent Magnet DC–Motor

Tha parameters adopted were Ra = 0.01, La = 1 × 10−5, b = 1, J = 1 and
km = 1. The simulation consists in the response of the initially relaxed system
to an armature voltage step of Ua = 10 at t = 0 and a load torque step of τc = 10
applied at t = 1.

R :Ra

I :La

Ua: Se 11

R :b

I :J

Se :τcGY
km

Figure 6.19: Bond Graph model of a DC–Motor
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The QBG was obtained using a quantum equal to 1×10−5 in the inductance
and 0.1 in the mechanical inertia.

The results are shown in Figures 6.20–6.22.
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Figure 6.20: Armature current in the DC motor.
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Figure 6.21: Start of the armature current.

The number of internal transitions performed by the quantized inertias dur-
ing 2 seconds of simulation were 203 and 103 in the electrical and mechanical
part respectively.
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Figure 6.22: Angular speed in the DC motor.

The stiffness of this system can be easily seen comparing Figures 6.21 and
6.22. There, the startup of the armature current is very fast with respect to the
speed evolution.

In fact, the evolution matrix is

A =


 −Ra

La
−km

J
km
La

− b
J




whose eigenvalues are located at −9990 and −11.011.
The use of (4.50) here gives error bounds of 3.006× 10−5 in the inductance

flux and 0.1004 in the mechanical impulse (i.e. 3.006 in the current and 0.1004
in the angular speed).

In this case, the QSS–method applied through the QBG approach worked
incredibly well. It performed the complete simulation with only 306 steps while
most classic method require much more than this. In fact, similar results with
Euler’s method requires at least 10000 steps, Runge Kutta 8000 and Runge-Kutta
4–5 (ode45 in Matlab) 6000. Only implicit variable–step methods can solve the
problem with less than 100 steps, but the computational complexity of each step
is considerably greater than our case.

Anyway, as it was mentioned before, QSS does not work in general stiff
systems. This problem will be treated again later on.

6.5 QBG and Structural Singularities

The use of QBG in absense of structural singularities does not differ signifi-
cantly from the simulation of simple Block Diagrams. The presence of these
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singularities, however, changes everything.
When it comes to coupled resistors the resulting system has an algebraic loop

which results in an index 1 DAE. Then, what was developped in Section 6.2 can
be applied by adding some loop–breaking model between coupled resistors.

The case of coupled storage elements is as bit more complex since it results
in derivative causalities which yield higher index DAEs. Thus, this case cannot
be treated following what we already developped.

One possible way is to use Pantelides’ algorithm in order to reduce the index.
However, this solution implies dealing with the resulting equations and, in that
way, we are coming back to simulation of DAEs without making use the Bond
Graph structure.

In the higher index case, an alternative solution may result from the following
remarks. Consider –for instance– a tank as the one shown in Figure 6.23.
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Figure 6.23: A tank with a linear relation P vs. V

This tank is represented by a capacitor in Bond Graph. The use of QBG
results in the quantization of the linear characteristic P vs. V . Leaving aside the
hysteresis, the quantized function can be physically interpreted as it is shown
in Figure 6.24.

Here, it should be considered that the height of each compartment goes to
zero while the area goes to infinite so that the volume remains the same.

Making use of this idea, the following example is introduced:

Example 6.6. Coupled tanks.
Consider the hydraulic system of Figure 6.25.
This system can be represented by the Bond Graph of Figure 6.26
In this example, the use of Quantized Bond Graph is equivalent to simulate

the physically quantized system shown in Figure 6.27.
In a continuous system one capacitor should be in derivative causality, since

it is impossible that both compute effort simultaneously.
Nevertheless, the system of Figure 6.27 works in a different way. Suppose

feeding the tank system from zero initial conditions. The volume in the tank on
the left begins to grow, without liquid flowing into the tank on the right (because
the diameter of its first column is almost zero).
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Figure 6.24: Physically quantized tank.
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Figure 6.25: Two coupled tanks.

The situation reverses after the bottom recipient of the tank on the left is
full: the volume in the second compartment on the right begins to grow, without
liquid flowing now into the tank on the left.

The pressure at the bottom of the system is determined exclusively by the
compartment being filled at each instant of time. The pressure changes discon-
tinuously immediately after each compartment becomes full.

This behavior indicates that integral causality alternates in time from one to
the other capacitor, what in turn reminds the behavior of Switched Bond Graphs
[60], where the Switch impresses either zero flow or zero effort

The previous idea can also applied to the case of having coupling of many
storages, including both, inertias and capacitors. This situation would result
in a model with several alternative causal configurations, in dependence of the
values of the energy variables.

The presence of hysteresis does not modify the concepts underlying the pre-
vious considerations.
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Figure 6.26: Bond Graph model of two coupled tanks
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Figure 6.27: Two quantized coupled tanks.

An interesting consequence of this analysis is that we may be able of simulat-
ing higher order DAEs based on a switching behavior instead of index reduction
and iterations.

However, this conjecture requires a deeper research and a generalization of
these ideas for the QSS2–method is not evident.

Anyway, the application of QSS to Bond Graphs shows some interesting
advantages related to the simplicity and the possibility of simulating directly on
the Bond Graph without algebraic manipulation.
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Chapter 7

Quantized–State Control

Practical implementations of most control systems require the use of digital
devices. Due to the different nature of the signals present at the inputs and
outputs of the digital controller and the continuous-time plant, the interconnec-
tion between them must be made through A/D and D/A converters.

The digital implementation of continuous controllers can be thought as a
problem of ODE discretization, which is usually performed by Euler or similar
approximating discrete time rules.

Consequently, the A/D conversion techniques perform synchronous sampling
leaving the plant without control between successive sample instants. This fact
usually provokes a lost of performance in the dynamic response and affects the
regions of attraction in nonlinear systems.

Beside this problem, the A/D conversions use only a finite number of bits
producing undesirable effects such as steady state errors and oscillations. Be-
cause of quantization problems attracting sets must be considered instead of
equilibrium points, and ultimate boundedness of solutions instead of asymptotic
stability.

Taking into account that the QSS–method avoids time discretization, it is
natural to think that its use instead of Euler could provide a solution to the
intersampling problem.

Of course, the time discretization avoidance at the digital controller should
be complemented with aynchronous sampling at the A/D and D/A converters
so the plant is always under control.

When it comes to the quantization effects, it is already known that QSS
introduces final oscillations. However, as it was seen in the theoretical study,
the ultimate bound can be limited with the choice of the quantization. This fact,
translated into control, implies that the quantization effects can be bounded at
the design stage.

These ideas –approximating the continuous controller with the QSS–method
and using asynchronous sampling– will lead to the definition of a new digital
discrete event–based control scheme.

The new method –which will be called Quantized State Control (QSC)– is

109
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an alternative way to implement digital controllers which, in some cases, show
a significant improvement in the dynamic response and quantization effects of
the converters with respect to discrete time approximations.

From the theoretical point of view, the properties of QSC will result similar
to the QSS ones, allowing to ensure stability, convergence and error bound of
the implementation under different conditions.

7.1 Asynchronous Sampling

In all digital control schemes A/D and D/A conversions are performed in a
synchronous way. As it was mentioned before, one of the goals is to avoid time
discretization and then an asynchronous sampling scheme would be desirable.

D/A converters are devices of asynchronous nature but their digital inputs
always change at a given rate. Anyway, they can be used with digital inputs
which change asynchronously without any special consideration provided that
the changes are not too fast with respect to the internal circuits dynamics.

Then, if there is a digital device producing output data in an asynchronous
way, this digital output can be directly connected to a D/A converter and the
corresponding analog signal will be obtained with a very small delay (the D/A
conversion times are very short).

The case of A/D converters is more complex since the conversion period is
usually much longer than the D/A case. In spite of the fact that a conversion can
be ordered at any time, the digital result will not be immediatly available. Such
kind of delays may result completely unacceptable under the goal of avoiding
time discretization. Moreover, it is not clear when the asynchronous conversion
should be made since the signal to be converted is the continuous output of the
plant.

A different way of performing A/D sampling is proposed by Sayiner et al. in
[57]. The idea there is using an A/D converter which only performs conversions
when the difference between the analog input and the digital output is bigger
than the given resolution (see Figure 7.1).

This kind of A/D conversion can easily implemented with a scheme as the
shown in Figure 7.2

Here, the A/D converter is implemented with a counter, a D/A converter
and a comparer. The output of the counter is connected to the D/A and the
D/A output is compared with the signal to be sampled. When the difference is
greater than some threshold (the quantization interval), the value in the counter
is increased (or decreased according to the sign of the difference). Then, the
value of this counter corresponds to the digital output of the asynchronous A/D
converter.

The delay of this new scheme is insignificant compared with a standard A/D
converter because the digital output is refreshed as soon as the comparer detects
the threshold crossing.
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Figure 7.1: Asynchronous A/D conversion
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Figure 7.2: Asynchronous A/D Converter

7.2 The QSC Scheme

Quantized State Systems can be exactly represented by DEVS models, as it was
seen along the previous chapters. Taking into account that DEVS models can
be simulated in–real time1 [65], a real–time approximations of ODEs based on
the QSS–method can be implemented in a digital device.

With this, the main definitions of Quantized State Control can be intro-
duced:

Consider the CCS consisting of plant and controller, Eqs.(7.1) and (7.2)
respectively, and their (ideal) interconnection, Eq.(7.3).

{
ẋp(t) = fp(xp(t), up(t), t)
yp(t) = gp(xp(t), t)

(7.1)

1DEVS representation of QSS is exact. However, real time simulation of DEVS has errors
related to the temporal resolution and the round-off introduced by the digital device
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{
ẋc(t) = fc(xc(t), uc(t), ur(t))
yc(t) = gc(xc(t), uc(t), ur(t))

(7.2)

up(t) = yc(t), uc(t) = yp(t) (7.3)

It is being considered here that the plant could be time varying. When it comes
to the controller, it is assumed that it is stationary and it has an input reference
ur(t).

Definition 7.1. QSC Controller.
A QSS associated to a continuous controller (7.2) is called Quantized State

Controller (QSC controller).

Definition 7.2. QSC System.
A QSC system is defined as a control scheme composed by a continuous plant

and a QSC controller connected through asynchronous A/D and D/A converters.

According to these definitions, a QSC implementation requires to design
a continuous controller, to choose the quantization to be applied at each of
its state variables to obtain the corresponding QSS and finally to choose the
quantization at the A/D and D/A converters.

