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Ernesto Kofman a,1 Maŕıa M. Seron b Hernan Haimovich a

aCONICET; Departamento de Electrónica, Facultad de Cs. Ex., Ing. y Agrim., Universidad Nacional de Rosario, Riobamba
245bis, 2000 Rosario, Argentina

bCentre for Complex Dynamic Systems and Control (CDSC), School of Electrical Engineering and Computer Science, The
University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

We present a new control design method for perturbed multiple-input systems, which guarantees any desired componentwise
ultimate bound on the system state. The method involves eigenvalue/eigenvector assignment by state feedback and utilises a
componentwise bound computation procedure. This procedure directly takes into account both the system and perturbation
structures by performing componentwise analysis, thus avoiding the need for bounds on the norm of the perturbation. The
perturbation description adopted can accommodate for numerous types of uncertainties, including uncertain time-delays in
the feedback loop. We apply the method to an example taken from the literature to illustrate its simplicity and generality.
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1 Introduction

The design of any realistic control system must nec-
essarily take account of the effect of perturbations on
the closed-loop system performance. Perturbations may
arise from unknown disturbance signals, model uncer-
tainty, unknown time delays, component ageing, etc.
Typically, the exact value of a perturbation variable is
unknown but assumed to be bounded. In the presence of
bounded perturbations that do not vanish as the state
approaches an equilibrium point, asymptotic stability
is in general not possible. However, under certain con-
ditions, the ultimate boundedness of the system’s tra-
jectories can be achieved (Brockman and Corless, 1998;
Khalil, 2002). A guaranteed ultimate bound on the sys-
tem’s trajectories can be associated with good “attenu-
ation” of the effect of perturbations.

A standard approach for the computation of ultimate
bounds is the use of level sets of suitable Lyapunov func-
tions [see, for example, Khalil (2002, Section 9.2)]. The
Lyapunov approach is a powerful tool that can be ap-
plied to very general nonlinear systems. However, this
approach may result in conservative bounds in the linear
case due to the loss of the structure of the system and
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also possibly of the perturbation, whose norm typically
needs to be bounded for the analysis. Kofman (2005),
Kofman et al. (2007a) and Haimovich (2006) presented
a new method for ultimate bound computation based on
componentwise analysis of the system in modal coordi-
nates. This method directly derives componentwise ul-
timate bounds, exploiting the system geometry as well
as the perturbation structure without requiring either
the computation of a Lyapunov function for the sys-
tem or bounding the norm of the perturbation vector.
The examples in Kofman (2005), Kofman et al. (2007a)
and Haimovich (2006) show that this componentwise ap-
proach may provide bounds that are much tighter than
those obtained via standard Lyapunov analysis.

When perturbations span the same subspace spanned by
the control input, commonly referred to as matched per-
turbations, then an ultimate bound on the closed-loop
trajectories can be arbitrarily assigned (Schmitendorf
and Barmish, 1986). Several control design methods that
can achieve an arbitrarily small ultimate bound for lin-
ear uncertain systems have been reported in the robust
control literature (see, for example, Barmish et al., 1983;
Trinh and Aldeen, 1996; Cao and Sun, 1998; Oucheriah,
1999). These methods are based on Lyapunov analysis.

This paper presents a novel controller design method
for multiple-input perturbed linear continuous-time sys-
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tems where every component of the perturbation vec-
tor is bounded by a (possibly) delayed-state-dependent
function. Given desired ultimate bounds for each compo-
nent of the system state, a suitable state-feedback ma-
trix can be systematically computed via this method so
that the corresponding closed-loop system exhibits the
desired componentwise ultimate bound. This controller
design method employs the componentwise approach of
Kofman (2005), Kofman et al. (2007a) and Haimovich
(2006). In this context, the contribution of the current
paper is threefold. First, we further extend the afore-
mentioned componentwise approach to linear systems
with perturbations bounded by a function of previous
values of the state. Second, we provide a sufficient con-
dition for a perturbed system to be ultimately bounded
when the perturbation is componentwise bounded as ex-
plained. Third and most importantly, we develop the
aforementioned systematic controller design method. An
important property of the ultimate bounds considered
throughout this paper is that they are globally valid, i.e.,
they hold irrespective of the initial condition of the sys-
tem, as opposed to the local ultimate bounds in Kofman
et al. (2007a). A preliminary version of this paper was
presented in the conference paper Kofman et al. (2007b).

