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1. INTRODUCTION

The DEVS formalism was developed by Zeigler
in the mid–seventies Zeigler (1976); Zeigler et al.
(2000).

Being a general system theoretic based formalism,
DEVS allows one to represent all the systems
whose input/output behavior can be described by
sequences of events. Thus, discrete event systems
modeled by Finite State Automatas, Petri Nets,
Grafcets, Statecharts, etc., can be also represented
by DEVS models (Zeigler and Vahie, 1993). More-
over, discrete time systems can be also represented
by DEVS (Zeigler et al., 2000).

The generality of DEVS converted it into a widely
used language to describe and to simulate many
classes of discrete systems. A novel family of nu-
merical integration algorithms was also developed
allowing the simulation of continuous systems in
term of DEVS (Kofman, 2004; Cellier and Kof-
man, 2006), exhibiting important advantages over
discrete time approximations, mainly in the sim-
ulation of hybrid systems.

Consequently, many DEVS–based modeling and
simulation software tools have been developed in
recent years (Kim, 1994; Cho and Cho, 1997;

Zeigler and Sarjoughian, 2000; Wainer et al., 2001;
Filippi et al., 2002; Kofman et al., 2003).

The mentioned generality of DEVS comes from
the fact that it permits modeling system with
a set of infinite possible states, and where the
new state after an event arrival may depend on
the continuous elapsed time in the previous state.
Models showing this complex behavior cannot be
represented by any other discrete formalism.

However, being such a general purpose modeling
tool has also its negative consequences. In fact,
it is difficult to perform any kind of theoretical
analysis on DEVS models. Also, modeling with
DEVS is not a simple task. Anyway, automatic
tools that translate finite state machines and Petri
Nets into DEVS have been developed (Jacques
and Wainer, 2002; Zheng and Wainer, 2003).

Another drawback of DEVS is that it is only
formally defined for deterministic systems. Al-
though some stochastic models where simulated
with DEVS (Kofman and Junco, 2005), there is
not a formal theoretic support for this kind of
systems under the DEVS formalism.

Stochastic models play a fundamental role in
discrete event system theory. In fact, any sys-
tem involving uncertainties, unpredictable hu-



man actions and machine failures requires
a non–deterministic treatment. Examples of
stochastic discrete event formalisms are Markov
Chains, Queuing Networks (Cassandras, 1993)
and Stochastic Petri Nets (Ajmone Marsan et al.,
1995). These tools permit analyizing and simulat-
ing stochastic models in several applications.

This paper is aimed to extend the DEVS for-
malism for modeling of stochastic systems. To
this end, we introduce a new formalism called
STDEVS. Taking into account that DEVS can
work with sets of infinte possible states, we shall
make use of Probability Space Theory to define
the new formalism.

We also prove that STDEVS is a generalization of
DEVS, i.e., DEVS is a particular case of STDEVS.
This fact will allow us to combine DEVS and
STDEVS models in coupled models of combined
stochastic and deterministic systems.

Finally, we provide some simple examples to illus-
trate the usage of the new formalism.

The paper is organized as follows: in Section 2 we
recall the basic concepts of the DEVS formalism
and probability space theory. Then, in Section
3 we introduce the STDEVS formalism and we
study its relation with the DEVS formalism. In
Section 4 we present some simple examples and
finally, in Section 5, we sketch some conclusions
and discuss about future directions of this work.

2. PRELIMINARIES

2.1 DEVS Formalism

A DEVS model processes an input event trajec-
tory and –according to that trajectory and to its
own initial conditions– provokes an output event
trajectory.

Formally, a DEVS atomic model is defined by the
following structure:

M = (X, Y, S, δint, δext, λ, ta),

where

• X is the set of input event values, i.e., the
set of all the values that an input event can
take;

• Y is the set of output event values;
• S is the set of state values;
• δint, δext, λ and ta are functions which define

the system dynamics.

Each possible state s (s ∈ S) has an associated
time advance calculated by the time advance func-
tion ta(s) (ta(s) : S → R

+
0 ). The time advance

is a nonnegative real number saying how long the

system remains in a given state in absence of input
events.

Thus, if the state adopts the value s1 at time t1,
after ta(s1) units of time (i.e., at time ta(s1)+ t1)
the system performs an internal transition, going
to a new state s2. The new state is calculated as
s2 = δint(s1), where δint (δint : S → S) is called
internal transition function.

When the state goes from s1 to s2 an output
event is produced with value y1 = λ(s1), where
λ (λ : S → Y ) is called output function. Functions
ta, δint, and λ define the autonomous behavior of
a DEVS model.