Figure 7.3 shows a block diagram representation of a QSC system.
The QSC implementation of the controller transforms (7.2) into the new set

of equations: {
ẋc(t) = fc(qc(t), uc(t), ur(t))
yc(t) = gc(qc(t), uc(t), ur(t))

(7.4)

Figure 7.1 also shows that the input and output of the asyncronous A/D
converter are related in fact by a hysteretic quantization function where the
hysteresis width ε is equal to the quantum ∆q.

The D/A converters also introduce quantization (because they have a finite
number of bits). However, now there is no hysteresis since they behave in a
memoryless way.

As a consequence, the presence of the asynchronous converters transforms
(7.3) into:

up(t) = ycq
(t), uc(t) = ypq

(t) (7.5)

where the variables ypq
(t) and ycq

(t) are the quantized versions of the plant and
the controller output variables

7.3 QSC and Perturbations

The goal of QSC is to obtain a digital approximation to the originally continuous
controller. Since the controller is originally designed to achieve a given goal, it
should expected that the QSC controller behaves in a similar way.

Taking into account this, the first thing which should be ensured is that the
QSC system conserves is some way the stability properties of the continuous
control system.
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Figure 7.3: Block Diagram of the QSC system

In classical digital control there are some conditions that the sampling period
must accomplish in order to conserve the system stability. For instance, in LTI
systems, the sampling rate must be greater than the Nyquist frequency.

In the QSC case, it is natural to expect finding some conditions about the
quantization in the controller and converters to ensure stability in the resulting
scheme.

Let us then see first the most general case, i.e., a possibly nonlinear and time
varying plant with a nonlinear controller.

Here, the CCS closed loop equations can be derived from Equations (7.1)–
(7.3) arriving to

{
ẋp = fp(xp, gc(xc, gp(xp, t), ur), t)
ẋc = fc(xc, gp(xp, t), ur)

(7.6)
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Let us define

∆xc(t) , qc(t)− xc(t) (7.7a)
∆yp(t) , ypq

(t)− yp(t) (7.7b)

∆yc(t) , ycq
(t)− yc(t) (7.7c)

Thus, from these definitions and Equations (7.1), (7.4) and (7.5), the QSC closed
loop equations can be written as:{

ẋp = fp(xp, gc(xc +∆xc, gp(xp, t) + ∆yp, ur) + ∆yc, t)
ẋc = fc(xc +∆xc, gp(xp, t) + ∆yp, ur)

(7.8)

Then, the QSC system (7.8) can be seen as a perturbed version of the original
CCS (7.6). Moreover, taking into account what is already known about quanti-
zation functions, the perturbations in QSC are bounded componentwise by the
corresponding quantum. This is true provided that the variables xc, yp and yc
do not reach the corresponding saturation bounds. From here to the end, it
will be considered that the non–saturation region is enough large so that the
trajectories do not leave it.

Based on this observation, the properties of the QSC implementation of a
CCS can be studied by looking at the effects of bounded perturbations in the
original closed loop system. This is completely analogous to what happened
when the properties of the QSS approximation of ODEs were studied.

In that last case, the stability could not be ensured due to the presence of
non–vanishing perturbations. Here is the same and all what can be expected is
to achieve ultimately boundedness of solutions.

Moreover, it will be seen in the following Sections that all the properties
studied in QSS will result very similar in QSC. However, the eventual depen-
dence of fp and gp on t will add an extra complications to the analysis.

Thus, we shall start studying the properties of QSC in time invariant plants
and then we shall come back to the general time varying case.

7.4 Stability of Time Invariant QSC Systems

The stability properties of a system similar to (7.8) related to the stability of
(7.6) was already studied. In fact, Theorem 4.2 established conditions to ensure
the ultimately boundedness of the Time Invariant (TI) version of (7.8) without
the perturbation terms ∆yp and ∆yc.

Taking into account that result, this Section will try to extend and use it in
the particular case of a QSC controller with a time invariant plant.

In this case –considering also that the reference ur is zero or constant– the
CCS equations (7.1) and (7.2) can be rewritten:{

ẋp(t) = fp(xp(t), up(t))
yp(t) = gp(xp(t))

(7.9)
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{
ẋc(t) = fc(xc(t), uc(t))
yc(t) = gc(xc(t), uc(t))

(7.10)

while the QSC controller can be now represented by{
ẋc(t) = fc(qc(t), uc(t))
yc(t) = gc(qc(t), uc(t))

(7.11)

With this new set equations, the following theorem can be stated:

Theorem 7.1. Stability of TI QSC.
Consider that the origin of the closed loop CCS (7.9)–(7.10) is a regionally

stable equilibrium point. Suppose that the functions fp, gp, fc and gc are con-
tinuously differentiable. Further assume that a Lyapunov function V is known,
defined in an open region D containing the origin. Then, a QSC system asso-
ciated to the original CCS can be found, such that all initial conditions lying in
an arbitrary interior region of D are attracted in finite time to another arbitrary
interior region of the former one. Both interior regions must be limited by level
surfaces of V .

Proof. From Equations (7.9), (7.10) and (7.3) the following closed loop equa-
tions of the continuous system can be obtained:{

ẋp = fp(xp, gc(xc, gp(xp)))
ẋc = fc(xc, gp(xp))

(7.12)

The implementation of the corresponding QSC system –Eqs.(7.11) and (7.5)–
transforms (7.12) into:{

ẋp = fp(xp, gc(xc +∆xc, gp(xp) + ∆yp) + ∆yc)
ẋc = fc(xc +∆xc, gp(xp) + ∆yp)

(7.13)

where we used the perturbation notation introduced in (7.7a).
Define:

α(x,∆xc,∆yp,∆yc) , (7.14)
∂V

∂xp
(x) · fp(xp, gc(xc +∆xc, gp(xp) + ∆yp) + ∆yc) +

∂V

∂xc
(x) · fc(xc +∆xc, gp(xp) + ∆yp)

where:

∂V

∂xp
(x) =

[
∂V

∂xp1
· · · ∂V

∂xpn

]
(x)

∂V

∂xc
(x) =

[
∂V

∂xc1
· · · ∂V

∂xck

]
(x)
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with n and k being the order of the plant and the controller respectively and
V (x) = V (xp, xc) is the Lyapunov function of the closed loop system defined in
(7.12). From Equation (7.14) it can be easily seen that:

α(x, 0, 0, 0) = V̇ (x)
∣∣∣
(7.12)

(7.15)

Let D1 be an interior region of D (D ⊂ Rn+k) limited by some level surface of
V . Let D2 be an interior region of D1 also limited by a level surface of V . Let
D3 be the region defined by D3 = D1 − D2.

Since V̇ (x) is negative definite, it is possible to find a positive number s so
that:

V̇ (x) < −s,∀x ∈ D3 (7.16)

Let αM be the function defined by:

αM (∆xc,∆yp,∆yc) , sup
x∈D3

(α(x,∆xc,∆yp,∆yc)) (7.17)

From (7.15) and (7.16), it follows that:

αM (0, 0, 0) < −s (7.18)

Since function α is continuous, function αM results continuous. From this prop-
erty and (7.18), given an arbitrary number s1 (s > s1 > 0), it is possible to find
a positive number ρ so that the condition:

‖(∆xc,∆yp,∆yc)‖ < ρ (7.19)

implies that:
αM (∆xc,∆yp,∆yc) < −s1 (7.20)

Taking into account that the perturbations are bounded by the respective quanta,
the condition given in (7.19) can be satisfied with the choice of an adequate
quantization.2

Let φ(t) be a solution of Equation (7.13) for the initial condition φ(t =
0) = x0 ∈ D3. Consider that the quantization was done in order to satisfy the
condition given by (7.19). From (7.13) and (7.14) it follows that:

α(φ,∆xc,∆yp,∆yc) =
∂V

∂xp
(φ) · φ̇p +

∂V

∂xc
(φ) · φ̇c =

=
∂V

∂x
(φ) · φ̇

2For instance, considering the same uniform quantization for all the quantized variables
the mentioned condition can be achieved by taking:

∆q <
ρ√

k +m+ p

where ∆q are the quantization size (equal to the hysteresis width), k is the controller order
(i.e. is the size of ∆xc), p is the number of output variables of the plant (size of ∆yp) and m
is the number of input variables of the plant (size of ∆yc).
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Using (7.17) and (7.20) in the equation above, we have:

∂V

∂x
(φ) · φ̇ < −s1 (7.21)

This condition will be satisfied at least during certain time while φ(t) remains
inside D3 (this is guaranteed by the continuity of φ(t)). After integrating both
sides of Inequality (7.21), we have:∫ t

0

∂V

∂x
(φ) · φ̇ · dt <

∫ t

0

−s1 · dt

V (φ(t))− V (φ(0)) < −s1 · t

V (φ(t)) < V (x0)− s1 · t

This implies that V evaluated along the solution is bounded by a strictly de-
creasing function while that solution remains inside D3. Since the value V (x0)
is smaller than the value that V takes in the bound of D1, it is clear that the
trajectory will never leave D1.

Let V1 be the value that V takes in the bound of region D2. Then, it can be
easily seen that the trajectory will reach the region D2 in a finite time t1 with:

t1 ,
V (x0)− V1

s1
(7.22)

which completes the proof.

Corollary 7.1. Semiglobal Stability of QSC.
When the Lyapunov function derivative is negative definite in all the state

space, the QSC implementation can assure semiglobal ultimately boundedness.

The proof of this corollary is straightforward. Achieving semiglobal stability
requires enlarging the region D1. Unfortunately, it also implies enlarging the
saturation region and then, global stabilization cannot be assured in general
cases.

Equation (7.19) gives the maximum perturbation allowed to ensure the
achievement of the proposed goal (i.e. region of attraction D1 and ultimate
bound inside D2). Since the maximum perturbation in each variable is given by
the corresponding quantum, this equation should be used to choose the quan-
tum at the different controller state variables and converters completing in that
way the QSC design.

Observe that D1 is also the estimation of the region of attraction of the CCS
using the Lyapunov function V . Then, a QSC implementation can be found so
that it conserves the estimated region of attraction.

The presence of quantization destroyes the asymptotic stability. However,
ultimately boundedness of the solutions can be still ensured. Moreover, the
ultimate region D2 can be arbitrarily chosen. Anyway, if it is chosen to be too
small then the quantum will also result too small and the computational costs
will increase over what can be practically implemented since the rate of events
in the controller is approximately proportional to the inverse of the quantum.
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7.5 Design Procedure for TI QSC

Based on the previous ideas, the design of a QSC contoller can be divided in
two steps. The first one is the design of the continuous controller, which can be
done following any technique.