Notation. Z, R and C denote the sets of integer, real and
complex numbers. |M | and Re(M) denote the element-
wise magnitude and real part, respectively, of a (possibly
complex) matrix or vector M . Also, ρ(M) denotes the
spectral radius of the matrix M . If x(t) is a vector-valued
function, then lim supt→∞ x(t) denotes the vector ob-
tained by taking lim supt→∞ of each component of x(t).
Similarly, ‘lim’ and ‘max’ denote componentwise opera-
tions on a vector. The expression x � y (x ≺ y) denotes
the set of componentwise inequalities xi ≤ yi (xi < yi)
between the elements of the real vectors x and y, and
similarly for x � y (x ≻ y) and in the case when x and y
are matrices. R+ and R+,0 denote the positive and non-
negative real numbers, respectively, and similarly for Z+

and Z+,0. For c ∈ C, c denotes its complex conjugate.

2 Problem formulation

Consider the multiple-input linear perturbed system

ẋ(t) = Ax(t) + Bu(t) + Hw(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the
control input, A ∈ Rn×n, B ∈ Rn×m, H ∈ Rn×k are
constantmatrices, (A, B) is a controllable pair,B has full
column rank, and the perturbation variable w(t) ∈ R

k

satisfies the componentwise bound

|w(t)| � Fθ(t) + w̄ for all t ≥ 0, (2)

with F ∈ R
k×n
+,0 , w̄ ∈ Rk

+,0, and θ(t) ∈ Rn
+,0 defined as

θ(t) , max
t−τ̄≤τ≤t

|x(τ)|, (3)

where τ̄ ≥ 0 and the maximum is taken componentwise.
We emphasize that (2) expresses a bound for each one
of the k components of the perturbation vector w(t).

Given an arbitrary positive vector b⋆ ∈ Rn
+, our goal is to

design a linear state-feedback control u(t) = Kx(t), K ∈
Rm×n, such that the solutions to ẋ(t) = (A+BK)x(t)+
Hw(t), where w(t) is componentwise bounded as in (2)–
(3), are ultimately bounded with componentwise ultimate
bound b⋆, that is, they satisfy

lim sup
t→∞

|x(t)| � b⋆. (4)

When the perturbation bounds are constant, i.e., when
F = 0 in (2), and provided the perturbations are
matched, i.e., if H = BG for some G ∈ Rm×k, it is well-
known that the above goal is achievable (Schmitendorf
and Barmish, 1986). However, additional assumptions
must be made when the perturbation bound depends
on either the current or a delayed version of the system
state, as when F 6= 0 in (2). In the current paper, we
will provide a sufficient condition for achieving any de-
sired componentwise ultimate bound and a method for
computing the corresponding feedback matrix K.

Remark 2.1 The setting (1)–(3) describes, inter-alia,
any combination of the following types of uncertainty:

• Uncertainty in the system evolution matrix, where
ẋ(t) = (A + ∆A(t))x(t) + Bu(t), and |∆A(t)| � ∆A,
for all t ≥ 0; in this case, we can take H = I in (1),
F = ∆A and w̄ = 0 in (2), and τ̄ = 0 in (3).

• Uncertainty in the system input matrix [assuming that
u(t) = Kx(t) in (1)], where ẋ(t) = Ax(t) + (B +
∆B(t))Kx(t), and |∆B(t)| � ∆B, for all t ≥ 0; in
this case, we can take H = I in (1), F = ∆B|K| and
w̄ = 0 in (2), and τ̄ = 0 in (3).

• Uncertain time delay, where w(t) = Adx(t − τ), and
0 ≤ τ ≤ τmax; in this case, we can take F = |Ad| and
w̄ = 0 in (2), and τ̄ = τmax in (3).

• Disturbances with constant bounds, i.e., F = 0 in (2).

3 Componentwise ultimate bounds under per-
turbations

When a state-feedback control u(t) = Kx(t) is applied
to system (1), the resulting closed-loop system takes the
form

ẋ(t) = Āx(t) + Hw(t), (5)

where Ā = A + BK. The following theorem provides a
closed-form expression for an ultimate bound of system
(5) when the perturbation w(t) is bounded as in (2)–(3).

Theorem 3.1 Consider system (5) where x(t) ∈ Rn,
w(t) ∈ R

k, Ā ∈ R
n×n and H ∈ R

n×k. Let Ā be a Hur-
witz matrix with Jordan canonical form Λ = V −1ĀV .
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Suppose that (2) and (3) hold with F ∈ R
k×n
+,0 , w̄ ∈ Rk

+,0
and τ̄ ∈ R+,0. Define the matrix

R , |V |
∣

∣[Re(Λ)]−1
∣

∣

∣

∣V −1H
∣

∣ , (6)

suppose that ρ(RF ) < 1 and let b ∈ Rn
+,0 be given by 2

b , (I − RF )−1Rw̄. (7)

Then, lim supt→∞ |x(t)| � b.