When an input event arrives, the state changes
instantaneously. The new state value depends not
only on the input event value but also on the
previous state value and the elapsed time since the
last transition. If the system goes to the state s3

at time t3 and then an input event arrives at time
t3 +e with value x1, the new state is calculated as
s4 = δext(s3, e, x1) (note that ta(s3) > e). In this
case, we say that the system performs an external
transition. Function δext (δext : S×R

+
0 ×X → S) is

called the external transition function. No output
event is produced during an external transition.

DEVS models can be coupled. One of the most
used coupling schemes for DEVS models includes
the use of ports. Here, the external transition
functions of the atomic models distinguish the
value and arrival port of the events to calculate
the next state. Similarly, the output functions pro-
duce output events which carry a value through
a given port. Then the coupling basically consists
in connections from output ports to input ports
of different atomic models.

2.2 Probability Spaces

We recall here some concepts of probability spaces
(Gray and Davisson, 2004).

A sample space S of a random experiment is a
set that includes all the possible outcomes of the
experiment.

An event space (also referred as sigma–field or
sigma–algebra) F of the sample space S is a
nonempty collection of subsets of S. The entries
F ∈ F are called events. In order not to mix the
concepts of event as a change on a system and this
new definition of event, we shall refer to F as a
sigma–field.

A sigma–field cannot be any arbitrary collection
of subsets of S. A collection F must satisfy the fol-
lowing properties in order to constitute a sigma–
field:



• if F ∈ F then F c ∈ F (where F c is the
complement of F in S).

• if Fi ∈ F for i = 1, . . . ,∞, then also
∞⋃

i=1

Fi ∈ F

Notice that since F c ∪ F = S, the last two
conditions imply that S ∈ F and also φ ∈ F .

A particular sigma–field of S is the collection of
all the subsets of S (this is called the power set
of S). Another sigma–field of S is the one formed
only by the sets S and φ.

Let G be a particular collection of subsets of the
sample space S. The sigma–field generated by G,
denoted M(G), is the smallest sigma–field that
contains all the elements of G.

A pair (S,F) consisting on a sample space S and a
sigma field F of subsets of S is called a measurable
space.

A probability measure P on a measurable space
(S,F) is an assignment of a real number P (F ) to
every member F of the sigma-field, such that P
obeys the following rules,

• Axiom 1. P (F ) ≥ 0 for all F ∈ F .
• Axiom 2. P (S) = 1.
• Axiom 3. If Fi ∈ F , i = 1, . . . ,∞ are disjoint

sets, then

P (
∞⋃

i=1

Fi) =
∞∑

i=1

P (Fi)

When F = M(G) (the sigma field is generated
from a collection G), the knlowledge of P (G) with
G ∈ G defines function P for every F ∈ F .

Finally, a probability space is defined as a triple
(S,F , P ) consisting of a sample space S, a sigma–
field F of subsets of S, and a probability measure
P defined for all members of F .

Synthesizing, for every F ∈ F , P (F ) expresses
the probability that the experiment produces a
sample s ∈ F ⊆ S.

3. STDEVS FORMALISM

3.1 Definition of STDEVS

We define a STDEVS atomic model as a 8–uple

M = (X, Y, S,G, Pint, Pext, λ, ta)

where X , Y , S, λ and ta have the same definition
than that of DEVS.

G is a collection of subsets of S. Defining, F =
M(G), the pair (S,F) form a measurable space.

The internal transition probability function Pint :
S ×F → [0, 1] is defined so that, for every s ∈ S,

function Pint(s, ·) is a probability measure on the
space (S,F). Notice that since F is the sigma field
generated by G, it is enough to provide Pint(s, G)
for every G ∈ G.

Similarly, the external transition probability func-
tion Pext : S × R

+
0 × X ×F → [0, 1] is defined so

that, for every s ∈ S, e ∈ R
+
0 and x ∈ X , function

Pext(s, e, x, ·) is a probability measure on the space
(S,F). As before, Pext is completely determined
defining Pext(s, e, x, G) for every G ∈ G.

The behavior of the STDEVS model is similar to
that of the DEVS model. The only difference is
that the transition functions are not deterministic.

After an internal transition, the new state s̃ is
not determined by an internal transition function.
Instead, Pint(s, G) gives the probability that the
new state s̃ belongs to the set G ∈ G, provided
that the previous state was s.

Similarly, Pext(s, e, x, G) calculates the probabil-
ity that the new state s̃ belongs to G ∈ G after
receiving the input event x and provided that the
elapsed time in the previous state s was e.

3.2 Coupling of STDEVS models

We define a coupled STDEVS model in the same
way that coupled DEVS models are defined.