The second step is the choice of the quantization at each variable. The use
of a very small quantum yields solutions whose ultimate bound can be reduced
to arbitrary small values, as it was shown in Theorem 7.1.

However, as it was already mentioned, the use of a small quantum increases
the number of events at the controller and the digital device can fail in its
attempt to give the correct output values at the required time.

Therefore, there is always a trade–off between accuracy and practical con-
siderations related to the computational costs. Then the idea is to exploit
Theorem 7.1 in order to choose the quantization according to some essential
features (region of attraction and ultimate bound). In that way, the quanti-
zation adopted will be just as small as necessary to ensure those properties
and –provided that the CCS is not too fast– the digital device will be able to
correctly implement the resulting QSC controller.

The translation of these ideas into a design algorithm for QSC can be written
as follows:

1. Design a continuous controller and calculate the Lyapunov function V (x)
for the closed loop CCS.

2. Identify the region D where the where the derivative of the Lyapunov
function is negative and choose the QSC region of attraction D1 inside it
and the ultimate region D2 according to the control goals

3. Obtain the perturbed closed loop equations according to (7.13).

4. Obtain function α according to (7.14) and αM according to (7.17).

5. Calculate constant s according to (7.16) and choose the positive constant
s1 < s. If the goal is just to ensure ultimately boundedness s1 should be
very small. Otherwise, if the speed of convergence is also important, it
can be chosen taking into account (7.22).

6. Find the maximum value of ρ so that (7.19) implies (7.20).

7. Choose the quantization at the controller state variables and converters
so that (7.19) is satisfied.

8. Choose the saturation bounds of the quantization functions outside the
region D1

It can be seen that this procedure leads to a QSC controller which ensures region
of attraction D1 and ultimate region D2.



7.5. DESIGN PROCEDURE FOR TI QSC 119

Example 7.1. Stabilization of a TI Nonlinear Plant.
Consider the plant: {

ẋp(t) = x2
p + up

yp(t) = xp(t)
(7.23)

It will be supposed that the goal is stabilizing the plant around the origin. The
first step in the algorithm is the design of a continuous controller. For instance,
the following controller can achieve the mentioned goal.{

ẋc(t) = −xc − uc
yc(t) = xc(t)− uc(t)− u2

c(t)
(7.24)

The resulting closed loop equations are:{
ẋp(t) = −xp + xc
ẋc(t) = −xp − xc

It can be easily verified that the origin is the equilibrium point, and it is asymp-
totically and globally stable. By taking the Lyapunov function

V (x) =
1
2

x2
p +

1
2

x2
c (7.25)

it follows that:
V̇ (x) = −x2

p − x2
c

Since the stability is global (D = R2) the definition of the region D1 will be
only neccessary for the choice of the saturation bounds (at least in this case).
Suposse also that the goal is assuring the convergence of the trajectories to the
region D2 = {x/‖x‖ < 1}.

It follows from (7.14), (7.23), (7.24) and (7.25) that:

α(x,∆xc,∆yp,∆yc) = (7.26)
−x2

p − x2
c + xp(∆xc −∆yp −∆y2

p − 2xp∆yp +
+∆yc) + xc(−∆xc −∆yp)

The calculation of αM according to the definition in (7.17) is quite difficult.
However, a bound of this function can be easily obtained. It follows from (7.26)
that:

α(x,∆xc,∆yp,∆yc) ≤ −‖x‖2 + ‖x‖(|∆xc|+ |∆yp|) +
+‖x‖(|∆xc|+ |∆yp|+ |∆y2

p|+ 2‖x‖ |∆yp|+ |∆yc|)

Then, it results from (7.17) and the inequality above that:

αM (∆xc,∆yp,∆yc) ≤ sup
‖x‖≥1

[−‖x‖2+

+‖x‖(2|∆xc|+ 2(‖x‖+ 1)|∆yp|+ |∆y2
p|+ |∆yc|)]



120 CHAPTER 7. QUANTIZED–STATE CONTROL

Since outside the region D2 the condition V̇ (x) < −1 is satisfied, the conver-
gence speed s1 (fifth step) can be chosen to be bounded between 0 and 1. Suppose
that the choice is s1 = 0.5. Then, the quantization must be chosen in order to
satisfy αM < −0.5, condition than is verifyied using a quantum ∆q = ε = 0.07
in all the variables.

If the restriction about the convergence speed is not taken into account and
the goal is just assuring stability, that quantization interval of ∆q = 0.07 is
sufficiently small to guarantee convergence to the region given by ‖x‖ < 0.4127.

The resulting QSC system was simulated with the initial condition xp = 10,
xc = 0. The results are shown in Figures 7.4 to 7.6. The number of conversions
performed by the A/D converter was 178 for 40 seconds of simulation time. The
minimun time between two successive conversions was 5.6 milliseconds (at the
begining of the simulation) while the maximum was greater than 2 seconds.
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Figure 7.4: Plot of xp for the plant with QSC

The trajectory of Fig.7.4 seems to be quite similar to the one obtained with
the continuous controller except for the final oscillations in Figure 7.5. How-
ever, in Fig.7.6 the difference with the CCS behaviour is more evident. There,
the phenomena of ultimately boundedness due to quantization and trajectory
crossing due to hysteresis can be easily observed.

7.6 Stability of General QSC

Theorem 7.1 was based on the fact that the plant was time invariant. However,
that was not the hypothesis made in the general definition of QSC (it was only
assumed that the controller was time invariant since time varying ODEs cannot
be approximated with the QSS method).
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Figure 7.5: Final oscillations in xp

0

0

0.1

0.1

−0.1

−0.1

xp

xc

Figure 7.6: Final oscillations in the phase portrait

Thus, it is necessary to extend these results to the general time varying case.
Here, when the reference trajectory ur(t) is zero (or constant), the QSC system
(7.8) can be rewritten as

ẋ = f(x +∆x,∆y, t) (7.27)

where x , [xp, xc]T , ∆x , [0,∆xc]T , ∆y , [∆yp,∆yc]T , and f , [fp, fc]T .



122 CHAPTER 7. QUANTIZED–STATE CONTROL

With these definitions, the CCS (7.6) becomes

ẋ = f(x, 0, t) , f̃(x, t) (7.28)

and the problem can be reduced to relate the stability of systems (7.27) and
(7.28).

In order to study this problem, the following theorem can be stated:

Theorem 7.2. Stability of QSC.
Let the origin be an asymptotically stable equilibrium point of the closed

loop CCS (7.28). Assume that function f is continuous and a continuously
differentiable Lyapunov function V (x, t) is known with

W1(x) ≤ V (x, t) ≤ W2(x) (7.29)

∂V

∂x
· f̃(x, t) +

∂V

∂t
≤ −W3(x) (7.30)

∀t ≥ 0, ∀x ∈ D being D a compact set which contains the origin and Wi are
continuous positive definite functions in D.

Let Ω2a
= {x|W2(x) ≤ a} with a being an arbitrary positive constant which

is enough small so that {x|W1(x) ≤ a} is a closed region inside D.
Let Ω1b

= {x|W1(x) ≤ b} being b an arbitrary positive constant (b < a)
enough small so that Ω1b

⊂ Ω2a
.

Then, a quantization can be found so that the QSC system trajectories start-
ing in Ω2a

finish inside Ω1b
, reaching this region in finite time.

Note that the conditions that V (x, t) must satisfy –(7.29) and (7.30)– are
just the ones which are needed to ensure stability of the original CCS.

Proof. The derivative of V (x, t) along the solutions of the QSC system (7.27) is

V̇ (x, t) =
∂V

∂x
· f(x +∆x,∆y, t) +

∂V

∂t

=
∂V

∂x
· f(x, 0, t) +

∂V

∂t
+

∂V

∂x
· (f(x +∆x,∆y, t)− f(x, 0, t))

Then, using (7.30) it results that

V̇ (x, t) ≤ −W3(x) +
∂V

∂x
· (f(x +∆x,∆y, t)− f(x, 0, t))

Consider the sets Ω2b
= {x|W2(x) ≤ b} and Ω1a

= {x|W1(x) ≤ a}. From the
hypotesis made about a and b, it results that

Ω2b
⊂ Ω1b

⊂ Ω2a
⊂ Ω1a

⊂ D

Since W3(x) is positive definite in D, it is positive in Ω1,2 , Ω1a
−Ω2b

. Moreover,
it exists a positive constant s where

s , min
x∈Ω1,2

W3(x) (7.31)
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Let us define the following function

α(x,∆x,∆y, t) , −W3(x) +
∂V

∂x
· (f(x +∆x,∆y, t)− f(x, 0, t)) (7.32)

The continuity in functions W3 and f and the fact that V is continuously dif-
ferentiable implies that α is continuous. From the definition of α and Eq.(7.31)
it results that

α(x, 0, 0, t) ≤ −s ∀x ∈ Ω1,2,∀t ≥ 0

Let αM be the function defined by

αM (∆x,∆y) , sup
x∈Ω1,2,t≥0

(α(x,∆x,∆y, t)) (7.33)

It can be easily seen that αM is continuous and αM (0, 0) ≤ −s. Then, for any
positive number s1 < s a positive constant r can be found so that the condition

‖(∆x,∆y)‖ ≤ r (7.34a)

implies that
αM (∆x,∆y) ≤ −s1

and then it results that

V̇ (x, t) ≤ α(x,∆x,∆y, t) ≤ αM (∆x,∆y) ≤ −s1

in Ω1,2.
From here to the end, the proof follows Theorem 5.3 of [23].
Let Ωa,t = {x|V (x, t) ≤ a} and Ωb,t = {x|V (x, t) ≤ b} be time variable sets.

From (7.29) it results that

Ω2b
⊂ Ωb,t ⊂ Ω1b

⊂ Ω2a
⊂ Ωa,t ⊂ Ω1a

⊂ D

The border of Ωa,t is inside Ω1,2, where V̇ (x, t) is negative. It means that the
trajectories of the QSC system (7.27) cannot abandon Ωa,t.