PROOF. Consider the map T : Rn
+,0 → Rn

+,0 defined

by T (x) , R(Fx + w̄). For every γ ∈ R
n
+,0 and ℓ ∈ Z+,0

consider the map T ℓ
γ : Rn

+,0 → Rn
+,0 defined by

T 0
γ (x) , T (x) + |V |γ, T ℓ+1

γ (x) , T 0
γ (T ℓ

γ(x)). (8)

The proof requires the following claims, whose proofs
are given in Appendix A.

Claim 1 There exists x̄ ∈ R
n
+,0, which may depend on

θ(0) [see (3)], such that |x(t)| � x̄ for all t ≥ −τ̄ .

Claim 2 Suppose that |x(t)| � x̄ for all t ≥ −τ̄ . Then,
for any γ ∈ Rn

+ and ℓ ∈ Z+,0, there exists a time instant

t̄ = t̄(ℓ, γ) ≥ 0 such that |x(t)| � T ℓ+1
γ (x̄), for all t ≥ t̄.

Claim 3 Suppose that |x(t)| � x̄ for all t ≥ −τ̄ . Then,
for any ǫ ∈ Rn

+, there exist ℓ = ℓ(ǫ) ∈ Z+,0 and γ =

γ(ǫ) ∈ Rn
+ such that T ℓ+1

γ (x̄) ≺ b + ǫ.

Claim 1 shows that for every initial condition θ(0),
x(t) remains bounded with a bound that may depend
on the initial condition θ(0). Claims 2 and 3 combined
show that, provided x(t) remains bounded, x(t) can be
bounded componentwise with a bound that becomes
arbitrarily close to b as t → ∞, and that this holds
irrespective of the initial condition. These facts imply
the result, namely that lim supt→∞ |x(t)| � b. We next
rigorously establish the result. From Claims 1 and 3,
it straightforwardly follows that for any ǫ ∈ R

n
+, there

exist ℓ = ℓ(ǫ) ∈ Z+,0 and γ = γ(ǫ) ∈ Rn
+ such that

T ℓ+1
γ (x̄) ≺ b + ǫ. For these values of ℓ and γ, we have,

from Claim 2, that there exists t̄ = t̄(ℓ, γ) ≥ 0 such that
|x(t)| � T ℓ+1

γ (x̄) ≺ b + ǫ, for all t ≥ t̄. This implies that
lim supt→∞ |x(t)| � b, concluding the proof. 2

Theorem 3.1 provides the first two contributions of the
paper. First, it extends the componentwise framework
of Kofman (2005), Kofman et al. (2007a) and Haimovich
(2006) to the case when the perturbation bound may
depend on previous values of the state. In this context,
we stress that the ultimate bound b in (7) is a vector

2 Since ρ(RF ) < 1, then the matrix I − RF is invertible
(see, for example, Horn and Johnson, 1985).

having n components, each of which constitutes an ul-
timate bound for the corresponding component of the
state x. As a second contribution, it provides a sufficient
condition, namely that Ā be Hurwitz and ρ(RF ) < 1,
for system (5) to be ultimately bounded when the per-
turbation is bounded as in (2)–(3).

4 Control design with guaranteed component-
wise ultimate bound

The componentwise ultimate bound b provided by The-
orem 3.1 in (7) depends, through the matrix R defined
in (6), on the eigenstructure matrices Λ and V of the
closed-loop system matrix Ā = V ΛV −1 = A + BK
which, in turn, depends on the state-feedback matrix K.
In this section, we exploit the dependency of b on Λ and
V jointly with the dependency of these matrices on K.
This allows us to develop a new control design proce-
dure to guarantee any desired componentwise ultimate
bound for systems with matched perturbations.

In essence, our derivations below are as follows. Given a
desired componentwise ultimate bound b⋆ ∈ R

n
+, we will

select a suitable eigenstructure for the controller canon-
ical form of the matrix Ā so that the desired ultimate
bound is achieved. Once this eigenstructure is selected,
we will compute the required state-feedback matrix K.
These steps will be performed by means of techniques
of eigenvalue/eigenvector assignment by state feedback
(Sinswat and Fallside, 1977), as we show below.

We consider the perturbed multiple-input system (1)–
(3) and let x = Uxc be the transformation that brings
system (1) into its controller canonical form (see, for
example, Luenberger (1967)):

ẋc(t) = Acxc(t) + Bcu(t) + U−1Hw(t), (9)

with Ac = U−1AU and Bc = U−1B. Define

θc(t) , max
t−τ̄≤τ≤t

|xc(t)| (10)

and let w(t) be bounded as follows [c.f. (2), (3) and (10)]:

|w(t)| � F |U |θc(t) + w̄. (11)

The following lemma, whose proof is straightforward,
shows how finding an ultimate bound for the trans-
formed system (9) gives a bound on the system in the
original coordinates.