Conjecture 1. Closure under coupling

The coupling of n STDEVS models behaves like
an equivalent atomic STDEVS model.

3.3 DEVS and STDEVS

Theorem 1. DEVS and STDEVS

Any DEVS model MD = (X, Y, S, δint, δext, λ, ta)
can be represented by an equivalent STDEVS
model MS = (X, Y, S,G, Pint, Pext, λ, ta).

PROOF. Define the collection G as the power
set of S (i.e., the set of all subsets of S). Thus,
F = G.

Then, for every F ∈ F , s ∈ S, x ∈ X and e ∈ R
+
0

we define

Pint(s, F ) �
{

1 if δint(s) ∈ F

0 otherwise
(1)

and

Pext(s, e, x, F ) �
{

1 if δext(s, e, x) ∈ F

0 otherwise
(2)

We shall prove first that Pint(s, ·) and
Pext(s, e, x, ·) are well defined, this is, they
are probability measures on (S,F). To prove this,



we need to show that they satisfy Axioms 1,2 and
3.

Axiom 1 is satisfied since Pint and Pext can only
take the values 0 and 1.

Since δint(s) ∈ S and δext(s, e, x) ∈ S, it follows
that Pint(s, S) = 1 and Pext(s, e, x, S) = 1. Thus,
Axiom 2 is also accomplished.

Let us take and arbitrary sequence of disjoint sets
Fi ∈ F . Notice that the element δint(s) can only
belong to one of these sets (it is also possible that
it does not belong to any of them).

If it belongs to one set, we have that

P (
∞⋃

i=1

Fi) = 1

since δint(s) belongs to the set union. On the other
hand

∞∑
i=1

P (Fi) = P (Fj) = 1

where Fj is the only set containing δint(s). Thus,
Axiom 3 is satisfied.

In case δint(s) does not belong to any of the sets,
we have

P (
∞⋃

i=1

Fi) = 0 =
∞∑

i=1

P (Fi)

Thus, Axiom 3 is also satisfied. Then, Pint(s, ·) is a
probability measure on (S,F). Similarly, it results
that Pext(s, e, x, ·) is a probability measure on the
same space.

Notice that, being F the power set of S, the subset
formed only by the element δint(s) belongs to F .
Thus, Pint(s, {δint(s)}) is defined, and according
to (1) it satisfies Pint(s, {δint(s)}) = 1. Thus, when
the STDEVS is in the state s it will evolve to
δint(s) with probability 1.

Similarly, the subset {δext(s, e, x)} ∈ F and then
Pext(s, e, x, {δext(s, e, x)}) is defined, and accord-
ing to (2) it is equal to 1. Consequently, when the
STDEVS receives the event x afer staying in state
s for e units of time, it will evolve to δext(s, e, x)
with probability 1.

Thus, the STDEVS model MS behaves exactly as
the DEVS model MD. �

This theorem proves that the DEVS formalism
can be seen as a particular case of STDEVS.

This allows us to couple and combine STDEVS
and DEVS models. For instance, when we have a
coupling of deterministic and stochastic models,
we can use DEVS to represent the former and
STDEVS for the latter cases.

3.4 STDEVS Simulation

The only difference between DEVS and STDEVS
is the way of calculating the new state after in-
ternal and external transitions. Thus, a STDEVS
simulation engine is esentially a DEVS engine
equipped with pseudo–random number generation
capability.

PowerDEVS (Kofman et al., 2003) for instance,
uses standard C++ libraries that contain a
pseudo–random routine that generates numbers
with uniform distribution. It is possible then to
simulate a STDEVS model in PowerDEVS by
using this routine to generate a pseudo–random
numbers at the transition functions, and then to
operate over them so that the resulting distribu-
tions coincide with those of Pint and Pext.

4. EXAMPLES

We present here three examples of atomic
STDEVS models. In the first one, the state (be-
longing to a continuous set)is randomly chosen
after the internal transtion. In the second one,
only one discrete component of the state is ran-
domly chosen (after the external transition) and
the internal transition is pure deterministic. In
the third example, the state is a combination of
discrete and continuous variables and it changes
randomly.

4.1 A random memoryless workload generator

Consider a system that repeteadly generates a
task. We shall assume that the time elapsed be-
tween consecutively generated tasks is random,
with exponential distribution. If we call τk to the
elapsed time between tasks k and k + 1, it results
that

P (τk < t) = 1 − e−a t (3)

where 1/a is the mean time to the next generated
task.