Then, any trajectory starting in Ω2a
cannot abandon Ω1a

.
The border of Ωb,t is also inside Ω1,2. Then the trajectories cannot abandon

this time variable set.
To complete the proof, we need to ensure that the trajectories initiated in

Ω2a
⊂ Ωa,t reach Ωb,t in a finite time.
Let φ(t) be a solution of (7.27) starting in Ωa,t (i.e. V (φ(0), 0) ≤ a) and let

us suppose that
V (φ(t), t) > b ∀t (7.35)

then we have V̇ (φ(t), t) ≤ −s1 and after

t1 ,
a − b

s1
(7.36)

it results that V (φ(t1), t1) ≤ b which contradicts (7.35). Then, the region Ωb,t
must be reached before the finite time t1.

Since Ωb,t ⊂ Ω1b
the trajectory also reaches the set Ω1b

before that time.
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As before, Equation (7.34a) gives the maximum perturbation allowed to
ensure the achievement of the proposed goal (now the region of attraction is
Ω2a

and the ultimate bound is inside Ω1b
). It is also true that Ω2a

is the
estimation of the region of attraction of the CCS using the Lyapunov function
V . Then, we can still find a QSC implementation which conserves the estimated
region of attraction.

7.7 General Procedure for QSC Implementation

Taking into account the differences between Theorem 7.1 and Theorem 7.2, the
procedure introduced in Section 7.5 can be be modified as follows

1. Design a continuous controller and calculate the Lyapunov function V (x, t)
and the functions Wi(x) according to (7.29)–(7.30) for the closed loop
CCS.

2. Choose the QSC region of attraction Ω2a
and the ultimate region Ω1b

together with the constants a and b.

3. Obtain the perturbed closed loop function f according to (7.27).

4. Obtain function α according to (7.32) and αM according to (7.33).

5. Calculate constant s according to (7.31) and choose the positive constant
s1 < s. If the goal is just to ensure ultimately boundedness s1 should be
very small. Otherwise, if the speed of convergence is also important, it
can be chosen taking into account (7.36).

6. Compute the value of r according to (7.34).

7. Choose the quantization at the controller state variables and converters
so that (7.34a) is satisfied.

As before, this procedure leads to a QSC controller which ensures region of
attraction Ω2a

and ultimate region Ω1b
.

Example 7.2. Quantized State Control of a Time Varying Plant.
The unstable time varying plant{

ẋp = xp · (1 + sin t + cos t) + up
yp = (2 + cos t) · xp

can be stabilized by the controller{
ẋc = −xc + uc
yc = −xc − uc

(7.37)

The resulting closed loop system can be written as{
ẋp = −(1− sin t) · xp − xc
ẋc = (2 + cos t) · xp − xc
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Here, the Lyapunov candidate

V (xp, xc, t) = x2
p +

1
2

x2
c +

1
2

x2
p cos t

verifies (7.29) with

W1(xp, xc) =
1
2

x2
p +

1
2

x2
c (7.38)

W2(xp, xc) =
3
2

x2
p +

1
2

x2
c

The orbital derivative is

∂V

∂x
· f(x, t) +

∂V

∂t
= (2 + cos t) · (sin t − 1) · x2

p − x2
c −

1
2

x2
p sin t

which satisfies (7.30) with

W3 = −1
2

x2
p − x2

c

Then, the closed loop CCS is asymptotically stable and the algorithm resulting
from Theorem 7.2 can be used to design the QSC controller.

The first step for the QSC design consists in choosing the region of attraction
and the ultimate bound. Since inequalities (7.29)–(7.30) stand in �2 (i.e. the
CCS stability is global) it is not necessary to restrict the region of attraction
except for chosing the saturation values. In this case, the choice of Ω2a

does not
affect the calculations.

The ultimate bound Ω1b
will be chosen with b = 0.5. Then, taking into

account (7.38) it results that Ω1b
= {x ∈ �2|‖x‖ ≤ 1}.

The perturbed equations (7.27) can be written as{
ẋp = −(1− sin t) · xp − xc −∆xc +∆yc −∆yp
ẋc = (2 + cos t) · xp − xc −∆xc +∆yp

and then, from (7.32) function α(x,∆x,∆y, t) results

α = −x2
c −

1
2

x2
p + xp · (2 + cos t) · (−∆xc +∆yc −∆yp) + xc · (−∆xc +∆yp)

Although the maximum αM in (7.33) cannot be easily obtained, it can be bounded
as follows

α ≤ −1
2
‖x‖2 +

√
9 · (|∆xc|+ |∆yc|+ |∆yp|)2 + (|∆xc|+ |∆yp|)2 · ‖x‖

≤ ‖x‖ · (−1
2
‖x‖+

√
9 · (|∆xc|+ |∆yc|+ |∆yp|)2 + (|∆xc|+ |∆yp|)2)

and then, taking into account that ‖x‖ > 1/3 in Ω1,2, it results that

αM ≤ − 1
18

+

√
(|∆xc|+ |∆yc|+ |∆yp|)2 + 1

9
(|∆xc|+ |∆yp|)2
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Then, taking the quantum equal to 0.018 in the controller and converters we can
ensure that

αM ≤ −0.0093
in Ω1,2, which implies that the trajectories finish inside Ω1b

in finite time, with
a minimum speed s1 = 0.0093.

Figures 7.7–7.12 show the simulation results for an initial condition xp = 5,
xc = 0.
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−1

0

1

2

3

4
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Figure 7.7: xp vs. t

Figure 7.12 also shows that the design was very conservative. The ultimate
bound observed in the simulation is less than 0.03 (in norm 2) which is more
than 30 times smaller than the calculated.

7.8 Convergence of QSC

It was seen that the QSC implementation can approximate stability properties
and convergence speed performance from the original continuous control design.
However, it was not said yet anything about the QSC behavior during the
transient period.

It will be introduced now the QSC version of Theorem 4.1, where it will
be shown that the trajectories of the system with the QSC controller go to
the trajectories of the system with the original continuous controller when the
quantization go to zero.

It implies that any performance measure achieved by the original continuous
controller can be approximately achieved by the QSC controller with the choice
of sufficiently small quantization intervals.
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Figure 7.8: xc vs. t
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Figure 7.9: Final oscillations in xp vs. t

Theorem 7.3. Convergence of QSC.
Consider the system corresponding to a continuous plant with a continuous

controller given by (7.6) and the associated QSC implementation (7.8). Let Dxc
,

Dyc
and Dyp

be the non-saturation regions of the QSC controller, D/A convert-
ers and A/D converters respectively (i.e. the regions where the corresponding
variables do not reach the saturation bounds). Let Dxp

be a bounded region in
Rn and let D be a region of the state space where there is not saturation of any
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Figure 7.10: Final oscillations in xc vs. t
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Figure 7.11: xp vs. xc

variable, i.e.

D , {(xp, xc)|xp ∈ Dxp
, xc ∈ Dxc

, gp(xp, t) ∈ Dyp
∀t, gc(xc, gp(xp)) ∈ Dyc

}

Assume that functions fc and gc are Lipschitz on Dxc
×Dyp

, function fp is Lip-
schitz on Dxp

×Dyc
and function gp is Lipschitz on Dxp

. Let φ(t) be the solution
of (7.6) from the initial condition x(0) = x0 and let φ1(t) be a solution of (7.8)
starting from the same initial condition x0. Assume that φ(t) ∈ D1 ∀t being
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Figure 7.12: Final oscillations in xp vs. xc

D1 a closed interior region of D. Then, φ1(t) → φ(t) when the quantization
intervals go to 0.

Proof. Let S , Rn+k − D and let

D2 , Dxp
× Dxc

× Dyp
× Dyc

let F be

F , sup
(xp,xc,yp,yc)∈D2

∥∥∥∥ fp(xp, yc, t)
fc(xc, yp)

∥∥∥∥ (7.39)

Let d be defined by
d , inf

x∈S
( inf
t∈[0,∞]

‖φ(t)− x‖) (7.40)

Since d is positive and F is finite, a positive number t1 can be taken satisfying

t1 <
d

F
(7.41)

From (7.39), (7.40) and (7.41) it can be seen that φ1(t) does not leave the region
D during the interval [0, t1].

In this time interval, the following conditions are fulfilled by System (7.8)

‖∆xc‖ ≤ ∆xc
(7.42a)

‖∆yp‖ ≤ ∆yp
(7.42b)

‖∆yc‖ ≤ ∆yc
(7.42c)

being ∆xc
,∆yp

and ∆yc
constants defined by the quantization intervals in the

QSC controller, A/D converters and D/A converters respectively.
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It follows from (7.8), (7.6) and the fact that φ1(0) = φ(0) that:

φ1(t)− φ(t) =
[

φ1p
(t)− φp(t)

φ1c
(t)− φc(t)

]
=

∫ t

0

[
ψ1p

(τ)− ψp(τ)
ψ1c

(τ)− ψc(τ)

]
dτ (7.43)

where

ψ1p
(τ) , fp(φ1p

, gc(φ1c
+∆xc, gp(φ1p

, τ) + ∆yp) + ∆yc, τ) (7.44a)

ψp(τ) , fp(φp, gc(φc, gp(φp, τ)), τ) (7.44b)

ψ1c
(τ) , fc(φ1c

+∆xc, gp(φ1p
, τ) + ∆yp) (7.44c)

ψc(τ) , fc(φc, gp(φp, τ)) (7.44d)

Then, applying the Euclidean norm to the first row in (7.43),

‖φ1p
(t)− φp(t)‖ = ‖

∫ t

0

ψ1p
(τ)− ψp(τ)dτ‖

≤
∫ t

0

‖ψ1p
(τ)− ψp(τ)‖dτ (7.45)

In a similar way, for the second row, we have

‖φ1c
(t)− φc(t)‖ ≤

∫ t

0

‖ψ1c
(τ)− ψc(τ)‖dτ (7.46)

From (7.45) and (7.46) it follows that

‖φ1p
− φp‖+ ‖φ1c

− φc‖ ≤
∫ t

0

(‖ψ1p
(τ)−ψp(τ)‖+ ‖ψ1c

(τ)−ψc(τ)‖)dτ (7.47)

Taking into account that φ(t) and φ1(t) are inside region D, and taking ∆xc,
∆yc and ∆yp enough small we can assure that the arguments of functions fp, fc,
gc and gp in (7.44a) and (7.44c) are inside the regions where these functions sat-
isfy the Lipschitz conditions. Using these conditions and the definitions (7.44a)
and (7.44b), we have

‖ψ1p
(τ)− ψp(τ)‖ ≤ Mfp

‖(φ1p
, gc(φ1c

+∆xc, gp(φ1p
, τ) + ∆yp) + ∆yc)