Lemma 4.1 Consider system (9)–(11) and suppose that
lim supt→∞ |xc(t)| � bc when a state-feedback control
u(t) = Kcxc(t) is applied. Then, lim supt→∞ |x(t)| �
|U |bc, where x(t) is the state of system (1)–(3) with the
feedback control u(t) = KcU

−1x(t).
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The following theorem shows, as an intermediate tool,
how we may select eigenvalues and eigenvectors for the
closed-loop system in controller canonical form and how
we may compute the corresponding feedback matrix Kc.
The proof is given in Appendix B.

Theorem 4.2 Select an eigenvalue matrix Λ =
diag(λ1, . . . , λn), where λi ∈ C, i = 1, . . . , n, satisfy
λi 6= λj whenever i 6= j, Re(λi) < 0, and if λi /∈ R, then

either λi−1 = λi or λi+1 = λi. Let di, i = 1, . . . , m, be the
controllability indices of the system 3 and select numbers
ei,j ∈ C, i = 1, . . . , m, j = 1, . . . , n so that ei,j+1 = ei,j

whenever λj+1 = λj and such that the matrix

V ,

[

V1,1 ... V1,n

...
...

...
Vm,1 ... Vm,n

]

, Vi,j ,







ei,jλ
−(di−1)

j

...
ei,jλ−1

j
ei,j






, (12)

has linearly independent columns. Let Ac, Bc be the ma-
trices of system (9) in controller canonical form and let

Kc = B†
c(V ΛV −1 − Ac), (13)

where B†
c , (BT

c Bc)
−1BT

c . Then, Ac+BcKc = V ΛV −1.

We next show that for any initially chosen eigenvalue
and eigenvector matrices Λ and V as in Theorem 4.2, a
new set of eigenvalues consisting of a scaled version of
the original ones leads to a feedback gain that achieves
the desired ultimate bound b⋆ for system (1)–(3).

Theorem 4.3 Consider the perturbed system (1)–(3),
where (A, B) is a controllable pair and H = BG for
some G ∈ Rm×k. For each µ > 0 consider the scaled
eigenvalue matrix Λ = diag(λ1, . . . , λn), where λi = µλ̃i

for i = 1, . . . , n and λ̃i ∈ C, i = 1, . . . , n, satisfy λ̃i 6= λ̃j

whenever i 6= j, Re(λ̃i) < 0, and if λ̃i /∈ R, then either

λ̃i−1 = λ̃i or λ̃i+1 = λ̃i. Select complex numbers ei,j,
i = 1, . . . , m, j = 1, . . . , n as explained in Theorem 4.2
and consider the corresponding matrix V in (12). Let
x = Uxc be the state variable transformation that brings
system (1) into its controller canonical form (9) with
matrices Ac = U−1AU and Bc = U−1B, and define

Rµ , |V |
∣

∣[Re(Λ)]−1
∣

∣

∣

∣V −1U−1H
∣

∣ , (14)

where the subscript µ is added to stress the dependency
of Rµ on the scaling factor µ. Then:

a) If µ is such that ρ(RµF |U |) < 1, then the state of the
closed-loop system (1)–(3) under the state feedback

3 The controllability indices satisfy di ≥ 1, for i = 1, . . . , m
and

∑m

i=1
di = n, see for example, Wolovich (1974).

u(t) = Kx(t), with K = KcU
−1 and Kc as in (13),

satisfies lim supt→∞ |x(t)| � bµ, where

bµ , |U |(I − RµF |U |)−1Rµw̄. (15)

b) The product µρ(RµF |U |) is a nonincreasing func-
tion of µ. Hence, there exists µ̄ ∈ R+ such that
ρ(RµF |U |) < 1 for all µ > µ̄.

c) For µ > µ̄, the product µbµ, with bµ calculated in
(15), is a componentwise nonincreasing function of
µ. Hence, for µ > µ̄, the ultimate bound bµ in (15)
satisfies limµ→∞ bµ = 0.