The following STDEVS model represents this be-
havior

MG = (X, Y, S,G, Pint, Pext, λ, ta)

where

X = φ, Y = {(1 out1)}, S = R
+
0

λ(s) = (1, out1), ta(s) = s

Notice that we represent each task as an event
carrying the value “1” by the output port out1.
Also, the state s is a nonegative number indicating
the elapsed time to the next output event.

For each t > 0, we define the set At � [0, t). We
define also G as the collection of all the sets At.



The sigma–field results F = M(G) = B(R) (i.e.,
the Borel space).

Then, the internal transtion probability function
is

Pint(s, At) = 1 − e−a t

In this way, the probability that the new state
belongs to the interval [0, t) is 1− e−a t, according
to (3).

Since the model does not receive events, we do not
need to define function Pext.

4.2 Workload Balancer

Consider a system that receives tasks and delivers
them according to a selected stochastic process
by its n output ports. Each task is represented
by an event carrying a natural number in the set
T = {1, 2, . . . , m} (there are m different tasks).

If we consider that the stochastic process is such
that every task can be equiprobably delivered by
any output port, then we can model this system
as

MB = (X, Y, S,G, Pint, Pext, λ, ta)
where

X = T × {inp1}, Y = T × {out1, . . . , outn},
S = T × {1, . . . , m} × R

+
0

λ(w, p, σ) = (w, outp), ta(w, p, σ) = σ

The state is a triplet s = (w, p, σ), where w
represents the last task received, p is the port
where that task is delivered and σ is the time
advance. After receiving an event with value xv,
the new state must be of the form (xv , p̃, 0).
Notice that p̃ is the only randomly chosen state
component.

We define G � T × {1, . . . , m} × {At}. Given an
element of G of the form G = (w̃, p̃, At) ∈ G, where
w̃ ∈ T and p̃ ∈ {1, . . . , m}, function Pext can be
defined as

Pext(s, e, x, G) �
{

1/n if (xv, p̃, 0) ∈ G

0 otherwise

Function Pint is defined as

Pint(s, G) �
{

1 if (w, p,∞) ∈ G

0 otherwise

notice that Pint(s, G) is a fully deterministic tran-
sition function and it sets the time advance to ∞.
In that way, no output event is provoked until a
new event arrives.

4.3 Workload generator revisited

Let us modify the first example so that the system
can generate m different tasks, where each task is

represented by an event carrying a natural number
in the set T = {1, 2, . . . , m}.
For this example, we consider that each task can
be equiprobably generated, and the choice of the
task is independant on the elapsed time. The
STDEVS model MG can be then changed in the
following way

X = φ, Y = T × {out1}, S = T × R
+
0

λ(w, σ) = (w, out1), ta(w, σ) = s

Now the state is a pair s = (w, σ), where w
represents the task and σ the time advance. Both
variables are randomly chosen after the internal
transition.

The set collection is now G � T ×{At}, and given
an element G = (w̃, At) ∈ G, with w̃ ∈ T , we have

Pint(s, G) =
(1 − e−a t)

m

In other words, Pint(s, G) says that the probability
that the new state has a duration σ̃ in the interval
[0, t] is e−a t and that the probability that the
task chosen is w̃ is 1/m (the joint probability of
both events is the product of them since they are
independent processes.)

5. CONCLUSIONS

We presented STDEVS, a new formalism for
modeling and simulation of stochastic discrete
event system. STDEVS is an extension of DEVS
that combines its system theoretic definition with
probability space theory. Consequently, it pro-
vides a formal framework to treat general stochas-
tic discrete event systems.

Future work should treat many open problems
and check the usefulness of the formalism in
complex applications.

Among the theoretical open problems, the conjec-
ture of closure under coupling should be formally
proven.

Another important issue is to provide conditions
for legitimacy of STDEVS models. DEVS models
are said to be illegitimate when they can perform
an infinite number of transitions in a finite in-
terval of time (Zeigler et al., 2000). Conditions
on functions δint and ta exist so that it cannot
happen. Finding similar conditions on Pint and ta
in STDEVS constitutes another open problem.

Finally, it would be useful to develop a system-
atic way to calculate the new state according to
Pint and Pext based on the generation of pseudo–
random uniform distributed numbers. Such a re-
sult would simplify the simulation of STDEVS on
standard DEVS simulation engines.



Regarding applications, we are interested in ex-
ploring the modeling and simulation of complex
Queuing Networks in interaction with continuous
systems. Here, STDEVS can provide a unified
framework since Continuous Systems can be ap-
proximated by DEVS (Cellier and Kofman, 2006).

Another application problem to be studied is
that of the simulation of Stochastic Differential
Equations, where STDEVS can be combined with
quantization based integration methods (Kofman,
2004).
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