−(φp, gc(φc, gp(φp, τ)))‖
≤ Mfp

(‖φ1p
− φp‖+ ‖∆yc‖+ Mgc

‖(φ1c
+∆xc, gp(φ1p

, τ) + ∆yp)− (φc, gp(φp), τ)‖)
≤ Mfp

(‖φ1p
− φp‖+ ‖∆yc‖+ Mgc

(‖φ1c
− φc‖+ ‖∆xc‖+ ‖∆yp‖+ Mgp

‖φ1p
− φp‖))

≤ M1(‖φ1p
− φp‖+ ‖φ1c

− φc‖+∆) (7.48)

where Mfp
, Mgc

and Mgp
are the Lipschitz constants of the corresponding

functions. Here, we also defined M1 , max(Mfp
(1 + Mgc

Mgp
), Mfp

Mgc
) and

∆ , ∆xc
+∆yc

+∆yp
.
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In a similar way, we can obtain that

‖ψ1c
(τ)− ψc(τ)‖ ≤ M2(‖φ1p

− φp‖+ ‖φ1c
− φc‖+∆) (7.49)

with M2 , max(Mfc
, Mfc

Mgp
). Let M , M1 + M2. From (7.48) and (7.49) it

follows that

‖ψ1p
(τ)−ψp(τ)‖+‖ψ1c

(τ)−ψc(τ)‖ ≤ M(‖φ1p
−φp‖+‖φ1c

−φc‖+∆) (7.50)

Defining ∆φ(t) , ‖φ1p
− φp‖+ ‖φ1c

− φc‖ and using (7.50) into (7.47) we have

∆φ(t) ≤
∫ t

0

(M∆φ(τ) + M∆)dτ

and finally

∆φ(t) ≤
∫ t

0

M∆φ(τ)dτ + Mt∆

It can be seen that function ∆φ is continuous. Being also M positive, it is
possible to apply the Gronwall-Bellman Inequality, resulting in

∆φ(t) ≤ Mt∆+
∫ t

0

M2s∆e
R t

s
Mdτds

⇒ ∆φ(t) ≤ (eMt − 1)∆

Then, for any t ∈ [0, t1] it results that

lim
∆→0

‖φ1p
(t)− φp(t)‖+ |φ1c

(t)− φc(t)‖ = 0

and then
lim
∆→0

‖φ1(t)− φ(t)‖ = 0 (7.51)

From (7.40) we have
d ≤ inf

x∈S
(‖φ(t1)− x‖) (7.52)

Taking into account (7.41), (7.51) and (7.52) an enough small quantization
interval can be found such that

t1 <
infx∈S ‖φ1(t1)− x‖

F

This inequality implies that φ1 does not leave the region D during the interval
[t1, 2t1]. Thus, all the analysis done from (7.42a) is also valid for the interval
[0, 2t1]. Repeating this argument the result of (7.51) holds for all t.

The convergence property shows that the QSC system trajectories can be
bounded to be arbitrary closed to the CCS trajectories. However, this fact
only provides qualitative information. There is not a quantitative relationship
between the quatum and the difference between the CCS and QSC trajectories.
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Thus, the only performance measure which can be analyzed is the ultimate
bound and the convergence speed of the QSC solution based on Theorem 7.2.

In order to arrive to stronger results, it is necessary to put stronger restric-
tions on the plant and controller.

The next chapter deals with particular cases of QSC arriving to simpler and
stronger theoretical and practical results.



Chapter 8

Linear QSC Systems

In the previous chapter, the general definitions of QSC were introduced. There,
theoretical properties like stability and convergence were also studied.

Although it was possible to deduce design algorithms from the stability the-
orems, they resulted quite complicated because of the presence of Lyapunov
functions (which were time dependent in the time varying cases).

In many control applications the plant models are in fact linear time invariant
(LTI). In these cases the deduced algorithms are still correct but they have
useless complications which could be avoided.

As it was already seen, the use of Lyapunov functions produces conservative
results which can be improved with the use of geometrical analysis like the one
developped in Section 4.5.

Taking into acount these remarks, this chapter is concerned with the partic-
ularization of the QSC properties in order to arrive to simpler design conditions.

As it can be expected, the results will be completely analogous to the shown
by QSS and QSS2 methods in the field of simulation. In consequence, it will be
possible to find the quantization which allows to bound the error between the
continuous control system and the digital one. As before, the digital implemen-
tation will result ultimately bounded for any quantization adopted.

From a more practical point of view, much simpler design rules will be
found which can be applied based on a closed formula which replaces the design
algorithms developed in the previous chapter.

Finally, the improvement of the dynamic response and computational costs
with respect to classical digital control which was mentioned will become more
evident in some of the applications that will be introduced.

8.1 QSC of LTI Systems

Consider the Continuous LTI plant (8.1) and controller (8.2).{
ẋp(t) = Ap · xp(t) + Bp · up(t)
yp(t) = Cp · xp(t)

(8.1)

133
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{
ẋc(t) = Ac · xc(t) + Bc · uc(t) + Br · ur(t)
yc(t) = Cc · xc(t) + Dc · uc(t) + Dr · ur(t)

(8.2)

With the interconnection given by (7.3), the following closed loop equation is
obtained.

ẋ(t) = A · x(t) + B · ur (8.3)

where

x(t) =
[

xp(t)
xc(t)

]
, A =

[
Ap + BpDcCp BpCc

BcCp Ac

]

and

B =
[

BpDr

Br

]

The QSC implementation of the controller modifies (8.2) which can be rewritten
as {

ẋc = Ac · qc + Bc · uc + Br · ur
yc = Cc · qc + Dc · uc + Dr · ur

(8.4)

As in the general case, the effects of the A/D and D/A asynchronous converters
are given by (7.5). Thus, taking into account that equation, (8.1), (8.4) and
the definition of the perturbation variables (7.7a), the use of the QSC scheme
transforms Equation (8.3) into

ẋ = A(x +∆x) + F ·∆y + B · ur (8.5)

where x, ∆x and ∆y have the same definition than in Eq.(7.27) and

F ,

[
BpDc Bp

Bc 0

]
(8.6)

8.2 Stability and Error in LTI QSC

If it is considered ur(t) = 0 (without lost of generality), System (8.5) is just a
perturbed LTI system, where the perturbations (i.e. the components of ∆x and
∆y) are bounded by the corresponding quanta.

Then, according to Theorem 4.4, the trajectories of the LTI QSC system
will be globally ultimately bounded with ultimate bound1:

µ =
∥∥|V | · (|Re(Λ)−1Λ| · |V −1|∆qx + |Re(Λ)−1V −1F |∆qy)

∥∥ (8.7)

where ∆qx is the vector of quantum sizes in the plant and controller state
variables (all the components corresponding to the plant are zero), ∆qy is the
vector of quantum sizes in the plant and controller output variables (introduced
by the A/D and D/A converters respectively), the matrix F is defined according
to (8.6), Λ is a diagonal matrix of eigenvalues of A and V is a corresponding
matrix of eigenvectors.

1The notation used here was introduced in page 50.
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Moreover, according to the same theorem it exists a finite time t1 = t1(c, x0)
so that for each positive constant c the solutions satisfy

|x(t)| ≤ (1 + c)|V | · (|Re(Λ)−1Λ| · |V −1|∆qx + |Re(Λ)−1V −1F |∆qy)

Thus, for any quantization adopted the QSC system is globally ultimately
bounded.

It is clear that the last inequality can be used for design purposes: given
a maximum accepted final error in each variable, the quantum which ensures
achieving that goal can be obtained.

As in the case of QSS and QSS2, it will be possible not only to calculate
the ultimate bound estimation but also the maximum deviation from the CCS
trajectories.

Let x(t) and x̃(t) and be solutions of (8.3) and (8.5) starting from the same
initial condition x(t0) = x̃(t0) = x0. Then the error

e(t) = x̃(t)− x(t) (8.8)

can be seen as a bound for the lost of performance due to the QSC implemen-
tation.

From (8.3), (8.5), (8.8) and the definitions of x(t) and x̃(t) we have

ė(t) = A · [e(t) + ∆x(t)] + F ·∆y(t)
e(t0) = 0

Taking into account that ∆x and ∆y are bounded and e(t0) = 0 Theorem 4.3
can be used in order to quantify the error due to the QSC scheme. The result
is expressed by the following theorem:

Theorem 8.1. Error in LTI QSC.
Let x(t) and x̃(t) be trajectories of a LTI CCS and its QSC implementation

starting from the same initial condition and let A be the evolution matrix of the
continuous closed loop system. If A is Hurwitz and diagonalizable, the difference
between both trajectories is always bounded by

|x̃(t)− x(t)| ≤ |V |(|Re(Λ)−1Λ||V −1|∆qx + |Re(Λ)−1V −1F |∆qy) (8.9)

with the same definitions made in (8.7).

The proof is straightforward using the mentioned theorem.
Inequality (8.9) can be used as a design formula to obtain the quantization

in the controller and converters according to the deviation allowed from the
CCS trajectories.

A very important remark is that the mentioned bound does not depend
neither on the initial condition nor in the reference trajectory (ur(t)). The only
restriction is that ur(t) must be piecewise constant in order to guarantee that
the QSC can be exactly represented by a DEVS model and then implemented
on a digital device.
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Theorem 8.1 says that the difference between the closed loop CCS trajec-
tories and the corresponding QSC are always bounded. Moreover, the bound
stands for all t and this fact can produce an important improvement in the
dynamic response with respect to discrete time approximations.

8.3 Procedure for LTI QSC Implementation

The closed form of Inequality (8.9) gives also a useful tool for the design of the
quantization. The design procedure then consists just in choosing the maximum
allowed error in each variable and then in finding the appropriate values of ∆qx
and ∆qy to satisfy the inequality.

The only problem here is that for a given tolerance at each state variable
there are many possible values of ∆qx and ∆qy which satisfy (8.9). In fact, the
quantum can be enlarged in a given variable and reduced in the others so that
the inequality is still verified.

From the theoretical point of view, any value which satisfies (8.9) is the
same. However, taking into account practical considerations, it is not desirable
that a variable changes very fast while the others remain without changes. Such
a situation would result in very fast events which could be even faster than what
the digital device can follow.

In consequence, a good solution would be the one which produces a balanced
sequence of events at the different variables. However, it is not completely clear
how this can be achieved.

Anyway, an empirical rule which usually works consists in choosing the
quanta so that each term of ∆qx and ∆qy contributes to the whole error in
a balanced way.