PROOF. a) Note that Ac + BcKc is Hurwitz because
its eigenvalues, the nonzero entries of Λ, all have neg-
ative real part. Hence, applying Theorem 3.1 to sys-
tem (9)–(11), it follows that lim supt→∞ |xc(t)| � (I −
RµF |U |)−1Rµw̄, provided ρ(RµF |U |) < 1. The result
then follows by application of Lemma 4.1.

b) From the forms of Λ = diag(λ1, . . . , λn) with λi = µλ̃i

for i = 1, . . . , n, and of V in (12), we can write

Λ = µΛ̃, V = R(µ)E , where (16)

Λ̃ , diag(λ̃1, . . . , λ̃n), (17)

R(µ) , diag
(

µ−(d1−1), . . . , µ−1, 1, µ−(d2−1), . . . , µ−1, 1,

. . . , µ−(dm−1), . . . , µ−1, 1
)

. (18)

and E is an invertible matrix independent of µ. From
(16), it follows that [Re(Λ)]−1 = µ−1[Re(Λ̃)]−1. Since
H = BG and using Bc = U−1B we have that
U−1H = U−1BG = BcG. Since the system is in
controller canonical form, the specific form of the
matrix Bc is such that R−1(µ)Bc = Bc, and hence
V −1U−1H = E−1R−1(µ)BcG = E−1BcG. Using these
facts, the matrix Rµ in (14) takes the form

Rµ = |V | · |µ−1[Re(Λ̃)]−1||E−1BcG|
= µ−1R(µ) |E| · |[Re(Λ̃)]−1||E−1BcG|, (19)

where the last line follows from (16) and the facts that
µ > 0 and R(µ) is diagonal with positive diagonal en-

tries. Defining R̄ , |E| · |Re(Λ̃)−1||E−1BcG|, with rows
R̄1, R̄2, . . . , R̄n, we have from (19) and (18) that

Rµ =











R1
µ

...

Rm
µ











, Ri
µ =















µ−diR̄σi−di+1

µ−di+1R̄σi−di+2

...

µ−1R̄σi















, (20)

where σi ,
∑i

j=1 dj for i = 1, . . . , m. Since R̄ is inde-
pendent of µ and has nonnegative entries, then all en-
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tries of the product µRµ are nonincreasing with µ. Then,
ρ(µRµF |U |) = µρ(RµF |U |) is nonincreasing with µ.
This establishes part b).

c) Define the function bc(µ) , (I−RµF |U |)−1Rµw̄. No-
tice that bc(µ) satisfies

bc(µ) = RµF |U |bc(µ) + Rµw̄. (21)

Differentiating (21) with respect to µ we obtain dbc

dµ (µ) =

DµF |U |bc(µ)+RµF |U |dbc

dµ (µ)+Dµw̄, where Dµ ,
dRµ

dµ .

Then, dbc

dµ (µ) = (I−RµF |U |)−1Dµ[F |U |bc(µ)+w̄]. Since

ρ(RµF |U |) < 1 for all µ > µ̄, and RµF |U | � 0, then
(I−RµF |U |)−1 � 0. Also, note that [F |U |bc(µ)+w̄] � 0

for all µ > µ̄. From (20), note that all the entries of Dµ ,
dRµ

dµ are nonpositive. Therefore, all the entries of dbc

dµ are

nonpositive and it follows that bc(µ) is nonincreasing.
Since bµ in (15) satisfies bµ = |U |bc(µ), it follows from
(21) that µbµ = |U |µRµ[F |U |bc(µ) + w̄]. The terms |U |,
µRµ –from the proof of part b)– and [F |U |bc(µ) + w̄]
are non increasing with µ. Then, µbµ is nonincreasing,
which concludes the proof. 2

Part a) of Theorem 4.3 gives an ultimate bound expres-
sion for system (1)–(3) jointly with the corresponding
feedback matrix for different values of the scaling fac-
tor µ. Parts b) and c) establish properties that the dif-
ferent quantities involved have as functions of µ. These
properties are used in Algorithm 4.4 below to develop a
systematic design procedure to compute a suitable feed-
back matrix that achieves any desired ultimate bound.

Algorithm 4.4 (Systematic Design Procedure)
Given a desired componentwise ultimate bound b⋆:

(1) Compute the matrix U that brings system (1) into its
controller canonical form (9), and the transformed

matrices Ac , U−1AU and Bc , U−1B.
(2) Choose an initial configuration {λ̃i}n

i=1 of n distinct
and stable eigenvalues, where complex eigenvalues
appear in complex conjugate pairs.

(3) Find the controllability indices di, i = 1, . . . , m,

of system (1) and define σi ,
∑i

j=1 dj for i =
1, . . . , m. Select ei,j, i = 1, . . . , m, j = 1, . . . , n as
required in Theorem 4.2 4 .

(4) Select a scaling factor µ > 0 (µ ∈ R+).
(5) Compute V in (12) using the values of ei,j, i =

1, . . . , m, j = 1, . . . , n, chosen in step 3 and λj =

µλ̃j for j = 1, . . . , n. Set Λ , diag(λ1, . . . , λn).