Example 8.1. A PI controller example.
Consider the plant (8.1) with

Ap =
[

0 1
−1 −4

]
, Bp =

[
0
1

]
, Cp =

[
1 0

]
A PI controller with parameters KP and KI can be written in the form of (8.2)
with Ac = 0, Bc = −1, Br = 1, Cc = KI , Dc = −KP and Dr = KP . Thus,
using KP = KI = 10, the closed loop evolution matrix is

A =


 0 1 0

−11 −4 10
−1 0 0




A possible matrix of eigenvectors (calculated with Matlab) is

V =


 0.0085 + j0.342 0.0085− j0.342 0.5452

−0.825− j0.433 −0.825 + j0.433 −0.734
−0.108 + j0.064 −0.108− j0.064 0.4049
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Taking ∆qc = ∆yp = 0.01 and ∆yc = 0.1, the error bound according to (8.9) is
0.1443, 0.3383 and 0.0679 in each state variable of the plant and controller re-
spectively. Thus, the maximum error on the plant oputput is bounded by 0.1443.
Figure 8.1 shows the evolution of the plant output with the continuous controller
and the QSC controller when the reference is a step of amplitude 10. Figure 8.2
shows the difference between both trajectories. The maximum difference was
0.1399 which is near the theoretical bound.
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Figure 8.1: Plant output with CCS and QSC

The last example showed the use of Theorem 8.1 for the QSC implementation
of a PI controller.

The next example follows an LQR design to control an inverted pendulum
introduced by Messner and Tilbury in [46]. After simulating the continuous and
the digital controller proposed in the reference, the results are compared with
the obtained in the QSC implementation.

Example 8.2. An inverted pendulum control.
Consider the inverted pendulum of Figure 8.3 Using parameters M = 0.5;

m = 0.2; b = 0.1 (friction of the cart); J = 0.006; g = 9.8; and l = 0.3 (length
to pendulum center of mass), a linearized model around θ = π is given by the
equations:


ẋ
ẍ

Φ̇
Φ̈


 =




0 1 0 0
0 −0.181 2.672 0
0 0 0 1
0 −0.454 31.18 0







x
ẋ
Φ
Φ̇


 +




0
1.818
0

4.545


 u

where Φ , θ − π is the deviation angle from the vertical position.
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Figure 8.2: Difference in the plant output with CCS and QSC
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Figure 8.3: Inverted Pendulum scheme

The goal is to implement a control for the cart position. The variables mea-
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sured are x and Φ. Thus, the plant output equations can be written as

y =
[
1 0 0 0
0 0 1 0

] 


x
ẋ
Φ
Φ̇




Following a LQR design with weights wx = 5000 and wΦ = 100 and then using
a full state observer with estimator poles placed at p1 = 40, p2 = 41, p3 = 42
and p4 = 43 the resulting controller can be written in the form of (8.2), where

Ac =




−82.64 1 1.037 0
−1570 68.61 148.9 −38.04
1.385 0 −83.18 1
397.6 171.5 2209 −95.11




Bc =




82.64 −1.037
1699 −40.22

−1.385 83.18
−76.18 1760


 ;Br =




0
−128.6

0
−3.214




Cc =
[
70.71 37.83 −1055 −20.92 ]

and
Dc =

[
0 0

]
;Dr = −70.71

For the QSC digital implementation of the controller, the following quantization
sizes were adopted:

∆qx =




0.001
0.015
0.002
0.04


 ;∆qy =


 0.002

0.004
2




The QSC performance was compared with a classic discrete controller obtained
from the discretization of the continuous controller. The sampling time of the
classic digital controller was taken as Ts = 0.01. In this case, we also considered
the presence of A/D and D/A converters with the same quantization than in the
QSC control (i.e. 0.002 in the position, 0.004 in the angle and 2 in the controller
output).

Figures 8.4-8.6 show the trajectories obtained with the continuous time con-
troller (without quantization), with the QSC controller and the classic discrete
time controller. The first observation is that the QSC shows a much better
performance during the transient (see Figure 8.5) and it reduces the final oscil-
lations.

The number of A/D conversions performed by the QSC converters in the 5
seconds of simulation was 211 and 185 in the position and angle respectively
while the classic digital controller performs 5/0.01 = 500 conversions in each
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Figure 8.4: Cart position with QSC and Classic Digital Control.
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Figure 8.5: Cart position (start up) with QSC and Classic Digital Control.

variable. Similarly, the number of D/A conversions in the QSC control was 303.
The classic discrete time controller also performs 500 D/A conversions.

Taking into account what happens from t = 3 to t = 5 (during the steady
state), it can be seen that the QSC only performs 29 A/D conversions in the
postition, 44 A/D conversions in the angle and 76 D/A conversions while the
discrete time controller performs 200 conversions in each variable. The reduc-
tion of the computational costs is evident.
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Figure 8.6: Pendulum angle with QSC and Classic Digital Control.

These advantages are paid with more calculations at the controller (the num-
ber of changes in the internal variables is 1600 against the 500 in the discrete
time controller). However, the time required to perform A/D and D/A conver-
sions is always much bigger than the time used for a simple calculation.

Anyway, the number of calculations at the controller can be also reduced
using a different realization. An interesting alternative is to use a diagonal –or
block-diagonal– evolution matrix Ac. In this way, the QSS simulation becomes
much more efficient. On one hand, the number of changes in the quantized
variables is reduced. On the other hand, each transition involves calculations
only in the state which is actually changing (one of the most important features
of QSS simulation is that it exploits the sparsity properties). In this example,
the use of a block diagonal controller reduces the number of calculations to 547
in 5 seconds obtaining a similar performance.

It is also interesting to observe that the fastest pole of the closed-loop system
is placed at 43. Thus, the mean sampling frequencies in the QSC during the
steady state are below the system bandwidth. Thus, the QSC scheme works
violating the Nyquist frequency. It is well known that a sampled data system
working below that frequency will be unstable. QSC can work using that frequency
because the equilibrium point in the QSC scheme is in fact unstable (but the
solutions are ultimately bounded).

Finally, it should be mentioned that the use of Inequality (8.9) gives a quite
conservative bound in this case. The error bound in x(t) is 3.08, which is about
300 times bigger than the error observed in Figure 8.4. Anyway, a Lyapunov
analysis gives a bound of 9.6× 109, which is completely useless for the design.
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8.4 Matching the Converters

The difference between the continuous designed control and the discrete event
implementation is due to the effects of the quantization introduced by the state
quantization and the presence of A/D and D/A converters. However, in some
cases, the effects of quantization in the D/A converters can be eliminated.

The input of the D/A converters is given by

yc = gc(qc, uc)

Since qc and uc are quantized variables, gc has a finite domain and then yc can
only take values in a finite set. This set is determined by the quantization levels
in qc and uc and by function gc. If that quantization values are chosen so that
the mentioned set is a subset of the quantization values of the D/A converters,
these converters will not introduce any error.

One of the cases where D/A errors can be avoided is when the output vari-
ables of the controller coincide with state variables of that system. In this case
the mentioned error can be eliminated by choosing the same quantization in
these state variables and in the corresponding D/A converters.

In the Example 7.2 a very conservative result was obtained. It is known
from Chapter 4 that Lyapunov–based analysis usually arrive to conservative
estimations.

However, in this case, the problem is also due to the fact that it was not
taken into account that the D/A converter was perfectly matched. In fact, here
the controller output function was

yc(t) = −xc(t)− uc(t) (8.10)

and the quanta were chosen equal to 0.018 in all the variables. Then, qc(t)
(the quantized version of xc), uc(t) and up(t) can only take values in the set
{. . . ,−0.036,−0.018, 0, 0.018, 0.036, . . . }.

Taking into account (8.10), it results that yc can only take values in the same
set. Since up(t) also takes those values, there is no quantization effect from yc
to up.

Despite these concepts could be applied to general control systems, they are
only really useful when the controller output equation is linear. Otherwise, the
converter matching would require the use of non–uniform quantization.

8.5 Computational Costs Reduction in QSC

In this chapter some theoretical advantages were shown. These advantages
result in the improvement of the stability and the dynamic response of the QSC
with respect to discrete time approximations. It was already mentioned and
illustrated with examples that QSC also reduce the computational costs but
this fact was not explained yet.

While traditional discrete time controllers perform calculations at regular
intervals, QSC controllers only do it when a variable becomes greater (or less)
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than some threshold. This fact can be seen as a first intuitive reason for that
computational costs reduction.

For instance, in Example 7.1 (page 119), when the trajectory arrives near the
origin the controller performs about one calculation per second. Any discrete
time controller using that sampling rate (and even a rate 10 times faster) will
diverge for the same initial condition of xp = 10 due to problems of finite escape
time2.

Similar remarks can be done regarding the inverted pendulum control of
Example 8.2 where the sampling rate near the equilibrium was below the Nyquist
frequency.

The following example illustrates better the reduction of the computational
costs in the QSC scheme.

Example 8.3. Sampling rate reduction in QSC.
Consider the first order system

ẋ = sgn(x) + u

Suppose that the controller can measure the variable x, but the A/D converter
only produces even numbers (-2, 0, 2, 4, ...) giving the nearest to its analog
input. When x is in the shaded region of Figure 8.7 (between -1 and 1) the
control system sees the value 0.

1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012
1234567890123456789012 x

1−1−2 20

Figure 8.7: Invisible zone due to the quantization

Consider that the goal is keeping the value of x between -2 and 2. The time
to go from 1 to 2 (or from -1 to -2) with u = 0 is t1 = 1. This implies that it is
impossible to find a discrete time controller achieving the proposed goal with a
sampling period greater than t1. The reason of this is that the controller cannot
distinguish if the value of x is positive or negative when it is in the shaded region
and then, the sign of u could be the same as the sign of x and the trajectory will
abandon the desired region before the time t1.

However, using QSC, the time between samplings can be done arbitrarily big.
For instance, consider the following static control law

yc = −uc(1 + a)

where a is a positive constant. When x goes away of the shaded region the
controller immediately detects the change and it inverts the sign of the derivative.

2The phrase “finite escape time” is used to describe the phenomenon that a trajectory
escapes to infinity at a finite time [23]
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The new speed on x is a. Then, x enters again the shaded region and the
time to reach the origin is 1/a. After that, x goes to the other bound of the
shaded region, but with a new speed of 2 + a. When x leaves the shaded region
again the controller inverts the sign of the derivative and we obtain a cyclic
behaviour where x oscillates between 1 and -1. The time between successive
A/D conversions is

t2 =
1
a
+

1
2 + a

It is clear that taking small values for the parameter a, t2 can be done arbitrarily
big. Then, with this implementation the number of calculations in the controller
and the size of the oscillation can be considerably reduced.

Unfortunately, the QSC implementation is not exact. In fact, there are
delays related to the presence of converters and the digital processor. In this
last example, these delays must be smaller than the minimum sampling period
t1 = 1 in order to obtain the proposed goal of keeping x between 2 and -2.

One could think that if it is possible to implement a QSC achieving such
minimum delay, then it would be possible to implement a discrete time controller
using that sampling period. However, the delay in the QSC system is only the
time required to detect the error and to perform the D/A conversion because the
calculations can be done before the error is detected. This is possible because
the QSC controller knows that its next input value can only adopt two different
values.

In the example, if the last detected value of x was 0, then 2 and -2 are the
only two values that the new input can adopt. Thus, the controller has two
possible output values that could be calculated before the detection of the new
input value. For a dynamic controller similar ideas can be applied.

A classic discrete time controller during each sampling period must perform
the A/D conversion, calculate the next state and output of the controller and
then perform the D/A conversion. The time required to finish all these tasks is
much greater than the delay in the QSC scheme.



Chapter 9

Epilogue

As it was mentioned in the introduction, we see this Thesis as a contribution
to the development of a theory about discrete event approximation of ordinary
differential equations.

New theories –or paradigms, according to Khun– can provide better solutions
to some old problems and open many new problems on one hand. On the other
hand, they usually cannot give an answer to all the old problems involved in
the area.

Thus, this Thesis should not be seen as an attempt to replace existing dis-
crete time numerical methods.

Taking into account that classic numerical methods have been being studied
for more than 330 years (Euler’s method was first described in 1768 [18]), it is
useless to expect to obtain the magic solution after only 3 years of work starting
from a completely new phylosophy.

The best which can be expected is that the old problems as well as the new
problems open by this work are progressively solved in the future so that the
theory starts to give good solutions in more and more cases.

Considering these remarks, this last chapter will start ennumerating some
of the old problems which are still unsolved by the new theory. Then, many
of the new open problems will be mentioned together with some ideas to solve
them. Finally, we shall present the general conclusions.

9.1 Unsolved Problems

• Stiff Systems. The most important unsolved problem is probably the one
related to the simulation of stiff systems. In fact, this is one of the most
difficult problems in the area of numerical integration.

Let us introduce it with a simple example:

Example 9.1. QSS simulation of a stiff system.
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Consider the second order ODE given by

ẋ1 = 100 · x2

ẋ2 = −100 · x1 − 10001 · x2 + U(t) (9.1)

The eigenvalues are −1 and −10000 which means that the system, in spite
of its simplicity, is stiff.

The first 10 seconds of the system solution were simulated with the QSS–
method using quantum and hysteresis sizes of 1×10−2 and 1×10−4 in x1

and x2 respectively. According to (4.50), this quantization ensures that the
error in x1 is bounded by 0.01 while the error in x2 is bounded by 0.0003.

The initial conditions were both zero and the input was a step U(t) = 100.
The simulation was completed after 100 and 200 internal transitions in the
quantized integrators which calculate x1 and x2 respectively. The trajectory
of x2 is shown in Figures 9.1–9.2.
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Figure 9.1: QSS simulation of System (9.1)

The stiffness of this systems is clear when the time scales of Figures 9.1
and 9.2 are compared. In this case, the behavior of the QSS–method is
amazing. It just adapted the step size in a very natural way and performed
the simulation in a few steps.

Notice that the number of transitions performed can be calculated here by
dividing the trajectory amplitude by the quantum.

If we look at this result, we may think that the QSS–method is the best
solution for stiff systems: it is an explicit method which allows simulating
a stiff system much faster and more efficiently than what the most complex
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Figure 9.2: Start in the QSS simulation of System (9.1)

implicit variable–step algorithms can do. This idea seems to be coherent
with the fact that the QSS–method is always “stable”. Of course, if a
simulation method were so good, it would probably change all the existing
theory of numerical integration.

However, the meaning given to the word “stable” should not be forgotten.
The QSS–method does not ensure stability but ultimately boundedness of
the solutions and, unfortunately, this is the main problem it has with stiff
systems.

Then, let us see what happen if a small modification in the input amplitude
is introduced. When its value is changed from U(t) = 100 to U(t) = 99.5
a problem appears.

In the first 5 seconds of simulation the quantized integrator which calcu-
lates x1 performed 100 internal transitions (the same as before) but the
other calculated a total of 25057 transitions. The trajectory of q2 is shown
in Figures 9.3–9.4.

In this simulation, the result is almost the same than before. The error,
in agreement with the theoretical prediction, is bounded, but the number of
calculations is huge.

The reason of this is the appearance of very fast oscillations in x2 which
ruined the wishes of having an explicit, efficient, stable and reliable method
for stiff system. If those oscillations were not present, the number of
transtions could have been calculated dividing the trajectory amplitude by
the quantum. However, this is not possible here.
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Figure 9.3: QSS simulation of System (9.1) with U = 99.5
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Figure 9.4: Detail of Fig.9.3

Although their presence may be surprising, the oscillations were alreay
seen along the Thesis. Indeed, they are not different from the oscillations
seen in Figure 4.1. However, the oscillations there were not a problem
since their period was not much shorter than the system settling time.

Unfortunately, the oscillation frequency is always related to the system
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speed –i.e. the location of the eigenvalues– which is a problem in the case
of stiff systems. Here, there may be oscillations due to the fast mode which
provoke several transitions before the slow modes reach their steady state.

When it comes to the solution of this problem, there is not a final answer
yet.

An interesting modification which works in many cases is based on the use
of backward integration concepts. The idea is looking at the future values
of the quantized variables to calculate the derivatives which determine the
time advances.

Taking into account that a future quantized variable value is known (if
the actual value is Qj , in the next transition it can only take two different
values: Qj+1 or Qj−1), it is not necessary to solve implicit equations.
Here, backward integration does not imply using iteration rules.

Anyway, to determine if the next quantized value is the upper or the lower
one, the sign of function fi (which determines the derivative in both cases)
must be evaluated. If fi evaluated at Qj+1 is positive, then Qj+1 should
be the next value. If fi at Qj−1 is negative, then the next value is Qj−1.
If none of these cases are true, it can be ensured that between Qj−1 and
Qj+1 there is a point in which fi = 0 and then it can be directly put
σ = ∞.

A remark here is that the quantized integrators have to be able to evaluate
fi, which means that the quantized integrators should not be separeted
from the static functions which calculate the derivatives.

Although the resulting atomic models are more complex since they com-
bine the features of a quantized integrator and a static function, the simu-
lation becomes more efficient since the number of events is reduced to less
than the half (the coupled model does not have to transmit events from
the static functions to the quantized integrators and from the quantized
integrators to the static functions which compute their own derivatives).

This idea was implemented and the simulation of the Example 9.1 was
repeated with U(t) = 99.5. Now, the number of transitions was the same
than using the QSS–method with U(t) = 100, i.e. without oscillations.

However, it was not proved yet that this idea constitute a general solution
for stiff systems. In high order systems this quantization in advance is not
straightforward because after each transition many sets of possible next
values should be analyzed in order to determine which is the appropriate
one.

Despite the fact that the quantization–based methods can give an ap-
propriate and efficient solution in many stiff systems, the problem is still
open.

• Quantum Choice. Another open problem in these methods has to do with
the choice of the quantization. Although some algorithms and formulas
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were provided allowing to choose the quantum according to desired error,
this is not a completely satisfactory solution.

Except in applications were it is neccessary to ensure some error bound
which justifies doing a precise analysis before performing the simulation,
nobody wants to calculate a Lyapunov function or the matrices of eigen-
vectors and eigenvalues to determine the quantum to be used.

One possible solution may consist in providing the computer with the
necessary tools to calculate such matrices and to choose automatically the
quantum before simulating. However, a much more interesting idea would
consist in doing something similar to what the variable step methods do.
This would lead to something like adaptive quantization.

• Accuracy. Another problem of the methods is the accuracy. There are
many applications in which the error given by the QSS2–method may be
too big. Methods of order greater than 2 satisfying the same properties
of QSS and QSS2 can be easily imagined (with higher order quantization
fuctions).

However, there is a problem here. The DEVS model of a higher order
quantized integrator should calculate the time advance after each external
transition. To do that, it has find the roots of a polinomial equation
like (5.10). It can be seen that the degree of this equation is the same
as the order of the method. Thus, the solution becomes more and more
complicated as well as the order increases.

• Real–Time QSC. When it comes to QSC, there is a problem which was
not mentioned yet. It was already said that the asynchronous convert-
ers work much faster than the common ones. It is also known that the
computational costs are reduced in QSC and the calculations inside the
controller are simpler.

Anyway, the fact that the QSC imprementation is also a problem of real–
time simulation should not be forgotten.

The goal of real time simulation is not only to obtain a good approximation
but also to get the result before the time expires. In order to achieve this,
we must ensure that all the calculations involved in a single step do not
take more time that what is allowed.

In this context, the accuracy is often sacrified in order to obtain the results
in the allowed time [15]. Thus, it is very important to have a bounded
number of calculations at each step.

This is not a problem for a QSS simulation model since each step only
involves a couple of transitions and the number of calculation is approxi-
mately constant.

However, the allowed time is what is not constant here and this fact can
constitute a problem in some realistic applications.
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Here, some remarks included in Section 8.5 may provide a partial solution
but a final answer will also require from experimental implementations.

9.2 Open Problems and Future Research

Besides the unsolved problems already mentioned (the simulation of stiff sys-
tems, the quantum choice and the accuracy in QSS and QSS2 as well as some
aspects of the QSC implementation) there are many new problems which were
opened by the new methodologies.

One of the most interesting advantages shown by the QSS and QSS2 methods
is the highly efficient sparsity exploitation. Taking into account that the method
of lines as well as other methods for approximating partial differential equations
(PDEs) result in sparse ODEs, the use of QSS and QSS2 in these cases may
constitute a very interesting alternative.

In fact, this is what was done in the transmission line examples (Examples 5.1
and 6.1 in pages 71 and 84 resectively) where the second case was a partial
differential algebraic equation (PDAE).

Although in the mentioned examples very good results were obtained, a
deeper research is needed in this direction. In fact, the use of the approximating
methods often arrives to stiff ODEs and then this problem should be solved first.