4 It is easy to check that selecting ei,j = λ̃
σi−n

j , for example,

makes the columns of V in (12) linearly independent for all
values of µ > 0 and is such that ei,j+1 = ei,j whenever

λj+1 = λj , as required in Theorem 4.2.

(6) Compute Rµ in (14) and check the condition
ρ(RµF |U |) < 1. If not satisfied, increase µ and
go to step 5. According to Part b) of Theorem 4.3
any new value µ̃ > µρ(RµF |U |) ensures that
ρ(Rµ̃F |U |) < 1.

(7) Compute bµ in (15) and check the condition bµ � b⋆.
If not satisfied, increase µ and go to step 5. Ac-
cording to Part c) of Theorem 4.3 the new value
µ̃ = µ maxi(bµi

/b⋆
i ) ensures that bµ̃ � b⋆.

(8) Compute V as in (12) and K = KcU
−1 with Kc as

in (13). Applying the feedback control u(t) = Kx(t)
achieves the desired ultimate bound. In other words,
lim supt→∞ |x(t)| � b⋆.

Note that if one needs to increase µ in step (6) [and
similarly in step (7)], the suggested new value µ̃ causes
the algorithm to return to step (5) at most once.

5 Example

We consider the rotational motion of a rigid spacecraft
subject to bounded disturbances (Brockman and Cor-
less, 1998). Under the assumption that the spacecraft is
axisymmetric about the third body-fixed axis and there
are no torques about the symmetry axis, the system
can be described by (1), where x(t) ∈ R2 is formed by
the components of the spacecraft inertial angular veloc-
ity with respect to the first two axes and u(t) ∈ R2,
w(t) ∈ R2 are, respectively, control input and unknown
bounded disturbance torques about the first two axes.
The matrices in (1) are A =

[

0 −0.05
0.05 0

]

, B = H =
0.01 I2, where I2 is the 2×2 identity matrix. The distur-
bance bounds are |w(t)| � w̄ = [1 1]T /

√
2 for all t ≥ 0.

Our first goal is to use Algorithm 4.4 to design a
state feedback gain such that a componentwise ulti-
mate bound b⋆ = [0.01 0.01]T can be guaranteed for
the system state. Step (1): the matrix U = 0.01 I2
transforms the system into controller canonical form.

Step (2): we choose λ̃1 = (−1 + j)/
√

2 and λ̃2 = λ̃1.
Steps (3)-(6): we select µ = 1 and compute V and
Λ as indicated (to compute V we use the choice of
ei,j described in foonote 4); note that the condition
ρ(RµF |U |) < 1 is trivially satisfied since F = 0.
Step (7): from (15) compute bµ = [0.0283 0.0283]T ;
since bµ � b⋆ take µ̃ = µ 0.0283/0.01. We obtain
bµ̃ = [0.01 0.01]T � b⋆ as desired. Step (8): the

corresponding gain is K̃ =
[

0 287.843
−287.843 −400

]

.

Our second goal is to exploit the degree of freedom pro-
vided by different choices of the eigenvector matrix V
given in (12), so as to minimise the ultimate bound on
the second state x2. Towards this goal, we fix µ = µ̃
obtained in Step (7) above and change the parameters
ei,j in V to minimise the second component of bµ given
in (15), subject to the constraint that the ultimate bound
on the first state x1 is less than or equal to 0.5. We use
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Matlab’s routine fminsearch for the optimisation and

obtain V =
[

−0.4703−j1.4169 −0.4703+j1.4169
−0.0101+j0.0034 −0.0101−j0.0034

]

. Using this

value of V and µ = µ̃ in (15) gives bµ = [0.5 0.0036]T

The controller gain for this case, K = KcU
−1 with Kc

as in (13), is K = − [ 200.011 28079.24
3.576 199.989 ].

For comparison, we will consider the closed-loop system
with the above gain K and compute ultimate bounds
using the method proposed in Brockman and Corless
(1998). This method provides an upper bound on the

ultimate size of the 2-norm of the state as ‖x(t)‖ ≤ r ,

[λmax(S)]
1/2

(λmax denotes the largest eigenvalue of a
matrix), where S > 0 is a solution of the Lyapunov equa-
tion (A+BK)S+S(A+BK)T +αS+α−1HHT = 0 for
0 < α < ᾱ, and where −2ᾱ denotes the maximum of the
real parts of the eigenvalues of A+BK. Minimising r for
α in the above range yields r = 0.2775. Comparing with
bµ = [0.5 0.0036]T obtained above with our method we
note that the latter gives a bound 78 times tighter for
the second component of the state while the bound on
the norm of the state is less than 2 times worse than that
provided by the method of Brockman and Corless (1998)
(since ‖bµ‖ ≈ 0.5 < 2r). We note that the latter method
can be used to compute ultimate bounds once a linear
controller is given but it is not evident how the method
can be employed in a controller design procedure to as-
sign ultimate bounds. On the other hand, the method
proposed here can be used to design a feedback gain to
achieve any desired ultimate bound and, moreover, has
the flexibility to focus on bounds for the individual state
components, as demonstrated in this example.