When it comes to DAEs, the higher index problems should be still taken
into account. It was mentioned that the Pantelides’algorithm can be applied to
reduce the index to 1 and then the systems can be simulated with the developed
methods. However, a more efficient way might be found following the remarks
of Section 6.5.

Although it was mentioned that stability is not a problem here and the errors
in the calculation of implicit variables only increase the error bound, this fact
should be formally proven. It is also important to find a relationship between
the tolerance in the implicit equation solution and the increment in the error
bound.

With respect to hybrid systems simulation, it comes to be necessary to ex-
tend the theoretical stability and error bound analysis to general discontinuous
systems in order to establish conditions which ensure the correctness of the sim-
ulation. What was done in the DC-AC inverter example (page 92) –where the
error bound was estimated according to Eq.(4.50)– might constitute a first step
in this direction which could be extended to general systems with only time
events.

In the approach presented, only hybrid systems whose continuous part does
not change its order were considered. It would be interesting to consider also
more general cases including variable order ones.

Another interesting problem is the parallelization of the methods. The par-
allel implementation of QSS and QSS2 in ODE and DAE seems to be straight-
forward since the division into subsystems is clear. If we consider each pair
composed by a quantized integrator and the corresponding static function as a
subsystem, the traffic of messages between different subsystems is not big.
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Moreover, in QSS the value carried by a message differ from the previous
in a quantum. Then, it can be transmitted using only one bit saying if the
quantized variable increased or decreased. This fact may constitute a very
important advantage in real–time simulation (in off–line simulation the message
should also carry information about the time).

Coming back to the QSC method, it is known that the real–time implementa-
tion does not exactly simulate the QSS model (because of the already mentioned
problems of delays and round–off). Although the round–off problems do not re-
sult important, the delays do modify significantly the QSC system behavior.

Thus, it is important to study their effect on the stability and error bound.
That study should also include a characterization of the delays which would
require some experimental work in real applications.

When it comes to theoretical aspects of QSC, the most important properties
were proven for general nonlinear time varying systems and for LTI cases.

There is an intermediate case which should be taken into account which
corresponds to Linear Parameter–Varying (LPV) plants. The Example 7.2
(page 124) in fact corresponds to that category and although a Lyapunov anal-
ysis could be done for that case, the result was very conservative. If the geo-
metrical analysis for LTI systems in Section 8.2 were extended for LPV plants,
less conservative results might be obtained.

It is also important to study the way in which QSC affects not only the sta-
bility, region of attraction and error bound but also other performance measures
(mean square error, overshoot, etc.).

Finally, it should be taken into account that QSS are just a small class of
the wide family of DEVS models. With the use of more general DEVS models
the study of optimal conditions on asynchronous controllers could be eventually
performed.

9.3 General Conclusions

This Thesis introduced a wide variety of contributions to the development of a
new theory about discrete event approximations to differential equations.

Two approximating methods were provided –that were called QSS and QSS2–
which, based on quantization ideas, map continuous systems into DEVS models.
Here, not only ODEs but also DAEs, Hybrid Systems and Bond Graphs were
considered.

The first order method –QSS– was also applied to approximate continuous
controllers for digital control applications. There, also making use of asyn-
chronous sampling, a new digital asynchronous control scheme was obtained.
This scheme –which was called QSC– has the remarkable feature of avoiding
the time discretization.

Besides formulating the methods, mathematical tools –based on perturba-
tions theory– were developed in order to analyze theoretical properties of the
approximations.
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In the more general cases (nonlinear and time varying), those tools were just
the adaptation of classic Lyaunov analysis. In the case of LTI systems, in order
to avoid conservative results, a new way to analyze the effects of perturbations
was proposed. These new tools can also be used for much more general purposes
than the presented in the context of this work.

The new methodologies show many advantages (and also disadvantages)
with respect to the classic discrete time approximations as it can be expected
from the fact that they are based on completely different principles.

From a theoretical point of view, the most remarkable advantages concern
the stability and error bound properties. On one hand, the simulation meth-
ods (QSS and QSS2) are always stable1 in LTI systems. This is important
considering that the methods are explicit and non–adaptive.

On the other hand, Inequality (4.50) gives a closed formula for the global
error bound in those methods. This is another advantage since discrete time
algorithms do not have such kind of expressions.

All these facts have their correspondence in QSC. There, it is also very
important the conservation of the region of attraction in nonlinear and time
varying systems.

Another advantage which can be found in this case is that the effects of the
A/D and D/A converters can be taken into account and bounded at the design
stage.

When it comes to practical advantages, one of the most importants is the
way in which the QSS and QSS2 methods exploit sparsity due to the fact that
each integrator runs independently.

In DAE integration, the iterations to solve the implicit equations do not
have to be performed in every step. In this way, the methods avoid a big
number of calculations. Taking into account this feature and the fact that
each step only involves calculations in some state variables, we conclude that
the quantization–based approximations may constitute a powerful tool to solve
sparse DAE systems.

Here, it is also remarkable the simplicity in which block diagrams containing
algebraic loops can be simulated. Although the computational efficiency of this
block oriented methodology is not optimal, it is a systematic methodology with
straightforward implementation in any DEVS simulation environment which
still exploits sparsity and the other advantages of quantization–based methods.

As it could be expected of a discrete–event approximation, the most im-
portant reduction of computational costs was observed in hybrid systems. The
facilities to deal with discontinuities constitutes one of the most important ad-
vantages of the methodologies with respect to classic discrete time algorithms.

In the examples analyzed, the methods showed a performance clearly supe-
rior to all the complex implicit, high order and variable step methods imple-
mented in Simulink. Taking into account that QSS as well as QSS2 are very
simple, low order and explicit algorithms with fixed quantization size; it is quite
natural to think that future more complex discrete event methods may offer an

1in fact they have ultimately bounded solutions
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unexpected high performance.
With respect to the practical advantages of QSC, it was already mentioned

the reduction of the computational costs as a result of the asynchronous sam-
pling scheme. Here, the converters only take samples when it is necessary (i.e.
when they differ from the previous value in a given quantity). Similarly, the
controller internal states are recalculated under the same condition. Thus, QSC
can be thought as a control strategy which only acts when it has to.

Although the principles of QSC implementation seems to be quite difficult (at
least for people who are not familiar with the DEVS formalism) its programming
is rather simple. In fact, the only thing which has to be done is to implement the
routines explained in Section 2.4 and to execute them in real time. Moreover,
there are tools like PowerDEVS [51] which do it automatically. With this tool,
for instance, the problem is reduced to build a block diagram model of the
controller and then to execute the simulation with the real–time settings.

Another advantage is that for QSC implementation, classic design techniques
for continuous controllers can be applied (for instance, in the Example 7.1 in
page 119, the original continuous controller was designed via exact lineariza-
tion [23]). Moreover, if Lyapunov–based design techniques are used, then the
algorithms described in Sections 7.5 and 7.7 can be easily applied.

Another fact which should be remarked is related to the information used
by the QSC controller. Once the controller gets its first input value, the asyn-
chronous A/D converters can transmit the following values using only one bit
per conversion with the sign of the change. In a similar way –provided that there
is some matching between the internal quantizers and converters– the controller
outputs can be transmitted with only one bit each time.

This is a very important advantage in distributed control systems, where the
information has to be transmitted between sensors, controllers and actuators.
Although there are some results based on quantization to reduce the amount
of information [12], the use of only one bit was never achieved with other non–
trivial control schemes.

Finally, and leaving aside the advantages, disadvantages and unsolved prob-
lems, the essence of this Thesis is simply a new and formal way of conceiving
the approximation of differential equations, in which we broke the principle that
the discrete states must change simultaneously in a synchronous way.
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Appendix A

List of Abbreviations

• BG – Bond Graph

• CCS – Continuous Control System

• DAE – Differential Algebraic Equation

• DEVS – Discrete EVent System Specification

• F.O.Q. – First Order Quantizer

• LTI – Linear Time Invariant

• PDE – Partial Differential Equation

• QBG – Quantized Bond Graph

• QS – Quantized System

• QSC – Quantized State Control

• QSS – Quantized State System

• QSS2 – Second Order Quantized State System

• ODE – Ordinary Differential Equation

• TI – Time Invariant
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Appendix B

Pseudo–Codes for DEVS
Simulation

The following pseudo-code corresponds to a simulator associated to a generic
atomic model.

DEVS-simulator
variables:

tl // time of last event
tn // time of next event
s // state of the DEVS atomic model
e // elapsed time in the actual state
y = (y.value, y.port) // current output of the DEVS atomic model

when receive i-message (i, t) at time t
tl = t − e
tn = tl + ta(s)

when receive *-message (*, t) at time t
y = λ(s)
send y-message (y, t) to parent coordinator
s = δint(s)
tl = t
tn = t+ ta(s)

when receive x-message (x, t) at time t
e = t − tl
s = δext(s, e, x)
tl = t
tn = t+ ta(s)

end DEVS-simulator

The routine corresponding to a coordinator can be writen as follows:

DEVS-coordinator
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variables:
tl // time of last event
tn // time of next event
y = (y.value, y.port) // current output of the DEVS coordinator
D // list of children
IC // list of connections of the form [(di, port1), (dj , port2)]
EIC // list of connections of the form [(N, port1), (dj , port2)]
EOC // list of connections of the form [(di, port1), (N, port2)]

when receive i-message (i, t) at time t
send i-message (i, t) to all the children

when receive *-message (*, t) at time t
send *-message (*, t) to d∗

d∗ = arg[mind∈D(d.tn)]
tl = t
tn = t+ d∗.tn

when receive x-message ((x.value, x.port), t) at time t
(v, p) = (x.value, x.port)
for each connection [(N, p), (d, q)]
send x-message ((v, q), t) to child d

d∗ = arg[mind∈D(d.tn)]
tl = t
tn = t+ d∗.tn

when receive y-message ((y.value, y.port), t) from d∗

if a connection [(d∗, y.port), (N, q)] exists
send y-message ((y.value, q), t) to parent coordinator

for each connection [(d∗, p), (d, q)]
send x-message ((y.value, q), t) to child d

end DEVS-coordinator

Finally, the root coordinator executes the following routine:

DEVS-root-coordinator
variables:

t // global simulation time
d // child (coordinator or simulator)

t = t0
send i-message (i,t) to d
t = d.tn
loop
send *-message (*,t) to d
s = δint(s)
t = d.tn

until end of simulation
end DEVS-root-coordinator
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