6 Conclusions

We have presented a new control design method which
can guarantee a prespecified ultimate bound on the
closed-loop trajectories of perturbed multiple-input
systems. The method employs techniques of eigen-
value/eigenvector assignment by state feedback and a
componentwise bound computation procedure. The lat-
ter procedure exploits the system geometry as well as
the perturbation structure without requiring Lyapunov
analysis or bounds on the norm of the perturbation. The
perturbation description adopted can accommodate for
numerous types of uncertainties, including the case of
uncertain time-delays in the feedback loop.

A Proofs of Claims 1–3

We require the following additional results (Claim 4 and
Lemma A.1). The proof of Lemma A.1 combines mi-
nor modifications to the proofs of Theorem 3 of Kofman
(2005), Theorem 1 of Kofman et al. (2007a), and Theo-
rem 7.3 of Haimovich (2006), and is therefore omitted.

Claim 4 For any θ0, δ ∈ R
n
+,0, there exists β ≻ θ0 such

that RFβ + δ ≺ β.

PROOF. It follows fromRF � 0, ρ(RF ) < 1, and θ0 �
0 (see for example, Horn and Johnson, 1985, §8). 2

Lemma A.1 Consider the system

ẏ(t) = Ā(y(t) + ξ0) + Hw(t), (A.1)

where y(t), ξ0 ∈ Rn, w(t) ∈ Rk, Ā ∈ Rn×n and H ∈
Rn×k. Let Ā be Hurwitz with Jordan canonical form Λ =
V −1ĀV , let R̃ , |V ||[Re(Λ)]−1||V −1Ā| and consider the
matrix R defined in (6). Let wm ∈ Rk

+,0 and tc ∈ R+,0.

a) Suppose that |w(t)| � wm for 0 ≤ t ≤ tc and y(0) = 0.

Then, |y(t)| � Rwm + R̃|ξ0| for 0 ≤ t ≤ tc.
b) Suppose that |w(t)| � wm for all t ≥ 0. Then, for any

ǫ ∈ Rn
+, there exists a continuous function t̄f (ǫ, ·) :

Rn → R+,0 such that |y(t)| � Rwm + R̃|ξ0|+ |V |ǫ for
all t ≥ t̄f (ǫ, y(0)).

Proof of Claim 1. For a contradiction, suppose that
|x(t)| becomes unbounded. Note that |x(t)| � θ0 , θ(0)

for −τ̄ ≤ t ≤ 0 by (3). Let δ , Rw̄ + R̃|x(0)| + |x(0)|,
with R and R̃ as in Lemma A.1, and let β be given by
Claim 4. Define

tc , inf t, subject to t ≥ 0 and |x(t)| 6� β. (A.2)

Note that θ(t) � β for all 0 ≤ t ≤ tc. From (2), then

|w(t)| � wm , Fβ + w̄ for all 0 ≤ t ≤ tc. Let y(t) ,

x(t) − x(0) and note that y(0) = 0. Then, y(t) verifies
(A.1) with ξ0 = x(0). Thus, applying Lemma A.1 a) it

follows that |y(t)| � Rwm + R̃|x(0)| = R(Fβ + w̄) +

R̃|x(0)| for 0 ≤ t ≤ tc. Taking into account that |x(t)| �
|y(t)| + |x(0)| and using Claim 4, we obtain |x(t)| �
R(Fβ+w̄)+R̃|x(0)|+|x(0)| = RFβ+δ ≺ β, for 0 ≤ t ≤
tc. From the continuity of x(t), it then follows that there
exists α ∈ R+ such that |x(t)| � β for 0 ≤ t ≤ tc + α.
This contradicts (A.2), concluding the proof. ⋄

Proof of Claim 2. By induction on ℓ. By assumption,
we have |x(t)| � x̄ for all t ≥ −τ̄ . From (2) and (3),
then |w(t)| � F x̄ + w̄, for all t ≥ 0. Note that (A.1)
coincides with (5) when ξ0 = 0 replacing y(t) by x(t).
Thus, applying Lemma A.1 b) with ξ0 = 0, then given
γ ∈ Rn

+, there exists a time instant t̄f such that |x(t)| �
R(F x̄ + w̄) + |V |γ = T 0

γ (x̄) for all t ≥ t̄f . The claim
is then established for ℓ = 0 by setting t̄(0, γ) = t̄f .
Suppose next that the claim holds for some ℓ ∈ Z+,0,
that is for any γ ∈ R

n
+, there exists t̄(ℓ, γ) such that

|x(t)| � T ℓ+1
γ (x̄) for all t ≥ t̄(ℓ, γ). Then, by (2), θ(t) �

T ℓ+1
γ (x̄) and hence, by (3), |w(t)| � FT ℓ+1

γ (x̄) + w̄, for
t ≥ t̄(ℓ, γ)+ τ̄ . Applying Lemma A.1 b) with ξ0 = 0 and
considering the fact that the system is time-invariant,
then given γ ∈ R

n
+, there exists t̃f such that |x(t)| �

R(FT ℓ+1
γ (x̄) + w̄) + |V |γ = T ℓ+2

γ (x̄), for t ≥ t̄(ℓ, γ) +
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τ̄ + t̃f . The claim is then established for ℓ + 1 by setting
t̄(ℓ+1, γ) = t̄(ℓ, γ)+ τ̄ + t̃f . This concludes the proof. ⋄

Proof of Claim3. Note that |T ℓ+1
γ (x̄)−b| � |T ℓ+1

γ (x̄)−
T ℓ+1(x̄)|+ |T ℓ+1(x̄)−b|. By (7), (8), and since ρ(RF ) <
1, then limℓ→∞ T ℓ(x̄) = b. Also, since x̄ � 0 and T :
Rn

+,0 → Rn
+,0, then b � 0. Therefore, given ǫ ∈ Rn

+, we

can select ℓ = ℓ(ǫ) such that |T ℓ+1(x̄) − b| ≺ ǫ/2. From
(8), it follows straightforwardly that, for the selected
value of ℓ, we may select γ = γ(ǫ) ∈ Rn

+ small enough so

that |T ℓ+1
γ (x̄)−T ℓ+1(x̄)| ≺ ǫ/2. Then, |T ℓ+1

γ (x̄)−b| ≺ ǫ.

Since b � 0 and T 0
γ : Rn

+,0 → Rn
+,0 for any γ ∈ Rn

+,0, then

T ℓ+1
γ (x̄) = |T ℓ+1

γ (x̄)− b + b| � |T ℓ+1
γ (x̄)− b|+ b ≺ b + ǫ,

establishing the claim. ⋄

B Proof of Theorem 4.2

From Sinswat and Fallside (1977), we know that a nec-
essary and sufficient condition for a matrix Kc ∈ Rm×n

to exist such that the pair (λ, ẽ), λ ∈ C, ẽ ∈ Cn is an
eigenvalue-eigenvector pair of Ac +BcKc, i.e., such that
(λ, ẽ) is assignable by state feedback, is that

Γẽ = 0, where Γ , (I − BcB
†
c)(Ac − λI). (B.1)

When the system is in controller canonical form, the
matrix Γ in (B.1) can be shown to have the simple form

Γ = diag(Γ1, . . . , Γm), Γi ,







−λ 1 0 ··· 0
0 −λ 1 ··· 0

...
. . .

. . .
. ..

...
0 ··· 0 −λ 1
0 ··· 0 0 0






∈ R

di×di .

(B.2)
Using (B.1)–(B.2), it follows that the pair (λ, ẽ), where

λ ∈ C, λ 6= 0, ẽ , [ ẽ1 ẽ2 ... ẽn ]T ∈ Cn is an assignable
eigenvalue-eigenvector pair if and only if

−λẽ1+ẽ2=0
−λẽ2+ẽ3=0

...
−λẽσ1−1+ẽσ1=0

−λẽσ1+1+ẽσ1+2=0

...
−λẽσ2−1+ẽσ2=0

−λẽσ2+1+ẽσ2+2=0

...
−λẽσm−1+ẽσm=0

⇐⇒ ẽ =



























ẽσ1λ−(d1−1)

...
ẽσ1λ−1

ẽσ1

...
ẽσmλ−(dm−1)

...
ẽσmλ−1

ẽσm



























, (B.3)

where we have defined σi ,
∑i

j=1 dj for i = 1, . . . , m

(note that σm = n). The above equations imply that

if e1 , ẽσ1 , e2 , ẽσ2 , . . . , em , ẽσm
are freely cho-

sen then the remaining components of ẽ are fixed. Since
the columns of V in (12) have the form of ẽ in (B.3),
we conclude that V is an assignable eigenvector matrix.
Finally, also according to Sinswat and Fallside (1977),

the feedback matrix required to assign the eigenvalue-
eigenvector pairs selected is Kc as in (13). 2
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